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Abstract: In unsupervised learning, clustering is a common starting point for data processing. The
convex or concave fusion clustering method is a novel approach that is more stable and accurate than
traditional methods such as k-means and hierarchical clustering. However, the optimization algorithm
used with this method can be slowed down significantly by the complexity of the fusion penalty,
which increases the computational burden. This paper introduces a random projection ADMM
algorithm based on the Bernoulli distribution and develops a double random projection ADMM
method for high-dimensional fusion clustering. These new approaches significantly outperform
the classical ADMM algorithm due to their ability to significantly increase computational speed by
reducing complexity and improving clustering accuracy by using multiple random projections under
a new evaluation criterion. We also demonstrate the convergence of our new algorithm and test its
performance on both simulated and real data examples.

Keywords: unsupervised learning; random projection; ADMM algorithm; fusion clustering

1. Introduction

Clustering is a pivotal technique in unsupervised learning, applied extensively across
various scientific and technological fields that handle large datasets. Clustering also plays a
crucial role in data labelling, which sets the stage for the application of artificial intelligence
and machine learning models [1,2] on the organized data to perform predictive analytics
and classification tasks. Traditional clustering algorithms like k-means, Gaussian mixture
models, and hierarchical clustering often face stability challenges due to their concave
optimization formulations, which can lead to variability in results due to factors such as
initial conditions or data outliers [3–5]. Recent advancements in convex or concave fusion
methods have shown promise in enhancing stability, achieving more consistent global
or local optimality and reliable estimation of cluster centers and counts through sparse-
inducing penalties on pairwise centers [6–9]. For clustering high-dimensional data, the data
can be mapped into a high-dimensional feature space (kernel space) for processing [10],
or clustering can be achieved by optimizing a smooth and continuous objective function
that is based on robust statistics [11]. This paper introduces a comprehensive empirical
validation of these methods across simulation studies and real data analysis, detailing
their improved stability over traditional methods and the practical implications of these
advancements.

In fusion clustering, p-dimensional observations X i, i = 1, . . . , n are each parameter-
ized by their own centroid µi. These centroids are estimated under the assumption that
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all observations can be grouped into K clusters G1, . . . ,GK, such that for i ∈ Gk, µi = ρk,
where ρk represents the cluster center for observations in cluster Gk. Fusion clustering aims
to concurrently estimate the cluster centroids ρk and the partitions Gk by minimizing the
following objectives

1
2

n

∑
i=1

∥X i − µi∥
2 + ∑

i<j
pλ(∥µi − µj∥τ). (1)

The penalty function pλ(∥ · ∥τ) is used to control the complexity of the model, and it is
determined by the tuning parameter λ. The form of the norm used is represented by ∥ · ∥τ.
This penalty function is typically used in fusion clustering to encourage sparsity in the
estimated cluster centroids.

The penalty function pλ(∥ · ∥τ) controls the complexity of the model and is determined
by the tuning parameter λ. The norm used is ∥ · ∥τ. The penalty function is typically used
in fusion clustering to promote sparsity in cluster centroids.

Convex fusion clustering methods have been widely studied due to their computa-
tional simplicity and ability to find global optima. These methods often employ ℓ1, ℓ2,
or ℓ∞ penalties as the penalty function pλ(∥ · ∥τ) [12–17]. However, convex fusion can
lead to biased estimates of the individual centroids, resulting in solutions with a large
number of dense clusters [18,19]. To address this issue, researchers have proposed us-
ing concave fusion clustering methods, such as those using minimax concave penalties
(MCPs) [20], truncated Lasso penalties (TLPs) [8], and arbitrary concave penalties.

While robust, convex and concave fusion clustering methods are computationally
demanding with a O(n2 p) complexity, which can limit their practicality in scenarios in-
volving large sample sizes n and high-dimensional datasets p. This article proposes a
strategy for overcoming this limitation using random projection techniques [21–24]. The
approach involves the construction of a random diagonal matrix whose diagonal elements
are sourced from a binary distribution. This matrix is then projected onto the pairwise
component of the fusion method. By doing so, the number of pairwise differences be-
tween individual centroids, ∥µi − µj∥, is substantially reduced. This reduction not only
decreases the computational load but also maintains the integrity of the clustering pro-
cess, enhancing the algorithm’s scalability without excessively increasing the operational
overhead. We provide empirical evidence demonstrating that this method significantly
reduces the computational time while preserving the clustering quality, as shown in our
simulation section.

In unsupervised learning, rapid clustering processes are crucial for handling large
datasets efficiently. Our study introduces a novel approach to fusion clustering to enhance
computational speed without compromising accuracy. Our contributions are summarized
as follows: (1) We propose using random projection techniques to simplify the fusion aspect
of clustering, effectively diminishing the pairwise centroids discrepancies and significantly
boosting computational efficiency by minimizing the fusion step’s complexity. (2) We
have developed a novel double recursive random projection ADMM method designed for
efficient high-dimensional fusion clustering, improving the accuracy of clustering.

In the remainder of this paper, the proposed new ADMM algorithm will be described
in Section 2. This section will also include an analysis of the computational complexity and
convergence of the algorithm. It will also include a strategy for improving cluster accuracy.
The finite-sample properties of the proposed new ADMM algorithm will be evaluated
through simulation studies in Section 3, and the method will be demonstrated using a real
data example in Section 4. Concluding remarks will be presented in Section 5, and technical
proofs will be provided in the Appendices A and B.

2. Methodology

To improve convex or concave fusion clustering efficiency, we propose an extension of
the classical ADMM algorithm based on a random projection called RP-ADMM. A random
projection can significantly reduce the time and computational resources needed to analyze
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high-dimensional data, making it suitable for large datasets and real-time processing.
In this section, we will discuss the RP-ADMM algorithm’s computational complexity
and convergence.

2.1. Random Projection Based ADMM

Previous ADMM algorithms for convex or concave fusion clustering [6,8] have suf-
fered from a high computational burden due to the need to consider all n(n − 1)/2 pair-
wise differences between individual centroids. This is represented by the fusion matrix
E = {(ei − ej), i < j}T

n(n−1)
2 ×n

, where ei is the ith unit vector with a 1 in the ith position

and 0s elsewhere, and ei − ej can be interpreted as the difference between the ith and
jth individual centroids. The computational complexity of this approach is O(n2), which
becomes infeasible for large sample sizes n.

Bernoulli distribution-based random projections ADMM

It is worth noting that pairwise differences between individual centroids can be de-
duced from other differences. For example, if we know that µ1 − µ2 = 0 and µ2 − µ3 = 0,
we can conclude that µ1 − µ3 = 0. This means that it may be unnecessary to con-
sider the row e1 − e3 in E . To reduce the computational burden of convex or concave
fusion clustering, we propose a random projection approach. This only considers a
small subset of the n(n − 1)/2 pairwise differences between individual centroids. This
is achieved by generating indicators πij from a Bernoulli distribution with probability α.
We then form a random matrix Π, which is a diagonal matrix with diagonal elements
(π12, · · · , π1n, π23, · · · , π2n, · · · , π(n−1)n)

T. If πij = 1, the difference between µi and µj is
taken into account; if πij = 0, it is not considered. The probability α controls the size of
the subset of pairwise differences considered. The matrix ΠE can be seen as a projection
of E onto a sparse matrix. This is with about n(n − 1)(1 − α)/2 rows being zero vectors
and about n(n − 1)α/2 ones being nonzero vectors. This projection is based on a Bernoulli
distribution. Finally, we form a new fusion matrix Ω by deleting the rows of zero vectors
in ΠE . The new fusion matrix is given by Ω = (Ω1, · · · , Ωκ)T, where Ωj, j = 1, · · · , κ,
denotes jth row vector of Ω.

We just consider τ = 2 in (1) for simplicity and propose a random projection-based
fusion criterion by

ℓp(µ; λ) =
1
2

n

∑
i=1

∥X i − µi∥
2 + ∑

i<j
πij pλ(∥µi − µj∥), (2)

where µ = (µ1, · · · , µn)
T
n×p. Furthermore, the objective function in (2) is equivalent to

ℓ̃p(µ, ϕ; λ) =
1
2
∥X − µ∥2

F +
κ

∑
j=1

pλ(||ϕj||),

subject to Ωµ − ϕ = 0, (3)

where X = (X1, · · · , Xn)T, ϕ = (ϕ1, · · · , ϕκ)
T
κ×p. Under the constraints in (3), the aug-

mented Lagrangian Q(µ, ϕ, η; λ) has the form

ℓ̃p(µ, ϕ; λ) +
κ

∑
j=1

ηT
j (µ

TΩj − ϕj) +
φ

2
∥Ωµ − ϕ∥2

F, (4)

where the dual variables η = (η1, · · · , ηκ)
T
κ×p are Lagrange multipliers, and φ is a tun-

ing parameter. Under the iterative value µ(m) and η(m) at the mth step, we conduct the
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Bernoulli distribution-based random projection ADMM (RP-ADMM) iterative algorithm
and compute the estimates of (ϕ, η, µ) as follows:

ϕ(m+1) = arg min
ϕ

L(ϕ, µ(m), η(m); λ), (5)

η(m+1) = η(m) + φ(Ωµ(m) − ϕ(m+1)), (6)

µ(m+1) = arg min
µ

Q(µ, ϕ(m+1), η(m+1); λ), (7)

where L(ϕ, µ(m), η(m); λ) equals

φ

2
∥Ωµ(m) − ϕ + φ−1η(m)∥2

F +
κ

∑
j=1

pλ(
∥∥∥ϕj

∥∥∥), (8)

and Q(µ, ϕ(m+1), η(m+1); λ) equals

ℓ̃p(µ, ϕ(m+1)) +
φ

2
∥Ωµ − ϕ(m+1)∥2

F

+
κ

∑
j=1

η
T(m+1)
j (µTΩj − ϕ

(m+1)
j ). (9)

Ma and Huang (2017) [18] have argued that under (8), the element ϕ
(m+1)
j of ϕ(m+1) is the

minimizer of φ
2 ||ζ

(m)
j − ϕj||2 + pλ(||ϕj||), where ζ

(m)
j = ΩT

j µ(m) + φ−1η
(m)
j . For different

thresholding operator pλ(·), the estimate ϕ
(m+1)
j has different results. Such as,

• For the Lasso penalty [25],

ϕ
(m+1)
j = S(ζ(m)

j , λ/φ);

S(w, t) =

{
(1 − t/||w||)w, if t/||w|| < 1;
0, otherwise.

• For SCAD penalty [26] with a > 1/φ + 1,

ϕ
(m+1)
j =


S(ζ(m)

j , λ/φ), if ||ζ(m)
j || ≤ λ + λ/φ;

ζ
(m)
j , if ||ζ(m)

j || > aλ;
S(ζ(m)

j ,aλ/((a−1)φ))

1−1/((a−1)φ)
, otherwise.

• For the MCP [27] with a > 1/φ,

ϕ
(m+1)
j =


S(ζ(m)

j ,λ/φ)

1−1/(aφ)
, if ||ζ(m)

j || ≤ aλ;

ζ
(m)
j , otherwise.

• For the TLP [8] with a > 1,

ϕ
(m+1)
j =

S(ζ(m)
j , λ/φ), if ||ζ(m)

j || ≤ aλ;

ζ
(m)
j , otherwise.

Through some algebra, the problem of (9) is equivalent to the minimization of the
function h(µ, ϕ(m+1), η(m+1)), which has the from
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1
2
∥X − µ∥2

F +
φ

2
||Ωµ − ϕ(m+1) + φ−1η(m+1)||2F.

Under the given value of ϕ(m+1), η(m+1), the updated µ(m+1) are

µ(m+1) = (φΩTΩ + In)
−1

(
X + φΩT(ϕ(m+1) − φ−1η(m+1))

)
where In is n × n identity matrix. µ(m+1) and ϕ(m+1) are updated according to the random
projection ADMM iterative algorithm (5)–(7) until the input of some convergence criteria,
such as both dual and primal residuals being close to zero [28] in our practice. The
convergence time of ADMM is highly related to the penalty parameter φ. A poor selection
of φ can result in a slow convergence for the ADMM algorithm [29] and thus RP-ADMM.
In this paper, we fix φ = 1 throughout for simplicity.

To facilitate the updates of (ϕ(m+1), η(m+1), µ(m+1)) at the (m + 1)th step in (5) to (7) of
the RP-ADMM iterative algorithm, we need to specify a proper initial value (warm start).
Here, we set η(0) = 0, ϕ(0) = Ωµ(0) and obtain the initial estimators
µ(0) = (λ⋆ΩTΩ + In)−1X as the minimizer of a ridge fusion criterion

1
2
∥X − µ∥2

F +
λ⋆

2
∥Ωµ∥2. (10)

We summarize the above analysis in Algorithm 1.

Algorithm 1 RP-ADMM for fusion clustering

Input: data X1, · · · , Xn; Initialize µ(0), η(0); tuning parameter, λ
Output: an estimate of µ

for m = 0, 1, 2, · · · do
compute ϕ(m+1) using (5)
compute η(m+1) using (6)
compute µ(m+1) using (7)
if convergence criterion is met, then

Stop and denote the last iteration by µ̂(λ),
else

m = m + 1
end if

end for

Practically, we would not want to conduct the RP-ADMM updates comprehensively
until convergence to save computing time in the first iterations. Another trick is to adopt
the initial values of subsequent convex relaxations as optimal values from the previous
relaxed convex problem, which significantly reduces the number of RP-ADMM iterations.

2.2. Selection of Optimal Tuning Parameter

For a given λ, the converging value µ̂(λ) of the above RP-ADMM procedure is de-
fined as

µ̂(λ) = argminµℓp(µ; λ), (11)

where ℓp(µ; λ) is defined in (2) and the optimal value of λ can be selected via a properly
constructed data-driven criterion. In particular, we partition the support of λ into a grid
of λmin = λ0 < λ1 < · · · < λJ = λmax, and for each λj, we compute a solution path of
µ̂(λj) and obtain K̂(λj) distinct cluster centroids {ρ̂1(λj), . . . , ρ̂K̂(λj)

(λj)}, The optimal λ̂ is

selected by minimizing a data-driven BIC, i.e., λ̂ = argminλj ;j=1,...,JBIC(λj), where
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BIC(λ) = log
{ 1

np
∥X − µ̂(λ)∥2

F
}

+ (log(np) + 2 log(p))K̂(λ)/n. (12)

Subsequently, we obtain the estimator µ̂ = µ̂(λ̂), and the individuals can be separated into
K̂ = K̂(λ̂) clusters accordingly, i.e., Ĝk = {i : µ̂i = ρ̂k, i = 1, . . . n}, k = 1, . . . , K̂.

Other methods for tuning parameters in clustering, such as generalized degrees of
freedom with generalized cross-validation [8] and stability-based cross validation [25,30]
can provide good results but may require extensive computation or the specification of a
hyperparameter perturbation size [8]. In contrast, the proposed BIC is easy to compute and
performs well in estimating cluster centroids and the true number of clusters (K). Figure 1
shows the change in BIC values against log(λ) and the cluster number of the simulation.
Across all cases with different values of n and p, we observe that BIC(λ) decreases as the
value of log(λ) increases. With recovering the true cluster number K = 3, BIC(λ̂) reaches a
minimum at the optimal λ̂. Moreover, when log(λ) keeps increasing, the cluster centroids
are continuously integrated, and BIC(λ) is enlarged. However, further research is needed
to fully prove the consistency of the BIC in combination with the objective function (2).

(a) n = 90, p = 20 (b) n = 90, p = 500

(c) n = 210, p = 20 (d) n = 210, p = 500
Figure 1. Plots of BIC values against log(λ) and the estimated cluster number of simulation with
different n, p and true cluster number K = 3.
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2.3. Recursive RP-ADMM and Cluster Matrix

In the above cluster analysis, the effect of randomness on the clustering results was
not considered. However, empirical analysis has shown that the impact of this randomness
on the estimated cluster centers and numbers is minimal (i.e., ρ̂k’s and K̂’s). However, the
impact on the final partitioning results (i.e., which observations are grouped into a single
cluster) can be significant. In response to this, we propose the Recursive RP-ADMM (RRP-
ADMM) procedure, which performs multiple RP-ADMM cluster analyses by generating M
random matrices (i.e., Ωm’s, m = 1, · · · , M) and repeatedly conducting the analysis.

Once the multiple RP-ADMM cluster analyses have been completed, we must summa-
rize the results. We define a n × n symmetric cluster matrix C where Cij = 1 denotes that
the ith and jth observations belong to the same cluster; otherwise, Cij = 0 . Another n × n
symmetric matrix D̂ is introduced, with element D̂ij representing the relative frequency
of the ith and jth observations belonging to the same cluster over the M independent
RP-ADMM clustering procedures. The decision of whether the ith and jth observations
should be grouped into a single cluster or not can then be treated as a classification problem,
with the two possible class labels being 1 (belong to the same cluster) or 0 (do not belong to
the same cluster). We can use an indicator function to transform the relative frequency into
class labels and generate an estimator for the cluster matrix Ĉ, i.e.,

Ĉ = {Ĉij : Ĉij = 1(D̂ij≥0.5)}, (13)

where 1(·) denotes the indicator function. We summarize the above procedure in
Algorithm 2. This transformation can be understood as a voting-based aggregation strategy,
similar to the one proposed by [31], which aims to reduce misclassification errors and
improve the accuracy of the clustering. To evaluate the accuracy of the clustering results,
we define a new measure called the similarity index (SI) between two data clusterings:

SI =
1

n2 − n
∥Ĉ − C∥1 =

1
n2 − n

n

∑
i=1

n

∑
j=1

|Ĉij − Cij|. (14)

Like the Rand Index (RI) measure [32], the newly introduced evaluation criterion can be
seen as a measure of the percentage of correct decisions made by some algorithm. The SI
values also range from 0 to 1, with lower values indicating better algorithm performance.

Algorithm 2 RRP-ADMM for fusion clustering

Input: data X1, · · · , Xn; M; Initialize µ(0), η(0); tuning parameter, λ
Output: an estimate of µ

for m = 0, 1, · · · , M do
compute µ̂(m) using RP-ADMM

end for
while 1 ≤ i ≤ n do

compute D̂ij and Ĉij from (13)
end while

The classical convex or concave fusion clustering procedure in (1) requires O(n2 p) op-
erations and O(n2 p + np) of storage for a single round of ADMM updates with primal and
dual residual calculations, because all pairs of centroids are shrunk together in this method.

The RP-ADMM algorithm significantly improves computational efficiency compared
to classical ADMM algorithm. It requires only O(κp + np) of storage, compared to
O(n2 p + np) for the classical ADMM algorithm, because the variables η and ϕ have
only κ columns rather than n(n − 1)/2. Additionally, the RP-ADMM algorithm requires
only O(κp) operations for its most computationally demanding step, in comparison to
O(n2 p) for the classical ADMM algorithm. The RP-ADMM algorithm also requires O(κn)
operations to conduct Cholesky factorization in every iteration, in comparison to O(n3) for
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the classical ADMM algorithm. This efficient Cholesky factorization is computed only once
and reused across repeated RP-ADMM updates.

At the end of this subsection, we will demonstrate the convergence of the RP-ADMM
algorithm by showing that the sequence generated by the algorithm contains a subsequence
that converges to a stationary point.

Lemma 1. Let {µ(m), ϕ(m), η(m)}∞
k=1 be the sequence generated by Algorithm 1, then for some

constant c > 0,

Q(µ(m+1), ϕ(m+1), η(m+1))− Q(µ(m), ϕ(m), η(m))

≤ − c
2
∥µ(m+1) − µ(m)∥2 + ψ∥η(m+1) − η(m)∥2 (15)

In order to prove that the sequence {µ(m), ϕ(m), η(m)}∞
k=1 is convergent, we need

to assume that ϕ(m) is bounded and ψ∥η(m+1)−η(m)∥ → 0 which are often observed in
numerical tests.

Theorem 1. If {ϕ(m)}∞
k=1 are bounded and ψ2∥ν(m+1) − ν(m)∥F + ψ1∥η(m+1) − η(m)∥F → 0,

then {µ(m), ϕ(m), η(m)}∞
k=1 is bounded. Moreover, there exist a subsequence {µ(kj), ϕ(kj), η(kj)}∞

kj=1,
such that

lim
kj→∞

(∥µ(kj+1) − µ(kj)∥+ ∥ϕ(kj+1) − ϕ(kj)∥

+ ∥η(kj+1) − η(kj)∥) = 0,

and thus, {µ(m), ϕ(m), η(m)}∞
k=1 has a subsequence which converges to the stationary point.

3. Simulation

In this part of the study, simulation experiments were conducted to compare the
performance of the extended and classical ADMM clustering algorithms in terms of compu-
tational time and clustering accuracy, using the evaluation criterion in (14). The Lasso-based
fusion method often leads to the formation of dense clusters with a minor penalty for small
differences in ∥ϕj∥, which can result in the formation of many spurious clusters with very
small differences among them [6]. In contrast, the concave penalty method tends to produce
a clear cluster structure and a well-defined number of clusters [8]. Therefore, in this study,
we focus on the MCP-based fusion method [27] which compares the conventional ADMM’s
clustering performance and the proposed new ADMM algorithm.

3.1. Low-Dimensional Setting

In this part, we evaluated the clustering performance of the classical ADMM, RP-
ADMM, and RRP-ADMM algorithms on low-dimensional synthetic data generated from
three overlapping convex clusters with the same spherical shape in some number of
dimensions p and sample size n. The synthetic data were generated from three populations
Pk = N (ρk, Σ), k = 1, · · · , K with K = 3, ρ1 = 3p, ρ2 = 0p, ρ3 = −3p and Σ = (σkj)p×p

with σjj = 1 and σkj = 0.1|k−j| for k ̸= j. This setting was chosen deliberately to allow
overlap in the sample sets generated from clusters proximal to each other, thereby increasing
the complexity of the clustering task. As illustrated in Figure 2c, the clustering performance
using a single random projection (RP-ADMM) was suboptimal, indicating challenges with
cluster separability under this setup. Conversely, Figure 2b demonstrates that recursive
random projection (RRP-ADMM) significantly improved clustering results. The recursive
times for the RP-ADMM and RRP-ADMM algorithms were set to M = 10.
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(a) True
cluster matrix

(b) Estimated cluster matrix
by RRP-ADMM

(c) Estimated cluster matrix
by RP-ADMM

Figure 2. The level plots of cluster matrix including the true one in the left panel, estimators calculated
from RRP-ADMM and RP-ADMM in the middle and right panels, respectively.

To evaluate the accuracy of the RP-ADMM, relax-and-split approach [33] (RS-ADMM)
and RRP-ADMM algorithms in recovering the true cluster matrix, we generated a random
sample of n = 60 observations with 1–20 drawn from P1, 21–40 drawn from P2, and
41–60 drawn from P3, and set the number of dimensions to p = 5. The probability α of
generating a 1 in the random matrix was set to α = c log(n)

n , where c controls the probability
size. The level plots in Figure 2 use colour to visualize the values of 1’s and 0’s in the
cluster matrix. The results show that both RP-ADMM and RRP-ADMM can accurately
recover the true cluster matrix, with RRP-ADMM showing more accurate gradation than
the true cluster matrix. Single random projection (RP-ADMM) can cause high variance
in clustering outcomes due to the randomness of the sampling process. To mitigate this
issue, we have adopted the voting-based pooling technique [31], which reduces variance
by averaging results from recursive random projection (RRP-ADMM).

To further evaluate the performance of the algorithms, we calculated the values of
the index SI defined in (14) after 100 replicates under different c choices. We depicted the
results as boxplots in Figure 3. These results show that RRP-ADMM consistently improves
clustering accuracy compared to RP-ADMM, as evidenced by the smaller median and
standard error of SI values.

Figure 3. Boxplots of SI values through RP-ADMM and RRP-ADMM algorithms, respectively, under
four choices of c after 100 replicates.

Next, we will compare the performance of classical ADMM and RRP-ADMM in terms
of computation time per iteration and the SI after 100 trials. The sample size is varied with
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n = 60, 150, 240, 360 points and α = 4 log(n)
n , while p = 2 is kept constant. In this study,

we have limited the number of points to 360, as the classical ADMM algorithm requires a
significant amount of computation time for a single realization with more points. We will
also compare the performance of the Similarity Index (SI) and Rand Index (RI) in evaluating
the clustering results. Therefore, we should calculate the partitioning structure of all points
based on the estimated cluster matrix graph. This process involves first identifying the
point a1 with the most neighbors and aggregating the connected points with point a1 as
cluster 1, then finding the second point a2 with the most edges to form cluster 2, and
repeating this process until there are no more points remaining.

Table 1 shows the mean values of the SI, RI, and the consumed time in seconds for
different sample sizes under different methods after 100 replicates. Based on the data in
Table 1, we can observe the following: (i) The proposed RRP-ADMM significantly reduces
the time required for convex or concave fusion clustering, especially when the sample
size increases. (ii) RRP-ADMM produces smaller SI and larger RI values, possibly due to
the voting-based pooling technique improving cluster accuracy. (iii) As the sample size
increases, the SI and RI values decrease. The boxplots in Figures 4 and 5 demonstrate the
superiority of the RRP-ADMM algorithm over the classical ADMM algorithm in terms of
both the SI values and the square root of run time, as seen in the results obtained from
100 replicates with four different sample sizes. These results further reinforce our belief in
the effectiveness of the RRP-ADMM algorithm.

Table 1. The mean values of Similarity index (SI), Rand Index (RI) and run time in seconds against
different sample sizes and different methods after 100 replicates.

ADMM RRP-ADMM RS-ADMM
Sample Size SI RI Time SI RI Time SI RI Time

n = 60 0.081 0.921 7 0.059 0.933 2 0.080 0.925 10
n = 150 0.058 0.945 88 0.046 0.957 7 0.056 0.947 121
n = 240 0.049 0.962 352 0.045 0.974 17 0.047 0.966 551
n = 360 0.042 0.973 1582 0.040 0.986 41 0.042 0.978 1864

Note: ‘SI’ represents the similarity index defined in (14), ‘RI’ denotes Rand Index [32]. TIME is the required time
in seconds in a single round of ADMM.

Figure 4. Boxplots of SI values through classical ADMM and RRP-ADMM algorithms, respectively,
under four choices of sample sizes n after 100 replicates.



Entropy 2024, 26, 376 11 of 16

Figure 5. Boxplots of the square root of the run time through classical ADMM and RRP-ADMM
algorithms, respectively, under four choices of sample sizes n after 100 replicates.

3.2. High-Dimensional Setting

In this part, we investigate using the double random projection-based alternating
direction method of multiplier (DRP-ADMM and DRRP-ADMM) algorithms for clustering
high-dimensional data sets. We employ a recursive Gaussian distribution-based random
projection strategy in the first step to mitigate the impact of randomness on cluster results.
Since the classical ADMM algorithm is computationally intensive in high-dimensional
settings, we focus on evaluating the performance of the DRP-ADMM and DRRP-ADMM
algorithms with recursive times M = 9, using three Gaussian random projections in the
outer layer and three binary random projections in the inner layer. The simulated data
sets consist of two overlapping convex clusters with the same spherical shape. They
are generated using a population Pk = N (ρk, Σ), k = 1, 2 with ρ1 = 1p, ρ2 = −1p.
Furthermore, Σ = (σkj)p×p with σjj = 1 and σkj = 0.1|k−j| for k ̸= j. We consider four
high-dimensional cases with p = 1000, 2000, 3000, 5000 and a fixed sample size of n = 100.

We evaluate the accuracy of the DRP-ADMM and DRRP-ADMM algorithms in recov-
ering the true cluster matrix. To do this, we first generate a Gaussian random matrix R
with dimensions p × q in the first projection. The elements of R correspond to N (0, 1/

√
q).

We set q = ⌈ κ
ε2/2−ε3/3 log(n)⌉ with ε = 1 and κ = 5

6 . See [21,23] for the number of projec-
tions. In the second step, we generate a diagonal binary random matrix with probability
α = 4 log(n)

n of equaling one. Then, we calculate the values of the SI index defined in
Equation (14) and plot the results as boxplots in Figure 6 after 100 replicates for different
values of p. The results show that the DRRP-ADMM algorithm consistently outperforms
the DRP-ADMM algorithm regarding the median and standard error of the SI values for all
values of p, indicating that the DRRP-ADMM algorithm improves clustering accuracy.
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Figure 6. Boxplots of SI values through DRP-ADMM and DRRP-ADMM algorithms, respectively,
under four choices of dimensions p after 100 replicates.

4. Real Data Analysis

In this study, we use the DrivFace dataset to demonstrate the effectiveness of our
proposed clustering procedure. The DrivFace database consists of n = 606 images of
640,480 pixels each, captured from four drivers (two women and two men) over different
days and containing p = 17 facial features such as glasses and beards. Each driver’s images
containing similar facial features can be grouped into one cluster, resulting in a total of
K = 4 clusters as shown in Figure 7a. Firstly, we know the true labels of the dataset; that is,
there are four clusters, and we also know which observations belong to the common cluster.
Secondly, because the similarity among observations in the pictures is very high across
different clusters, it is challenging to separate them. Therefore, we can use this dataset to
evaluate our proposed clustering method.

(a) True cluster matrix (b) Estimated cluster matrix
Figure 7. True (a) and estimated (b) cluster matrix in DrivFace data.

Due to the large sample size of the DrivFace dataset, we do not use the classical
ADMM algorithm, which would require 606 × (606 − 1) × 17/2 operations in a single
ADMM iteration. Instead, we first scale the samples by each feature and apply the RP-
ADMM procedure to estimate individual centers using a grid of λ values. We plot the
f usiongrams of four selected variables in Figure 8, and the scrutiny of Figure 8a implies
that some outlying points (influential points) cause the clusters to be dense. We then
remove these 55 points and plot a new f usiongram in Figure 8b. The optimal λ value, as
determined by the developed BIC criterion in Equation (12), is 1.38, indicating that the
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estimated number of clusters is four, the same as the number of drivers. We apply the
proposed RRP-ADMM algorithm with a Bernoulli-distribution-based random projection
procedure to further improve the cluster accuracy using α = 10 log(n)/n and a recursive
number M = 20. Using the estimated optimal tuning parameter of 1.38, we obtain the
estimated cluster matrix in Figure 7b, which closely resembles the true cluster matrix
in Figure 7a. The calculated similarity index (SI) value is 0.098. Moreover, the value of
Adjusted Rand Index (ARI) is 0.672.

(a) Before deleting the influence points (b) After deleting the influence points

Figure 8. The above f usiongrams are plotted from 4 selected variables in DrivFace data before
(left panel) and after (right panel) deleting the influence points, respectively.

5. Conclusions

We propose using the recursive random projection-based ADMM (RRP-ADMM)
method to improve the speed and accuracy of convex and nonconvex fusion clustering.
In simulations and real data examples, the RRP-ADMM method demonstrates superior
performance in fast calculation and accurate clustering results. The RRP-ADMM algorithm
is scalable and can be applied to deal with heterogeneous issues in any setting that involves
fusion techniques.

However, some challenges still need to be addressed in this field. One challenge is
efficiently transforming the cluster matrix graph into the target partitioning structure and
determining the optimal number of clusters. Another challenge is using prior information
about which points are more likely to be integrated into a single cluster to reduce the
number of pairwise comparisons. Additionally, a further study is needed to determine
the theoretical probability of achieving a probability of one in binary random projection.
Another future research direction involves performing clustering simultaneously with
feature selection, using techniques such as incorporating feature weights [34] or introducing
sparsity [14].
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Appendix A. Proof of Lemma 1

By the objection function,

Q(µ(m+1), ϕ(m+1), η(m+1))− Q(µ(m+1), ϕ(m+1), η(m)) = ψ∥η(m+1) − η(m)∥2 (A1)

and

Q(µ(m+1), ϕ(m+1), η(m))− Q(µ(m+1), ϕ(m), η(m)) ≤ 0 (A2)

Moreover, µ 7→ Q(µ, ϕ(m), η(m)) is strongly convex, as the Hessian matrix (ψΩTΩ + Inp) is
positive definite, and there exists a constant c > 0 such that the following inequality holds:

Q(µ(m+1), ϕ(m), η(m))− Q(µ(m), ϕ(m), η(m)) ≤ − c
2
∥µ(m+1) − µ(m)∥2 (A3)

Summing (A1)–(A3), we have the result of the above Lemma. In order to prove that the
sequence {µ(m), ϕ(m), η(m)}∞

k=1 is convergent, we need to assume that ϕ(m) is bounded and
ψ∥η(m+1) − η(m)∥ → 0, which are often observed in numerical tests.

Appendix B. Proof of Theorem 1

Since {ϕ(m)}∞
k=1 are bounded, µ(m) is also bounded. So Q(µ(m), ϕ(m), η(m)) and

{µ(m), ϕ(m), η(m)}∞
k=1 are bounded. For convenience, we note

L(m) := Q(µ(m), ϕ(m), η(m)),

y(m) :=
c
2
∥µ(m+1) − µ(m)∥2,

z(m) := ∥η(m+1) − η(m)∥2.

Since L(m) is bounded, there exist a subsequence {L(kj)}, such that

lim
kj→∞

L(kj) = lim inf
k→∞

L(m)

By Lemma 1 and limk→∞ z(m) → 0, we have

lim inf
kj→∞

y(kj) ≤ lim inf
kj→∞

(L(kj) − L(kj+1) + z(kj))

= lim inf
k→∞

L(m) − lim inf
kj→∞

L(kj+1) ≤ 0.

As y(kj) ≥ 0, lim infkj→∞ y(kj) = 0, which means

lim inf
kj→∞

∥µ(kj+1) − µ(kj)∥ = 0,

together with ∥η(m+1) − η(m)∥ → 0, we have

lim inf
kj→∞

∥ϕ(kj+1) − ϕ(kj)∥ = 0.

https://archive.ics.uci.edu/dataset/378/drivface
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The sequence {µ(m), ϕ(m), η(m)}∞
k=1 have a subsequence {µ(kj), ϕ(kj), η(kj)}∞

kj=1 which con-

verges to a point {µ∗, ϕ∗, η∗}. Then, we have

Ωjµ
∗ − ϕ∗

j = 0, 1 ≤ j ≤ κ.

Moreover, the procedure to solve the objective function satisfies the following optimality
system: 

µ(m+1) − X + ψΩT(Ωµ(m+1) − ϕ(m) + η(m)

ψ ) = 0,

0 ∈ −ψ(Ωjµ
(m+1) − ϕ

(m+1)
j +

η
(m+1)
j

ψ ) +
∂pλ(∥ϕj∥)

∂ϕj
|
ϕj=ϕ

(m+1)
j

.

So, µ∗ − X − ΩTη∗ = 0,

0 ∈ −η∗j +
∂Pλ(∥ϕj∥)

∂ϕj
|ϕj=ϕ∗

j
.

Therefore, {µ∗, ϕ∗, η∗} is a KKT point of objective function. We complete the proof.
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