
Citation: Wang, Y.; Wang, T.; Zhu,

X.-Y. Virtual Photon-Mediated

Quantum State Transfer and Remote

Entanglement between Spin Qubits in

Quantum Dots Using Superadiabatic

Pulses. Entropy 2024, 26, 379.

https://doi.org/10.3390/e26050379

Academic Editor: Rosario Lo Franco

Received: 25 March 2024

Revised: 21 April 2024

Accepted: 27 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Virtual Photon-Mediated Quantum State Transfer and Remote
Entanglement between Spin Qubits in Quantum Dots Using
Superadiabatic Pulses
Yue Wang 1, Ting Wang 1 and Xing-Yu Zhu 1,2,*

1 School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
2 Institute of Quantum Information Technology, Suzhou University, Suzhou 234000, China
* Correspondence: zxy@ahszu.edu.cn

Abstract: Spin qubits in semiconductor quantum dots are an attractive candidate for scalable quan-
tum information processing. Reliable quantum state transfer and entanglement between spatially
separated spin qubits is a highly desirable but challenging goal. Here, we propose a fast and high-
fidelity quantum state transfer scheme for two spin qubits mediated by virtual microwave photons.
Our general strategy involves using a superadiabatic pulse to eliminate non-adiabatic transitions,
without the need for increased control complexity. We show that arbitrary quantum state transfer can
be achieved with a fidelity of 95.1% within a 60 ns short time under realistic parameter conditions.
We also demonstrate the robustness of this scheme to experimental imperfections and environmental
noises. Furthermore, this scheme can be directly applied to the generation of a remote Bell entan-
gled state with a fidelity as high as 97.6%. These results pave the way for fault-tolerant quantum
computation on spin quantum network architecture platforms.

Keywords: spin qubit; circuit quantum electrodynamics; quantum state transfer; remote entanglement;
superadiabatic pulse

1. Introduction

Electron spins in semiconductor quantum dots have emerged as a promising platform
for achieving large-scale quantum information processing, due to their small footprint,
long coherence times, and compatibility with advanced semiconductor manufacturing
techniques [1,2]. Recently, there have been significant advancements in high-fidelity single-
qubit and two-qubit gate operations [3–5], as well as in the universal control of multiple-
qubit processors [6–8]. For scalable quantum computing, it is essential to find a suitable
quantum architecture that can leverage the feasible state-of-art technology for integrating
large numbers of qubits. A great deal of progress has been made in the monolithic architec-
tures [9–11], primarily based on the wavefunction overlap between adjacent quantum dots.
In contrast, network architectures [12–14], which utilize flying photons to establish links
between long-distance qubits, represent a more achievable solution due to their advantages
in flexibility and connectivity. However, a critical step in realizing network architectures is
to achieve efficient and high-fidelity quantum state transfer and entanglement between
spatially separated spin qubits.

Circuit quantum electrodynamics (circuit QED) provides an attractive way to realize
quantum network architectures [15–17], where a superconducting resonator serves as the
quantum bus interacting with different qubits. The typical approach for implementing
quantum state transfer is based on real photon processes [18,19], where one qubit sends
quantum information to the microwave photons, and then another qubit receives the
information from the photons. This indirect approach introduces additional operations
and requires fine-tuning of parameters, which results in obstacles to large-scale quantum
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information processing. In addition, the resonant qubit-resonator coupling leads to addi-
tional decoherence processes due to the leakage of resonator photons, thereby affecting the
performance of quantum state transfer.

Another attractive approach is to employ virtual photon processes [20–26], where
the frequencies of the two qubits are detuned from the resonator frequency. In this case,
the effective coupling between the two qubits allows for the direct transfer of quantum in-
formation between them. This direct approach can avoid additional resource consumption
and quantum information loss due to photon leakage. However, designing a scheme for
long-distance quantum state transfer of spin qubits is a highly desirable but challenging
goal. On the one hand, the strong coupling between spin qubit and resonator is a challenge
due to the small magnetic dipole moment of spin qubits. On the other hand, quantum
state transfer requires fast and high fidelity, even in the presence of operational errors
and decoherence effects. Furthermore, quantum entanglement is a crucial resource for
quantum computation. Hence, quantum state transfer schemes need to be applicable
to remote entanglement preparation. Such a scheme for spin qubits has not yet been
demonstrated, as meeting all the implementation requirements mentioned above is not a
straightforward task.

In this paper, we propose an efficient quantum state transfer scheme for long-distance
spin qubits based on the circuit QED architecture, addressing all the challenges. Firstly, we
employ a single-electron spin qubit in a double quantum dot (DQD). Due to spin-charge hy-
bridization, the spin qubit exhibits charge characteristics, enabling strong coupling with the
resonator [23,27,28]. Secondly, we design a superadiabatic pulse for state transfer between
spin qubits mediated by virtual microwave photons. By modifying the parameters of the
control pulse, we not only effectively eliminate non-adiabatic transitions but also signifi-
cantly reduce the state transfer time. We show that the quantum state transfer can achieve
a high fidelity of 95.1% within a short time of 60 ns under realistic conditions, while ex-
hibiting robustness to experimental imperfections and environmental noises. Furthermore,
our scheme can be directly applied to the generation of two-qubit remote entanglement on
demand with a high fidelity of 97.6%, which already meets the threshold for network error
correction protocols [12,13]. These results provide the key elements for scalable spin-based
quantum information processing with the network architecture.

2. Setup and Models

We consider two silicon-based semiconductor spin qubits coupled to both ends of
the joint superconducting resonator, as illustrated in Figure 1a. Here, a single electron
confined in a double quantum dot forms the |L⟩ and |R⟩ charge states, representing the
electron occupying the left or right dot, respectively. The potential difference between
two dots is ϵ and the tunneling coupling between two dots is tc. By applying a uniform
external magnetic field B, the electron undergoes Zeeman splitting, forming the | ↑⟩ and
| ↓⟩ spin states. In addition, a nearby micromagnet generates a gradient magnetic field ∆B
between the left and right dots, inducing spin-charge hybridization in the electron [29,30].
The Hamiltonian describing the single-electron DQD is

HDQD =
1
2

ϵτ̃z + tcτ̃x +
1
2

gµB(Bσ̃z + ∆Bσ̃x τ̃z), (1)

where g = 2 is the electronic Lande g-factor, and µB is the Bohr magneton. The operators τ̃i
and σ̃i are Pauli operators defined in the charge and spin subspaces, respectively.

In Figure 1b, we show the energy levels of the single-electron DQD system as a
function of the bias ϵ. The energy spectrum can be conveniently understood through the
following aspects. On one hand, when ϵ is large, the electron is localized in either the
left or right dot, corresponding to the states |L, ↓⟩, |L, ↑⟩, |R, ↓⟩, and |R, ↑⟩. On the other
hand, when ϵ = 0, the electron is delocalized across the DQD, leading to the bonding and
antibonding states |∓⟩ = (|R⟩ ∓ |L⟩)/

√
2. Furthermore, due to the spin-charge interaction,

the bonding and antibonding states with opposite spins |−, ↑⟩, |+ ↓⟩ are hybridized. We
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encode the spin qubit using the lowest two energy levels, denoted as |0⟩ and |1⟩. Thus, the
effective two-level Hamiltonian of the spin qubit can be written as

Hs =
h̄
2

ωsσz, (2)

where ωs is the transition frequency of the spin qubit, and the operator σz is the Pauli
operator defined in the basis of states |0⟩ and |1⟩.
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Figure 1. (a) Schematic of two-spin-qubit quantum state transfer. A single electron in a double
quantum dot is capacitively coupled to a superconducting resonator. The quantum state transfer of
two long-distance spin qubits is achieved through the virtual photon process. (b) The level structure
of the spin qubit as a function of the parameter ϵ. The parameters of the system are as follows:
tc/2π = 3.5 GHz, gµBB/2π = 5.0 GHz, and gµB∆B/2π = 0.2 GHz.

Then, we consider a superconducting microwave resonator, neglecting high-energy
modes and focusing only on the fundamental mode. The Hamiltonian of the resonator is
represented by

Hr = h̄ωra†a, (3)

where ωr is the resonator frequency, and the operators a† and a are the creation and
annihilation operators, respectively. When the resonator is capacitively coupled to the spin
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qubit, it exhibits a charge-resonator coupling strength gc. Due to the hybridization of the
spin qubit with charge and spin states, the spin and resonator can be coupled by an indirect
electric-dipole interaction, with a spin-photon coupling strength gs = ⟨0|τ|1⟩gc. In this way,
the interaction Hamiltonian between the spin qubit and the resonator can be expressed as

Hint = h̄gs(a† + a)σx. (4)

To achieve control over the composite system, we apply an external driving field
to modulate the frequency of one of the spin qubits, with Hd = h̄

2 f (t)σz. Here, f (t)
represents the frequency response to the driving pulse and is chosen to satisfy the following
adjustable sinusoidal function:

∫ t
0 f (τ)dτ = A(t) sin[ f (t)t + β(t)], where A(t) and β(t) are

the amplitude and phase of the driving pulse, respectively. Putting things together, in the
rotating wave approximation, the composite system comprising both spin qubits and a
resonator can be described by the following Hamiltonian

Hcom = ∑
i=1,2

h̄
2

ωi
sσi

z + h̄ωra†a + ∑
i=1,2

h̄gi
s(a†σi

− + aσi
+) +

h̄
2

f (t)σ1
z , (5)

where the superscript i represents the spin qubits 1 and 2.

3. Spin–Spin Coupling Mediated by Virtual Photons

We now consider the effective coupling between spin qubits mediated by virtual
photons in the resonator. In the dispersive regime, the frequency detuning between the spin
qubit and the resonator is larger than the coupling strength, satisfying |∆i

s| = |ωr −ωi
s| > gi

s.
In this case, the impact of photon excitation on the superposed eigenstates of the two spin
qubits is suppressed. Using the Schrieffer–Wolff transformation [31], we decouple different
subspaces at a desired order, and the system can be described by the Tavis–Commings
Hamiltonian [32]

Hdisp = ∑
i=1,2

h̄
2

ω′ i
sσi

z + h̄ge f f (σ
1
+σ2

− + σ1
−σ2

+) +
h̄
2

f (t)σ1
z , (6)

where ω′
s = ωs − g2

s /∆s is the frequency of spin qubit, σ± are the raising and lowering
operators, and the spin–spin effective coupling strength is

ge f f =
g1

s g2
s

2
(

1
∆1

s
+

1
∆2

s
). (7)

For a more intuitive understanding of the effective interaction between spin qubits,
we apply a unitary transformation to transform Hdisp into a rotating frame, with

U1 = exp[i
ω1

s t
2

σ1
z + i

ω2
s t
2

σ2
z + i

∫ t
0 f (τ)dτ

2
σ1

z ]. (8)

This leads to the effective Hamiltonian

He f f = h̄ge f f J1[A(t)] exp {i[δ(t)t − β(t)]}σ1
+σ2

− + H.c. (9)

Here, we use the Jacobi–Anger expansion eiz sin α = ∑∞
−∞ Jn(z)einα, J1[A(t)] is the first-order

Bessel function, and δ(t) = ω′2
s − ω′1

s − f (t) is the frequency detuning. Furthermore, we
apply an extra unitary transformation, with

U2 = exp[−i
δ(t)t

4
σ1

z + i
δ(t)t

4
σ2

z ]. (10)
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In the new frame, the effective Hamiltonian can be rewritten as

He f f =
h̄
2


0 0 0 0
0 d[δ(t)t]/dt 2ge f f J1[A(t)]e−iβ(t) 0
0 2ge f f J1[A(t)]eiβ(t) −d[δ(t)t]/dt 0
0 0 0 0

. (11)

It is worth noting that we can achieve transitions between the states |01⟩ and |10⟩ by
adjusting the parameters of the driving pulse. For more discussion on the comparison of
the effective Hamiltonian with the full Hamiltonian, see Appendix A.

4. Superadiabatic Pulse

For convenience, we consider the system Hamiltonian driven by an external driving
field in the subspace spanned by the states |01⟩ and |10⟩, with

Hsub =
h̄
2

[
∆(t) Ω(t)
Ω(t) −∆(t)

]
, (12)

where ∆(t) is the frequency detuning, and Ω(t) is the frequency of the Rabi oscillation.
During the evolution of the system, there will be non-adiabatic transitions between the
instantaneous eigenstates. The usual strategy is to apply an adiabatic pulse, where the
pulse parameters change very slowly over time. While this approach allows the system
to evolve along eigenstates, the long evolution time implies more accumulated errors
due to environmental noise, thereby limiting the achievement of fast and high-fidelity
state transfer.

To address this challenge, we employ a superadiabatic pulse scheme to achieve fast
evolution of the system while effectively eliminating non-adiabatic transitions [33,34].
For the time-dependent Hamiltonian Hsub, the non-adiabatic transition evolution part can
be expressed as

Hna = −ih̄ ∑
n=±

[|∂tλn(t)⟩⟨λn(t)| − ⟨λn(t)|∂tλn(t)⟩|λn(t)⟩⟨λn(t)|], (13)

where |λn(t)⟩ are the instantaneous eigenstates of Hsub, and |∂tλn(t)⟩ are the derivatives of
the instantaneous eigenstates with respect to time. In the subspace of states |01⟩ and |10⟩,
the non-adiabatic transition part can be expressed in a specific form as

Hna =
h̄
2

[
0 iθ̇(t)

−iθ̇(t) 0

]
, (14)

where angle θ(t) = arctan[Ω(t)/∆(t)]. Our strategy involves starting with the original
Hamiltonian Hsub and modulating the parameters of the driving field to construct the
effective Hamiltonian He f f . This effective Hamiltonian satisfies

He f f = Hsub − Hna =
h̄
2

[
∆sa(t) Ωsa(t)e−iϕsa(t)

Ωsa(t)eiϕsa(t) −∆sa(t)

]
, (15)

where the parameters of the superadiabatic pulse are ∆sa(t) = ∆(t), Ωsa(t) =
√

Ω2(t) + θ̇2(t),
and ϕsa(t) = arctan[θ̇(t)/Ω(t)].

We note that a shortcut to the adiabatic scheme, introducing an auxiliary field to
eliminate non-adiabatic transitions, has been proposed in various systems [35–37]. This
scheme not only requires the introduction of additional laser or microwave fields, but also
demands careful design to implement interaction terms that are not present in the origi-
nal Hamiltonian. In contrast, our scheme only requires the modulation of driving pulse
parameters, effectively avoiding the complexity of experiments and resource consump-
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tion. Combining Equations (11) and (15), we can obtain the relevant parameters for the
superadiabatic pulse as

f (t) = ω′2
s − ω′1

s −
∫ t

0 ∆(τ)dτ

t

A(t) = J−1
1 { 1

2ge f f

√
Ω2(t) +

[∆(t)Ω̇(t)− Ω(t)∆̇(t)]2

[∆2(t) + Ω2(t)]2
}

β(t) = arctan{∆(t)Ω̇(t)− Ω(t)∆̇(t)
Ω(t)[∆2(t) + Ω2(t)]

}.

(16)

We set the parameters to satisfy the condition
√

Ω2(t) + θ̇2(t) ≤ 2gJmax
1 , where Jmax

1 = 0.582
is the maximum value of the first-order Bessel function.

5. Quantum State Transfer

Having achieved effective spin–spin coupling mediated by virtual photons, we can
use the superadiabatic pulse scheme for quantum state transfer between two distant spin
qubits. As shown in Figure 2a, we set the typical time-dependent parameters of the driving
field as

Ω(t) = Ω0 sin(
πt
T
)

∆(t) = ∆0 cos(
πt
T
),

(17)

where T is the duration time, Ω0 and ∆0 are the maximum values of the Rabi oscillation
frequency and the frequency detuning, respectively. This pulse has two advantages over
other types of pulses, such as the Gaussian pulse: its simple waveform and no need
for cutoff.

The evolution of the composite system is described by the master equation [15,38]

dρ

dt
=

i
h̄
[ρ, He f f ] + ∑

i=1,2
(γi

1 +
gi2

s κ

∆i2
s
)D[σi

−]ρ + ∑
i=1,2

γi
ϕ

2
D[σi

z]ρ, (18)

where ρ is the density matrix of the system, and D[O]ρ = OρO† − (O†Oρ + ρO†O)/2 is
the Lindblad operator describing the decoherence processes. γ1 = 1/T1 and γϕ = 1/Tϕ

are the relaxation and dephasing rates of the spin qubit. κ is the leakage rate of photons in
the resonator. For more on the derivation of the effective master equation, see Appendix B.
Here, we use the parameter values from the experiments [23,27,39]: spin-resonator cou-
pling strength g1(2)

s /2π = 40 MHz, frequency detuning ∆1(2)
s = 5g1(2)

s , relaxation time
T1(2)

1 = 1.2 ms, dephasing time T1(2)
ϕ = 1 µs, leakage rate κ/2π = 1.8 MHz, pulse parame-

ters Ω0/2π = ∆0/2π = 2 MHz, duration time T = 60 ns.
To study the quantum state transfer from spin qubit 1 to spin qubit 2, we first prepare

the initial states of spin qubit 1 and 2 as |1⟩ and |0⟩, respectively. Then, a superadiabatic
pulse is applied to drive spin qubit 1 and 2 to evolve towards the |0⟩ and |1⟩ states,
respectively. Finally, we present the state population of spin qubit 2 during the state
transfer process. As shown in Figure 2b, solid and dotted lines represent the ideal case
and the practical case including environmental noises, respectively. We observe a smooth
increase in the population of state |1⟩, which ultimately stabilizes at p1 = 94.5%, indicating
the efficiency of the state transfer using this scheme. In Figure 2c, we obtained the state
evolution trajectory of spin qubit 2 by projecting the state onto three different orthogonal
basis vectors σi=x,y,z and calculating three components ⟨σi=x,y,z⟩, where σ represents the
Pauli operator. These results demonstrate that the proposed scheme can achieve quantum
state transfer between two spin qubits.
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The phase of quantum states is crucial in quantum information processing, so we
investigate the preservation of phase information during quantum state transfer. We
initialize spin qubit 1 in a superposition state |ψi⟩ = (|0⟩+ eiϕi |1⟩)/

√
2, and implement

the same quantum state transfer process. In the ideal case, the final state of spin qubit
2 should be |ψ f ⟩ = (|0⟩+ eiϕ f |1⟩)/

√
2, where the phase ϕ f = ϕi. In practice, however,

the phase information is affected by the environmental noises. We simulate the quantum
state transfer process and obtain the final state of spin qubit 2, which can be represented
as ρ = (SI I + Sxσx + Syσy + Szσz)/2. In Figure 2d, we show the coefficients Sx, Sy, Sz as a
function of the initial phase ϕi, indicating that phase coherence is maintained during the
transfer process.
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Figure 2. (a) The scheme for implementing the quantum state transfer by time-dependent parameters
of the driving pulse. (b) The state populations of spin qubit 2 during the quantum state transfer
process, with spin qubit 1 and 2 initially in |1⟩ and |0⟩. The solid line is the evolution without
environmental noises and the dotted line is the evolution with environmental noises. (c) The quantum
state tomography of spin qubit 2 involves projecting the state onto the Pauli matrices σx, σy and σz.
(d) The coefficients Sx, Sy and Sz of the states of spin qubit 2 as a function of initial phase ϕi in the
quantum state transfer, with spin qubit 1 initially in (|0⟩+ eiϕi |1⟩)/

√
2.

To quantitatively evaluate the quantum state transfer between distant spin qubits
using our scheme, we calculate the process fidelity using quantum process tomography
(QPT) [40]. As shown in Figure 3a, we prepare spin qubit 1 in the six mutually unbiased
states |0⟩, |1⟩, (|0⟩ ± |1⟩)/

√
2 and (|0⟩ ± i|1⟩)/

√
2, while spin qubit 2 is in state |0⟩. Then,

we transfer the state of spin qubit 1 to spin qubit 2, and reconstruct the transfer process
matrix χ using quantum process tomography. As shown in Figure 3b, the process fidelity
for quantum state transfer reaches F = tr(χχid) = 95.1%, compared to the ideal transfer
process matrix χid. This indicates our ability to achieve high-fidelity quantum state transfer,
with potential applications in remote quantum entanglement.
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Figure 3. (a) The whole pulse sequence is used to characterize the quantum state transfer between
the two spin qubits. We prepare six mutually unbiased states of spin qubit 1, while spin qubit 2 is
in state |0⟩. Next, we apply a superadiabatic pulse to transfer the state of spin qubit 1 to spin qubit
2. Finally, we obtain the quantum state tomography of the system through joint readout. (b) The
process matrix of the state transfer in the basis {I, X, Y, Z} using the quantum process tomography,
and the fidelity reaches F = 95.1%.

6. Robustness to Imperfections and Noises

Given the inevitability of experimental imperfections and environmental noise in
practical settings, robustness is a crucial characteristic of quantum state transfer schemes.
We investigate the robustness of quantum state transfer to fluctuations in the pulse pa-
rameters of our scheme. The performance of quantum state transfer is determined by
two key parameters: the Rabi oscillation frequency Ω(t) and the frequency detuning ∆(t),
corresponding to the amplitude and frequency of the driving pulse, respectively. Therefore,
the fluctuations in the pulse parameters significantly affect the process fidelity. We test the
robustness of the state transfer process to parameter fluctuations by adding fluctuations
to both the Rabi oscillation frequency and frequency detuning, as Ω0 → Ω0 + δΩ0 and
∆0 → ∆0 + δ∆0. Figure 4a,b show the process fidelity as functions of parameter fluctuations
δΩ0/Ω0 and δ∆0/∆0 for various duration times. We observe that as the duration time
increases, the process fidelity decreases. This is because longer duration times imply more
error accumulation due to environmental noises. In addition, it is evident that the quantum
state transfer process using our scheme exhibits robustness to parameter fluctuations over
a wide range.

Furthermore, we investigate the influence of environmental noises on the quantum
state transfer process. In silicon-based spin qubits, the dephasing process is considered to
be the primary factor limiting the state transfer process, since the relaxation time is much
longer compared to the dephasing time. In Figure 4c, we observe that the process fidelity
increases with the dephasing time Tϕ. For instance, when the dephasing time Tϕ changes
from 1 µs to 20 µs, the process fidelity rapidly increases from 95.1% to nearly 99%. This
is attributed to the fact that in our scheme, the coupling between spin qubits is mediated
by virtual photons, and the decoherence effects of the spin qubits determine the fidelity
of the state transfer process. In addition, the leakage of photons in the resonator can also
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induce decoherence channels for spin qubits, known as the Purcell effect [15]. In Figure 4d,
we observe a gradual increase in process fidelity as the photon leakage rate κ decreases.
These results indicate that the process fidelity of the quantum state transfer can be further
improved in the future by extending the dephasing time Tϕ of spin qubits [41,42] and
reducing the photon leakage rate κ in the resonator [43]. For example, when Tϕ = 20 µs and
κ/2π = 1 MHz, a quantum state transfer with fidelity exceeding 99% should be achievable.
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Figure 4. The process fidelity of quantum state transfer as functions of fluctuations in pulse parameters
(a) δΩ0/Ω0 and (b) δ∆0/∆0. Here, three driving pulses with different duration times are presented.
(c) The process fidelity of quantum state transfer as a function of the spin qubit dephasing time γϕ.
(d) The process fidelity of quantum state transfer as a function of the photon leakage κ in the resonator.

7. Generation of Remote Entanglement

The generation of remote entanglement between arbitrary qubits is a critical element
in network quantum information processing. Here, we utilize the quantum state transfer
scheme to generate two-qubit remote entangled states between spin qubits. As shown
in Figure 5a, we initially prepare spin qubits 1 and 2 in states |1⟩ and |0⟩, respectively.
Then, a designed driving pulse Rπ/2 is applied to spin qubit 1 to generate the entangled
Bell state |Ψ+⟩ = (|01⟩+ |10⟩)/

√
2, which can be achieved by setting the duration time to

T = 30 ns. Finally, the density matrices of the two qubits can be extracted using quantum
state tomography.

Taking into account the decoherence of spin qubits and photon leakage, we numerically
simulate the dynamical evolution of the entire system using the master equation. Then,
the calculated two-qubit density matrix ρent is represented using quantum state tomography.
In Figure 5b,c, we show the average values of the Pauli operators ⟨σiσj⟩ for the two spin
qubits, respectively, and the reconstructed density matrix of the remote Bell entangled
state. Compared to the ideal Bell entangled state, our scheme achieves an entanglement
fidelity of Fent = ⟨Ψ+|ρent|Ψ+⟩ = 97.6%, exceeding the threshold for many network
architecture-based quantum error correction protocols [12,13]. Overall, our scheme is
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capable of generating remote entangled states between two spin qubits, making it promising
for various quantum information processing applications in a network architecture.
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Figure 5. (a) The whole pulse sequence is used to generate remote entangled states between spin
qubits using our scheme. The spin qubits 1 and 2 can initially be in states |1⟩ and |0⟩, and then we
perform a well-designed superadiabatic pulse. Finally, we obtain the density matrix of the system
through quantum state tomography. (b) The average value of the Pauli operators ⟨σiσj⟩ for the spin
qubits. (c) The density matrix ρent of the generated remote entangled state and the state fidelity is
Fent = 97.6% relative to the ideal Bell state.
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8. Conclusions

We propose a scheme to achieve fast and high-fidelity quantum state transfer between
distant spin qubits. Since the frequency of the spin qubit can be adjusted by an external
driving pulse, the interaction between spin qubits can be achieved through virtual photon
processes in the dispersive regime. By utilizing the superadiabatic pulse, we achieved
the state transfer with high fidelity of 95.1% within 60 ns under the present experimental
parameters. Furthermore, we investigated the robustness of this scheme against experi-
mental imperfections and environmental noises. Additionally, our scheme can be directly
applied to generate remote entangled states with high performance. Such quantum state
transfer and remote entanglement are crucial quantum resources that can enhance the
connectivity and flexibility of network architectures, making them more suitable for the im-
plementation of quantum error correction protocols and fault-tolerant quantum computing.
Therefore, this scheme provides a powerful solution for quantum information processing
in spin-based architectures and can be extended to various solid-state quantum systems in
the future.
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Appendix A. Comparison of Effective Hamiltonian and Full Hamiltonian

In this paper, we consider two spin qubits coupled to the same resonator, and obtain
the effective spin–spin Hamiltonian He f f in the dispersive regime, as given by Equation (11).
Compared to the full Hamiltonian Hcom of the system given by Equation (5), the effective
Hamiltonian removes the resonator photon term and only involves the two spin qubits in
the subspace {01, 10}. To validate the accuracy of our model, we simulate the quantum
state transfer process between two spin qubits using both the effective Hamiltonian and
the full Hamiltonian. For simplicity, we ignore the influence of the environmental noises.

As shown in Figure A1a,b, we calculate the population dynamics of spin qubit 2 over
time. These are obtained by using the effective Hamiltonian and the full Hamiltonian,
respectively. In Figure A1a, the population of state |1⟩ increases smoothly, eventually
reaching p1 = 100%, indicating a perfect quantum state transfer between the two spin
qubits. In Figure A1b, the population of state |1⟩ stabilizes at p1 = 99.6%. This is because
the full Hamiltonian used includes the resonator term. During the quantum state transfer
process, there are a few excited photons present in the resonator, which hinders the perfect
quantum state transfer between two spin qubits. Figure A1c,d represent the average photon
number in the resonator during the quantum state transfer process, corresponding to the
effective Hamiltonian and the full Hamiltonian, respectively. In Figure A1c, we set the
photon number in the resonator to remain at 0. In Figure A1d, we observe that there are a
few excited photons, with the photon number ranging from 0 to 0.026, consistent with our
previous analysis.
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Upon comparison, we find that within the selected parameter range, the influence of
resonator photons on the quantum state transfer process is only ∼0.4%. Therefore, we can
confidently ignore the impact of photon excitations on the superposed eigenstates of the
two spin qubits. These results indicate that the two-spin qubit model obtained through
approximation is appropriate.
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Figure A1. The state population of spin qubit 2 during the quantum state transfer process is ob-
tained using (a) the effective Hamiltonian and (b) the full Hamiltonian. (c,d) correspond to the
remaining excited photon number in the resonator, respectively. Here, we neglect the influence of the
environmental noises.

Appendix B. The Derivation of the Effective Master Equation

For a spin-resonator coupled system, it can be described using the Jaynes–Cummings
Hamiltonian

HJC =
h̄
2

ωsσz + h̄ωra†a + h̄gs(a†σ− + aσ+), (A1)

where ωs is the spin qubit frequency, ωr is the resonator frequency, and gs is the spin-
resonator coupling strength. Diagonalizing the above Hamiltonian, we can obtain the
excited eigenstates (dressed states)

|ψ⟩+,n = cos θn|1, n⟩+ sin θn|0, n + 1⟩
|ψ⟩−,n = − sin θn|1, n⟩+ cos θn|0, n + 1⟩,

(A2)

where |0⟩ and |1⟩ are the ground state and excited state of the spin qubit, while |n⟩ is the

number of photons in the resonator. The mixing angle is θn = 1
2 arctan( 2gs

√
n+1

∆s
), and the

spin-resonator detuning is ∆s = ωs − ωr.
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In the dispersive regime, which satisfies the condition of large detuning ∆s ≫ gs,
the eigenstates of the one excitation manifold have the following form

|ψ⟩+,0 ∼ |1, 0⟩+ gs

∆s
|0, 1⟩

|ψ⟩−,0 ∼ − gs

∆s
|1, 0⟩+ |0, 1⟩.

(A3)

The corresponding decay rate can be simply expressed as

Γ+,0 ≃ γ + (
gs

∆s
)2κ

Γ−,0 ≃ (
gs

∆s
)2γ + κ,

(A4)

where γ is the decoherence rate of spin qubits, and κ is the leakage rate of photons. It is
easy to see that for spin qubits, besides the inherent decoherence process, photon loss also
introduces an additional leakage channel, known as the Purcell effect.

In the presence of the environmental noises, the effective Hamiltonian for the system
given by Equation (11) becomes

Htot = He f f + ∑
i=1,2

(Hγi
1
+ Hγi

ϕ
+ Hγi

κ
), (A5)

where Hγ1 , Hγϕ and Hγκ represent the spin qubit relaxation process, dephasing process,
and the Purcell effect process, respectively. In this case, the evolution of the system can be
described by the von Neumann equation

dρtot

dt
=

i
h̄
[ρtot, Htot]. (A6)

When the coupling between the system and the environment is weak, the reduced density
matrix of the system follows the master equation under the Markovian approximation.

dρ

dt
=

i
h̄
[ρ, He f f ] + ∑

i=1,2
(γi

1 +
gi2

s κ

∆i2
s
)D[σi

−]ρ + ∑
i=1,2

γi
ϕ

2
D[σi

z]ρ, (A7)

where γ1 and γϕ are the relaxation rate and dephasing rate of spin qubit, and g2
s κ

∆2
s

is the
decay rate of spin qubit due to the photon leakage. This is the Equation (18) in the main text.
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