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Abstract: We consider some basic problems associated with quantum mechanics of systems having
a time-dependent Hilbert space. We provide a consistent treatment of these systems and address the
possibility of describing them in terms of a time-independent Hilbert space. We show that in general the
Hamiltonian operator does not represent an observable of the system even if it is a self-adjoint operator.
This is related to a hidden geometric aspect of quantum mechanics arising from the presence of an
operator-valued gauge potential. We also offer a careful treatment of quantum systems whose Hilbert
space is obtained by endowing a time-independent vector space with a time-dependent inner product.
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1. Introduction

Quantum mechanics is perhaps the most successful physical theory of all times. Its
basic principles and mathematical foundation have been known since the 1930s and covered
in numerous textbooks and monographs written over the past nine decades [1–6]. Yet the
discovery of non-Hermitian PT symmetric Hamiltonians possessing a real spectrum towards
the end of 20th century [7–9] created the impression among some physicists that there were
gaps in our understanding of the fundamental aspects of quantum mechanics [10–12]. This
motivated the reexamination of some of the basic issues related to the necessity of some
of the postulates of quantum mechanics [13–16] and led to the confirmation of the fact
that such Hamiltonians could define a unitary quantum dynamics provided that we could
uphold each and every one of the postulates of quantum mechanics [2] by an appropriate
redefinition of the Hilbert space of the system [17–21].

Among the benefits of studying non-Hermitian PT symmetric Hamiltonians was the
development of methods for defining invariant inner products [13,14,21,22] and using these
to address some old and important problems related to the construction of the Hilbert space
and basic observables in quantum cosmology [23,24] and relativistic quantum mechanics
of scaler [25–27] and spin-1 [28–30] particles. Quantum cosmological applications of these
methods yield quantum systems with a Hilbert space whose inner product depends on
the logarithm of the scale factor, which is a time-like degree of freedom [23,24]. This has
motivated the study of the role of the Hamiltonian operator in a Hilbert space with a
time-dependent inner product and led to the discovery of a quantum mechanical analog
of the principle of general covariance of general relativity [31]. It has also revealed a
conflict between the observability of the Hamiltonian and the unitarity of the dynamics
it generates [32]. Different authors have proposed ways to deal with this conflict [33–39].
Among these is a geometric resolution that allows for a genuine geometric extension of
quantum mechanics [40] and uncovers a previously unnoticed geometric aspect of quantum
mechanics [41].

In the present article, we provide a careful and essentially self-contained discussion
of some of the basic problems related to the formulation of the kinematics and dynamics
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of quantum systems and offer a thorough treatment of quantum systems defined on time-
dependent Hilbert spaces. In particular, we consider systems whose Hilbert space acquires
its time-dependence through the time-dependence of its inner product. This requires a
detailed analysis of a dynamical generalization of the notion of pseudo-Hermiticity [13],
which was initially employed in the context of quantum cosmology [23] and the quantum
mechanical analog of the principle of general covariance [31]. It also plays a central role in
the context of the conflict between observability of the Hamiltonian and the unitarity of the
dynamics it generates [32–41].

We close this section by posing a simple question related to the quantum mechanical
analogs of time-dependent canonical transformations of classical mechanics [42]. Consider
a quantum system whose state vectors belong to a time-independent Hilbert space H and
whose dynamics are determined by the Schrödinger equation,

ih̄
d
dt

ψ(t) = Hψ(t), (1)

where H is a time-independent Hermitian Hamiltonian operator. The observables of the
system are represented by Hermitian operators O acting in H . Quantum mechanical analogs
of the classical canonical transformations are unitary transformations of the state vectors,

ϕ −→ ϕ̃ := U (t)ϕ, (2)

under which the observables O and the Hamiltonian H(t) transform according to

O −→ Õ := U (t)OU (t)−1, (3)

H(t) −→ H̃(t) := U (t)H U (t)−1 + ih̄
[

d
dt
U (t)

]
U (t)−1. (4)

By virtue of the fact that U (t) : H → H is a unitary operator, (2) and (3) ensure the
invariance of the expectation values of the observables, i.e.,

⟨ϕ|Oϕ⟩
⟨ϕ|ϕ⟩ −→ ⟨ϕ̃|Õϕ̃⟩

⟨ϕ̃|ϕ̃⟩ =
⟨ϕ|Oϕ⟩
⟨ϕ|ϕ⟩ ,

while (4) guarantees that the transformation (2) maps the solutions of the Schrödinger (1)
to those of

ih̄
d
dt

ψ̃(t) = H̃(t)ψ̃(t), (5)

where ψ̃(t) := U (t)ψ(t).
The unitarity of the transformation (2) and the transformation rules (3) and (4) imply

that the physical quantities that quantum mechanics allows us to compute are not affected
by this transformation. This is standard textbook material, but it leads to the following
dilemma. Usually we take the Hamiltonian to represent the energy operator and identify
the energy levels of the system with points in the spectrum of the Hamiltonian. But the
transformation rule for the Hamiltonian, namely (4), does not leave its spectrum invariant.
Therefore, even if we take the Hamiltonian H to be the energy observable, we cannot
claim that the transformed Hamiltonian H̃(t) represents the energy observable, because its
spectrum can be completely different from that of H. For example if we identify U (t)
with the inverse of the time-evolution operator, i.e., set U (t) = exp(itH/h̄), which we do
in going from the Schrödinger picture of dynamics to its Heisenberg picture [4], we find
that H̃(t) vanishes identically. Hence its spectrum is {0}. A simple way of avoiding this
problem is to identify the energy operator before the unitary transformation and use the
transformation rule for the observables, namely (3), to determine the energy observable
after the transformation.

As we explain below, a quantum system is uniquely determined by the choice of its
Hilbert space and Hamiltonian operator. But this choice is not unique, for all Hilbert space–
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Hamiltonian pairs that are related by unitary transformations provide physically equivalent
descriptions of the system. Therefore, one must not be able to distinguish between different
choices of such pairs. Yet the above prescription of identifying the energy observable
seems to assume the existence of a special Hilbert space–Hamiltonian pair, which allows us
to identify the energy observable with the Hamiltonian. This raises the natural question:
“How do we find this special pair?” One of the aims of the present article is to offer a general
prescription for determining the energy observable that is independent of the choice of the
description of the system in terms of the Hilbert space–Hamiltonian pairs.

2. Basic Facts about Quantum Kinematics and Dynamics

Every quantum system can be described by a Hilbert space H and a linear operator
H acting in H called the Hamiltonian. Throughout this article we use the term “Hilbert
space” to mean a complex separable Hilbert space, i.e., a complex vector space endowed
with a positive-definite inner product such that as an inner-product space it is complete
(i.e., the Cauchy sequences converge) and has countable orthonormal bases [43].

The (pure) states of the system are identified with the one-dimensional subspaces
(rays) of H , and its observables are given by certain linear operators acting in H . Each
nonzero element ψ of H determines a unique state of the system, namely {αψ|α ∈ C}.
For this reason we call nonzero elements of H “state vectors” and label states of the system
by Sψ, where ψ is a state vector belonging to Sψ. Clearly Sϕ = Sψ, if and only if ϕ = α ψ
for some nonzero complex number α.

The central ingredient of quantum mechanics that distinguishes it from classical theo-
ries is its measurement or projection axiom. According to this axiom, quantum mechanics
does not allow for the prediction of the outcome of a measurement even if we have com-
plete information about the observable we measure and the state of the system before the
measurement. We can only use quantum mechanics to determine possible outcomes of
the measurement, the probabilities of measuring these outcomes, and their expectation
(ensemble average) values. Both of the latter quantities have the form

⟨ψ, Lψ⟩
⟨ψ, ψ⟩ , (6)

where ⟨·, ·⟩ denotes the inner product of H , ψ is a state vector belonging to the domain of
definition of L such that Sψ is the state of the system immediately before the measurement,
and L is either a projection operator associated with a subset S of the spectrum of the
observable or the observable itself. In the former case, (6) gives the probability of measuring
a value for the observable that belongs to S . In the latter case, it gives the expectation value
of the observable. In both cases, and regardless of the choice of ψ, (6) is necessarily a real
number. This simple requirement turns out to put a severe restriction on the operator L.
Specifically, it implies that L must satisfy

⟨ϕ, Lψ⟩ = ⟨Lϕ, ψ⟩ for all ϕ, ψ ∈ Dom(L), (7)

where Dom(L) stands for the domain of L. We can use the basic properties of the inner
product to show that (7) implies the realness of the right-hand side of (6) for all ψ ∈ Dom(L).
Showing that the latter requirement implies (7) requires slightly more work ([Theorem
1.6.1] [44]).

Linear operators L fulfilling (7) are said to be “symmetric”. Some authors call them
“Hermitian” [44]. But this is not consistent with the terminology adopted by von Neumann
in his monumental book on quantum mechanics [2]. von Neumann uses the term “Hermi-
tian” for what is nowadays called “self-adjoint” [43–45]. In the present article, we follow von
Neumann’s terminology and use the terms “Hermitian” and “self-adjoint” interchangably.
The precise definition of this concept which applies to finite- as well as infinite-dimensional
Hilbert spaces is rather technical. We therefore present it in Appendix A where we also
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discuss the basic requirements that disqualify non-Hermitian symmetric operators to serve
as observables for quantum systems with infinite-dimensional Hilbert spaces.

It is easy to see that (7) implies the realness of the eigenvalues of L. The converse of
this statement is, however, not true, i.e., there are non-symmetric linear operators whose
eigenvalues are real. For example, suppose that H is the vector space C2×1 of 2× 1 complex
matrices (column vectors) endowed with the standard Euclidean inner product,

⟨w, z⟩ := w†z,

where w, z ∈ C2×1, and the superscript † stands for the Hermitian conjugate (complex
conjugate of the transpose) of a matrix. It is an elementary fact of linear algebra that every
linear operator L : C2×1 → C2×1 with domain C2×1 is given by a 2 × 2 matrix L according
to Lz = Lz. This, in particular, implies that the eigenvalues of L coincide with those of L,
and ⟨w, Lz⟩ = w†Lz. Let us examine the following choices for L, w, and z.

L :=
[

1 0
−i 2

]
, w :=

[
1
0

]
, z :=

[
0
1

]
.

It is easy to see that the spectrum of L (and consequently of L) consists of real eigen-
values, 1 and 2. We also have

⟨w, Lz⟩ = w†Lz = 0, ⟨Lw, z⟩ = ⟨z, Lw⟩∗ = (z†Lw)∗ = i.

Therefore, although L has a real spectrum, it violates (7). Notice also that the expectation
value of L in the state Su with u := w + z fails to be real; a quick calculation gives

⟨u, Lu⟩
⟨u, u⟩ =

u†Lu
u†u

=
3 − i

2
.

This is a clear proof that the realness of the eigenvalues of a linear operator does not ensure
the realness of its expectation values.

Standard textbooks on quantum mechanics also use von Neumann’s terminology and
identify observables of quantum systems with “Hermitian operators”. Most of them, however,
do not discuss the difference between symmetric and Hermitian operators, and refer to
condition (7) as the “Hermiticity condition”. This causes no difficulties when the Hilbert
space H of the system is finite-dimensional, because in this case the observables are defined
everywhere in H . As we explain in Appendix A, this makes the conditions of being symmetric
and Hermitian equivalent. Therefore every non-Hermitian operator defined in a finite-
dimensional Hilbert space violates (7) regardless of whether its eigenvalues are real or not.

The requirement of the realness of the eigenvalues of observables is a logical conse-
quence of the fact that they are the possible readings of measuring devices one employs to
measure these observables. This seems to have provided the basic motivation for using
non-Hermitian operators with a real spectrum as Hamiltonian operators for certain quan-
tum systems [7,10,12]. Because these operators violate (7), there are states in which their
expectation values fail to be real. Therefore, they cannot be identified with the statistical
averages of readings of a measuring device, which are necessarily real numbers. This argu-
ment also applies when H is infinite-dimensional. The realness of the spectrum of a linear
operator does not ensure the realness of its expectation values. This is a firmly established
mathematical fact that is unfortunately not covered in a great majority of textbooks on
quantum mechanics.

Because the knowledge of the Hilbert space H is sufficient for the identification of its
one-dimensional subspaces and Hermitian operators acting in H , the states and observ-
ables of the quantum system, and consequently, its kinematic structure are determined by
H . In general, changing H would drastically change the set of states and observables of
the system. In particular, it might be possible to change the inner product on H in such a
way that the domain of a non-Hermitian linear operator remains unchanged but it acts as a
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Hermitian operator in the new Hilbert space. This is the basic idea of the pseudo-Hermitian
representation of quantum mechanics [21], which was originally developed in an attempt
to achieve the following seemingly unrelated objectives:

1. To establish a precise mathematical framework [13–15] to study non-Hermitian PT -
symmetric Hamiltonians [7] and elucidate their physical content [17,18,46];

2. To address the problem of the construction of the Hilbert space and basic observables
in minisuperspace quantum cosmology [23,24].

The information about the dynamical properties of a quantum system is contained in
the Hamiltonian. In the Schrödinger picture of dynamics, the evolution of the state vectors
ψ(t) of the system is governed by the requirement that they satisfy the Schrödinger equation,

ih̄
d
dt

ψ(t) = H(t)ψ(t). (8)

Here, we use the symbol H(t) for the Hamiltonian to reflect the fact that it may depend
on time. In general, the Hamiltonian involves a set of real classical control parameters or
coupling constants, R1, R2, · · · , Rd, whose values may change with time. These determine
the time-dependence of the Hamiltonian according to H(t) := H[R(t)], where R stands for
(R1, R2, · · · , Rd). In general, we can identify the latter with (the coordinates of) points of
a parameter space M, and view the function R(t) as a parameterized curve in M. A well-
known example is a spin-s particle interacting with a rotating magnetic field B(t), where
H is C2s+1 endowed with the Euclidean inner product, ⟨ψ, ϕ⟩ := ∑2s+1

j=1 ψ∗
j ϕj,

H(t) = ωLB̂(t) · S,

ωL is the Larmor frequency, B̂(t) := |B|−1B(t) is the direction of B(t), and S = (Sx, Sy, Sz)
is the spin operator in its standard 2s + 1-dimensional unitary representation [47]. Be-
cause B̂(t) traces a curve on the unit sphere,

S2 :=
{
(x, y, z) ∈ R3 ∣∣ x2 + y2 + z2 = 1

}
,

the parameter space of this system is S2. If we identify the axis of rotation of the magnetic
field with the z axis, we can express B̂(t) in terms of the azimuthal and polar spherical
coordinates, φ and ϑ. This gives

B̂(t) =
(

sin ϑ cos φ(t), sin ϑ sin φ(t), cos ϑ
)
, φ(t) = ωt,

where ω is the angular speed of rotation of the magnetic field about the z axis. These
formulas suggest taking R1 := φ and R2 := ϑ as the parameters of the system.

In the standard textbook description of quantum mechanics, the kinematical structure
of the system is independent of its dynamics. This is because the Hilbert space H does
not depend on time. There are, however, situations where this is not the case. A simple
example is a non-relativistic particle trapped in an infinite square well potential with a
time-dependent width w(t) in one dimension [48–51], i.e.,

v(x, t) :=
{

0 for x ∈ [0, w(t)],
∞ for x /∈ [0, w(t)].

(9)

The Hilbert space of this system is the space of square-integrable functions defined
on the interval [0, w(t)], i.e., H = H (t) = L2[(0, w(t)]. Consider an evolving state vector
ψ(t) for this system. At different instants of time, ψ(t) belongs to different Hilbert spaces.
This makes the very definition of its time derivative, namely

d
dt

ψ(t) := lim
ϵ→0

ψ(t + ϵ)− ψ(t)
ϵ

, (10)
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problematic; because ψ(t + ϵ) ∈ H (t + ϵ) while ψ(t) ∈ H (t), it is not meaningful to
speak of ψ(t + ϵ)− ψ(t). This is a serious problem as the Schrödinger equation (8) involves
d
dt ψ(t).

Fortunately, it is possible to devise an alternative description of this system that makes
use of a time-independent Hilbert space [51]. This description avoids the problem with
the definition of d

dt ψ(t) when ψ(t) belongs to a time-dependent Hilbert space H (t), but it
does not offer a general solution for it.

There is a class of quantum systems described by a time-dependent Hilbert space
H (t) where the set of state vectors and the rules according to which they are added and
multiplied by numbers do not change with time. This means that the vector-space structure
of H (t) is time-independent. The time-dependence of such a Hilbert space stems from
the time-dependence of its inner product. For this class of quantum systems, the term
1
ϵ [ψ(t + ϵ)− ψ(t)] is meaningful, but (10) is still unacceptable, because the operation of
evaluating the ϵ → 0 limit in its right-hand side is ill-defined. Recall that given a function
f mapping R to a Hilbert space H , ξ := limϵ→0 f (ϵ) means that there is some ξ ∈ H
such that limϵ→0 ∥ f (ϵ)− ξ ∥= 0, where ∥ · ∥ stands for the norm of the Hilbert space.
To make sense of the right-hand side of (10), we need a unique choice for the norm of
1
ϵ [ψ(t + ϵ) − ψ(t)] − d

dt ψ(t), which is unavailable because ψ(t + ϵ) and ψ(t) belong to
Hilbert spaces with different inner products.

3. Quantum Dynamics in a Time-Dependent Hilbert Space

Consider a quantum system described by a time-dependent Hilbert space H (t) and a
possibly time-dependent Hamiltonian operator H(t). In analogy with the description of
time-dependent Hamiltonians that we offer in the preceding section, we can imagine that
H (t) acquires its time-dependence through its dependence on a set of time-dependent real
parameters, R1, R2, · · · , Rd, i.e., H (t) = H [R(t)] with R := (R1, R2, · · · , Rd). Again, we
can identify these parameters with coordinates of points of a parameter space M in some
coordinate system, so that as time progresses R(t) traces a curve in M. This description of a
quantum system with a time-dependent Hilbert space involves the assignment of a Hilbert
space H [R] to each point R of M. Imposing the natural requirement that the dimension
N of H [R] (which can be finite or infinite) be independent of R, we arrive at a bundle of
Hilbert spaces attached to points of M. This is an example of what mathematicians call
a Hermitian vector bundle (Hilbert bundle when N = ∞) [52,53]. This suggests that we
should replace the role of the time derivative of the evolving state (10), which applies to
dynamics taking place in a constant Hilbert space, with an appropriate notion of covariant
time derivative on a Hermitian vector bundle E , [52,54,55].

3.1. Covariant Differentiation with Respect to Time

Consider an orthonormal basis {ϕn[R]}N
n=1 of H [R] for each R, and suppose that

ϕn[R] are smooth functions of R at least in some open subset Oα of M where our coordinate
system is defined. To be precise, M is a smooth manifold and Oα’s provide an open
covering of M by coordinate charts [54,55]. Given an evolving state vector ψ(t) that belongs
to H [R(t)], we can expand it in {ϕn[R(t)]}N

n=1. This gives

ψ(t) =
N

∑
n=1

cn(t) ϕn[R(t)], (11)

where
cn(t) := ⟨ϕn[R(t)], ψ(t)⟩R(t), (12)

and ⟨·, ·⟩R is the inner product of H [R]. The basis expansion (11) applies for the values of t
such that R(t) ∈ Oα.

Now, suppose that H is a fixed (separable) Hilbert space having the same dimension
as H [R], namely N. Because separable Hilbert spaces with the same dimension are
isomorphic, there are unitary operators mapping H to H [R]. To specify one, we choose an
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arbitrary time-independent orthonormal basis {Φn}N
n=1 of H , and let U[R] : H → H [R]

be the unitary operator that maps {Φn}N
n=1 onto {ϕn[R]}N

n=1, so that

ϕn[R] = U[R]Φn. (13)

This means that for all Φ ∈ H ,

U[R]Φ :=
N

∑
n=1

⟨Φn, Φ⟩ ϕn[R], (14)

where ⟨·, ·⟩ stands for the inner product of H .
We define a concept of covariant time derivative Dt in H by

DtΨ(t) :=
d
dt

Ψ(t) + i
d

∑
a=1

dRa(t)
dt

Aa[R(t)]Ψ(t), (15)

where t ranges over some interval [t0, t1] such that R(t) ∈ Oα, Ψ : [t0, t1] → H is a
differentiable function, and for each R ∈ Oα and a ∈ {1, 2, · · · , d}, Aa[R] is a linear
operator acting in H . It is the choice of these operators, or alternatively the operator-
valued differential form,

A[R] =
d

∑
a=1

dRa Aa[R],

that determines the covariant time derivative DtΨ(t) of Ψ(t). Because U[R(t)] is a unitary
operator, we can use it to extend this notion of covariant time derivative to functions
ψ : [t0, t1] → H [R(t)] as follows:

Dtψ(t) := U[R(t)] Dt U[R(t)]−1ψ(t). (16)

In view of (11), this is equivalent to

Dtψ(t) :=
N

∑
m=1

[
dcm(t)

dt
+ i

N

∑
n=1

Amn(t)cn(t)

]
ϕm[R(t)], (17)

where

Amn(t) :=
d

∑
a=1

dRa(t)
dt

Aa mn[R(t)], (18)

Aa mn[R] := ⟨Φm, Aa[R]Φn⟩. (19)

The concept of covariant differentiation defined by (16) or (17) would be acceptable pro-
vided that it does not depend on the choice of the orthonormal basis {ϕn[R]}N

n=1. To satisfy
this requirement, the operators Aa must comply with a particular basis transformation rule.

3.2. Gauge Transformations

Suppose that {ϕ̃n[R]}N
n=1 is another orthonormal basis of H [R] for R ∈ Oα. Be-

cause any two orthonormal bases of a Hilbert space are related via a unitary transformation,
there is a unitary operator U [R] : H [R] → H [R] such that ϕ̃n[R] = U [R]ϕn[R]. Let us
expand the elements ξ of H [R] in both {ϕn[R]}N

n=1 and {ϕ̃n[R]}N
n=1. This gives

ξ =
N

∑
n=1

xnϕn =
N

∑
n=1

x̃nϕ̃n, (20)
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where

xn := ⟨ϕn, ξ⟩R, x̃n := ⟨ϕ̃n, ξ⟩R =
N

∑
m=1

⟨U ϕn, ϕm⟩R xm, (21)

and we have suppressed the R-dependence of ϕn[R], ϕ̃n[R], and U [R] for brevity. The basis
transformation {ϕn[R]}N

n=1 → {ϕ̃n[R]}N
n=1 is the passive transformation,

ϕn
U−→ ϕ̃n = U ϕn, xn

U−→ x̃n =
N

∑
m=1

⟨U ϕn, ϕm⟩R xm, (22)

which does not change ξ. It induces a basis transformation in H , namely

{Φn}N
n=1

G [R]−→ {Φ̃n[R]}N
n=1,

where Φ̃n[R] := G [R]Φn, and G [R] : H → H is the unitary operator defined by

G [R] := U[R]−1U [R]U[R]. (23)

In Appendix B, we show that the right-hand side of (17) is left invariant under the
basis transformation (22) if and only if the operators Aa transform according to

Aa −→ Ãa = G −1 Aa G − i G −1∂aG . (24)

Here, ∂a stands for the partial derivative with respect to Ra, and we have suppressed the
R-dependence of Aa[R], Ãa[R], and G [R]. Transformation (24) coincides with a gauge
transformation of the gauge field in a non-Abelian gauge theory whose gauge group is the
unitary group of the Hilbert space H . In differential geometry, Aa[R] are known as the
components of a local connection one form [54,55].

Suppose that [t0, t1] is a time interval such that for all t ∈ [t0, t1], R(t) ∈ Oα and ψ(t)
satisfies Dtψ(t) = 0. Then, we say that ψ(t) is obtained by the parallel transportation of
ψ(t0) along the curve traced by R(t) in Oα. Demanding that the parallel transportation of
pairs of elements of H [R(t0)] leaves their inner product unchanged is equivalent to the
condition that Aa[R] be Hermitian operators acting in H . This follows from the equivalence
of Dtψ(t) = 0 with DtΨ(t) = 0 and the fact that we can write the latter equation as the
Schrödinger equation,

ih̄
d
dt

Ψ(t) = HA(t)Ψ(t), (25)

for the Hamiltonian operator

HA(t) := h̄
d

∑
a=1

dRa(t)
dt

Aa[R(t)]. (26)

Because R(t) is arbitrary, the Hermiticity of the operators Aa[R] is equivalent to the
Hermiticity of the Hamiltonian operator HA(t) and the unitarity of the time-evolution
it generates via (25). If ψ1(t) and ψ2(t) are elements of H [R(t)] satisfying Dtψ1(t) =
Dtψ2(t) = 0, the functions Ψ1, Ψ2 : [t0, t1] → H defined by

Ψ1(t) := U−1[R(t)]ψ1(t), Ψ2(t) := U−1[R(t)]ψ2(t),
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solve (25). Because U[R(t)] and U[R(t)]−1 are unitary operators, the Hermiticity of Aa[R],
which ensures the Hermiticity of HA(t), implies

⟨ψ1(t), ψ2(t)⟩R(t) = ⟨ψ1(t), ψ2(t)⟩R(t)

= ⟨U−1[R(t)]ψ1(t),U−1[R(t)]ψ2(t)⟩
= ⟨Ψ1(t), Ψ2(t)⟩
= ⟨Ψ1(t0), Ψ2(t0)⟩
= ⟨U[R(t0)]Ψ1(t0),U[R(t0)]Ψ2(t0) ⟩R(t0)

= ⟨ψ1(t0), ψ2(t0)⟩R(t0)
.

The converse of this argument also holds; ⟨ψ1(t), ψ2(t)⟩R(t) = ⟨ψ1(t0), ψ2(t0)⟩R(t0)
im-

plies ⟨Ψ1(t), Ψ2(t)⟩ = ⟨Ψ1(t0), Ψ2(t0)⟩ and consequently the unitarity of the time-evolution
generated by (26), which in turn requires HA(t) and Aa[R] to be Hermitian operators.

3.3. Active Transformations of the Hilbert Space

Consider the active unitary transformations of of the Hilbert space H [R]:

ξ
Ǔ−→ ξ̌ := Ǔ [R] ξ, (27)

where Ǔ [R] : H [R] → H [R] is a unitary operator. Expanding ξ and ξ̌ in the basis {ϕn}N
n=1

and denoting the coefficient of the expansions by xn and x̌n, so that xn := ⟨ϕn, ξ⟩R and
x̌n := ⟨ϕn, ξ̌⟩R, we can express (27) in the form

ϕn
Ǔ−→ ϕn, xn

Ǔ−→ x̌n =
N

∑
m=1

⟨ϕn, Ǔ ϕm⟩R xm =
N

∑
m=1

⟨Ǔ −1ϕn, ϕm⟩R xm. (28)

The active transformation (27) induces the following unitary transformation of the
Hilbert space H .

Φ Ǧ−→ Φ̌ := Ǧ [R]Φ,

where Φ ∈ H is arbitrary and

Ǧ [R] := U[R]−1Ǔ [R]U[R]. (29)

Let us examine the effect of active unitary transformation (27) on the covariant
time derivatives of the evolving state vectors ψ(t) and Ψ(t). Denoting the transformed
ψ(t), Ψ(t), Dtψ(t), and DtΨ(t), respectively, by ψ̌(t), Ψ̌(t), Ďtψ̌(t), and ĎtΨ̌(t), we have

ψ̌(t) = Ǔ [R(t)]ψ(t), Ψ̌(t) = Ǧ [R(t)]Ψ(t), (30)
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and

Ďtψ̌ = U Ďt U
−1ψ̃ = U ĎtΨ̌

= U
( d

dt
Ψ̌ + i

d

∑
a=1

dRa

dt
ǍaΨ̌

)
,

= U
(
Ǧ

d
dt

Ψ +
dǦ

dt
Ψ + i

d

∑
a=1

dRa

dt
ǍaǦ Ψ

)
= U Ǧ

[
DtΨ + Ǧ −1 dǦ

dt
Ψ + i

N

∑
a=1

dRa

dt

(
Ǧ −1 Ǎa Ǧ − Aa

)
Ψ
]

= Ǔ U DtΨ + i Ǔ U
N

∑
a=1

dRa

dt

(
Ǧ −1 Ǎa Ǧ − Aa − i Ǧ −1∂aǦ

)
Ψ

= Ǔ Dtψ + i Ǔ U Ǧ −1
N

∑
a=1

dRa

dt

[
Ǎa − Ǧ AaǦ

−1 − i(∂aǦ ) Ǧ −1
]
Ǧ Ψ

= Ǔ Dtψ + iU
N

∑
a=1

dRa

dt

[
Ǎa − Ǧ AaǦ

−1 − i(∂aǦ ) Ǧ −1
]
U−1ψ̌,

where we have used (16), (17), (29), and (30). This calculation shows that under the active
transformation (27), Dtψ transforms according to

Dtψ
Ǔ−→ Ďtψ̌ = Ǔ Dtψ, (31)

if and only if

Aa
Ǔ−→ Ǎa = Ǧ AaǦ

−1 + i(∂aǦ ) Ǧ −1. (32)

If we demand that Dtψ(t) belongs to H [R(t)], then under active unitary transforma-
tions of H [R(t)], it must transform similarly to ψ(t), i.e., (31) and consequently (32) hold.
It is also easy to see that (31) is equivalent to

Dt
Ǔ−→ Ďt = Ǔ Dt Ǔ −1. (33)

This is the main reason for calling Dt the “covariant differentiation with respect to time.”
We can view (32) as an implication of (33).

3.4. Covariant Schrödinger Equation

Having introduced the notion of covariant time derivative and examined some of its
basic properties, we propose to determine the dynamics of our quantum system in H (t)
using the following covariant generalization of the Schrödinger equation.

ih̄Dtψ(t) = H(t)ψ(t), (34)

where H(t) := H[R(t)], and H[R] is a Hermitian operator acting in H [R] for all R ∈ Oα.
This provides a local description of the dynamics of the system in the sense that the
curve traced by R(t) is confined to a single open subset Oα of M. We can extend this
prescription to situations where R(t) traces an arbitrary smooth curve, if we know the
structure functions of the underlying Hermitian vector bundle E , [40].

We can use the dynamics generated by (34) in H [R(t)] and the unitary operator
U−1[R(t)] to induce a dynamics in the time-independent Hilbert space H . Applying
U−1[R(t)] to both sides of (34) and using (15) and (16), we arrive at the Schrödinger
equation

ih̄
d
dt

Ψ(t) = H(t)Ψ(t), (35)
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where

H(t) := HA(t) + HE(t), HE(t) := HE[R(t)], HE[R] := U[R]−1H[R]U[R], (36)

and HA(t) is the operator defined by (26). Under the active unitary transformations Ǔ [R(t)]
of the Hilbert space H (t), the operators H(t), HA(t), and HE(t) transform according to

H
Ǔ−→ Ȟ = Ǔ H Ǔ −1, (37)

HA
Ǔ−→ ȞA = Ǧ HAǦ −1 + ih̄

dǦ

dt
Ǧ −1, (38)

HE
Ǔ−→ ȞE = Ǧ HE Ǧ −1, (39)

Relation (37) follows from (33) and (35), while (38) and (39) are consequences of (26), (32),
(36), and (37). In view of the first equation in (36) and (37)–(39), the Hamiltonian H(t)
transforms according to

H Ǔ−→ Ȟ = Ǧ H Ǧ −1 + ih̄
dǦ

dt
Ǧ −1. (40)

For situations where R(t) traces a curve contained in Oα, we can describe our quantum
system using either of the Hilbert space–Hamiltonian pairs (H (t),H(t)) and (H , H(t)).
Let us first examine its description in terms of (H , H(t)), where the Hilbert space is time-
independent. As we see from the above derivation of (39), the last term on the right-hand
side of this equation has its origin in the way HA(t), and consequently the local connection
components Aa[R], transform under active unitary transformations of the Hilbert space
H . The latter do not correspond to observables of the system. They describe the geometry
of the bundle E of Hilbert spaces H [R]. In contrast, HE(t) is a Hermitian operator, which
we can identify with an observable of the system. We propose to interpret it as the energy
observable. Because H(t) is the counterpart of HE(t) in the representation of our system
in terms of (H (t),H(t)), the same interpretation applies to H(t). The advantage of the
latter representation is that it applies to all of M, i.e., it provides a global description of
the quantum system that is applicable regardless of the choice of the curve traced by the
parameters R(t) of the system in time.

If we confine our attention to a single curve C of parameters, then the bundle over
this curve is topologically trivial and there is no advantage of using (H (t),H(t)). Yet the
existence of this representation and the corresponding covariant Schrödinger equation
reveal the basic reason why the Hamiltonian transforms differently from the observables
under time-dependent unitary transforms of the Hilbert space. This follows from a hidden
geometric aspect of quantum mechanics, which is quantified in terms of a Hermitian
operator-valued gauge field A[R].

When we describe a quantum system using a time-independent Hilbert space, we
neglect the presence of A[R]. This does not cause any problems, if A[R] is a pure gauge
(a flat connection). In this case, we can make a proper choice for the gauge (basis) where
A[R] = 0. In other words, we assume the existence of a representation of the system in
terms of a Hilbert space–Hamiltonian pair with a time-independent Hilbert space in which
Aa[R(t)] = 0. The developments reported in Refs. [40,41] and the present article question
the validity of this assumption. They suggest that we should investigate the physical
content of quantum systems for which the connection one-form A[R] fails to be flat and
explore the physical meaning of the corresponding local curvature two form,

F[R] := dA[R] + iA[R] ∧ A[R], (41)
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which is a measure of the non-flatness of A[R], [54,55]. We can express F[R] in terms of its
components Fab[R] according to

F[R] =
1
2

d

∑
a,b=1

dRa ∧ dRb Fab[R], (42)

where ∧ stands for the standard wedge product of differential forms [54,55]. In view of (41)
and (42), Fab[R] are Hermitian operators acting in H [R] that are given by

Fab = ∂a Ab − ∂b Aa + i[Aa, Ab].

These correspond to the components of the field strength associated with the gauge field
Aa.

3.5. Energy Observable and Reparametrizations of Time

In the preceding subsections we consider non-stationary quantum systems described
by time-dependent Hilbert space–Hamiltonian pairs where the time-dependence of the
Hilbert space and the Hamiltonian is determined through the dependence of a set of real
parameters R = (R1, R2, · · · , Rd) on time. These trace a curve C in a parameter space
M, and a consistent description of the dynamics of the system is achieved by replacing
the role of the Hilbert space by a bundle EC of Hilbert spaces over C. This is obtained as
the restriction of a Hermitian vector bundle E over M to C, which is necessarily a trivial
Hermitian vector bundle. This does not, however, mean that EC has a trivial geometry (a
flat connection).

The dynamics of the system is determined by the covariant Schrödinger Equation (34),
which involves Hermitian operators H[R(t)] acting in the fibers H [R(t)] of EC . These are
given by the restriction of H[R] to C. We can view H as a function that maps M to a real
vector bundle u over M. The fibers uR of u that are attached to the points R ∈ M are vector
spaces of Hermitian operators acting in H [R]. Because H[R] acts in H [R], H : M → u is a
function such that H[R] ∈ uR for all R ∈ M. This identifies H with what mathematicians
call a global section of u, [40,41]. The restriction of H to C specifies the Hermitian operators
H[R(t)], which we identify with the energy observable. Other observables of the system
are also obtained similarly by restricting global sections of u to C, [40].

Now, consider a reparameterization, t → τ := f (t), of C where f : [t0, t1] → R is a
monotonically decreasing or increasing differentiable function. Such a function determines
a reparameterization of C provided that R(t) and R̆(t) := R(τ) = R( f (t)) trace the same
segment of C. Under the reparameterization, t → τ, dRa(t)

dt and consequently Dt transform
according to

dRa(t)
dt

−→ dR̆a(t)
dt

=
1

g(τ)
dRa(τ)

dτ
, Dt −→ D̆t =

1
τ′(t)

Dτ(t) =
1

g(τ)
Dτ , (43)

where
g(τ) := f ′( f−1(τ)) = f ′(t)

∣∣∣
t= f−1(τ)

,

f ′ denotes the derivative of f , and we have made use of (17). In view of (43), the reparame-
terization, t → τ, changes the covariant Schrödinger Equation (34) into

ih̄Dτψ(τ) = g(τ)H(τ)ψ(τ), (44)

where H(τ) = H[R(τ)]. Comparing (34) and (44), we see that whenever H = 0, the solutions
ψ(t) of the covariant Schrödinger Equation (34) are invariant under reparameterizations,
t → τ. This is to be expected, because in this case ψ(t) is obtained via parallel transportation
of ψ(t0) along the curve C. Because we interpret t as time, we say that the dynamics of the
system is time-reparameterization-invariant.
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The left-hand side of the covariant Schrödinger Equation (34) involves the covariant
time derivative determined by the connection on E , a quantity which specifies the geometry
of E , while its right-hand side is given by H[R(t)], which is the energy observable at
time t. The latter represents the interactions that are independent of the geometry of E .
The above analysis shows that these interactions are responsible for the breakdown of the
time-reparameterization invariance of the dynamics of system.

3.6. Equivalent Representations of Quantum Systems

A by-product of our geometric treatment of quantum systems described by time-
dependent Hilbert space–Hamiltonian pairs (H (t),H(t)) is that they admit a consistent
formulation in terms of time-independent Hilbert space–Hamiltonian pairs (H , H(t)).
However, the choice of the latter is not unique. Two Hilbert space–Hamiltonian pairs,
(H1, H1(t)) and (H2, H2(t)), represent the same quantum system if there is a one-to-one
correspondence between state vectors and Hermitian operators of H1 and those of H2 such
that the expectation values of the corresponding Hermitian operators in the corresponding
state vectors coincide, and the solutions of the Schrödinger equation defined by H1(t)
in H1 correspond to those of the Schrödinger equation defined by H2(t) in H2. Such a
correspondence defines a possibly time-dependent everywhere-defined one-to-one and
onto a linear operator U (t) : H1 → H2 with the following properties.

(P1) For all t ∈ R, ξ1 ∈ H1, and Hermitian operator O1 : H1 → H2 other than H1(t), there
are a unique vector ξ2 ∈ H2 and a unique Hermitian operator O2 : H1 → H2 such
that

ξ2 = U (t)ξ1, O2 = U (t)O1U (t)−1. (45)

This determines the corresponding state vectors and Hermitian operators of H1 and
H2.

(P2) Let t ∈ R be arbitrary and ⟨·, ·⟩1 and ⟨·, ·⟩2 denote the inner products of H1 and H2,
respectively. Then,

⟨ξ1, ζ1⟩1 = ⟨ U (t)ξ1,U (t)ζ1⟩2 for all ξ, ζ1 ∈ H1. (46)

This means that U (t) is a unitary operator [43,45].
(P3) For all t ∈ R,

ih̄
d
dt
U (t) = H2(t)U (t)−U (t)H1(t). (47)

Now, suppose that a state and an observable of the quantum system are, respectively,
given by the state vector ξ1 and Hermitian operator O1 in its (H1, H1(t)) representation,
and ψ1(t) is an evolving state vector in this representation, i.e., it solves

ih̄
d
dt

ψ1(t) = H1(t)ψ1(t). (48)

Then, according to P1 the corresponding state vector, Hermitian operator, and evolving
state vector in the (H2, H2(t)) representation are given by (45) and ψ2(t) = U (t)ψ1(t).
In view of these equations, P2, P3, and (48), we have

⟨ξ1, O1ξ1⟩1

⟨ξ1, ξ1⟩1
=

⟨ξ2, O2ξ2⟩2

⟨ξ2, ξ2⟩2
, ih̄

d
dt

ψ2(t) = H2(t)ψ2(t).

This shows that we can quantify the kinematic and dynamical properties of the system
using either of (H1, H1(t)) and (H2, H2(t)), i.e., they represent the same quantum system.

Next, we address the question of whether two Hilbert space–Hamiltonian pairs,
(H1, H1(t)) and (H2, H2(t)), represent the same quantum system. The above analysis
shows that this is the case if and only if there is a unitary operator U (t) : H1 → H2
fulfilling (47). Because equality of the dimensions of any two (separable) Hilbert spaces is
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equivalent to the existence of a unitary operator mapping one to the other [43], a necessary
condition for (H1, H1(t)) and (H2, H2(t)) to represent the same quantum system is that
H1 and H2 have the same dimension. This is, however, not a sufficient condition; if the
dimensions of H1 and H2 coincide, there are always unitary operators U (t) : H1 → H2,
but they may violate (47).

4. Time-Dependent Inner Products

Given a complex vector space V and an inner product ⟨·|·⟩ on V, every inner product
≺ ·, · ≻ on this vector space has the form

≺ ·, · ≻= ⟨·|η+·⟩, (49)

where η+ : V → V is a linear operator defined on all of V such that

⟨ξ|η+ξ⟩ ∈ R+ for ξ ∈ V \ {o}, (50)

and o is the zero vector in V. Let us make the η+-dependence of ≺ ·, · ≻ transparent by
labeling the latter by ⟨·, ·⟩η+ , i.e., set

⟨·, ·⟩η+ :=≺ ·, · ≻, (51)

use H and Hη+ to denote the inner product spaces obtained by endowing V with the inner
products ⟨·|·⟩ and ⟨·, ·⟩η+ , respectively, i.e.,

H := (V, ⟨·|·⟩), Hη+ := (V, ⟨·, ·⟩η+),

and suppose that H and Hη+ are Hilbert spaces. Because η+ determines the inner product
⟨·, ·⟩η+ , it is called a metric operator on H .

A linear operator L : H → H with domain D is said to be continuous, if for every
sequence {ξn}∞

n=1 in D that converges to some ξ ∈ D , the sequence {Lξn}∞
n=1 converges to

Lξ. L is said to be bounded, if there is some α ∈ R+ such that for all ς ∈ D , ∥ Lς ∥≤ α ∥ ς ∥.
It is easy to show that L is continuous if and only if it is bounded.

Condition (50) identifies η+ with a positive-definite operator η+ : H → H defined
on all of H . This in particular implies that it is an everywhere-defined Hermitian operator
with an everywhere-defined Hermitian inverse η−1

+ : H → H , [21]. A basic theorem
of operator theory known as Hellinger–Toeplitz theorem states that everywhere-defined
Hermitian operators cannot be discontinous. This implies that both η+ and η−1

+ are con-
tinuous and consequently bounded operators. For this reason, H and Hη+ have identical
topological properties, i.e., the notions of open subset, convergence, limit, and continuity in
H and Hη+ coincide.

If in (49) we replace η+ by a Hermitian automorphism, η : H → H , i.e., a Hermitian
operator that is defined on all of H and is one-to-one and onto, ≺ ·, · ≻ defines a possibly
indefinite inner product on H , [56]. For this reason we call η a pseudo-metric operator [21].

Now, consider a quantum system represented by the Hilbert space–Hamiltonian pair
(H ,H(t)) where H(t) : H → H is a possibly non-Hermitian operator with a dense
domain, i.e., for every ξ ∈ H , there is a sequence in Dom(H) that converges to ξ. Suppose
that for all t0 ∈ R and ψ0 ∈ H , the Schrödinger equation,

ih̄
d
dt

ψ(t) = H(t)ψ(t), (52)

has a global solution (defined for all t ∈ R) fulfilling the initial condition, ψ(t0) = ψ0.
The time evolution determined by (52) in H is necessarily non-unitary, i.e., ⟨ψ(t), ψ(t)⟩
depends on time. It might, however, be possible to find a metric operator η+(t) such that
the inner product ⟨·, ·⟩η+(t) is invariant under the time evolution, i.e., for every pair, ψ1(t)



Entropy 2024, 26, 314 15 of 23

and ψ2(t), of the solutions of (52), ⟨ψ1, ψ2⟩η+(t) is time-independent. In view of (49), this
condition is equivalent to

d
dt
⟨ψ1(t)|η+(t)ψ2(t)⟩ = 0. (53)

Using (52) and arbitrariness of the solutions, ψ1(t) and ψ2(t), we can express (53) in
the form of the following differential equation for η+(t), [31].

ih̄
d
dt

η+(t) = η+(t)H(t)−H(t)†η+(t), (54)

where d
dt η+(t) stands for the strong derivative of η+(t), i.e., it is the operator that satisfies

d
dt

η+(t) ϕ = lim
ϵ→0

1
ϵ

[
η+(t + ϵ)ϕ − η+(t)ϕ

]
for all ϕ ∈ H .

If H(t) is Hermitian, (54) reduces to the Liouville–von Neumann equation.
It is easy to infer from (53) that the general solution of (53) has the form

η+(t) = U (t, t0)
−1†η0 U (t, t0)

−1, (55)

where t0 ∈ R, U (t, t0) is the evolution operator associated with the Hamiltonian operator
H(t), and η0 is a time-independent metric operator [23]. Clearly,

η+(t0) = η0. (56)

We also recall that U (t, t0) satisfies

ih̄
d
dt
U (t, t0) = H(t)U (t, t0), U (t0, t0) = I, (57)

where d
dtU (t, t0) is the strong derivative of U (t, t0) with respect to t in H , and I is the

identity operator.
As a linear operator mapping H onto H , U (t, t0) fails to be a unitary operator unless

if η+(t) = I for all t ∈ R. According to (54), this happens when H(t) is Hermitian. As an
operator mapping Hη+(t0)

to Hη+(t), however, U (t, t0) is a unitary operator. This is because
for all t0, t ∈ R and ξ, ζ ∈ Hη+(t0)

,

⟨ U (t, t0)ξ , U (t, t0)ζ ⟩η+(t) = ⟨ U (t, t0)ξ | η+(t)U (t, t0)ζ ⟩

= ⟨ξ| U (t, t0)
†η+(t)U (t, t0)ζ ⟩

= ⟨ξ|η0ζ⟩

= ⟨ξ|η+(t0)ζ⟩

= ⟨ξ|ζ⟩η+(t0)
,

where we have made use of (49), (51), (55) and (56).
Next, consider the positive square root of η+(t), which we denote by ρ(t). This is the

unique positive-definite operator acting in H that satisfies ρ(t)2 = η+(t), [43]. In view
of (49) and (51), for all ϕ, χ ∈ Hη+(t),

⟨ϕ, χ⟩η+(t) = ⟨ϕ|η+(t)χ⟩ = ⟨ϕ|ρ(t)2χ⟩ = ⟨ρ(t)ϕ|ρ(t)χ⟩.

This calculation shows that as an operator mapping Hη+(t0)
to H , ρ is a unitary operator [16].

Consequently, given a densely defined linear operator O(t) : Hη+(t0)
→ Hη+(t0)

and

o(t) := ρ(t)O(t)ρ(t)−1,
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O(t) is a Hermitian operator acting in Hη+(t0)
if and only if o(t) is a Hermitian operator

acting in H . Expressing O(t) in terms of o(t), using the result to compute its adjoint in H ,
and assuming that o(t) is Hermitian, we have

O(t)† = [ρ(t)−1o(t)ρ(t)]† = ρ(t)o(t)ρ(t)−1

= ρ(t)2O(t)ρ(t)−2 = η+(t)O(t)η+(t)
−1. (58)

This calculation identifies Hermitian operators O(t) acting in Hη+(t0)
with η+(t)-pseudo-

Hermitian operators acting in H , [13,14,16,17,21].
Solving (54) for H(t)†, we find

H(t)† = η+(t)H(t)η+(t)
−1 + ih̄

[
d
dt

η(t)
]
η+(t)

−1. (59)

Comparing this equation with (58), we see that H(t) fails to be a Hermitian operator acting
in Hη+(t) unless η+(t) is time-independent, i.e., η+(t) = η0 for all t ∈ R.

If we identify Hη+(t) with the Hilbert space of our quantum system, the time evolution
generated by the Hamiltonian H(t) becomes unitary provided that we solve the Schrödinger
Equation (52) in H but compute the transition probabilities and the expectation values of
the observables as if the state vectors of the system belong to Hη+(t) and the observables are
Hermitian operators acting in Hη+(t). This leads us to the unavoidable conclusion that the
non-Hermitian Hamiltonian operator H(t), which determines the time evolution in H , does
not act as a Hermitian operator in Hη+(t). Therefore, it cannot represent an observable of the
quantum system [32]. The geometric formulation of dynamics of the system that we described
in Section 3 shows that this is a generic feature of all quantum systems.

The non-Hermitian Hamiltonian operator H(t) is not a Hermitian operator acting in
Hη+(t), but the time-dependent unitary operator ρ(t) : Hη+(t) → H maps it to a Hermitian
operator acting in H , namely,

h(t) := ρ(t)H(t)ρ(t)−1 + ih̄
dρ(t)

dt
ρ(t)−1. (60)

For this reason, we can represent the quantum system using the Hilbert space–Hamiltonian
pair (H , h(t)), [17,21].

The above developments rely on the use of ρ(t), which is the positive square root of
η(t) in H . One can instead consider a more general decomposition of η(t) in terms of a
possibly non-Hermitian operator A(t) : H → H , which satisfies

η(t) = A(t)†A(t), (61)

and as a linear operator mapping Hη+(t) to H is unitary. For situations where H has a
discrete spectrum and its eigenvectors form a Riesz basis [21] of H , one can identify A(t)
with the linear operator that maps this basis onto an orthonormal basis of H , [14].

Because ρ(t) is also a unitary operator mapping Hη+(t) to H , u(t) := A(t)ρ(t)−1 is a
unitary operator mapping H onto H . Clearly,

A(t) = u(t)ρ(t). (62)

This equation shows that given a metric operator η(t) fulfilling (59), every choice for the
operator A(t) that achieves the decomposition (61) is uniquely determined by a possibly
time-dependent unitary operator u(t) : H → H .
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We can use A(t) to obtain an equivalent representation of the quantum system, namely
(H , hA(t)), where hA(t) is the Hamiltonian operator defined in H by

hA(t) := A(t)H(t)A(t)−1 + ih̄
dA(t)

dt
A(t)−1

= u(t)
[
ρ(t)H(t)ρ(t)−1 + ih̄

dρ(t)
dt

ρ(t)−1
]

u(t)−1 + ih̄
du(t)

dt
u(t)−1

= u(t)h(t)u(t)−1 + ih̄
du(t)

dt
u(t)−1.

It is easy to see that hA(t) is a Hermitian operator acting in H . This calculation shows
that the Hermitization of H(t) that makes use of ρ(t) is unique up to unitary equivalence,
i.e., every representation of the quantum system that has H as its Hilbert space is obtained
from (H , h(t)) via a unitary transformation u(t) of H .

We close this section by making the following comments:

1. There is a major difference between the consequences of (54) for time-dependent and
time-independent metric operators. As we mentioned above, we can solve this equa-
tion for η+(t) for every Hamiltonian H(t) that admits an evolution operator U (t, t0).
For example, when H is finite-dimensional or more generally H(t) is a bounded
operator, U (t, t0) exists [43], and (55) provides the general solution of (54). There-
fore (54) does not put any restriction on the choice of the Hamiltonian operator H(t)
or its spectrum. The situation is drastically different if we demand the existence of a
time-independent metric operator. In this case, (54) reduces to the pseudo-Hermiticity
condition for H(t), which imposes severe restrictions on its spectrum [13–15]. In this
sense, referring to (54) as time-dependent pseudo-Hermiticity or a quasi-Hermiticity
condition is misleading, for it does not impose any condition on the Hamiltonian.

2. The results of this section are related to the constructions outlined in Section 3. If we
denote the isomorphisms that map the fibers H [R] of the Hermitian vector bundle
E over Oα to its typical fiber H by ϕα[R] : H [R] → H , as we describe in Ref. [40],
we can use them together with the inner product of H [R] to induce an inner product
on H . This leads to an example of the Hilbert space Hη+ with η+ depending on R.
We can then identify the unitary operator U[R] of Section 4 with (ρ[R]ϕα[R])−1 where
ρ[R] is the positive square root of η+[R].

5. Concluding Remarks

There are many examples of physical interest where a quantum system is described by
a time-dependent Hilbert space. Dealing with such a system requires extra care, because the
very notion of the time derivative of the evolving state vectors, which appears in the
standard time-dependent Schrödinger equation, becomes ill-defined. A proper formulation
of these quantum systems requires the use of a global covariant Schrödinger equation.
The local realization of this equation reproduces the usual Schrödinger equation in which
the Hamiltonian operator consists of a geometric part and an observable part. If the latter
vanishes, the dynamics of the system is time-reparameterization-invariant.

In the textbook treatment of quantum mechanics, one ignores the geometric part of
the local Hamiltonian. This is admissible provided that one can remove the geometric part
via a gauge transformation. In general, however, the corresponding connection one-form
(operator-valued gauge field) may be non-flat, in which case such a gauge transformation
does not exist. This observation provides ample motivation for exploring the physical
meaning and importance of the corresponding operator-valued curvature two-form.

The splitting of the local Hamiltonians into their geometric and observable parts
provides a natural explanation for the differences between the transformation properties
of the Hamiltonian and the observables under time-dependent unitary transformations.
The existence of a classical analog of this phenomenon, namely the well-known distinction
between the transformation properties of a classical Hamiltonian and classical observables
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under time-dependent canonical transformations, calls for a study of the classical counter-
part of the geometric structures we have employed to deal with quantum systems with a
time-dependent state space.

As an application of the general results of the present article to a specific example,
one can consider the two-level system associated with a Hermitian vector bundle over
a sphere that has two-dimensional fibers and an arbitrary metric compatible connection.
In Ref. [40] we give a detailed description of this system and derive explicit formulas for its
local Hermitian Hamiltonians. A more important area of the application of our results is in
the study of quantum systems defined on cosmological backgrounds.
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Appendix A. Characterization of Observables

A subset D of a Hilbert space H is said to be dense if for every ψ ∈ H there is a
sequence {ψn}∞

n=0 in D that converges to ψ, i.e.,

lim
n→∞

∥ ψn − ψ ∥= 0,

where ∥ ϕ ∥:=
√
⟨ϕ, ϕ⟩ for all ϕ ∈ H . If the domain of definition of a linear operator

O : H → H is a dense subset of H , it is called a densely defined operator. For these
operators, one can define the adjoint operator O† : H → H according to the following
prescription. Let D be the domain of O and D† be the set of elements ξ of H such that for
all ψ ∈ D there is some ζ ∈ H such that

⟨Oψ, ξ⟩ = ⟨ψ, ζ⟩. (A1)

One can use the Riesz Lemma (representation theorem) [43] to show that for each ξ ∈ D†,
there is a unique ζ ∈ H satisfying (A1). The adjoint of O is the function O† defined on D†

by O†ξ := ζ. One can show that it is the unique linear operator satisfying

⟨Oψ, ξ⟩ = ⟨ψ, O†ξ⟩ for all ψ ∈ D , ξ ∈ D†.

O is said to be Hermitian (in the sense of von Neumann [2]) or self-adjoint if O† = O. Note
that, in particular, this implies D = D†.

If O is a densely defined symmetric operator, every ψ ∈ D satisfies

⟨Oψ, ψ⟩ = ⟨ψ, Oψ⟩. (A2)

This shows that ψ ∈ D†, which implies D ⊆ D†. In particular, if D = H , D† = D and (A2)
implies O†ψ = Oψ for all ψ ∈ D = H . Therefore, O† = O, i.e., O is a Hermitian operator.
This argument shows that everywhere-defined symmetric operators are Hermitian.

Suppose that O is a continuous (bounded) operator and D is dense. For all ϕ ∈ H
there is some sequence {ψn}∞

n=0 in D that converges to ϕ. This sequence is necessarily a
Cauchy sequence, i.e.,

lim
m,n→∞

∥ ψm − ψn ∥= 0.
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Because O is bounded, there is some α ∈ R+ such that for all ξ ∈ D , ∥ Oξ ∥≤ α ∥ ξ ∥. This
implies

0 ≤ lim
m,n→∞

∥ Oψm − Oψn ∥ = lim
m,n→∞

∥ O(ψm − ψn) ∥

≤ α lim
m,n→∞

∥ ψm − ψn ∥= 0, (A3)

i.e., {Oψn}∞
n=0 is a Cauchy sequence. Because H is a Hilbert space, this sequence converges

to some χ ∈ H . It turns out that the limit of {Oψn}∞
n=0, namely χ, is uniquely determined

by ϕ. This means that there is a function O′ : H → H defined on all of H such that
O′ϕ := χ. It is not difficult to show that O′ is a continuous (bounded) linear operator
satisfying O′ψ = Oψ for all ψ ∈ D , i.e., it is a continuous (bounded) extension of O to H .
Furthermore, it is the unique linear operator possessing this property. If O happens to be
symmetric, O′ is also symmetric, and because it is everywhere-defined, it is a Hermitian
operator. For most practical purposes, one can replace O with its unique Hermitian
extension O′ to H .

If H is finite-dimensional, one can assume without loss of generality that O is defined
on H . Because all linear operator acting in a finite-dimensional Hilbert space are continuous,
O is Hermitian if and only if it is symmetric. The situation is drastically different when H
is infinite-dimensional. In this case, not every linear operator is continuous, and one can
show that an everywhere-defined discontinuous linear operator cannot be Hermitian [43].
In particular, densely defined discontinuous (unbounded) symmetric operators do not
have Hermitian extensions to H . They may even have no Hermitian extensions to a dense
subspace of H .

When the Hilbert space of a quantum system is infinite dimensional, the realness
of the expectation values require the observables to be symmetric, but they need not be
continuous. In this case, there are additional requirements that restrict the choice of the
observable to Hermitian operators. Here, we offer a brief review of these requirements as
formulated in Ref. [44].

(1) Suppose that O is a linear operator representing an observable of a quantum system
with an infinite-dimensional Hilbert space H . The outcome of a measurement of O
depends on the choice of the state Sψ of the system before the measurement. Yet in
practice we cannot determine Sψ with infinite precision. Suppose that {ψn}∞

n=1 is a
sequence of state vectors that converges to ψ, i.e.,

lim
n→∞

∥ ψn − ψ ∥= 0.

Because we can only store a finite amount of information about the state of the system
before the measurement, we cannot distinguish between the choices Sψn and Sψ, if n
is sufficiently large. This argument shows that to determine the expectation value of
an observable in the state Sψ to an arbitrary but finite precision, it suffices to know
Oψn for all n. Therefore O need not be defined on the whole Hilbert space. If the
domain of O is not dense, there is some state vector ϕ that cannot be identified with
the limit of a sequence in the domain of O. This means that we do not have any means
of computing the expectation value of O in the state determined by ϕ, i.e., it is an
unmeasurable and hence unphysical state of the system. We can simply exclude such
states and the corresponding state vectors, and identify the Hilbert space with the
set of vectors that are limits of sequences of elements of the domain of O. The above
arguments together with the requirement of the realness of expectation values suggest
that observables of quantum systems must be densely defined symmetric operators.

(2) Let O1 and O2 be symmetric operators acting in H with dense domains, D1 and D2,
respectively. Suppose that

D1 ⊆ D2 and ⟨ξ, O1ξ⟩ = ⟨ξ, O2ξ⟩ for all ξ ∈ D1. (A4)
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Then the expectation values of O1 and O2 in a state Sψ can be obtained from their
expectation values in the states Sψn where {ψn}∞

n=0 is a sequence in D1 that converges
to ψ. This shows that as far as the results of measurements of observables O1 and O2 are
concerned, we cannot distinguish between them, i.e., they are physically equivalent.
To eliminate this redundancy, it is natural to demand that (A4) implies O1 = O2,
i.e., D1 = D2 and O1ξ = O2ξ for all ξ ∈ D1.

(3) If O represents an observable of a quantum system, then so does O2. This implies that
O2 is also a densely defined symmetric operator. In particular, there is a dense set of
elements ψ of H (constituting the domain of O2) such that Oψ belongs to the domain
of O.

It turns out that these three requirements imply that O must be a Hermitian operator [44].

Appendix B. Basis Transformation Rule for Aa[R]

Let R ∈ Oα, {ϕn[R]}N
n=1 be the orthonormal basis of H [R] that we use to introduce

the covariant time derivative (17), and {ϕ̃n[R]}N
n=1 be an arbitrary orthonormal basis of

H [R]. We recall that H is a time-independent Hilbert space with the same dimension
as H [R], {Φn}N

n=1 is a time-independent basis of H , and the unitary operators U [R] :
H [R] → H [R], U[R] : H → H [R], and G [R] : H → H satisfy

U ϕn = ϕ̃n, UΦn = ϕn, G = U−1U U. (A5)

Here, and in what follows, we occasionally suppress the argument of various functions
for brevity.

We begin our derivation of the basis transformation rule for the components of the local
connection one-form Aa by expressing the covariant time derivative (17) in the transformed
basis {ϕ̃n[R]}N

n=1. This gives

D̃tψ(t) :=
N

∑
m=1

[
dc̃m(t)

dt
+ i

N

∑
n=1

Ãmn(t)c̃n(t)

]
ϕ̃m[R(t)], (A6)

where

c̃m(t) := ⟨ϕ̃m[R(t)], ψ(t)⟩R(t), (A7)

Ãmn(t) :=
d

∑
a=1

dRa(t)
dt

Aa mn[R(t)], (A8)

Ãa mn[R] := ⟨Φm, Aa[R]Φn⟩, (A9)

and D̃t and Ãa are the transformed covariant time derivative and local connection components.
Substituting ψ(t) = ∑N

n=1 cn(t)ϕn[R(t)] in (A7) and making use of (A5), we have

c̃m(t) =
N

∑
n=1

⟨U [R(t)]ϕm[R(t)], ϕn[R(t)]⟩R(t) cn(t)

=
N

∑
m=1

⟨Φm, G [R(t)]−1Φn⟩ cm(t)

=
N

∑
m=1

G −1
mn (t) cm(t), (A10)

where
G −1

mn (t) := ⟨Φm, G −1[R(t)]Φn⟩. (A11)
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Next, we differentiate both sides of (A10), insert the result in (A6), and use (A5) to
show that

D̃tψ = U U
N

∑
m,n=1

[
G −1

mn
dcn

dt
+

N

∑
m,n=1

cn
dG −1

mn
dt

+ i
N

∑
l=1

ÃmnG −1
nl cl

]
Φm. (A12)

In view of the completeness relation for Φn’s and (A11), we then find

U U
N

∑
m,n=1

G −1
mn

dcn

dt
Φm = U UG −1

N

∑
n=1

dcn

dt
Φn

= U UG −1U−1
N

∑
n=1

dcn

dt
ϕn

= Dtψ − i
N

∑
m,n=1

Amncnϕm, (A13)

where in establishing the last equality we have benefitted from (17) and the identity,
U UG −1 = U, which follows from (A5). Similarly, we compute

U U
N

∑
m,n=1

cn
dG −1

mn
dt

Φm = U U
dG −1

dt

N

∑
n=1

cnΦn = UG
dG −1

dt
U−1ψ, (A14)

where we have employed (A5) and the fact that

N

∑
n=1

cnΦn = U−1
N

∑
n=1

cnϕn = U−1ψ. (A15)

Next, we introduce the operators

HA(t) := h̄
N

∑
m,n=1

Amn(t)|Φm⟩⟨Φn| = h̄
d

∑
a=1

dRa(t)
dt

Aa[R(t)],

HÃ(t) := h̄
N

∑
m,n=1

Ãmn(t)|Φm⟩⟨Φn| = h̄
d

∑
a=1

dRa(t)
dt

Ãa[R(t)].

(A16)

This allows us to express (A13) in the form

U U
N

∑
m,n=1

G −1
mn

dcn

dt
Φm = Dtψ − iU

N

∑
m,n=1

AmncnΦm

= Dtψ − i
h̄
U HA

N

∑
n=1

cnΦn

= Dtψ − i
h̄
U HA U−1ψ, (A17)

where we have used the completeness of Φn’s and (A15). Similarly we can show that

U U
N

∑
l,m,n=1

ÃmnG −1
nl clΦm = h̄−1U U HÃ G −1

N

∑
n=1

cnΦn

= h̄−1U U HÃ G −1 U−1ψ

= h̄−1U G HÃ G −1 U−1ψ. (A18)
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Finally, we substitute (A14), (A17), and (A18) in (A12). This gives

D̃tψ = Dtψ +
i
h̄
U

(
G HÃ G −1 − HA − ih̄ G

dG −1

dt

)
U−1ψ

= Dtψ +
i
h̄
UG

(
HÃ − G −1 HA G − ih̄

dG −1

dt
G

)
G −1U−1ψ

= Dtψ +
i
h̄
UG

(
HÃ − G −1 HA G + ih̄ G −1 dG

dt

)
(UG )−1ψ.

According to the latter equation, the covariant time derivative (17) does not depend on the
choice of the basis {ϕn}N

n=1, i.e., D̃t = Dt, if and only if

HÃ = G −1 HA G − ih̄ G −1 dG

dt
. (A19)

In view of (A16) and the arbitrariness of the choice of R(t), (A19) is equivalent to

Ãa[R] = G [R]−1 Aa[R]G [R]− i G [R]−1∂aG [R]. (A20)
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