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Abstract: The polarization of opinions and difficulties in reaching a consensus are central problems
of many modern societies. Understanding the dynamics governing those processes is, therefore, one
of the main aims of sociophysics. In this work, the Sznajd model of opinion dynamics is investigated
with Monte Carlo simulations performed on four different regular lattices: triangular, honeycomb,
and square with von Neumann or Moore neighborhood. The main objective is to discuss the interplay
of the probability of convincing (conformity) and mass media (external) influence and to provide
the details of the possible phase transitions. The results indicate that, while stronger bonds and
openness to discussion and argumentation may help in reaching a consensus, external influence
becomes destructive at different levels depending on the lattice.
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1. Introduction

Creating models and using them to understand, explain and predict the behavior of
all types of systems is a basic tool of science. Sometimes those models are based on the
expertise of one discipline that is applied and further developed in other fields. Sociophysics
is a good example of such situations [1,2], and one of the most important and current issues
in this area is modeling the dynamics of social opinion [3]. Since social systems are complex
by their very nature, numerous models have been developed to grasp basic processes.
Among the most commonly investigated are various versions of the voter model [4], Sznajd
model [5], bounded confidence dynamics [6], majority rule model [7,8], Latané model
of social impact [9,10], to name just a few. Researchers have addressed many important
questions using these models in theoretical studies and computer simulations. Some recent
developments have been made, for example, on the problem of consensus [11,12], divided
communities and polarization [13–17], factors influencing the dynamics of opinion [18,19]
(e.g., the so-called social temperature [20]), vanishing opinions [21], or the impact of mass
media and advertising on the dynamics of opinion [22–24]. Various underlying lattices
have been used [25], and behavior resembling phase transition (in a strict sense possible
only in the thermodynamic limit) has received a lot of attention [26–32].

This study explores the Sznajd model of opinion dynamics applied to four different
regular lattices. The basic version of this model is defined as a chain of actors (individuals)
who have one of the two possible opinions, typically defined as +1 and −1 [5]. It is based
on the psychological effect that two or more people who have the same opinion on a
given issue are likely to convince others who interact with them (their neighbors). In the
model, it comes down to a simple rule which states that if two adjacent actors have equal
opinions, then they convince their neighbors (actors at adjacent sites of the chain). Since
its introduction, many generalizations of the Sznajd model have been proposed: usage of
various lattices or networks defining the structure of relations between the actors (square
lattice, complete graph, or small-world networks), a parameter that specifies the probability
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of convincing (conformity), the introduction of several levels of opinion, see Reference [33]
for a comprehensive review.

One of the proposed modifications has introduced the probability that opinion flips
due to the external influence of mass media advertising [34,35]. When this probability is
non-zero a complete consensus is not possible; the conditions for the number of actors
having a given opinion changes abruptly when the network of relations is modeled with the
regular square lattice. However, it has not been established yet whether this kind of phase
transition also occurs on other lattices, and if it does, at what critical values of the relevant
parameters. The first of these parameters is the probability of convincing (conformity) α
related to the susceptibility of actors to the common opinion of pairs of other actors; for
example α = 1 means that an actor always adopts the opinion of a pair of agreeable actors
after interaction with that pair. The remaining parameters determine the probability of the
influence of the media related to the susceptibility of actors to such an external factor. In
the case of two possible opinions, it is natural to expect that different media have access to
the actors and try to advertise their agenda. The probability that the mass media convinces
an actor to the +1 opinion is β, and generally, it can be different from the probability γ of
convincing to the −1 opinion by other media.

This work addresses the issues discussed above for square lattices with von Neumann
and Moore neighborhoods, triangular lattices, and hexagonal lattices. So far, it has also
remained unclear how exactly both the probability of convincing other actors (neighbors)
and the mass media influence the possibility of consensus. Therefore, the aim of this study
is to provide a phase diagram answering that question as well.

2. Model and Methods

The version of the Sznajd model used in this work allows a pair of actors to convince
others with probability 0 < α ≤ 1. All actors are also exposed to the external influence of
mass media, advertising, etc. Here, for simplicity and following the discussion presented in
Reference [34], it is assumed that both opinions are equally supported by the mass media,
which means that only the symmetric case of β = γ is considered and the space of the
considered parameters is reduced to (α, β).

The opinion dynamics is modeled on four different regular lattices presented schemat-
ically in Figure 1. For each of them, periodic boundary conditions are applied, with equal
numbers of rows and columns. The first is the honeycomb lattice (HC), with only nNN = 3
nearest neighbors of each actor. Figure 1a shows that for this lattice, any pair of actors
(red color in the figure) has four neighbors (green) possibly influenced by the pair. The
commonly used square lattice with the von Neumann neighborhood (SQ-VN) has nNN = 4
nearest neighbors of each actor. As illustrated in Figure 1b, a pair of actors can potentially
influence six other actors. In the triangular lattice (TR), Figure 1c, nNN = 6 and each pair
influences eight other actors. Finally, changing the neighborhood in the square lattice to
Moore (SQ-M) increases nNN to eight and the number of neighbors of a pair of actors to
ten, as shown in Figure 1d.

Each of the N actors located in the nodes of the used lattice has the opinion si = +1 or
si = −1, which may, for example, correspond to being “in favor” or “against” some issue.
The initial state of the system, si(t = 0) for all i = 1, . . . , N is generated randomly. Each
actor independently receives the opinion +1 with probability p and −1 with probability
1 − p.

In one Monte Carlo step (MCS) of the dynamics simulation, the following sequence of
operations is repeated N times:

1. An actor i is randomly chosen from i ∈ {1, . . . , N};
2. The actor’s opinion si is exposed to the various mass media, some of them promoting

+1 opinion, and some promoting the opposite opinion; in the considered symmetric
case, it means that effectively si is flipped to −si with probability β;

3. An actor j is randomly chosen from the nNN nearest neighbors of the actor i;



Entropy 2024, 26, 307 3 of 10

4. If the opinions of the pair (i, j) are equal, si = sj, then each of the neighbors of the pair
is independently convinced of that common opinion with probability α.

After the completion of an MCS step, the average opinion m is calculated,

m =
1
N

N

∑
i=1

si. (1)

This asynchronous update scheme is repeated tmax times, without stopping before
reaching this time limit even in the case of reaching consensus when external influence is
present (β > 0), because such an influence may easily disturb the perfect consensus and
the state of the system will then further evolve.

(c) (d)

(a) (b)

Figure 1. Lattices used in the simulations: (a) honeycomb (HC), (b) square with von Neumann
neighborhood (SQ-VN), (c) triangular (TR), (d) square with Moore neighborhood (SQ-M). The red
nodes illustrate examples of pairs of actors who try to convince their neighbors shown as the green
nodes. In all cases periodic boundary conditions are used.

3. Results

The examples of the time evolution of opinions over 2000 MCS are shown in Figure 2
where the dynamics take place on the HC lattice, and an agreeable pair always imposes
its opinion on the neighbors (α = 1). Reaching full consensus, with all actors having the
same opinion is clearly possible only when there is no external influence, that is, for β = 0.
Even a small β > 0 does not allow such perfect agreement in the system; however, at lower
values of β = 0.05 or β = 0.1, the vast majority of actors agree and the average opinion m is
close to ±1.

The situation changes dramatically when the probability of external influence increases.
Already at a value of β = 0.15, the average opinion m oscillates around zero, indicating
that the proportion of actors with both opinions is not very different and tends to fluctuate
without a tendency to reach a state even close to what may be called consensus.

The difference between Figure 2a,b is that in the former p = 0.2, while in the latter
p = 0.5. This difference in the initial condition means that in the first case, 20% of actors
have the opinion +1, and the opinion of the remaining 80% is −1. In the second case,
both opinions are represented in equal numbers, and reaching a consensus requires a
much longer time as one of the opinions must gain a substantial majority first, which is an
inevitable but long process. Since the unequal amounts of the opinions “+1” and “−1” in
Figure 2a does not change the observed dynamic (in terms of the possibility of reaching a
consensus) beyond the fact that one of the opinions is preferred as the final state, the value
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of p = 0.2 is used in the calculations for simplicity of discussion of the average values of
the opinions.
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m

t

β = 0 0.05 0.10 0.15

Figure 2. Examples of the time evolution of the average opinion m, with time t measured in MCS.
Honeycomb (HC) lattice with N = 1600 actors, probability of convincing the neighbors α = 1, and the
external influence probabilities β = 0, 0.05, 0.1, and 0.15. The initial state generated with two different
probabilities p of si(t = 0) = +1: (a) p = 0.2 and (b) p = 0.5.

As mentioned above, the main objective of this paper is to discuss the interplay of
conformity measured by the parameter α and the external influence β. To answer this
question, simulations are performed over tmax = 104 MCS, with the first 10% used for
“thermalization”. The values of the average opinion m are further averaged over the
remaining tavg = 0.9tmax MCS, and then the mean value of such results obtained from
R = 48 independent simulations is calculated. The resulting quantity is denoted as ⟨m⟩ in
the following discussion.

The results presented in Figure 3 explain the differences between the dynamics ob-
served in different lattices when the conformity parameter α is fixed and the external
influence varies. In Figure 3a, the average opinion for fixed α = 0.15 changes when β
increases. This abrupt change from a state of almost complete consensus to ⟨m⟩ ≈ 0
defines the critical value βc corresponding to the transition between the two states. Clearly,
the amount of external influence needed to drive the system out of the consensus state
increases with the number of neighbors (and the degree of the underlying graph) from
βc ≈ 0.03 for the HC lattice to βc ≈ 0.1 for the SQ-M lattice. However, if α = 1 as in
Figure 3b, the differences between the lattices are very small and the answer to the external
influence changes for all systems at approximately the same critical value of βc ≈ 0.1.
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Figure 3. The mean value of the average opinion, ⟨m⟩, taken from R = 48 simulations performed
independently on all four types of lattices (HC, SQ-VN, TR, and SQ-M) with N = 1600 actors.
Calculated as a function of the external influence probability β for tmax = 104 MCS and p = 0.2.
(a) The neighbors convincing probability α = 0.15, and (b) α = 1.

In contrast, when β is fixed at 0.05 and ⟨m⟩ is found as a function of the parameter α,
a sudden transition to the consensus state is visible at the value of the parameter α which
can be treated as the critical value αc characteristic of this transition. That critical value
decreases with the number of neighbors, as shown in Figure 4a. Similarly to the results of
Figure 3a, the broadest range of the analyzed parameter values allowing for the consensus
is observed for the SQ-M lattice, and the narrowest for the HC lattice. At a higher value
of the probability of external influence, β = 0.1, the situation is more complicated. It
seems from Figure 3b that there is definitely a transition in the case of the SQ-M lattice,
and probably only a certain majority of one of the opinions is reached at the final state in
the three remaining lattices. The increase in ⟨m⟩ for the SQ-M and TR lattices visible in
Figure 4b results from the fact that at higher values of α and at larger β, the evolution of the
system sometimes reaches the final state corresponding to the “+1” opinion even for the
used p = 0.2.
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Figure 4. The mean value of the average opinion, ⟨m⟩, taken from R = 48 simulations performed
independently on all four types of lattices (HC, SQ-VN, TR, and SQ-M) with N = 1600 actors.
Calculated as a function of the neighbors convincing probability α for tmax = 104 MCS and p = 0.2.
(a) The external influence probability β = 0.05, and (b) β = 0.1.

4. Discussion

The results presented in the previous section indicate that a more organized approach
is needed to obtain a detailed picture of the opinion dynamics on the analyzed lattices.
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One of the possible ways to address the main purpose of the work is to find the critical
points (αc, βc) that separate the observed states in the phase space of the parameters α
and β. Revealing the position of the critical point with greater accuracy can be conducted
by applying the finite-size scaling method based on the fourth-order Binder cumulant K
defined as [36,37]

K = 1 − ⟨m4⟩
3⟨m2⟩2 , (2)

which is calculated for fixed values of α and β parameters, so that the cumulant is found as
a function K(α, β).

In typical problems of statistical physics, for example, concerning the Ising model, it is
used to detect the critical temperature and the type of phase transition. Continuous phase
transitions are indicated by the change of K from 2/3 at low temperatures (T → 0) to zero
at the high-temperature limit (T → ∞) [38]. At the critical temperature, the curves K(T)
calculated for different system sizes cross, allowing an accurate numerical determination of
the critical point [39,40].

For the Sznajd model in the version used in this work, the role of parameters α and β
is analogous to temperature. It means that by finding K as a function of these parameters,
it is possible to detect the critical points of the opinion dynamics. For better statistics
and greater accuracy, longer simulation times (tmax = 105 MCS) were used with a range
of several different system sizes, N = 400, 900, 1600 and 2500 actors. Figure 5a shows
that the curves corresponding to the fourth-order Binder cumulants calculated for α = 1
decrease from about 2/3 at small β and cross at the critical point βc ≈ 0.11. Therefore,
the increased influence of the mass media is similar to the increase in temperature as a
factor driving the system out of the ordered (consensus) state. The dependence of the
cumulant on the neighbors convincing probability α is shown in Figure 5b for the fixed
value of β = 0.05. Again, the curves cross at one point, allowing one to find the critical
value αc ≈ 0.96. Yet, in this case, K → 2/3 for increasing α, since more likely convincing
helps to achieve consensus.

 0.56

 0.58

 0.6
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Figure 5. (a) Dependence of the fourth-order Binder cumulant K(α = 1, β) on the external influence
probability β for the square lattice with von Neumann neighborhood (SQ-VN) and the neighbors
convincing probability α = 1. (b) The fourth-order Binder cumulant K(α, β = 0.05) as a function
of the neighbors convincing probability α for the triangular lattice (TR) and the external influence
probability β = 0.05. In both cases, the results have been obtained for systems with size N =400, 900,
1600 and 2500 from R = 48 calculations with p = 0.2 and tmax = 105 MCS.
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However, the results presented in Figure 5 provide only limited information about the
interplay of two factors: external influence (mass media) and the ability of a pair of actors
to convince their neighbors. For this reason, the procedure of finding the points where
the curves of the fourth-order Binder cumulant K(α = const, β) cross was applied to the
whole range of α ∈ [0; 1], to find the critical points at which the planes K(α, β) calculated for
different sizes N intersect. The applied procedure was based on finding the cross-section
points of the pairs of fourth-order Binder cumulant curves calculated for different system
sizes, and then averaging those results.

The results of these calculations are presented in Figure 6. It shows the curves of the
critical values (αc, βc) that separate the ordered phase (consensus, at least partial) observed
below those lines from the state when no consensus can be achieved and the opinions are
polarized (above the lines). At α → 0 also βc → 0, which confirms that when the chances of
convincing others are very low, even minimal external influence destroys consensus. For
all lattices, the critical values βc initially increase with α, demonstrating that the ability to
find consensus is less prone to external influence if individuals are more likely to convince
their neighbors. Interestingly, this growth is not only non-linear but in some cases limited
only to α < 0.65 (for the TR lattice) or α < 0.5 (for the SQ-M lattice). It means that for the
structures of social relations characterized by large numbers of neighbors, it is not only
easier to convince large numbers of other actors but an additional effect is observed. That
is, even with an unchanged external influence, the possibility of reaching a consensus is
reduced, as the increased impact on others (larger α) means that it is also easier to spread
the imposed external opinion, which in turn, promotes polarization.

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

β

α

HC
SQ–VN

TR
SQ–M

POLARIZATION

CONSENSUS

Figure 6. Phase diagram with points corresponding to the critical values (αc, βc) separating the
consensus phase (below a line) and the disordered phase (above a line) obtained for the four used
lattices with numbers of actors between N = 400 and N = 1600 from R = 48 simulations with
p = 0.2 and tmax = 105 MCS.

The critical values βc are generally higher for lattices with a larger number of nearest
neighbors, that is, βHC

c ≤ βSQ-VN
c ≤ βTR

c ≤ βSQ-M
c . However, as α increases, the differences

between the lattices vary a lot. For example, at α = 0.15 the critical values are βHC
c ≈ 0.032

and βSQ-M
c ≈ 0.098, which means that they differ by a factor of three; see also Figure 3a.

At α = 0.7 this factor is only 1.5 (βHC
c ≈ 0.090 and βSQ-M

c ≈ 0.135). Finally, if α → 1,
the differences between the values of βc are very small except for slightly larger βSQ-M

c ,
which is also visible in Figure 3b.
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5. Conclusions

It is certainly no surprise that stronger interactions between the actors, in terms of the
number of relations and neighbors, make it more difficult to prevent reaching a consensus
when external influence, for example, in the form of mass media advertising is present.
However, the results presented above reveal that the critical values of the mass media
influence differ more or less between the considered lattices with various numbers of
the nearest neighbors, depending on the probability of convincing those neighbors. The
results reported here show that the differences between those critical values are the largest
for the intermediate values of the convincing probability. Of course, it is not unexpected
that very little convincing allows even small external influence to prevent reaching a
consensus, independently of the type of lattice. At the maximum probability of convincing,
the differences between the lattices are relatively small, only with the exception of the square
lattice with the Moore neighborhood. Those differences are the largest at intermediate
values of convincing probability. It is also interesting and somewhat surprising at first
sight that for the triangular lattice and, in particular, for the square lattice with the Moore
neighborhood, the largest chances of consensus are observed not for the largest probability
of convincing the neighbors. This property might be due to the subtle interplay between
the effect of convincing which is strengthened by a larger number of neighbors, while this
larger number of neighbors also helps to spread the opinions induced by mass media.

Although the considered lattices do not exactly correspond to the real-world networks
of interpersonal (or intergroup) relations, the differences between the results obtained in
each of the cases reveal some factors important for opinion dynamics. The larger number
of contacts limits social fragmentation and closing in social bubbles. This contributes to
an increased ability to reach a consensus, certainly possible provided there is at least a
moderate level of openness and trust in relationships with others which is the meaning
of the parameter α used in this work (alternatively, one may argue, viewed as our naivety
in adopting opinions of others, in this case pairs of our neighbors). On the other hand,
the chances of polarization of opinion are greatly enhanced by stronger external influence
(for example, due to aggressive strategies to find new readers, viewers, subscribers, fol-
lowers, etc.), related to higher values of β in the current model. In fact, the results show
that steering the opinion towards polarization can be as easy as providing enough external
influence; for example, β > 0.15 will have this effect for all levels of convincing probability
α and no matter which of the lattices discussed here models the structure of relations.
Alternatively, if the cost of such influence is too high, another possible strategy for driving
the system towards polarization is to reduce α, for example, by reducing the exchange
of information or trust; however, the effectiveness of this strategy depends on the type
of lattice.

In summary, the relationship between the critical values of both considered factors was
found for four different lattices. The results emphasize the importance of a detailed analysis
of the conditions under which public opinion evolves. The data presented here indicate that
while stronger bonds and openness to discussion and argumentation may help in reaching
consensus, external influence becomes destructive even at relatively low levels, and the
interplay between those two factors is rather complex. Therefore, future research should
consider the potential effects of networks of realistic social interactions, including complete
graphs, small-world, scale-free or growing networks, or even time-dependent large-scale
complex networks [41] and many other factors, for example, anticonformity [42–44].

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Dataset available on request from the author.

Conflicts of Interest: The author declares no conflicts of interest.



Entropy 2024, 26, 307 9 of 10

Abbreviations
The following abbreviations are used in this manuscript:

HC Honeycomb lattice
NN nearest neighbors
MCS Monte Carlo step
SQ-VN Square lattice with von Neumann neighborhood
SQ-M Square lattice with Moore neighborhood
TR Triangular lattice
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