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Abstract: Controlling the time evolution of a probability distribution that describes the dynamics
of a given complex system is a challenging problem. Achieving success in this endeavour will
benefit multiple practical scenarios, e.g., controlling mesoscopic systems. Here, we propose a control
approach blending the model predictive control technique with insights from information geometry
theory. Focusing on linear Langevin systems, we use model predictive control online optimisa-
tion capabilities to determine the system inputs that minimise deviations from the geodesic of the
information length over time, ensuring dynamics with minimum “geometric information variabil-
ity”. We validate our methodology through numerical experimentation on the Ornstein–Uhlenbeck
process and Kramers equation, demonstrating its feasibility. Furthermore, in the context of the
Ornstein–Uhlenbeck process, we analyse the impact on the entropy production and entropy rate,
providing a physical understanding of the effects of minimum information variability control.

Keywords: information theory; model predictive control; Langevin equations; fluctuations; entropy

1. Introduction

Time-varying probability density functions (PDFs) are a preferred approach for char-
acterising the dynamics of various complex systems. PDFs commonly feature in emergent
fields, such as active inference [1] or stochastic thermodynamics [2], where their value
is derived either through data analysis or by solving the Fokker–Planck (FP) equation
associated with an Itô/Stratonovich stochastic differential equation.

Drawing upon control theory [3], when the dynamics of the system under consid-
eration are governed by an FP equation, we can explore control objectives such as the
regulation (setting to a constant value) or tracking (following a time-varying reference) of
the systems’ time-varying PDFs [4]. While the notion of controlling PDFs may initially
appear impractical using conventional control engineering methods, advancements in
technologies like optical tweezers have rendered it feasible, which is particularly evident
in applications such as colloidal systems [5–8], with specific implications in biomolecule
evolution control [9].

Regarding the control of FP equations, seminal works [10,11] present methodologies
to control the system PDF governed by FP equations [12]. Building upon this foundation,
ref. [13] discusses a bilinear optimal control problem where the control function depends on
time and space. In [14], the authors prove the existence of optimal controls by considering
first-order necessary conditions in the optimisation problem.

In applications like Brownian motion, we can control FP equations via reverse-
engineering approaches such as the engineered swing equilibration (ESE) method [15,16].
The ESE protocol imposes a solution to the FP equation to obtain the corresponding PDF’s
control parameters that provide a shortcut for time-consuming relaxations (for further
details, refer to the methods section of [17]). Ref. [8] offers a comprehensive review of
similar reverse-engineered approaches.
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Since FP equations frequently serve as mathematical descriptions of mesoscopic sys-
tems (for further details, see [12]), i.e., systems at the nano/microscale such as molecular
motors, the time evolution of the system’s PDF may not only need to adhere to time con-
straints but also to multiple “thermodynamic” constraints to be deemed “efficient”. For
instance, the system may require the minimisation of the entropy production [18,19], a
reduction in information variability [20], or an enhancement of self-organisation [21]. The
incorporation of these “thermodynamic constraints” into the optimisation process implies
an extension of the current literature results on the control of FP equations.

A theory that could offer insights into addressing these optimisation challenges stems
from information geometry, a field resulting from the fusion of information theory and
differential geometry [22]. As an evolving field, information geometry proposes novel
solutions to tasks, such as maximum likelihood estimation [23], state prediction [24,25],
the quantification of causality [26–28], or maximum work extraction [4,29]. In stochastic
thermodynamics [2,30], information geometry aids in obtaining time-varying descriptions
of the aforementioned constraints. For instance, based on the well-known Cauchy–Schwartz
inequality [31], ref. [32] presents an inequality between the Fisher divergence [33] and
the information length (IL) [25,34] to quantify the disorder in irreversible decay processes.
Ref. [35] introduces an inequality describing the information rate as a speed limit on
the evolution of any observable. In [4], the geodesic of the IL describes the path with
the least statistical variation connecting initial and final probability distributions of the
system dynamics (for further details, see [20]). Consequently, information geometry can
be employed in a control protocol to enforce geodesic dynamics on the system’s PDF time
evolution, achieving the minimum “geometric information variability” [21] and thereby
establishing an optimal speed limit for the system’s observables. The primary challenge
addressed in this study revolves around devising and applying a technique to achieve this
minimum geometric information variability.

Developing an optimal protocol for the time evolution of the system’s PDFs under
multiple constraints requires an exploration of existing control algorithms. The literature
presents a significant amount of control procedures, spanning from classical PID control [36]
to more sophisticated algorithms, like data-driven, model-free, or fractional-order controls
(for instance, see [37–39]). However, we require an algorithm capable of handling intricate
optimisation problems while remaining a feasible option for implementation in future
experimental setups. One of the most popular optimisation-based control techniques is the
model predictive control (MPC) scheme [40]. Generally, MPC is an online optimisation al-
gorithm designed for constrained control problems, whose advantages have been observed
in applications within robotics [41], solar energy [42], or bioengineering [43]. Furthermore,
MPC can be easily implemented thanks to packages such as CasADi [44] or the Hybrid
Toolbox [45].

Based on the presented discussion, this work offers a solution to an optimisation
problem that integrates the concepts of the information length and the quadratic regulator
(QR) [46] to guide the system’s PDF time evolution along the path with the minimum
geometric information variability (the geodesic of the information length) using MPC. Al-
though we could implement the IL, QR, or MPC in more complex scenarios, we only study
their application to stochastic processes described by linear stochastic differential equations.
Hence, the system’s PDF will consistently maintain a Gaussian distribution over time,
assuming that the system’s initial conditions follow a Gaussian distribution. Constraining
the analysis to linear stochastic dynamics allows us to use a set of deterministic differential
equations to describe the evolution of the mean and covariance of the Gaussian distribution
within the MPC method. The applicability of such a prediction model favours MPC over
other alternatives, such as reinforcement learning [47], which could have been explored to
determine the geodesic of the information length within a similar context. Additionally,
MPC provides a low offline complexity, mature stability–feasibility–robustness theory, and
good constraint handling [47].
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The algorithm is applied to the Ornstein–Uhlenbeck process [48] and the Kramers
equation [25], which both describe a particle over a heath reservoir (mesoscopic stochastic
dynamics). In practice, changes in temperature and optical tweezers can manipulate the
dynamics of both the noise amplitude and mean value in such systems, respectively [2,7,49].
Using previous findings from [50], the effects of the MPC method on the Ornstein–Uhlenbeck
process are analysed by comparing IL values with the entropy production and entropy rate
in the closed-loop (feedback-controlled) system. As a rigorous closed-loop stability analysis
is beyond the scope of this work, we provide only a brief description of the BIBO stability
conditions that are considered to constrain the control actions proposed by the MPC. Finally,
we give a set of concluding remarks and discuss future work.

To help readers, in the following, we summarise our notations. R is the set of real
numbers. x ∈ Rn represents a column vector x of real numbers of dimension n, A ∈ Rn×n

represents a real matrix of dimension n× n (bold-face letters are used to represent vectors
and matrices), Tr(A) corresponds to the trace of the matrix A, and Aij is the element at row i
and column j of the matrix A. |A|, vec(A), A⊤, and A−1 are the determinant, vectorisation,
transpose, and inverse of matrix A, respectively. The value In denotes the identity matrix
of order n. Newton’s notation is used for the partial derivative concerning the variable t
(i.e., ∂y

∂t = ẏ). In addition, the average of a random vector ζ is denoted by µ := ⟨ζ⟩, with the
angular brackets representing the average. Finally, in Table 1, we provide a brief description
of the variables used throughout this paper.

Table 1. Description of the different variables used throughout this work.

Symbol Description

ζ Random vector variable
x Spatial variable of the PDF
ξ Gaussian stochastic variable
u(t) Bounded smooth external input (any time-dependent function)
D(t) Time-dependent noise amplitude matrix
µ Mean value vector of the random vector ζ
Σ Covariance matrix of the random vector ζ
p(x; t) Probability density function (PDF)
L(t) Information length
Γ(t) Information rate
Ṡ Entropy rate
Π Entropy production
Φ Entropy flow

Y(t) Vector state composed by the elements of µ and
Σ at time t. The vector describes the current PDF at time t.

Yd Desired vector state. The vector describes the desired Gaussian PDF.
c(t) Vector of controls including u and the elements Dij of the amplitude noise matrix D
Q Weight matrix regulating the error between Y(t) and Yd
R Weight matrix regulating the control action

IL
Weight factor of the error between the current information rate Γ(t) at time t and
the initial information rate Γ(0) to keep it constant at all t

Γ̂ Predicted information rate. Theˆsymbol implies prediction.

µ[k] Discrete time mean value vector. The brackets [k], where k = 0, 1, 2, . . . ,
refers to the discrete time sampled at time period Ts.

γ Damping constant
ω Undamped natural frequency constant
Ts Sampling period
N Prediction horizon length
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2. Preliminaries

As mentioned in Section 1, this work considers systems whose dynamics are governed
by linear non-autonomous stochastic differential equations described in the form of the
following set of Langevin equations:

ζ̇(t) = Aζ(t) + Bu(t) + ξ(t), (1)

where A and B are n × n and n × 1 real time-invariant matrices, respectively; u(t) is a
(bounded smooth) external input, and ξ ∈ Rn is a Gaussian stochastic noise given by an n
dimensional vector of δ-correlated Gaussian noises ξi (i = 1, 2, . . . n), with the following
statistical property:

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξ j(t1)⟩ = 2Dij(t)δ(t− t1), Dij(t) = Dji(t), ∀i, j = 1, . . . , n. (2)

Readers seeking a comprehensive study of systems governed by Equation (1) can refer
to [51]. Additionally, for a concise introduction to linear time-varying and time-invariant
systems, ref. [52] provides valuable insights.

The Fokker–Planck equation of (1) can also be utilised to depict the system’s PDF
dynamics, characterised by both time t and the spatial variable vector x = [x1, x2, . . . , xn]⊤.
This is given as follows [53,54]:

∂p(x; t)
∂t

= −
n

∑
i,j=1

∂

∂xi

[(
aijxj + biu(t)

)
p(x; t)

]
+

n

∑
i,j=1

Dij
∂2

∂xi∂xj
p(x; t). (3)

If the initial PDF is Gaussian, a solution to (3) for p(x; t) at any time t is given by [53]

p(x; t) =
1√

det(2πΣ)
e−

1
2 (x−µ)⊤Σ−1(x−µ). (4)

Equation (4) describes the dynamics of the probability distribution of the random variable
ζ governed by (1). The value of the mean µ(t) and covariance Σ(t) in a linear stochastic
process can be computed from the solution of the following set of differential equations [51]:

µ̇(t) = Aµ(t) + Bu(t), (5a)

Σ̇ = AΣ(t) + Σ(t)A⊤ + 2D(t), (5b)

where D ∈ Rn×n is the matrix with elements Dij(t). In this work, Equations (5a) and (5b)
will be used to predict the behaviour of the probability distribution of the random variable
x in our control method.

2.1. Information Length (IL)

To obtain a minimum geometric information variability in the time evolution of the
PDF of Equation (1), we need to investigate the concept of IL in more detail. In mathematical
terms, given the joint PDF p(x; t) of the n-th order random variable ζ, we define its IL L
as follows:

L(t) =
∫ t

0

(√∫
Rn

p(x; τ)[∂τ ln p(x; τ)]2 dnx
)

dτ =
∫ t

0
Γ(τ)dτ. (6)

The value Γ(τ)2 =
∫
Rn p(x; τ)[∂τ ln p(x; τ)]2 dnx in (6) corresponds to the square of the

Fisher information by considering the time as a parameter, and it is commonly called the
information rate [21]. The dimension of 1/Γ ≡ τ is time, which means that it serves as a
dynamical time unit for information change. Hence, as shown in Figure 1, the integration
of Γ between time 0 and t gives the total information change in that time interval; i.e., L
quantifies the number of statistically different states that the system passes through in time
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from an initial p(x; 0) to a final p(x; t) [55]. Furthermore, the IL is a model-free tool that
proved to be a true metric between two PDFs in the statistical space [26]. In [33], τ was
shown to provide a universal bound on the timescale of transient dynamical fluctuations,
independent of the physical constraints on the stochastic dynamics or their function.

Figure 1. Graphical description of the value of L. From information geometry, L quantifies the
number of statistically different states that the system passes through in time from an initial p(x; 0) to
a final p(x; t).

For Gaussian distributions, according to [25], we know that Γ can be rewritten in terms
of µ and Σ as follows:

Γ(τ)2 = µ̇(t1)
⊤Σ−1(t1)µ̇(t1) +

1
2

Tr
(
(Σ−1(t1)Σ̇(t1))

2
)

. (7)

Equation (7) simplifies the analysis of the IL when studying systems like (1).

2.2. Information–Thermodynamic Relation

However, while we recognise the utility of the IL as a tool for analysing the dynamics
of time-varying PDFs, its physical significance remains unclear. Therefore, establishing a
connection to a physical quantity is crucial.

In this context, consider the value of the entropy rate defined as follows: [56]

Ṡ(t) = −
∫
Rn

ṗ(x; t)ln(p(x; t))dx = Π−Φ, (8)

where Π is the entropy production due to irreversible processes occurring inside the system
and Φ is the entropy flux from the system to the environment. Figure 2 shows a system
subject to some boundary conditions to avoid matter exchange (i.e., a closed system).
The system produces entropy Π > 0 ∀t and exchanges entropy Φ with the environment
(hence, it shares energy). Specifically, Φ > 0 (Φ < 0) when the entropy flows from the
system (environment) to the environment (system). A system with a minimum entropy
production Π produces the highest amount of free energy (useful work) [21,57]. We refer
the reader to [58,59] for a complete review of thermodynamics. In a first-order linear
stochastic differential equation, the value of the information rate Γ can be related to Ṡ and
Π as follows (for further details, see [50]):

Γ2 =
D
Σ

Π + Ṡ2 ∀D, Σ > 0, (9)

where D and Σ are the noise amplitude and the variance of the first-order Langevin equation.
Equation (9) can be used to describe the physical effects of a minimum variability

control in a dynamical system. For instance, as will be discussed later in Section 4, to obtain
a minimum information variability while being out of the equilibrium (i.e., Π > 0), the
control will exert entropy to the environment, creating a small but negative value for Ṡ. This
means that a minimum information variability would not necessarily lead to a maximum
free energy but to an optimal path where Π is limited by the value of Γ according to (9). The
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complete derivation of how to compute the values of Ṡ, Π, and Φ for a first-order Langevin
equation is shown in Appendix C.

Figure 2. Graphical description of Equation (8). In a closed system, entropy rate Ṡ corresponds
to the subtraction of the entropy produced by the system Π and the entropy exchanged with the
environment Φ.

2.3. Minimum Information Variability Problem

Now that we understand the meaning of the IL, let us explain in more detail how the
IL can be used to minimise deviations from the geodesic of the system’s PDF time evolu-

tion. In [32], the authors use the inequality J (tF) ≥ L(tF)
2 where J = τ

∫ t f
t0

Γ2(t)dt =∫ t f
t0

dt
∫

dx 1
p(x;t)

[
∂p(x;t)

∂t

]2
(Fisher divergence) with τ = t f − t0 and L given by (6). As

mentioned in Section 1, such inequality follows from the Cauchy–Schwartz inequality∫
Γ2 dt

∫
u2 dt ≥ (

∫
Γu dt)2 with u = 1. But, most importantly, the equality holds for the

minimum path where Γ is constant (see, e.g., [19,32]), and the deviation from this equality
is said to quantify the amount of the disorder in an irreversible process [32].

From [20], such a statement can be clarified by the following procedure. Let us define

the time-average for a function f (t) as E[ f (t)] = 1
τ

∫ t f
t0

f (t)dt. Then, we can define the
time-averaged variance

σ2 =
J −L2

τ2 = E[Γ2]−E[Γ]2 ≥ 0. (10)

Equation (10) describes an accumulative deviation from the geodesic connecting the initial
and final distributions of the system dynamics. Thus, we can conclude that by setting Γ as
a constant, we obtain a geodesic that defines a path where the process has the minimum
geometric information variability.

2.4. BIBO Stability of the Linear Stochastic Process

As we address a control problem, it is essential to examine the bounded-input,
bounded-output (BIBO) stability of (1). For this purpose, we revisit the BIBO stability
conditions for Equations (5a) and (5b), which will be instrumental in our discussion of
MPC stability.

Theorem 1. The mean (5a) and covariance (5b) dynamics of (1) are BIBO-stable if and only if the
eigenvalues λi of the matrix A satisfy the following inequality:

ℜ[λi] < 0, (11)

where ℜ[s] stands for the real part of the complex value s ∈ C.

Proof. For a detailed proof of this result, please refer to [60,61].
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Remark 1. Theorem 1 is considered to be satisfied throughout our examples; i.e., the control method
is applied to stable systems only. Furthermore, the control actions are constrained to finite values.

3. Main Results

To guide the system’s PDF time evolution along the geodesic of the IL while achieving
a desired set point at time t = t f , we propose the following cost function:

J=
∫ t f

0

(
IL(Γ2(τ)−Γ2(0))2+(Y(τ)−Yd(τ))

⊤Q(Y(τ)−Yd(τ)) + c⊤(τ)Rc(τ)
)

dτ, (12)

where IL ∈ R, Q ∈ R(n+n2)×(n+n2); Y := [µ, vec(Σ)]⊤ ∈ Rn+n2
is the vector of states µ and

vec(Σ) that define the time evolution of p(x; t); Yd = [µd, vec(Σd)]
⊤ is the desired position

of the n + n2 states defined by µd; and Σd at time t, and c ∈ Rm (such that m ≤ 1+ n2) is the
vector of controls defined by c = [c1, c2, . . . , cm]⊤ := [u(t), w := {(Dij|Dij ̸= 0 ∈ D∀i, j =
1, 2, . . . , n}]⊤. Therefore, R ∈ Rm×m. In this work, we call Equation (12) the Information
Length Quadratic Regulator (IL-QR). As will be discussed in Section 3, MPC enables us to
obtain the solution of (12) via a numerical scheme, circumventing analytic complexities
while being applicable to practical scenarios. Analytically finding the geodesic dynamics
involves using the solution of the Euler–Lagrange equations of the IL. The steps of such an
approach are discussed and successfully applied in [4] for a first-order stochastic differential
equation. In Appendix A, we give the details of the procedure when considering a more
generalised scenario.

From (12), we observe that the first term on the right-hand side imposes a constant Γ2

(needed to minimise the deviations from the geodesic [4]). The term involving Q guides the
system towards a specified PDF defined by Yd. The third term on the right-hand side of (12)
regularises the control action c to prevent abrupt changes in the inputs. Furthermore, Q
and R are matrices that penalise the error ϵ = Y− Yd and the control input u, respectively.
Additionally, IL penalises the square of the error (Γ2(t)− Γ2(0)), aiming to maintain Γ2(t)
close to Γ2(0) over time.

In our approach, the control of the dynamics for µ is governed by u(t), while the
dynamics of Σ(t) are adjusted by controlling the noise width using a time-dependent
vector w(t), where its elements replace the non-zero constant values of the matrix D in (5b).
As discussed in the numerical examples, the noise width can be altered by modifying a
macroscopic observable such as temperature (for further details, refer to the Brownian
motion models presented in [12]).

Model Predictive Control

As discussed in Section 1, the solution of our optimisation problem will be computed
through the MPC method. Hence, the following discrete optimal control problem encoding
the MPC formulation is required:

c = arg min
c̃

(
JN =

N

∑
k=0

(
IL

(
Γ̂2[k]− Γ2[0]

)2

+(Ŷ[k]− Yd)
⊤Q(Ŷ[k]− Yd) + c̃⊤[k]Rc̃[k]

))
s.t. Γ̂2[k] = f (Ŷ[k], c̃[k])

Ŷ[k] = [µ[c̃, k], vec(Σ[c̃, k])]⊤

µ[c̃, k] = Adµ[k− 1] + Bdu[c̃, k− 1]

Σ[c̃, k] = AdΣ[k− 1] + Σ[k− 1]A⊤d + 2D[c̃, k− 1]

µ[0] = m, Σ[0] = S ∀m ∈ Rn, S ∈ Rn×n

c̃[k] = [u[k], w[k]]⊤

cl,i ≤ ci ≤ cu,i cl,i, cu,i ∈ R∀i = 1, 2, . . . , m.

(13)
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In Equation (13), the ̂ symbol over Y and Γ refers to their predicted values over the
influence of the control c̃ throughout the optimisation process in the finite horizon of
length N. Note that the value of Ŷ is constrained by the discretised version of the set of
Equations (5a) and (5b) given by

µ[k] = Adµ[k− 1] + Bdu[k− 1], (14)

Σ[k] = AdΣ[k− 1] + Σ[k− 1]A⊤d + 2D[k− 1], (15)

where Ad = I + TsA and Bd = TsB if a first-order approximation of the time derivative
considering the sample period Ts is applied (we apply a fourth-order Runge Kutta instead
of a first-order approximation to compute Ŷ in our simulations). Note that we have added
the argument c̃ in Equation (13) when describing Equations (14) and (15) to emphasise
the application of the control during the optimisation procedure. The initial conditions
µ[0], Σ[0] of (14) and (15) change every time an optimal control c solution has been com-
puted and they are subject to the measurements m, S of the real/simulated process. Every
element ci of the control vector c̃ is constrained by a lower and an upper limit denoted as
cl,i and cu,i, respectively. Finally, f is the function describing the predicted value Γ̂2, which
is defined as follows:

f (Ŷ[k], c̃[k]) = (Aµ[k] + Bu[c̃, k])⊤Σ[k]−1(Aµ[k] + Bu[c̃, k])

+
1
2

Tr
(
(Σ[k]−1

(
AΣ[k− 1] + Σ[k− 1]A⊤ + 2D[c̃, k− 1]

)
)2
)

. (16)

For a clearer grasp of the MPC method’s application in solving the IL-QR problem in
real-world scenarios, Figure 3a,b show the control diagram and the functionality of the
MPC’s optimiser when considering a second-order stochastic system, respectively.

Figure 3a illustrates the real-time operation of the MPC algorithm. As the process
evolves, the MPC algorithm receives input parameters, including a given set point Γ2[0], Yd,
the prediction values Ỹ of µ and Σ from a prediction model, a set of constrains, the cost
function JN , and the current system dynamics Y, to solve the optimisation problem given
in (13). Afterwards, the optimal control c solution of Equation (13) is applied to the system.
The MPC method determines the optimal control c by utilising the differential equations of
µ̇ and Σ as a prediction model in a finite horizon of length N. Figure 3b provides a brief
overview of the working principle of the MPC’s optimiser block.

In the case of a stochastic process described by a bivariate time-varying PDF p with
random variables x1 and x2, the MPC optimiser method initiates the optimisation process
using the measured system’s PDF output (depicted in black). The optimisation process
involves extrapolating the values of the PDF p within a finite horizon of length N and
comparing them with the reference trajectory described by the PDF pd. The optimisation
problem is solved using the interior point method with CasADi [44]. In this study, the use
of deterministic descriptions of the first two statistical moments over time has facilitated
the control, prediction, and simulation of the PDF, owing to the nature of the Langevin
equations under consideration. However, in scenarios involving pure data or more complex
stochastic differential equations, estimating time-varying PDFs may require inference
methods [62] or stochastic simulations [63].
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c[k] Gaussian
Process

Γ2[0], Yd Y[k]

Ỹ[k]
Prediction model

Optimiser

setpoint

JN constraints

Predicted output

Output

c̃[k]
Future input

Model-predictive-control

(a)

x1

x2

x ∼ N(⟨x⟩, Σ) Reference Trajectory

kT

k

(k + 1)

(k + 1)

(k + 2)

(k + 2)

(k + N)

x ∼ N(⟨x⟩, Σ) Predicted Output

x ∼ N(⟨x⟩, Σ) Measured Output

Prediction Horizon of length N

pd(x; k)

p(x; k)

(b)
Figure 3. (a) A control diagram describing the main components of the implemented MPC method-
ology. The algorithm comprises a prediction model utilised to determine the optimal control c[k]
using the interior point method with CasADi [44]. (b) A diagram illustrating a discrete MPC scheme
applied to a second-order stochastic process. The algorithm predicts the behaviour of the dynamical
system within a finite horizon of length N and compares it with the reference trajectory described by
the PDF pd.

4. Simulation Results

To demonstrate the numerical implementation of MPC for solving the IL-QR cost
function (13), the subsequent subsections delve into applying the minimum information
variability to both the Ornstein–Uhlenbeck process and the Kramers equation. Throughout
the simulations, we utilise various parameters, which are conveniently summarised in
Table 2. Each system undergoes a pair of simulations or “experiments”, as detailed in
Table 2.

Table 2. Parameters used in the simulation results for the O-U and Kramers systems. The table
includes figure numbers showing the simulation where the set of parameters was used.

System Experiment Figure Y(0) Yd(t) Γ2(0)

O-U 1 5, 6 [5/6, 1/(2× 0.3)]⊤ [1/30, 1/(2× 0.3)]⊤ 2.4
2 7, 8 [5/6, 1/(2× 0.3)]⊤ [1/30, 1/(2× 3)]⊤ 0.41

Kramers 1 10 [5/6, 5/6, 1/(2× 0.3), 0, 1/(2× 0.3)]⊤ [0, 0, 1/(2× 3), 0, 1/(2× 3)]⊤ 6.16667
2 11 [5/6, 5/6, 1/(2× 0.3), 0, 1/(2× 0.3)]⊤ [−5/6, 0, 1/(2× 3), 0, 1/(2× 3)]⊤ 6.16667
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Table 2. Cont.

System Experiment Figure γ ω Ts N IL R Q

O-U
1 5, 6 1 - 1× 10−3 50 1× 103 1× 10−2I2

Q12 = Q21 = 0, Q11 = 1× 102

and Q22 = 5× 102

2 7, 8 1 - 1× 10−3 50 1× 104 1× 10−2I2
Q12 = Q21 = 0, Q11 = 1× 102

and Q22 = 5× 102

Kramers 1 10 2 1 1× 10−1 50 5× 103 1× 10−5I3 1× 102I5
2 11 2 1 1× 10−1 50 5× 103 1× 10−5I3 1× 102I5

4.1. The O-U Process

First, let us consider the Ornstein–Uhlenbeck (O-U) process (see Figure 4) defined by
the following Langevin equation:

ζ̇ = −γ(ζ(t)− u(t)) + ξ(t), (17)

where ζ(t) is a random variable, u(t) is a deterministic force, γ is a damping constant, and
ξ(t) is a short correlated random forcing such that ⟨ξ(t)ξ(t1)⟩ = 2Dδ(t− t1) with D ≥ 0
and ⟨ξ(t)⟩ = 0.

V(ζ)

ζu(t)

D

Figure 4. The O-U process equation is commonly used to describe a prototype of a noisy relaxation
process, for instance, the movement of a particle confined to a harmonic potential V(ζ) = 1

2 γ(ζ −
u(t))2 and thermal fluctuations with temperature T (D = kBTγ, and kB is the Boltzmann constant)
such that ζ(t) fluctuates stochastically.

The results of the MPC implementation are shown in Figures 5–8. In the following, it is
important to note that, in the figures, black colour is used to represent values labelled on the
y-left axis, while blue colour is used for values labelled on the y-right axis, unless otherwise
specified. Figure 5 illustrates the scenario where the desired state Yd of the O-U process
is Yd = [1/30, 1/(2× 0.3)]⊤. It also shows the time evolution of the states Y(t) = [µ, β(t)]
and controls c(t) = [u(t), D(t)]⊤. From the results, we see that the method finds a geodesic
motion (solution to the IL-QR) from the initial to the final state in less than 0.4 seconds.
The geodesic motion is corroborated by the constant value of Γ2(t) ≈ Γ2(0) = 2.4 and
the plot of the information length L whose shape is a line with a slope of 1.5526. Γ2(0) is
computed by considering that u(t = 0) = D(t = 0) = 0. It is noteworthy that the value
of Σ is observed to vary slightly over time compared to the hyperbolic analytical solution
in [4], which is provided for a non-constant Σ (refer to Appendix A).

When analysing the stochastic thermodynamics of the O-U system controlled by the
MPC technique, Figure 6 presents the plot of the entropy rate Ṡ in comparison with the
entropy production Π, along with a plot of the value of Γ2 using Equation (9). The analytical
expressions for Ṡ and Π, along with their derivations, are given in Appendix C. In the
closed-loop system, we can see that the MPC method induces slight changes in both the
entropy production Π and the entropy rate Ṡ during the process. Since the values of Σ
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and µ in the desired state Yd are close to, and far from, their initial conditions at state Y(0),
respectively, the balance between Ṡ, Π, and Γ2 as given by (9) is kept by maintaining an
almost constant D(t) and a u(t) with a nearly constant velocity.

−→
t

Figure 5. Minimum information variability control of the O-U process (Experiment 1). In this experi-
ment, the initial and desired PDFs have similar variances but different mean values. In the simulation,
Γ2 is maintained constant at a value of Γ2 = 2.4. To follow the geodesic, the input force u(t) needs to
linearly decrease, while the noise amplitude D(t) decreases slightly exponentially. Conversely, the
mean value undergoes a linear change, while the variance exhibits hyperbolic behaviour.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-5

0

5

10

15

20
10

-3

2.36

2.38

2.4

2.42

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

2.41

2.4105

2.411

2.4115

Figure 6. Stochastic thermodynamics under minimum information variability for the O-U process
(Experiment 1). The second plot demonstrates that the balance expressed via Equation (9) is main-
tained as expected. The control generates a small entropy rate Ṡ converging to a negative value,
indicating that most of the entropy flows from the system to the environment. The control induces
entropy production to maintain the system out of equilibrium with respect to Yd. This departure
from equilibrium is supported by the presence of entropy production Π > 0.

Under conditions almost similar to those in Figure 5, Figure 7 shows the behaviour of
the closed-loop system PDF, the states µ and Σ, and the controls D and u, as well as the
behaviour of Γ2 for Yd(t) = [1/30, 1/(2× 3)]⊤. Here, Γ2(0) is computed by considering that
u(t = 0) = 0 and D(t = 0) = 1/(2× 0.3). The final state Yd is achieved at approximately
t = 2.8. Once again, the geodesic behaviour is supported by the constant value of Γ2(t) ≈
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Γ2(0) = 0.41 and the plot of the information length L, which depicts a line with a slope
of 0.64759.

←−
t

Figure 7. Minimum information variability control of the O-U process (Experiment 2). In this experiment,
the initial and desired PDFs have different variances and mean values. Γ2 is maintained constant at a
value of Γ2 = 0.41, while both the input force u(t) and the noise amplitude D(t) decrease exponentially.

0 0.5 1 1.5 2 2.5 3 3.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.4

0.42

0.44

0.46

0.48

0.5

0 0.5 1 1.5 2 2.5 3 3.5

0.435

0.44

0.445

0.45

Figure 8. Stochastic thermodynamics under minimum information variability for the O-U process
(Experiment 2). The plot of Equation (9) demonstrates that to maintain a constant information rate
Γ while being out of equilibrium, we increase the value of entropy production Π, and most of the
entropy flows out to the environment, as indicated by the negative sign of Ṡ.

In comparison to the stochastic thermodynamics shown in Figure 6, Figure 8 exhibits
minor changes in the entropy production Π and significant variations in the entropy rate Ṡ
of the closed-loop system, given that the values of Σ and µ in the desired state Yd differ from
its initial condition Y(0). This disparity also leads to slight fluctuations in both the D(t)
and u(t). Additionally, Figure 8 demonstrates the validity of the balance in Equation (9).
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4.2. Kramers Equation

To study the solution of the IL-QR problem in a higher-order system via the MPC
method, let us consider the so-called Kramers equation. The Kramers equation describes
the Brownian motion of particles in an external field [12]. The non-autonomous version of
the Kramers equation is given by the following set of Langevin equations:[

ζ̇1
ζ̇2

]
=

[
0 1
−ω2 −γ

][
ζ1
ζ2

]
+

[
0
1

]
ξ(t) +

[
0
1

]
u(t) (18)

Here, ξ is a short correlated Gaussian noise with a zero mean ⟨ξ⟩ = 0 and a strength D ≥ 0
with the following property:

⟨ξ(t)ξ(t′)⟩ = 2Dδ(t− t′). (19)

In practice, as shown in Figure 9, the Kramers Equation (18) is also a good first approxi-
mation to describe the dynamics in one-dimension of a particle in an optical trap [5]. The
Kramers equation control c and state Y vectors are defined by

c = [u, D]⊤, (20)

Y = [µ1, µ2, Σ11, Σ12, Σ22]
⊤. (21)

Here, µ1 and µ1 are the mean values of the random variables ζ1 and ζ2, respectively. Σ11,
Σ12, and Σ22 are the values describing the covariance matrix Σ.

x

z

γ

ω2

u(t)

optical trap

ξ(t)

Figure 9. Mechanical representation of the Kramers Equation (18) as a mass–spring–damper system.
In this system, the external force u(t) is deterministic, while ξ(t) represents a stochastic perturbation
on the process, which varies due to the temperature of the fluid [12].

Figures 10 and 11 show the simulation results of the closed-loop Kramers equation
when considering the desired states Yd(t) = [0, 0, 1/(2× 3), 0, 1/(2× 3)]⊤ and Yd(t) =
[−5/6, 0, 1/(2× 3), 0, 1/(2× 3)]⊤, respectively. These figures include the time evolution
plots of the mean values µ1 and µ2 and the covariance matrix values Σ11, Σ12, and Σ22
of the Kramers equation random variables ζ1 and ζ2. In addition, they include the time
evolution of the bivariate PDF p(x; t) with the spatial vector x = [x1, x2]

⊤, with x1 and x2
representing the position and velocity of the system dynamics, respectively. The remaining
parameters used in the simulations are listed in Table 2. Again, in the figures, black colour
is used to represent values labelled on the y-left axis, while blue colour is used for values
labelled on the y-right axis, unless otherwise specified.

For the first numerical experiment, Figure 10 demonstrates that the MPC method is
capable of maintaining Γ2 as constant through time while reaching the desired state Yd.
Here, the value of Γ(0) in (13) is obtained as follows:
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Γ2(0) = (Aµ(0) + Bu(0))⊤Σ−1(0)(Aµ(0) + Bu(0))

+
1
2

Tr
((

Σ−1(0)(AΣ(0) + Σ(0)A⊤ + 2D(0))
)2
)
= 6.16667, (22)

where u(0) = 0 and vec(D(0)) = [0, 0, 0, 1/(2× 0.3)]⊤, while µ(0), Σ(0) and A are taken
from the corresponding Y(0) and the mathematical model (18), respectively. The geodesic
dynamics give a behaviour with slow oscillations in the state Y. The controls u and D
present high oscillations as the system reaches the desired state Yd. The system reaches
Yd at t ≈ 7 with an error of 1× 10−3. The geodesic behaviour is supported by the linear
behaviour of the information length L compared to the fitted equation y = 24.8332t.
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   y=24.8332t
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-1

-0.5

0

0.5

1

1.5

2

2.5

3 p(x, 0)

p(x, t f )

Figure 10. Minimum information variability control of the Kramers equation (Experiment 1). The
control effectively adjusts the values of the covariance matrix Σ and the mean vector µ by dynamically
modifying u and D, transitioning the system’s PDF from one state to another out of equilibrium. It is
noteworthy that, to maintain the system on the IL’s geodesic, the MPC method maintains a constant
Γ2, resulting in abrupt changes in u and D as the system approaches the desired state Yd. Physically,
this leads to a high entropy production due to the control action.

Figure 10 shows a second numerical experiment where Yd is even farther from the
system’s equilibrium. Yet, the MPC method can maintain Γ2 as constant through time while
reaching Yd. Like the example of Figure 10, in this case Γ2(0) = 6.16667. Small oscillations
persists in the time evolution of µ1, µ2, Σ11, cΣ12, and Σ22. The system reaches the desired
state Yd at t ≈ 8.5. Thus, the farther the desired state Yd is from the initial state Y, the longer
the time it takes to reach it while following the geodesic path. The geodesic behaviour is
evidenced by the plot of the information length L, whose behaviour is compared to the
fitted equation y = 24.8336t. Similar to the example in Figure 10, the controls exhibit highly
oscillatory behaviour as the system reaches Yd.
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Figure 11. Minimum information variability control of the Kramers equation (Experiment 2). In
this scenario, the value of Yd results in slower dynamics compared to Experiment 1, as MPC now
requires more time to reach Yd. Once again, significant changes are observed in u and D to maintain
a constant information rate Γ when the system approaches the desired state Yd.

5. Conclusions

In this work, we demonstrated the application of the MPC method, an online optimi-
sation algorithm for constrained control problems, to achieve the minimum information
variability in systems governed by linear stochastic differential equations. The linearity of
the system results in time-varying Gaussian PDFs, with statistical moments determined by
a set of deterministic differential equations. Our simulations demonstrate that the MPC
method is a practical approach for determining the geodesic of the information length
between the initial and desired probabilistic states through the solution of the proposed
IL-QR loss function.

From a thermodynamic standpoint, simulations of the MPC in the O-U process reveal
that the MPC directly influences the amount of entropy production generated by the
system to meet all optimisation requirements. Future work will involve extending this
approach to nonlinear stochastic dynamics, such as toy models [64], systems with uncertain
physical parameters [65], Brownian motion [66], or diffusion [67,68]. This extension aims to
maximise the free energy [21] by minimising the entropy production and to analyse closed-
loop stochastic thermodynamics for higher-order systems. It is worth noting that extending
the method to nonlinear dynamics can be achieved through the Laplace assumption [69]
and/or by employing Kalman/particle filter methods [70,71].
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Appendix A. A Solution by the Euler–Lagrange Equation

In [4], an analytical solution describing the geodesic motion connecting given initial
p(x; 0) and final p(x; tF) probability distributions is found by solving the Euler–Lagrange
equations in terms of the covariance Σ and mean µ value of a first-order stochastic process.
Here, we take the O-U process to compare such an analytical solution of the geodesic
dynamics with the solution obtained by the MPC method. Additionally, we provide the set
of differential equations describing the geodesic motion for an n-th order Gaussian process.

The Euler–Lagrange equations for the Lagrangian Γ2 in terms of the vector µ (mean
value) and the matrix Σ (covariance) are

d
dt

(
∂Γ2(t)

∂µ̇

)
=

∂Γ2(t)
∂µ

, (A1)

d
dt

(
∂Γ2(t)

∂Σ̇

)
=

∂Γ2(t)
∂Σ

. (A2)

Using (7) in (A1) and (A2), we obtain (see Appendix B)

µ̈ + Σ̇Σ−1µ̇ = 0, (A3)

Σ̈ + µ̇µ̇⊤ − Σ̇Σ−1Σ̇ = 0. (A4)

As mentioned above, [4] presents a closed-form analytical solution to the boundary value
problem of Equations (A3) and (A4) when the dimensions of both µ and Σ are one. Specifi-
cally, Equations (A3) and (A4) have a trivial solution where Σ is constant. For a non-constant
Σ, the following hyperbolic solutions are found in [4]:

β(t) = β∗ cosh
[

1
2
√

α(t− A)

]
, (A5)

µ(t) = − 1√
β∗

tanh
[

1
2
√

α(t− A)

]
+ µM. (A6)

Here, β = 1
2Σ and µ(t = A) = (µ(0) + µ(tF))/2 = µM. The values of β∗, α, and A are

computed using a given set of boundary conditions (for a complete discussion, see [4]). For
instance, the parameter

A =
1

γ
√

β(0)µ(0)
Q

cosh(Q)
, (A7)
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where Q = sinh−1(ϕ
2 )using ϕ =

√
β(0)(µ(0)−µ(tF)). Clearly, through Equations (A5) and (A6)

and the dynamical model of the O-U process (17), we can construct the optimal control f (t) of the
input u(t) and the optimal noise amplitude DI(t) of D(t). From [4], given that u(0) = 0, such
optimal controls are given by

f (t) = µ(t)− β(0)µ(0)
β(t)

, (A8)

DI(t) =
1

2β(t)

[
γ−
√

α

2
tanh(

1
2
√

α(t− A))

]
. (A9)

To compare the analytical and MPC solutions of the geodesic of the IL, Figure A1 shows
the behaviour of the O-U process when controlled through the analytical solutions (A8)
and (A9) or the IL-MPC method. The figure contains different subplots that show the time
evolution of µ, β1/2, Γ2, and L and the optimal controls DI and f . In the simulation, the
desired state and the damping are Yd(t) = [1/30, 1/(2× 0.3)]⊤ and γ = 1, respectively.
Additionally, we set a fixed final time tF = 2A = 0.9304 (one cycle of the hyperbolic
geodesic motion (A5) and (A6)) by considering the initial state Y(0) = [5/6, 1/(2× 0.3)]⊤.
Figure A1 uses dashed and non-dashed lines for the MPC and the analytical response,
respectively. Additionally, recall that black colour is used to represent values labelled on
the y-left axis, while blue colour is used for values labelled on the y-right axis. From the
comparison, a major conclusion is that the time evolution of β is no longer hyperbolic
when using the MPC method. This means that the MPC method finds an almost constant
Σ solution but not the hyperbolic solution shown in [4]. The MPC allows us to reach the
final state Yd at tF with an error of 6.6× 10−4.

Figure A1. Comparison between the analytical solution of Equations (A3) and (A4) vs. the IL-QR
solution for the O-U process (17). The IL-QR parameters are Y(0) = [5/6, 1/(2× 0.3)]⊤, Yd(t) =

[1/30, 1/(2× 0.3)]⊤, γ = 1, Ts = 1× 10−3, N = 50, IL = 1× 103, R = 1× 10−4I2, and Q = 1× 102I2.

As a second example, Figure A2 shows the dynamics of the controlled O-U process
when the initial state is Y(0) = [5/6, 1/(2× 3)]⊤ (fixing tF = 2A = 0.7367), the desired state
Yd(t) = [1/30, 1/(2× 3)]⊤, and the damping γ = 1. Again, the MPC method recovers a
geodesic solution where the β time evolution is constant. In this scenario, the MPC method
reaches the desired state Yd with an error of 9.8× 10−4 in a time t > tF, demonstrating that
the numerical optimisation scheme may not recover an optimal time.
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Figure A2. Comparison of the analytical solution of Equations (A3) and (A4) vs. the IL-QR solution for
the O-U process (17). The IL-QR parameters are Y(0) = [5/6, 1/(2× 3)]⊤, Yd(t) = [1/30, 1/(2× 3)]⊤,
γ = 1, Ts = 1× 10−3, N = 10, IL = 1× 103, R = 1× 10−4I2, and Q = 1× 102I2.

As a final remark, note that if the n-th order case is considered, Equations (A3) and (A4)
form a set of non-linear differential equations whose solution may be obtained by a numerical
procedure. But, even for the case of a second-order stochastic process, this becomes a challenging
problem (we have a boundary value problem of 12 non-linear differential equations). Hence, the
MPC method provides an alternative solution to this problem while being an experimentally
feasible approach, as demonstrated by the application to the Kramers equation in Section 4.2.

Appendix B. Geodesic Dynamics Derivation

Based on matrix calculus identities from [72], we can derive the Euler–Lagrange
equations for Γ2(t). First, for µ we have

d
dt

(
∂Γ2(t)

∂µ̇

)
= 0, (A10)

where ∂Γ2(t)
∂µ̇ = 2Σ−1µ̇. Therefore,

d
dt

(
Σ−1

)
µ̇ + Σ−1µ̈ = −Σ−1Σ̇Σ−1µ̇ + Σ−1µ̈ = 0, (A11)

which leads to Equation (A3). For Σ, we have
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∂Γ2(t)
∂Σ̇

=
1
2

Tr
(

Σ−1(∂Σ̇)Σ−1Σ̇ + Σ−1Σ̇Σ−1(∂Σ̇)
)

=
1
2

(
2(Σ−1Σ̇Σ−1)⊤

)
, (A12)

d
dt

(
∂Γ2(t)

∂Σ̇

)
=

d
dt

(
Σ−1Σ̇Σ−1

)
= −Σ−1Σ̇Σ−1Σ̇Σ−1 + Σ−1Σ̈Σ−1

−Σ−1Σ̇Σ−1Σ̇Σ−1, (A13)
∂Γ2(t)

∂Σ
= −Σ−1µ̇µ̇⊤Σ−1 +

1
2

∂

∂Σ
Tr
(

Σ−1Σ̇Σ−1Σ̇
)

= −Σ−1µ̇µ̇⊤Σ−1 +
1
2

Tr
(
(∂Σ−1)Σ̇Σ−1Σ̇

+Σ−1Σ̇(∂Σ−1)Σ̇
)

= −Σ−1µ̇µ̇⊤Σ−1 +
1
2

(
−2(Σ−1Σ̇Σ−1Σ̇Σ−1)⊤

)
. (A14)

Appendix C. Entropy Rate in the O-U Process

The O-U process Fokker–Planck equation is given by

∂

∂t
p(x, t) = − ∂

∂x
[ f (x, t)p(x, t)] + D

∂2

∂x2 p(x, t) = − ∂

∂x
J, (A15)

where f (x, t) = −γ(x + u(t)) and J = f p− D∂x p. The solution of (A15) is Gaussian and
given by

p(x, t) =
1√

2πΣ
e−

(x−µ)2
2Σ . (A16)

The values of the entropy production Π and entropy flow Φ for the O-U process can be
obtained from the computation of the entropy rate of the solution p(x, t) of the Fokker–
Planck Equation (A15) as follows (see also [21,50]):

Ṡ = −
∫

dx ṗ(x, t) ln p(x, t)

= −
∫

dx(−∂x J(x, t)) ln p(x, t)

= −
∫

dxJ(x, t)∂x ln p(x, t)

= −
∫

dxJ(x, t)
1

p(x, t)

(
f (x, t)p(x, t)− J(x, t)

D

)
=

∫
dx

(J(x, t))2

Dp(x, t)
−
∫

dx
J(x, t) f (x, t)

D
= Π−Φ. (A17)

Hence, the exact values of Π and Ṡ are [21]

Ṡ =
1
2

Σ̇
Σ

, (A18)

Π =
µ̇

D
+

γ2Σ
D

+
D
Σ
− 2γ. (A19)
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