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Abstract: The main focus of this paper is the derivation of the structural properties of the test
channels of Wyner’s operational information rate distortion function (RDF), R(∆X), for arbitrary
abstract sources and, subsequently, the derivation of additional properties for a tuple of multivariate
correlated, jointly independent, and identically distributed Gaussian random variables, {Xt, Yt}∞

t=1,
Xt : Ω → Rnx , Yt : Ω → Rny , with average mean-square error at the decoder and the side information,
{Yt}∞

t=1, available only at the decoder. For the tuple of multivariate correlated Gaussian sources,

we construct optimal test channel realizations which achieve the informational RDF, R(∆X)
△
=

infM(∆X) I(X; Z|Y), where M(∆X) is the set of auxiliary RVs Z such that PZ|X,Y = PZ|X , X̂ = f (Y, Z),
and E{||X − X̂||2} ≤ ∆X . We show the following fundamental structural properties: (1) Optimal
test channel realizations that achieve the RDF and satisfy conditional independence, PX|X̂,Y,Z =

PX|X̂,Y = PX|X̂ , E
{

X
∣∣∣X̂, Y, Z

}
= E

{
X
∣∣∣X̂}

= X̂. (2) Similarly, for the conditional RDF, RX|Y(∆X),
when the side information is available to both the encoder and the decoder, we show the equality
R(∆X) = RX|Y(∆X). (3) We derive the water-filling solution for RX|Y(∆X).

Keywords: Wyner’s side information; multivariate Gaussian sources; test channel distributions

1. Introduction, Problem Statement, and Main Results
1.1. The Wyner and Ziv Lossy Compression Problem and Generalizations

Wyner and Ziv [1] derived an operational information definition for the lossy compres-
sion problem in Figure 1 with respect to a single-letter fidelity of reconstruction. The joint
sequence of random variables (RVs) {(Xt, Yt) : t = 1, 2, . . . } takes values in sets of finite
cardinality, {X ,Y}, and it is generated independently according to the joint probability
distribution function PX,Y. Wyner [2] generalized [1] to RVs {(Xt, Yt) : t = 1, 2, . . . } that
take values in abstract alphabet spaces {X ,Y} and hence include continuous-valued RVs.

Figure 1. The Wyner and Ziv [1] block diagram of lossy compression. If switch A is closed, then
the side information is available at both the encoder and the decoder; if switch A is open, the side
information is only available at the decoder.
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(A) Switch “A” Closed: When the side information {Yt : t = 1, 2, . . . } is available non-
causally at both the encoder and the decoder, Wyner [2] (see also Berger [3]) characterized
the infimum of all achievable operational rates (denoted by R1(∆X) in [2]), subject to a
single-letter fidelity with average distortion less than or equal to ∆X ∈ [0, ∞). The rate is
given by the single-letter operational information theoretic conditional RDF:

RX|Y(∆X)
△
= inf

M0(∆X)
I(X; X̂|Y) ∈ [0, ∞], ∆X ∈ [0, ∞) (1)

= inf
PX̂|X,Y :E

{
dX(X,X̂)

}
≤∆X

I(X; X̂|Y) (2)

where M0(∆X) is the set specified by

M0(∆X)
△
=
{

X̂ : Ω → X̂ : PX,Y,X̂ is the joint measure on X ×Y × X̂ ,

E
{

dX(X, X̂)
}
≤ ∆X

}
, (3)

and X̂ is the reproduction of X. I(X; X̂|Y) is the conditional mutual information between X
and X̂ conditioned on Y, and dX(·, ·) is the fidelity criterion between x and x̂. The infimum
in (1) is over all elements of M0(∆X) with induced joint distributions PX,Y,X̂ of the RVs

(X, Y, X̂) such that the marginal distribution PX,Y is the fixed joint distribution of the source
(X, Y). This problem is equivalent to (2) [4].

(B) Switch “A” Open: When the side information is available non-causally only at the
decoder, Wyner [2] characterized the infimum of all achievable operational rates (denoted
by R∗(∆X) in [2]), subject to a single-letter fidelity with average distortion less than or
equal to ∆X . The rate is given by the single-letter operational information theoretic RDF as
a function of an auxiliary RV Z : Ω → Z :

R(∆X)
△
= inf

M(∆X)

{
I(X; Z)− I(Y; Z)

}
∈ [0, ∞], ∆X ∈ [0, ∞) (4)

= inf
M(∆X)

I(X; Z|Y) (5)

where M(∆X) is specified by the set of auxiliary RVs Z and defined as:

M(∆X)
△
=

{
Z : Ω → Z : PX,Y,Z,X̂ is the joint measure on X ×Y ×Z × X̂ ,

PZ|X,Y = PZ|X , ∃ meas. fun. f : Y ×Z → X̂ , X̂ = f (Y, Z), E
{

dX(X, X̂)
}
≤ ∆X

}
. (6)

Wyner’s realization of the joint measure PX,Y,Z,X̂ induced by the RVs (X, Y, Z, X̂) is illus-
trated in Figure 2, where Z is the output of the “test channel”, PZ|X . Clearly, R(∆X) involves
two strategies, i.e., f (·, ·) and PZ|X,Y = PZ|X . This makes it a much more complex problem
compared to RX|Y(∆X) (which involves only PX̂|X,Y).

Figure 2. Test channel when side information is only available to the decoder.

Throughout [2], the following assumption is imposed.
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Assumption 1. I(X; Y) < ∞ (see [2]).

Wyner [2] considered scalar-valued jointly Gaussian RVs (X, Y) with square-error
distortion and constructed the optimal realizations X̂ and (Z, X̂) and the function f (X, Z)
from the sets M0(∆X) and M(∆X), respectively. Also, it is shown that these realizations
achieve the characterizations of the RDFs RX|Y(∆X) and R(∆X), respectively, and that the
two rates are equal, i.e., R(∆X) = RX|Y(∆X).

(C) Marginal RDF: If there is no side information, {Yt : t = 1, 2, . . .}, or the side
information is independent of the source, {Xt : t = 1, 2, . . .}, the RDFs RX|Y(∆X) and
R(∆X) degenerate to the marginal RDF RX(∆X), defined by

RX(∆X)
△
= inf

PX̂|X :E
{

dX(X,X̂)
}
≤∆X

I(X; X̂) ∈ [0, ∞], ∆X ∈ [0, ∞). (7)

(D) Gray’s Lower Bounds: A lower bound on RX|Y(∆X) is given by Gray in [4] [Theo-
rem 3.1]. This bound connects RX|Y(∆X) with the marginal RDF and the mutual information
between X and Y as follows:

RX|Y(∆X) ≥ RX(∆X)− I(X; Y). (8)

Clearly, the lower bound is trivial for values of ∆X ∈ [0, ∞) such that RX(∆X)− I(X; Y) < 0.

1.2. Main Contributions of the Paper

We first consider Wyner’s [2] RDFs RX|Y(∆X) and R(∆X) for arbitrary RVs (X, Y)
defined on abstract alphabet spaces, and we derive structural properties of the realizations
that achieve the two optimal test channels. Subsequently, we generalize Wyner’s [2] results
to multivariate-valued jointly Gaussian RVs (X, Y). In other words, we construct the
optimal multivariate-valued realizations X̂ and (X̂, Z) and the function f (X, Z) which
achieve the RDFs RX|Y(∆X) and R(∆X), respectively. In the literature, it is often called
achievability of the converse coding theorem. In addition, we use the realizations to
prove the equality R(∆X) = RX|Y(∆X) and to derive the water-filling solution. Along
the way, we verify that our results reproduce, for scalar-valued RVs (X, Y), Wyner [2]
RDFs and the optimal realizations. However, to our surprise, the existing results from
the literature [[5], Theorem 4 and Abstract and [6], Theorem 3A], which deal with the
more general multivariate-valued remote sensor problem (the RDF of the remote sensor
problem is a generalization of Wyner’s RDF R(∆X), with the encoder observing a noisy
version of the RVs generated by the source), do not degenerate to Wyner’s [2] RDFs,
when specilized to scalar-valued RVs (we verify this in Remark 5 by also checking the
correction suggested in https://tiangroup.engr.tamu.edu/publications/) (accessed on
3 January 2024). In Section 1.3, we give a detailed account of the main results of this paper.
We should emphasize that preliminary results of this paper appeared in [7], mostly without
the details of the proofs. This paper is extended [7] and contains complete proofs of the
preliminary results of [7], which in some cases are lengthy (see, for example, Section 4,
proofs of Theorems 3–5, Corollaries 1 and 2, etc.).

1.3. Problem Statement and Main Results

(a) We consider a tuple of jointly independent and identically distributed (i.i.d.)
arbitrary RVs (Xn, Yn) = {(Xt, Yt) : t = 1, 2, . . . , n} defined on abstract alphabet spaces,
and we derive the following results.

(a.1) Lemma 1: Achievable lower bound on the conditional mutual information
I(X; X̂|Y), which strengthens Gray’s lower bound (8) [[4], Theorem 3.1].

(a.2) Theorem 2: Structural properties of the optimal reconstruction X̂, which achieves
a lower bound on RX|Y(∆X) for mean-square error distortion. Theorem 2 strengthens the
conditions for the equality to hold, RX|Y(∆X) = R(∆X), given by Wyner [2] [Remarks, p. 65]

https://tiangroup.engr.tamu.edu/publications/
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(see Remark 1). However, for finite-alphabet-valued sources with Hamming distance dis-
tortion, it might be the case that RX|Y(∆X) < R(∆X), as pointed out by Wyner and Ziv [1]
[Section 3] for the doubly symmetric binary source.

(b) We consider a tuple of jointly i.i.d. multivariate Gaussian RVs (Xn, Yn) = {(Xt, Yt) :
t = 1, 2, . . . , n}, with respect to the square-error fidelity, as defined below.

Xt : Ω → Rnx = X , Yt : Ω → Rny = Y , t = 1, 2, . . . , n, (9)

Xt ∈ N(0, QX), Yt ∈ N(0, QY), (10)

Q(Xt ,Yt) = E
{[ Xt

Yt

][
Xt
Yt

]T}
=

[
QX QX,Y

QT
X,Y QY

]
, (11)

PXt ,Yt = PX,Y multivariate Gaussian distribution, (12)

X̂t : Ω → Rnx = X , t = 1, 2 . . . , n, (13)

DX(xn, x̂n) =
1
n

n

∑
t=1

||xt − x̂t||2Rnx , (14)

where nx, ny are arbitrary positive integers, X ∈ N(0, QX) means X is a Gaussian RV, with
zero mean and covariance matrix QX, and || · ||2Rnx is the Euclidean distance on Rnx . To
give additional insight we often consider the following realization of side information (the
condition DDT ≻ 0 ensures I(X; Y) < ∞, and hence, Assumption 1 is respected).

Yt = CXt + DVt, (15)

Vt ∈ N(0, QV), (16)

C ∈ Rny×nx , D ∈ Rny×ny , DDT ≻ 0, QV = Iny , (17)

Vn independent of Xn, (18)

where Iny denotes the ny × ny identity matrix. For the above specification of the source and
distortion criterion, we derive the following results.

(b.1) Theorems 3 and 4: Structural properties of optimal realization of X̂, which
achieves RX|Y(∆X), its closed form expression.

(b.2) Theorem 5: Structural properties of optimal realization of X̂ and X̂ = f (Y, Z),
which achieve R(∆X) and the closed form expression of R(∆X).

(b.3) A proof that R(∆X) and RX|Y(∆X) coincide: Calculation of the distortion region
such that Gray’s lower bound (8) holds with equality.

In Remark 4, we consider the tuple of scalar-valued, jointly Gaussian RVs (X, Y)
with square error distortion function and verify that our optimal realizations of X̂ and the
closed form expressions for RX|Y(∆X) and R(∆X) are identical to Wyner’s [2] realizations
and RDFs.

We should emphasize that our methodology is different from past studies in the sense
that we focus on the structural properties of the realizations of the test channels, that achieve
the characterizations of the two RDFs (i.e., verification of the converse coding theorem).
Our derivations are generic and bring new insight into the construction of realizations
that induce the optimal test channels of other distributed source coding problems (i.e.,
establishing the achievability of the converse coding theorem).

1.4. Additional Generalizations of the Wyner-Ziv [1] and Wyner [2] RDFs

Below, we discuss additional generalizations of Wyner and Ziv [1] and Wyner’s [2] RDFs.
(A) Draper and Wornell [8] Distributed Remote Source Coding Problem: Draper and

Wornell [8] generalized the RDF R(∆X), when the source to be estimated at the decoder is
S : Ω → S , and it is not directly observed at the encoder. Rather, the encoder observes a
RV X : Ω → X (which is correlated with S), while the decoder observes another RV, as side
information, Y : Ω → Y , which provides information on (S, X). The aim is to reconstruct
S at the decoder by Ŝ : Ω → Ŝ , subject to an average distortion E{dS(S, Ŝ)} ≤ ∆S, by
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a function Ŝ = f (Y, Z). The RDF for this problem, called the distributed remote source
coding problem, is defined by [8]

RPO
(∆S) = inf

MPO(∆S)
I(X; Z|Y) ∈ [0, ∞], (19)

where MPO(∆S) is specified by the set of auxiliary RVs Z, and defined as:

MPO(∆S)
△
=
{

Z : Ω → Z : PS,X,Y,Z,X̂ is the joint measure on S × X ×Y ×Z × X̂ ,

PZ|S,X,Y = PZ|X , ∃ measurable function f PO : Y ×Z → Ŝ ,

Ŝ = f PO(Y, Z), E
{

dS(S, Ŝ)
}
≤ ∆S

}
. (20)

Clearly, if S = X−a.s (almost surely), then RPO
(∆S) degenerates (this implies the optimal

test channel that achieves the characterization of the RDF RPO
(∆S) should degenerate to

the optimal test channel that achieves the characterization of the RDF R(∆X)) to R(∆X).
For scalar-valued jointly Gaussian RVs (S, X, Y, Z, X̂) with square-error distortion, Draper
and Wornell [8] [Equation (3) and Appendix A.1] derived the characterization of the
RDF RPO

(∆S) and constructed the optimal realization Ŝ = f PO(Y, Z), which achieves
this characterization.

In [5,6], the authors investigated the RDF RPO
(∆S) of [8] for the multivariate jointly

Gaussian RVs (S, X, Y, Z, X̂), with square-error distortion, and derived a characterization
for the RDF RPO

(∆S) in [[5], Theorem 4] and [[6], Theorem 3A] (see [[6], Equation (26)]).
However, it will become apparent in Remark 5 that, when S = X− almost surely (a.s.), and
hence RPO

(∆S) = R(∆X), the RDFs given in [[5], Theorem 4] and [[6], Theorem 3A], do not
produce Wyner’s [2] value. We also show in Remark 5 that the same technical issues occur
for the correction suggested in https://tiangroup.engr.tamu.edu/publications/ (accessed
on 3 January 2024). Similarly, when S = X−a.s. and Y = X−a.s. [[5], Theorem 4] and [[6],
Theorem 3A], do not produce the classical RDF RX(∆X) of the Gaussian source X.

(B) Additional Literature Review: The formulation of Figure 1 is generalized to other
multiterminal or distributed lossy compression problems, such as relay networks, sensor
networks, etc., under various code formulations and assumptions. Oohama [9] analyzed
lossy compression problems for a tuple of scalar correlated Gaussian memoryless sources
with square error distortion criterion. Also, he determined the rate-distortion region, in
the special case when one source provides partial side information to the other source.
Furthermore, Oohama in [10] analyzed separate lossy compression problems for L + 1
scalar correlated Gaussian memoryless sources, when L of the sources provide partial
side information at the decoder for the reconstruction of the remaining source and gave a
partial answer to the rate distortion region. Additionally, ref. [10] proved that the problem
of [10] includes, as a special case, the additive white Gaussian CEO problem analyzed by
Viswanathan and Berger [11]. Extensions of [10] are derived by Ekrem and Ulukus [12]
and Wang and Chen [13], where an outer bound on the rate region is derived for the vector
Gaussian multiterminal source. Additional works are [14–16] and the references therein.

The vast literature on multiterminal or distributed lossy compression of jointly Gaus-
sian sources with square-error distortion (including the references mentioned above), is
often confined to scalar-valued correlated RVs. Moreover, as easily verified, not much
emphasis is given in the literature on the structural properties of the realizations of RVs
that induce the optimal test channels that achieve the characterizations of the RDFs.

The rest of the paper is organized as follows. In Section 2, we review Wyner’s [2]
operational definition of lossy compression. We also state a fundamental theorem on
mean-square estimation that we use throughout the paper regarding the analysis of (b).
The main Theorems are presented in Section 3; some of the proofs, including the structural
properties, are given in Section 4. Connections between our results and the past literature

https://tiangroup.engr.tamu.edu/publications/
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are provided in Section 5. A simulation to show the gap between the two rates is given in
the same section.

2. Preliminaries

In this section, we review the Wyner [2] source coding problems with fidelity in
Figure 1. We begin with the notation, which follows closely [2].

2.1. Notation

Let Z △
= {. . . ,−1, 0, 1, . . .} the set of all integers, N △

= {0, 1, 2, . . . , } the set of natural

integers, Z+
△
= {1, 2, . . . , }. For n ∈ Z+, denote the following finite subset of the above

defined set, Zn
△
= {1, 2, . . . , n}. Denote the real numbers by R and the set of positive and of

strictly positive real numbers, by R+ = [0, ∞) and R++ = (0, ∞), respectively.
For any matrix A ∈ Rp×m, (p, m) ∈ Z+ × Z+, we denote its kernel by ker(A) its

transpose by AT, and for m = p, we denote its trace by trace(A), and by diag{A}, the
matrix with diagonal entries Aii, i ∈ Zp, and zero elsewhere. The determinant of a square
matrix A is denoted by det(A). The identity matrix with dimensions p × p is designated
as Ip. Denote an arbitrary set or space by U and the product space formed by n copies

of it by Un △
= ×n

t=1U . un ∈ Un denotes the set of n−tuples un △
= (u1, u2, . . . , un), where

uk ∈ U , k ∈ Zk are its coordinates. Denote a probability space by (Ω,F ,P). For a sub-
sigma-field G ⊆ F , and A ∈ F , denote by P(A|G) the conditional probability of A given G;
i.e., P(A|G) = P(A|G)(ω), ω ∈ Ω is a measurable function on Ω.

On the above probability space, consider two-real valued random variables (RV)
X : Ω → X , Y : Ω → X , where (X ,B(X )), (Y ,B(Y)) are arbitrary measurable spaces. The
measure (or joint distribution if X ,Y are Euclidean spaces) induced by (X, Y) on X ×Y is
denoted by PX,Y or P(dx, dy) and their marginals on X and Y by PX and PY, respectively.
The conditional measure of RV X conditioned on Y is denoted by PX|Y or P(dx|y), when
Y = y is fixed. On the above probability space, consider three-real values RVs X : Ω →
X , Y : Ω → X , Z : Ω → Z . We say that RVs (Y, Z) are conditional independent given
RV X if PY,Z|X = PY|XPZ|X−a.s (almost surely) or equivalently PZ|X,Y = PZ|X−a.s; the
specification a.s is often omitted. We often denote the above conditional independence by
the Markov chain (MC) Y ↔ X ↔ Z.

Finally, for RVs X, Y, etc., H(X) denotes differential entropy of X, H(X|Y) conditional
differential entropy of X given Y, and I(X; Y) the mutual information between X and Y,
as defined in standard books on information theory [17,18]. We use log(·) to denote the
natural logarithm. The notation X ∈ N(0, QX) means X is a Gaussian distributed RV with
zero mean and covariance QX ⪰ 0, where QX ⪰ 0 (resp. QX ≻ 0) means QX is positive
semidefinite (respectively, positive definite). We denote the covariance of X and Y by

QX,Y
△
= cov

(
X, Y

)
. (21)

We denote the covariance of X conditioned on Y by

QX|Y
△
= cov(X, X|Y)

= E
{(

X − E
(
X
∣∣∣Y))(

X − E
(
X
∣∣∣Y))T}

if (X, Y) is jointly Gaussian, (22)

where the second equality is due to a property of jointly Gaussian RVs.

2.2. Mean-Square Estimation of Conditionally Gaussian RVs

Below, we state a well-known property of conditionally Gaussian RVs from [19], which
we use in our derivations.
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Proposition 1. Conditionally Gaussian RVs [19]. Consider a pair of multivariate RVs X =
(X1, . . . , Xnx )

T : Ω → Rnx and Y = (Y1, . . . , Yny)
T : Ω → Rny , (nx, ny) ∈ Z+ ×Z+, defined on

some probability distribution
(

Ω,F ,P
)

. Let G ⊆ F be a sub−σ−algebra. Assume the conditional

distribution of (X, Y) conditioned on G, i.e., P(dx, dy|G) is P−a.s. (almost surely) Gaussian, with
conditional means

µX|G
△
= E

{
X
∣∣∣G}, µY|G

△
= E

{
Y
∣∣∣G}, (23)

and conditional covariances

QX|G
△
= cov

(
X, X

∣∣∣G), QY|G
△
= cov

(
Y, Y

∣∣∣G), (24)

QX,Y|G
△
= cov

(
X, Y

∣∣∣G). (25)

Then, the vectors of conditional expectations µX|Y,G
△
= E

{
X
∣∣∣Y,G

}
and matrices of conditional

covariances QX|Y,G
△
= cov

(
X, X

∣∣∣Y,G
)

are given, P−a.s., by the following expressions (If QY|G ≻
0 then the inverse exists and the pseudoinverse is Q†

Y|G = Q−1
Y|G ):

µX|Y,G = µX|G + QX,Y|GQ†
Y|G

(
Y − µY|G

)
, (26)

QX|Y,G
△
= QX|G − QX,Y|GQ†

Y|GQT
X,Y|G . (27)

If G is the trivial information, i.e., G = {Ω, ∅}, then G is removed from the above expressions.

Note that, if G = {Ω, ∅}, then (26) and (27) reduce to the well-known conditional
mean and conditional covariance of X conditioned on Y.

For Gaussian RVs, we make use of the following properties.

Proposition 2. Let X : Ω → Rn, n ∈ Z+, X ∈ N(0, QX), QX ⪰ 0, S ∈ Rn1×n, n1 ∈ Z+,
and denote by FX and FSX the σ−algebra generated by the RVs X and SX, respectively. The
following hold.
(a) FSX ⊆ FX .
(b) FSX = FX if and only if ker(QX) = ker(SQX).

Proof. This is well-known in measure theory, see [20].

Proposition 3. Let X : Ω → Rn, n ∈ Z+, X ∈ N(0, QX), QX ⪰ 0, rank(QX) = n1, n1 ∈
Z+, n1 < n. Then, there exists a linear transformation S ∈ Rn1×n such that, if X1 : Ω → Rn1 ,
X1 = SX, then X1 ∈ N(0, QX1), QX1 ≻ 0, FX = FX1 .

Proof. This is well-known in probability theory, see [20].

2.3. Wyner’s Coding Theorems with Side Information at the Decoder

For the sake of completeness, we introduce certain results from Wyner’s work in [2],
which we use in this paper. On a probability space (Ω,F ,P), consider a tuple of jointly
i.i.d. RVs (Xn, Yn) = {(Yt, Yt) : t ∈ Zn},

Xt : Ω → Y , Yt : Ω → Y , t ∈ Zn, (28)
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with induced distribution PXt ,Yt = PX,Y, ∀t. Consider also the measurable function
dX : X × X̂ → [0, ∞), for a measurable space X̂ . Let

IM
△
=

{
0, 1, . . . , M − 1

}
, M ∈ ZM, (29)

be a finite set.
A code (n, M, DX), when switch “A” is open (see Figure 1), is defined by two measur-

able functions, the encoder FE and the decoder FD, with average distortion, as follows.

FE : X n −→ IM, FD : IM ×Yn −→ X̂ n, (30)

1
n

E
{ n

∑
t=1

dX(Xt, X̂t)
}
= DX , (31)

where X̂n is again a sequence of RVs, X̂n = FD(FE(Xn), Yn) ∈ X̂ n. A non-negative rate
distortion pair (R, ∆X) is said to be achievable if for every ϵ > 0, and n sufficiently large,
there exists a code (n, M, DX) such that

M ≤ 2n(R+ϵ), DX ≤ ∆X + ϵ. (32)

Let R denote the set of all achievable pairs (R, ∆X), and define, for ∆X ≥ 0, the infimum of
all achievable rates by

R∗(∆X) = inf
(R,∆X)∈R

R. (33)

If for some ∆X there is no R < ∞ such that (R, ∆X) ∈ R, then set R∗(∆X) = ∞. For arbitrary
abstract spaces Wyner [2] characterized the infimum of all achievable rates R∗(∆X) by the
single-letter RDF, R(∆X) given by (5) and (6), in terms of an auxiliary RV Z : Ω →
Z . Wyner’s realization of the joint measure PX,Y,Z,X̂ induced by the RVs (X, Y, Z, X̂) is
illustrated in Figure 2, where Z is the output of the “test channel”, PZ|X . Wyner proved the
following coding theorems.

Theorem 1. Wyner [[2], Theorems, pp. 64–65]. Suppose Assumption 1 holds.
(a) Converse Theorem. For any ∆X ≥ 0, R∗(∆X) ≥ R(∆X).
(b) Direct Theorem. If the conditions stated in [2, pages 64-65, (i), (ii)] hold, then R∗(∆X) ≤ R(∆X),
0 ≤ ∆X < ∞.

In Figure 1, when switch A is closed and the tuple of jointly independent and identi-
cally distributed RVs (Xn, Yn) is defined as in Section 2.3, Wyner [2] generalized Berger’s [3]
characterization of all achievable pairs (R, ∆X), from finite alphabet spaces to abstract
alphabet spaces.

A code (n, M, DX), when switch “A” is closed, (see Figure 1), is defined as in Section 2.3,
with the encoder FE, replaced by

FE : X n ×Yn −→ IM. (34)

Let R1 denote the set of all achievable pairs (R, ∆X), again as defined in Section 2.3. For
∆X ≥ 0, define the infimum of all achievable rates by

R1(∆X) = inf
(R,∆X)∈R1

R. (35)

Wyner [2] characterized the infimum of all achievable rates R1(∆X) by the single-letter
RDF RX|Y(∆X) given by (1) and (3). The coding Theorems are given by Theorem 1 with
R∗(∆X) and R(∆X) replaced by R1(∆X) and RX|Y(∆X), respectively. That is, R1(∆X) =
RX|Y(∆X) (using Wyner’s notation [[2], Appendix A.1]) These coding theorems generalized
earlier work of Berger [3] for finite alphabet spaces. Wyner also derived a fundamental
lower bound on R∗(∆X) in terms of R1(∆X), as stated in the next remark.



Entropy 2024, 26, 306 9 of 30

Remark 1. Wyner [[2], Remarks, p. 65]
(A) For Z ∈ M(∆X), X̂ = f (Y, Z), and thus PZ|X,Y = PZ|X . Then, by a property of conditional
mutual information and the data processing inequality:

I(X; Z|Y) = I(X; Z, f (Y, Z)|Y) ≥ I(X; X̂|Y) ≥ RX|Y(∆X), (36)

where the last equality is defined since X̂ ∈ M0(∆X) (see [[2], Remarks, p. 65]. Moreover,
minimizing (36) over Z ∈ M(∆X) gives

R∗(∆X) ≥ RX|Y(∆X). (37)

(B) Inequality (37) holds with equality, i.e., R∗(∆X) = RX|Y(∆X) if X̂ ∈ M0(∆X), which achieves
I(X; X̂|Y) = RX|Y(∆X) can be generated as in Figure 2 with I(X; Z|Y) = I(X; X̂|Y). This occurs
if and only if I(X; Z|X̂, Y) = 0, and follows from the identity and lower bound

I(X; Z|Y) =I(X; Z, X̂|Y) = I(X; Z|Y, X̂) + I(X; X̂|Y) (38)

≥I(X; X̂|Y), (39)

where the inequality holds with equality if and only if I(X; Z|X̂, Y) = 0.

3. Main Theorems and Discussion

In this section, we state the main results of this paper. These are the achievable lower
bounds of Lemma 1 and Theorem 2, which hold for RVs defined on general abstract
alphabet spaces, and Theorems 4 and 5, which hold for multivariate Gaussian RVs.

3.1. Side Information at Encoder and Decoder for an Arbitrary Source

We start with the following achievable lower bound on the conditional mutual in-
formation I(X; X̂|Y), which appears in the definition of RX|Y(∆X) of (1); this strengthens
Gray’s lower bound (8) [[4], Theorem 3.1].

Lemma 1. Achievable lower bound on conditional mutual information. Let (X, Y, X̂) be a triple of
arbitrary RVs taking values in the abstract spaces X ×Y × X̂ , with distribution PX,Y,X̂ and joint
marginal the fixed distribution PX,Y of (X, Y). Then, the following hold.
(a) The inequality holds:

I(X; X̂|Y) ≥ I(X; X̂)− I(X; Y). (40)

Moreover, the equality holds

I(X; X̂|Y) = I(X; X̂)− I(X; Y) ∈ [0, ∞), (41)

if and only if

PX|X̂,Y = PX|X̂ − a.s. or equivalently Y ↔ X̂ ↔ X is a MC. (42)

(b) If Y ↔ X̂ ↔ X is a Markov chain then the equality holds

RX|Y(∆X) = RX(∆X)− I(X; Y), ∆X ∈ DC(X|Y), (43)

i.e., for all ∆X that belong to strictly positive set DC(X|Y) ⊆ [0, ∞).

Proof. See Appendix A.1.

The next theorem which holds for arbitrary RVs is further used to derive the character-
ization of RX|Y(∆X) for multivariate Gaussian RVs.
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Theorem 2. Achievable lower bound on conditional mutual information and mean-square error estimation

(a) Let (X, Y, X̂) be a triple of arbitrary RVs on the abstract spaces X ×Y × X̂ , with distribution
PX,Y,X̂ and joint marginal the fixed distribution PX,Y of (X, Y).
Define the conditional mean of X conditioned on (X̂, Y) by

Xcm △
= E

(
X
∣∣∣Y, X̂

)
= e(Y, X̂), (44)

for some measurable function f : Y × X̂ → X .
(1) The inequality holds:

I(X; X̂|Y) ≥ I(X; Xcm|Y). (45)

(2) The equality holds, I(X; X̂|Y) = I(X; Xcm|Y) if anyone of the conditions (i) or (ii) holds.

(i) Xcm
= X̂ − a.s (46)

(ii) For a fixed y ∈ Y the function e(y, ·) : X̂ → X , e(y, x̂) = xcm uniquely defines x̂

i.e., e(y, ·) is an injective function on the support of x̂. (47)

(b) In part (a) let (X, Y, X̂) be a triple of arbitrary RVs on X × Y × X̂ = Rnx × Rny × Rnx ,
(nx, ny) ∈ Z+ ×Z+.
For all measurable functions (y, x̂) 7−→ g(y, x̂) ∈ Rnx , the mean-square error satisfies

E
{
||X − g(Y, X̂)||2Rnx

}
≥ E

{
||X − E

(
X
∣∣∣Y, X̂

)
||2Rnx

}
, ∀g(·). (48)

Proof. See Appendix A.2.

3.2. Side Information at Encoder and Decoder for Multivariate Gaussian Source

The characterizations of the RDFs RX|Y(∆X) and R(∆X) for a multivariate Gaussian
source are encapsulated in Theorems 3–5; these are proved in Section 4. These theorems
include the structural properties of optimal test channels or realizations of (X̂, Z), which
induce joint distributions. Furthermore, they achieve the RDFs; the closed form expressions
of the RDFs are based on a water-filling. The realization of the optimal test channel of
RX|Y(∆X) is shown in Figure 3.

ℎ"

ℎ#

ℎ$%

𝑊"

𝑊#

𝑊$%

𝑈𝑈(𝑋 *𝑋

𝑄,,.𝑄./"𝑌 𝑄,,.𝑄./"𝑌

−

⋮

Figure 3. RX|Y(∆X): A realization of optimal reproduction X̂ over parallel additive Gaussian noise

channels of Theorem 4, where hi
△
= 1 − δi

λi
≥ 0, i = 1, . . . , nx are the diagonal element of the spectral

decomposition of the matrix H = Udiag{h1, . . . , hnx}UT, and Wi ∈ N(0, hiδi), i = 1, . . . , nx, the
additive noise introduced due to compression.

The following theorem gives a parametric realization of optimal test channel that
achieves the characterization of the RDF RX|Y(∆X).
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Theorem 3. Characterization of RX|Y(∆X) by test channel realization. Consider the RDF
RX|Y(∆X) defined by (1), for the multivariate Gaussian source with mean-square error distortion
defined by (9)–(18). The following hold.

(a) The optimal realization X̂ that achieves RX|Y(∆X) is parametrized by the matrices (H, QW)
and represented by

X̂ = H
(

X − QX,YQ−1
Y Y

)
+ QX,YQ−1

Y Y + W (49)

= H
(

X − QX,YQ−1
Y Y

)
+ QX,YQ−1

Y Y + HΨ, if H−1 exists, (50)

where

HQX|Y = QX|Y HT △
= QX|Y − Σ∆ ⪰ 0, (51)

W idependent of (X, Y), QW ∈ N(0, QW), (52)

QW
△
= HQX|Y − HQX|Y HT = HΣ∆ = Σ∆ − Σ∆Q−1

X|YΣ∆ = Σ∆H ⪰ 0, (53)

W = HΨ, Ψ ∈ N(0, QΨ), QΨ
△
= Σ∆H−1 = H−1Σ∆, if H−1 exists, (54)

Σ∆
△
= E

{(
X − X̂

)(
X − X̂

)T}
, (55)

QX̂|Y = QX|Y − Σ∆ ⪰ 0, (56)

QX|Y = QX − QX,YQ−1
Y QT

X,Y ≻ 0, QX,Y = QXCT, QY = CQXCT + DDT. (57)

Moreover, the optimal parametric realization of X̂ satisfies the following structural properties.

(i) PX|X̂,Y = PX|X̂ , if QX ≻ Σ∆, (58)

(ii) E
{

X
∣∣∣Y}

= E
{

X̂
∣∣∣Y}

, if QX ⪰ Σ∆, (59)

(iii) cov(X, X̂|Y) = cov(X̂, X̂|Y), if QX|Y ≻ Σ∆, (60)

(iv) E
{

X
∣∣∣X̂, Y

}
= E

{
X
∣∣∣X̂}

= X̂, if QX|Y ≻ Σ∆. (61)

(b) The RDF RX|Y(∆X) is given by

RX|Y(∆X) = inf
Σ∆⪰0, QX|Y−Σ∆⪰0, trace

(
Σ∆

)
≤∆X

1
2

log max
{

1, det(QX|YΣ−1
∆ )

}
. (62)

Proof. The proof is given in Section 4.

The next theorem gives additional structural properties of the optimal test channel
realization of Theorem 3 and uses these properties to characterize RDF RX|Y(∆X) via a
water-filling solution.

Theorem 4. Characterization of RX|Y(∆X) via water-filling solution. Consider the RDF
RX|Y(∆X) defined by (1), for the multivariate Gaussian source with mean-square error distor-
tion defined by (9)–(18), and its characterization in Theorem 3. The following hold.

(a) The matrices of the parametric realization of X̂,{
Σ∆,QX|Y, H, QW

}
have spectral

decompositions with respect to the same unitary matrix UUT = Inx , UTU = Inx , (63)
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where the realization coefficients are

QW = HΣ∆ = Udiag(σ2
W1

, . . . , σ2
Wnx

)UT, Σ∆ = Udiag(δ1, . . . , δnx )U
T, (64)

H = Inx − Q−1
X|YΣ∆ = Udiag(h1, . . . , hnx )U

T, QX|Y = Udiag(λ1, . . . , λnx )U
T, (65)

λ1 ≥ λ2 ≥ · · · ≥ λnx > 0, δ1 ≥ δ2 ≥ . . . ≥ δnx > 0, (66)

σ2
W1

≥ σ2
W2

≥ . . . ≥ σWnx
≥ 0, h1 ≥ h2 ≥ · · · ≥ hnx ≥ 0, σ2

Wi
= hiδi, hi

△
= 1 − δi

λi
, (67)

and the eigenvalues σ2
Wi

and hi are given by

σ2
Wi

=
min(λi, δi)(λi − min(λi, δi))

λi
, hi =

λi − min(λi, δi)

λi
,

nx

∑
i=1

min(λi, δi) = ∆X . (68)

Moreover, if σ2
Wi

= 0, then hi = 0, and vice versa.
(b) The RDF RX|Y(∆X) is given by the water-filling solution:

RX|Y(∆X) =
1
2

log max
{

1, det(QX|YΣ−1
∆ )

}
=

1
2

nx

∑
i=1

log
λi
δi

, (69)

where

E
{
||X − X̂||2Rnx

}
= trace

(
Σ∆

)
=

nx

∑
i=1

δi = ∆X , δi =

{
µ, if µ < λi
λi, if µ ≥ λi

(70)

and µ ∈ (0, ∞) is a Lagrange multiplier (obtained from the Kuch–Tucker conditions).
(c) Figure 3 depicts the parallel channel scheme that realizes the optimal X̂ of parts (a), (b),

which achieves RX|Y(∆X).
(d) If X and Y are independent or Y is replaced by a RV that generates the trivial information,

i.e., the σ−algebra of Y is σ{Y} = {Ω, ∅} (or C = 0 in (15)), then (a)–(c) hold with QX|Y =
QX , QX,Y = 0, and RX|Y(∆X) = RX(∆X), i.e., reduces to the marginal RDF of X.

Proof. The proof is given in Section 4.

The proof of Theorem 4 (see Section 4) is based on the identification of structural prop-
erties of the test channel distribution. Some of the implications are briefly described below.

Conclusion 1: The construction and the structural properties of the optimal test channel
PX|X̂,Y that achieves the water-filling characterization of the RDF RX|Y(∆X) of Theorems 3
and 4 are not documented elsewhere in the literature.

(i) Structural properties (58) and (61) strengthen Gray’s inequality [[4], Theorem 3.1],
(see proof of (8)) to the equality. That is, structural property (58) implies that Gray’s [[4],
Theorem 3.1] lower bound (8) holds with equality for a strictly positive surface (See Gray [4]
for definition) ∆X ∈ DC(X|Y) ⊆ [0, ∞), i.e.,

RX|Y(∆X) = RX(∆X)− I(X; Y), ∆X ∈ DC(X|Y) △
=

{
∆X ∈ [0, ∞) : ∆X ≤ nxλnx

}
. (71)

The set DC(X|Y) excludes values of ∆X ∈ [0, ∞) for which water-filling is active in
(69) and (70).

By the realization of the optimal reproduction X̂, it follows that the subtraction of equal

quantities E
{

X
∣∣∣Y}

at the encoder and decoder does not affect the information measure,

noting that E
{

X
∣∣∣Y}

= E
{

X̂
∣∣∣Y}

.
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Theorem 4 points (a) and (b) are obtained with the aid of Theorem 3 and Hadamard’s
inequality, which shows QX|Y and Σ∆ have the same eigenvectors.

(ii) Structural properties of realizations of Theorems 3 and 4: The matrices {Σ∆, QX|Y, H, QW}
are nonnegative symmetric and have a spectral decomposition with respect to the same
unitary matrix UUT = Inx [21]. This implies that the test channel is equivalently represented
by parallel additive Gaussian noise channels (subject to pre-processing and post-processing
at the encoder and decoder).

(iii) In Remark 4, we show that the realization of optimal X̂ in Figure 3, which achieves
the RDF of Theorem 4, degenerates to Wyner’s [2] optimal realization, which attains the
RDF RX|Y(∆X), for the tuple of scalar-valued, jointly Gaussian RVs (X, Y) with square error
distortion function.

3.3. Side Information Only at Decoder for Multivariate Gaussian Source

Theorem 5 gives the optimal test channel that achieves the characterization of the RDF
R(∆X) and further states that there is no loss of compression rate if side information is
only available at the decoder. That is, although in general, R(∆X) ≥ RX|Y(∆X), an optimal
reproduction X̂ = f (Y, Z) of X, where f (·, ·) is linear, is constructed such that the inequality
holds with equality.

Theorem 5. Characterization and water-filling solution of R(∆X). Consider the RDF R(∆X)
defined by (5) for the multivariate Gaussian source with mean-square error distortion, defined by
(9)–(18). Then, the following hold.

(a) The characterization of the RDF, R(∆X) satisfies

R(∆X) ≥ RX|Y(∆X), (72)

where RX|Y(∆X) is given in Theorem 4b.
(b) The optimal realization X̂ = f (Y, Z), which achieves the lower bound in (72), i.e.,

R(∆X) = RX|Y(∆X), is represented by

X̂ = f (Y, Z) (73)

=
(

I − H
)

QX,YQ−1
Y Y + Z, (74)

Z =HX + W, (75)

(H,QW) given by (51)–(57), and (63) holds. (76)

Moreover, the following structural properties hold:
(1) The optimal test channel satisfies

(i) PX|X̂,Y,Z = PX|X̂,Y
(α)
= PX|X̂ , where (α) holds if QX ≻ Σ∆, (77)

(ii) E
{

X
∣∣∣X̂, Y, Z

}
= E

{
X
∣∣∣X̂, Y

}
(β)
= E

{
X
∣∣∣X̂}

(γ)
= X̂, where (β), (γ) hold if QX|Y ≻ Σ∆,

(78)

(iii) PZ|X,Y = PZ|X . (79)

(2) Structural property (2) of Theorem 4a holds.

Proof. It is given in Section 4.

The proof of Theorem 5 is based on the derivation of the structural properties and
Theorem 4. Some implications are discussed below.

Conclusion 2: The optimal reproduction X̂ = f (X, Z) or test channel distribution
PX|X̂,Y,Z, which achieves R(∆X) of Theorem 5, are not reported in the literature.
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(i) From the structural property (1) of Theorem 5, i.e., (77), it follows that the lower
bound R(∆X) ≥ RX|Y(∆X) is achieved by the realization X̂ = f (Y, Z) of Theorem 5b; i.e.,
for a given Y = y, then X̂ uniquely defines Z.

(ii) If X is independent of Y or Y generates trivial information, then the RDFs R(∆X) =
RX|Y(∆X) degenerate to the classical RDF of the source X, i.e., RX(∆X), as expected. This is
easily verified from (73) and (76), i.e., QX,Y = 0, which implies X̂ = Z.
For scalar-valued RVs, X : Ω → R, Y : Ω → R, X ∈ N(0, σ2

X), and X independent of Y,
then the optimal realization reduces to

X̂ = Z =
(

1 − ∆X

σ2
X

)
X +

√(
1 − ∆X

σ2
X

)
∆XW, W ∈ N(0, 1), σ2

X ≤ ∆X , (80)

QX̂ = QZ = σ2
X̂ = σ2

X − ∆X ≥ 0, (81)

as expected.
(iii) In Remark 4, we show that the realization of optimal X̂ = f (Y, Z), which achieves

the RDF R(∆X) of Theorem 5, degenerates to Wyner’s [2] realization that attains the RDF
R(∆X), of the tuple of scalar-valued, jointly Gaussian RVs (X, Y), with the square error
distortion function.

4. Proofs of Theorems 3–5

In this section, we derive the statements of Theorems 3–5 by making use of Theorem 2
(which holds for general abstract alphabet spaces) by restricting attention to multivariate
jointly Gaussian (X, Y).

4.1. Side Information at Encoder and Decoder

For jointly Gaussian RVs (X, Y, X̂), in the next theorem we identify simple sufficient
conditions for the lower bound of Theorem 2 to be achievable.

Theorem 6. Sufficient conditions for the lower bounds of Theorem 2 to be achievable. Consider
the statement of Theorem 2 for a triple of jointly Gaussian RVs (X, Y, X̂) on Rnx ×Rny ×Rnx ,
(nx, ny) ∈ Z+ × Z+, i.e., PX,Y,X̂ = PG

X,Y,X̂
and joint marginal the fixed Gaussian distribution

PX,Y = PG
X,Y of (X, Y)

Then,

Xcm △
= E

(
X
∣∣∣Y, X̂

)
= eG(Y, X̂), (82)

eG(Y, X̂) = E
(

X
∣∣∣Y)

+ cov(X, X̂|Y)
{

cov(X̂, X̂|Y)
}†(

X̂ − E
(

X̂
∣∣∣Y))

. (83)

Moreover, the following hold.
Case (i). cov(X̂, X̂|Y) ≻ 0, that is, rank(QX̂|Y) = nx. Condition (84) is sufficient for I(X; X̂|Y) =
I(X; Xcm|Y).

Xcm △
= E

(
X
∣∣∣Y, X̂

)
= eG(Y, X̂) = X̂ − a.s. (84)

In addition, Conditions 1 and 2 below are sufficient for (84) to hold.

Condition 1. E
(

X
∣∣∣Y)

= E
(

X̂
∣∣∣Y)

(85)

Condition 2. cov(X, X̂|Y)cov(X̂, X̂|Y)−1 = Inx (86)
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Case (ii). cov(X̂, X̂|Y) ⪰ 0 but not cov(X̂, X̂|Y) ≻ 0; that is, rank(QX̂|Y) = n1 < nx.

Condition (87) is sufficient for I(X; X̂|Y) = I(X; Xcm|Y).

eG(·, ·) defined by (83) satisfies (47). (87)

In addition, a sufficient condition for (87) to hold is, for a fixed Y = y ∈ Y , the σ−algebras satisfy
F X̂ = F eG(y,X̂).

Proof. Note that identity (83) follows from Proposition 1, (26), by letting Y = X̂ and G be
the information generated by Y. Consider Case (i); If (84) holds then I(X; X̂|Xcm, Y) = 0.
By (83), Conditions 1 and 2 are sufficient for (84) to hold. Consider Case (ii). Sufficient
condition (87) follows from Theorem 2, and implies I(X; X̂|Xcm, Y) = 0. The statement
below (87) follows from Proposition 2.

Now, we turn our attention to the optimization problem RX|Y(∆X) defined by (1) for
the multivariate Gaussian source with mean-square error distortion defined by (9)–(18).
In the next lemma, we derive a preliminary parametrization of the optimal reproduction
distribution PX̂|X,Y of the RDF RX|Y(∆X).

Lemma 2. Preliminary parametrization of optimal reproduction distribution of RX|Y(∆X).
Consider the RDF RX|Y(∆X) defined by (1) for the multivariate Gaussian source, i.e., PX,Y = PG

X,Y,
with mean-square error distortion defined by (9)–(18).
(a) For every joint distribution PX,Y,X̂ there exists a jointly Gaussian distribution denoted by PG

X,Y,X̂
,

with marginal the fixed distribution PG
X,Y , which minimizes I(X; X̂|Y) and satisfies the average

distortion constraint, i.e., with dX(x, x̂) = ||x − x̂||2Rnx .
(b) The conditional reproduction distribution of the RDF RX|Y(∆X) is PX̂|X,Y = PG

X̂|X,Y
and

induced by the parametric realization of X̂ (in terms of H, G, QW),

X̂ = HX + GY + W, (88)

H ∈ Rnx×nx , G ∈ Rnx×ny , (89)

W ∈ N(0, QW), QW ⪰ 0, (90)

W independent of (X, Y), (91)

and X̂ is a Gaussian RV.
(c) RX|Y(∆X) is characterized by the optimization problem.

RX|Y(∆X)
△
= inf

MG
0 (∆X)

I(X; X̂|Y), ∆X ∈ [0, ∞), (92)

where MG
0 (∆X) is specified by the set

MG
0 (∆X)

△
=
{

X̂ : Ω → X̂ : (88)− (91) hold, and E
{
||X − X̂||2Rnx

}
≤ ∆X

}
. (93)

(d) If there exists (H, G, QW) such that (84) or (87) hold, then a further lower bound on RX|Y(∆X)

is achieved in the subset MG,o
0 (∆X) ⊆ MG

0 (∆X) defined by

MG,o
0 (∆X)

△
=
{

X̂ : Ω → X̂ : (88)− (91) hold, (84) or (87) hold,

E
{
||X − X̂||2Rnx

}
≤ ∆X

}
, (94)
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and the corresponding characterization of the RDF is

RX|Y(∆X)
△
= inf

MG,o
0 (∆X)

I(X; X̂|Y), ∆X ∈ [0, ∞). (95)

Proof. (a) This is omitted since it is similar to the classical unconditional RDF RX(∆X) of
a Gaussian message X ∈ N(0, QX). (b) By (a), the conditional distribution PG

X̂|X,Y
is such

that, its conditional mean is linear in (X, Y), its conditional covariance is nonrandom, i.e.,
constant, and for fixed (X, Y) = (x, y), PG

X̂|X,Y
is Gaussian. Such a distribution is induced

by the parametric realization (88)–(91). (c) Follows from parts (a) and (b). (d) Follows from
Theorem 6 and (48) due to the achievability of the lower bounds.

In the next theorem, we identify the optimal triple (H, G, QW) such that (84) or (87)

hold (i.e., establish its existence), characterize the RDF by RX|Y(∆X)
△
= infMG,o

0 (∆X)
I(X; X̂|Y),

and construct a realization X̂ that achieves it.

Theorem 7. Characterization of RDF RX|Y(∆X). Consider the RDF RX|Y(∆X), defined by (1),
for the multivariate Gaussian source with mean-square error distortion, defined by (9)–(18). The
characterization of the RDF RX|Y(∆X) is

RX|Y(∆X)
△
= inf

Q(∆X)
I(X; X̂|Y) (96)

= inf
MG,o

0 (∆X)
I(X; X̂|Y) (97)

= inf
Q(∆X)

1
2

log
{

det(QX|YΣ−1
∆ )

}
, (98)

where

Q(∆X)
△
=

{
Σ∆ ⪰ 0 : QX|Y − Σ∆ ⪰ 0, trace

(
Σ∆

)
≤ ∆X

}
, (99)

Σ∆
△
=E

{(
X − X̂

)(
X − X̂

)T}
, (100)

QX|Y =QX − QX,YQ−1
Y QT

X,Y, (101)

QX,Y =QXCT, QY = CQXCT + DDT. (102)

The realization of the optimal reproduction X̂ ∈ MG,o
0 (∆X), which achieves RX|Y(∆X), is given in

Theorem 3a, also satisfies the properties stated under Theorem 3a. (i)–(iv).

Proof. See Appendix A.3.

Remark 2. Structural properties of the optimal realization of Theorem 4a. For the characterization
of the RDF RX|Y(∆X) of Theorem 7, which is achieved by X̂ defined in Theorem 3a in terms of the
matrices

{
Σ∆, QX|Y, H, QW

}
, we show in Corollary 2, the statements of Theorem 4a, i.e.,

(i) H = HT ⪰ 0, (103)

(ii)
{

Σ∆, ΣX|Y, H, QW
}

have spectral repres. with respect to the same unitary matrix UUT = Inx . (104)

To prove the structural property of Remark 2, we use the next corollary, which is
a degenerate case of [[22], Lemma 2] (i.e., the structural properties of test channel of
Gorbunov and Pinsker [23] nonanticipatory RDF of Markov sources).
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Corollary 1. Structural properties of realization of optimal X̂ of Theorem 4a. Consider the
characterization of the RDF RX|Y(∆X) of Theorem 7. Suppose QX|Y ≻ 0 and Σ∆ ⪰ 0 commute,
that is,

QX|YΣ∆ = Σ∆QX|Y. (105)

Then,

(1) H = Inx − Σ∆Q−1
X|Y = HT, QW = Σ∆HT = Σ∆H = HΣ∆ = QT

W ⪰ 0 (106)

(2)
{

Σ∆, QX|Y, H, QW
}

have spectral

decompositions with respect to the same unitary matrix UUT = Inx , UTU = Inx . (107)

that is, the following hold.

QX|Y = Udiag{λ1, . . . , λnx}UT, λ1 ≥ λ2 ≥ . . . ≥ λnx > 0, (108)

Σ∆ = Udiag{δ1, . . . , δnx}UT, δ1 ≥ δ2 ≥ . . . ≥ δnx ≥ 0, (109)

H = Udiag{1 − δ1

λ1
, . . . , 1 − δnx

λnx

}UT, (110)

QW = Udiag{
(
1 − δ1

λ1

)
δ1, . . . ,

(
1 − δnx

λnx

)
δnx}UT, and

(
1 − δk

λk

)
δk ≥ 0. (111)

Proof. See Appendix A.4.

In the next corollary, we re-express the realization of X̂ of Theorem 4a, which character-
izes the RDF of Theorem 7 using a translation of X and X̂ by subtracting their conditional

means with respect to Y, making use of property E
{

X
∣∣∣Y}

= E
{

X̂
∣∣∣Y}

of (78). This is the
the realization shown in Figure 3.

Corollary 2. Equivalent characterization of RX|Y(∆X). Consider the characterization of the RDF
RX|Y(∆X) of Theorem 7 and the realization of X̂ of Theorem 3a and Theorem 4a. Define the
translated RVs

X
△
= X − E

{
X
∣∣∣Y}

= X − QX,YQ−1
Y Y, X̂

△
= X̂ − E

{
X
∣∣∣Y}

= X̂ − QX,YQ−1
Y Y. (112)

Let

QX|Y = Udiag{λ1, . . . , λnx}UT, UUT = Inx , UTU = Inx , λ1 ≥ λ2 ≥ . . . ≥ λnx , (113)

X
△
= UTX, X̂

△
= UTX̂. (114)

Then,

X̂ = HX + W, (115)

I(X; X̂|Y) = I(X; X̂) = I(UTX; UTX̂), (116)

E
∥∥X − X̂

∥∥2
Rnx = E

∥∥X − X̂
∥∥2
Rnx = E

∥∥UTX − UTX̂
∥∥2
Rnx = trace

(
Σ∆

)
, (117)

where (H, QW) are given in Theorem 3a.
Further, the characterization of the RDF RX|Y(∆X) (98) satisfies the following equalities and inequality:
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RX|Y(∆X)
△
= inf

Q(∆X)
I(X; X̂|Y) = inf

Q(∆X)

1
2

log max
{

1, det(QX|YΣ−1
∆ )

}
(118)

= inf
E
∥∥X−X̂

∥∥2

Rnx ≤∆X

I(X; X̂) (119)

= inf
E
∥∥UTX−UTX̂

∥∥2

Rnx ≤∆X

I(UTX; UTX̂) (120)

≥ inf
E
∥∥UTX−UTX̂

∥∥2

Rnx ≤∆X

nx

∑
t=1

I(Xt; X̂t) (121)

Moreover, the inequality (121) is achieved if QX|Y ⪰ 0 and Σ∆ ⪰ 0 commute; that is, if (105)
holds, then

RX|Y(∆X) = inf
∑nx

i=1 δi≤∆X

1
2

nx

∑
i=1

log max
{

1,
λi
δi

}
(122)

where

diag{E
(

UTX − UTX̂
)(

UTX − UTX̂
)T

} = diag{δ1, δ2, . . . , δnx}. (123)

Proof. By Theorem 3a,

X̂ =HX +
(

I − H
)

QX,YQ−1
Y Y + W (124)

=H
(

X − QX,YQ−1
Y Y

)
+ QX,YQ−1

Y Y + W (125)

=⇒ X̂ − QX,YQ−1
Y Y = H

(
X − QX,YQ−1

Y Y
)
+ W (126)

=⇒ X̂ = HX + W. (127)

The last equation establishes (115). By properties of conditional mutual information and
the properties of optimal realization X̂, the following equalities hold.

I(X; X̂|Y) =I(X − QX,YQ−1
Y Y; X̂ − QX,YQ−1

Y Y|Y) (128)

=I(X; X̂|Y), by (112) (129)

=H(X̂|Y)− H(X̂|Y, X) (130)

=H(X̂)− H(X̂|Y, X), by indep. of (X, W) and Y (131)

=H(X̂)− H(X̂|X), by indep. of W and Y for fixed X (132)

=I(X; X̂) (133)

=I(UTX; UTX̂) (134)

=I(X1, X2, . . . , Xnx ; X̂1, X̂2, . . . , X̂nx ) (135)

≥
nx

∑
t=1

I(Xt; X̂t), by mutual independence of Xt, t = 1, 2, . . . , nx. (136)

Moreover, inequality (136) holds with equality if (Xt; X̂t), t = 1, 2, . . . , nx are jointly inde-
pendent. The average distortion function is then given by

E
∥∥X − X̂

∥∥2
Rnx = E

∥∥X − X̂ − QX,YQ−1
Y Y + QX,YQ−1

Y Y
∥∥2
Rnx (137)

= E
∥∥X − X̂

∥∥2
Rnx , by (112) (138)

= E
∥∥UTX − UTX̂

∥∥2
Rnx = trace

(
Σ∆

)
, by UUT = Inx . (139)
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By Corollary 1, if (105) holds, that is, QX|Y ≻ 0 and Σ∆ ⪰ 0 satisfy QX|YΣ∆ = Σ∆QX|Y (i.e.,
commute), then (106)–(111) hold, and by (122) we obtain

X̂
△
=UTX̂ = UT HX + UTW = UTX̂ = UT HUUTX + UTW (140)

=UT HUX + UTW, UT HU is diagonal and UTW has indep. components. (141)

Hence, if (105) holds, then the lower bound in (136) holds with equality because (Xt; X̂t), t ∈
Znx are jointly independent. Moreover, if (105) holds, then from, say, (118), the expressions
(122) and (123) are obtained. The above equations establish all claims.

Proposition 4. Theorem 4 is correct.

Proof. By invoking Corollary 2, Theorem 7 and the convexity of RX|Y(∆X) given by (122),
then we arrive at the statements of Theorem 4, which completely characterize the RDF
RX|Y(∆X) and construct a realization of the optimal X̂ that achieves it.

Next, we discuss the degenerate case, when the statements of Theorems 3, 4 and 7
reduce to the RDF RX(∆X) of a Gaussian RV X with square-error distortion function. We il-
lustrate that the identified structural property of the realization matrices

{
Σ∆, QX|Y, H, QW

}
leads to to the well-known water-filling solution.

Remark 3. Degenerate case of Theorem 7 and realization X̂ of Theorem 4a. Consider the
characterization of the RDF RX|Y(∆X) of Theorem 7, the realization of X̂ Theorem 3a, Theorem 3,
and assume X and Y are independent or Y generates the trivial information; i.e., the σ−algebra of
Y is σ{Y} = {Ω, ∅} or C = 0 in (15)–(18).

(a) By the definitions of QX,Y, QX|Y then

QX,Y = 0, QX|Y = QX . (142)

Substituting (142) into the expressions of Theorem 7, the RDF RX|Y(∆X) reduces to

RX|Y(∆X) =RX(∆X)
△
= inf

Q(∆X)
I(X; X̂) (143)

= inf
Qm(∆X)

1
2

log
{

det(QXΣ−1
∆ )

}
, (144)

where

Qm(∆X)
△
=

{
Σ∆ ⪰ 0 : QX ⪰ Σ∆, trace

(
Σ∆

)
≤ ∆X

}
, (145)

and the optimal reproduction X̂ reduces to

X̂ =
(

Inx − Σ∆Q−1
X

)
X + W, QX ⪰ Σ∆, (146)

QW =
(

Inx − Σ∆Q−1
X

)
Σ∆ ⪰ 0. (147)

Thus, RX(∆X) is the well-known RDF of a multivariate memoryless Gaussian RV X with square-
error distortion.

(b) For the RDF RX(∆X) of part (a), it is known [24] that Σ∆ and QX have a spectral
decomposition with respect to the same unitary matrix, that is,

QX = UΛXUT, Σ∆ = U∆UT, UUT = I, (148)

ΛX = diag{λX,1, . . . , λX,nx}, ∆ = diag{δ1, . . . , δnx}, (149)
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where the entries of (ΛX , ∆) are in decreasing order.
Define

Xp △
= UTX, X̂p △

= UTX̂, Wp △
= UTW. (150)

Then, a parallel channel realization of the optimal reproduction X̂p is obtained as follows:

X̂p = HXp +Wp, (151)

H = Inx − ∆Λ−1
X = diag{1 − δ1

λX,1
, . . . , 1 − δnx

λX,nx

}, (152)

QWp = H∆ = diag{
(
1 − δ1

λX,1

)
δ1, . . . ,

(
1 − δnx

λX,nx

)
δnx}. (153)

The RDF RX(∆X) is then computed from the reverse water-filling equations as follows.

RX(∆X) =
1
2

nx

∑
i=1

log
λX,i

δi
, (154)

where
nx

∑
i=1

δi = ∆X , δi =

{
µ, if µ < λX,i
λX,i, if µ ≥ λX,i

(155)

and µ ∈ [0, ∞) is a Lagrange multiplier (obtained from the Kuch–Tucker conditions).

4.2. Side Information Only at Decoder

In general, when the side information is available only at the decoder, the achievable
operational rate R∗(∆X) is greater than the achievable operational rate R1(∆X) when the
side information is available to the encoder and the decoder [2]. By Remark 1, R(∆X) ≥
RX|Y(∆X), and equality holds if I(X; Z|X̂, Y) = 0.

In view of the characterization of RX|Y(∆X) and the realization of the optimal repro-
duction X̂ of Theorem 3, which is presented in Figure 3, we observe that we can re-write
(49) as follows.

X̂ =HX +
(

Inx − H
)

QX,YQ−1
Y Y + W, (156)

=
(

Inx − H
)

QX,YQ−1
Y Y + Z (157)

= f (Y, Z) (158)

Z =HX + W, (159)

H =Inx − Σ∆Q−1
X|Y, QW = HΣ∆, defined by (51)–(63), (160)

PZ|X,Y =PZ|X , (X̂, Y) uniquely define Z, which implies I(X; Z|X̂, Y) = 0. (161)

Proposition 5. Theorem 5 is correct.

Proof. From the above realization of X̂ = f (Y, Z), we have the following. (a) By Wyner, see
Remark 1, then the inequalities (36) and (37) hold, and equalities hold if I(X; Z|X̂, Y) = 0.
That is, for any X̂ = f (Y, Z), and by the properties of conditional mutual information, then

I(X; Z|Y) (α)
= I(X; Z, X̂|Y) (162)
(β)
= I(X; Z|X̂, Y) + I(X; X̂|Y) (163)
(γ)
≥ I(X; X̂|Y), (164)
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where (α) is due to X̂ = f (Y, Z), (β) is due to the chain rule of mutual information, and
(γ) is due to I(X; Z|X̂, Y) ≥ 0. Hence, (72) is obtained (as in Wyner [2] for a tuple of scalar
jointly Gaussian RVs). (b) Equality holds in (164) if there exists an X̂ = f (Y, Z) such that
I(X; Z|X̂, Y) = 0, and the average distortion is satisfied. Taking X̂ = f (Y, Z) = (Inx −
H)QX,YQ−1

Y Y + Z, where Z = g(X, W) is specified by (156)–(160), then I(X; Z|X̂, Y) = 0
and the average distortion is satisfied. Since the realization (156)–(160) is identical to the
realization (73)–(76), then part (b) is also shown. (c) This follows directly from the optimal
realization.

5. Connection with Other Works and Simulations

In this section, we illustrate that for the special case of scalar-valued jointly Gaussian
RVs (X, Y), our results reproduce Wyner’s [2] results. In addition, we show that the
characterizations of the RDFs of the more general problems considered in [5,6] (i.e., where
a noisy version of source is available at the encoder) do not reproduce Wyner’s [2] results.
Finally, we present simulations.

5.1. Connection with Other Works

Remark 4. The degenerate case to Wyner’s [2] optimal test channel realizations. Now, we verify
that for the tuple of scalar-valued, jointly Gaussian RVs (X, Y), with square error distortion function
specified below, our optimal realizations of X̂ and closed form expressions for RX|Y(∆X) and R(∆X)
are identical to Wyner’s [2] realizations and RDFs (see Figure 4). Let us define:

X : Ω → X △
= R, Y : Ω → Y △

= R, X̂ : Ω → X̂ △
= R, (165)

dX(x, x̂) =
(
x − x̂

)2, (166)

X ∈ N(0, σ2
X), σ2

X > 0, Y = α
(

X + U
)

, (167)

U ∈ N(0, σ2
U), σ2

U > 0, α > 0. (168)

(a) RDF RX|Y(∆X): By Theorem 4a applied to (165)–(168), we obtain

QX = σ2
X , QX,Y = ασ2

X , QY = σ2
Y = α2σ2

X + α2σ2
U , QX|Y = cσ2

U , c
△
=

σ2
X

σ2
X + σ2

U
, (169)

H = 1 − ∆XQ−1
X|Y =

cσ2
U − d
cσ2

U
≡ a, QX,YQ−1

Y =
c
α

, HQX,YQ−1
Y =

ac
α

, (170)

W = HΨ = aΨ, QΨ = H−1∆X =
∆X
a

=
cσ2

U∆X

cσ2
U − ∆X

, cσ2
U − ∆X > 0. (171)

Moreover, by Theorem 4b the optimal reproduction X̂ ∈ M0(d) and RX|Y(d) are,

X̂ = a(X − c
α

Y) +
c
α

Y + aΨ, cσ2
U − ∆X > 0 (172)

RX|Y(∆X) =

{
1
2 log cσ2

U
∆X

, 0 < ∆X < cσ2
U

0, ∆X ≥ cσ2
U .

(173)

This shows our realization of Figure 3 degenerates to Wyner’s [2] realization of Figure 4a.
(b) RDF R(∆X): By Theorem 5b applied to (165)–(168), and using the calculations (169)–(172),
we obtain

X̂ = f (Y, Z) =
c
α
(1 − a)Y + Z by (172), (175), (174)

Z = a
(

X + Ψ
)

, (a, Ψ) defined in (170), (171) (175)

R(∆X) = RX|Y(∆X) = (173) by evaluating I(X; Z)− I(Y; Z), using (4) and (175). (176)
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This shows our value of R(∆X) and optimal realization X̂ = f (Y, Z) reproduce Wyner’s optimal
realization and the value of R(∆X) given in [2] (i.e., Figure 4b).

Ψ Ψ

(a) (b)

Figure 4. Wyner’s realizations of optimal reproductions for RDFs RX|Y(∆X) and R(∆X). (a) RDF
RX|Y(∆X): Wyner’s [2] optimal realization of X̂ for RDF RX|Y(∆X) of (165)–(168). (b) RDF R(∆X):
Wyner’s [2] optimal realization X̂ = f (X, Z) for RDF R(∆X) of (165)–(168).

In the following Remark, we show that, when S = X-a.s., the realization of the aux-
iliary RV Z, which is used in the proofs in [5,6] to show the converse coding theorem
does not coincide with Wyner’s realization [2]. Also, their realizations do not reproduce
Wyner’s RDF (this observation is verified for modified realization given in the correc-
tion note without proof in https://tiangroup.engr.tamu.edu/publications/ (accessed on
3 January 2024)). The deficiency of the realizations in [5,6] to show the converse was first
pointed out in [7], using an alternative proof.

Remark 5. Optimal test channel realization of [5,6]
(a) The derivation of [[5], Theorem 4], uses the following representation of RVs (see [[5], Equation (4)]
adopted to our notation using (19)):

X =
(

KxsKsy + Kxy

)
Y + KxsN1 + N2, S = KsyY + N1,

where N1 and N2 are independent Gaussian RVs with zero mean, N1 is independent Y and N2 is
independent of (S, Y).
To reduce [5,6] to the Wyner and Ziv RDF, we set X = S−a.s., which then implies, Kxs = I, N2 =
0 − a.s and Kxy = 0. According to the derivation of the converse [[5], Theorem 4] (see [[5], 3 lines
above Equation (32)] using our notation), the optimal realization of the auxiliary RV ZT used to
achieve the RDF is

ZT = UTX + N3, (177)

where QX|Y = Udiag(λ1, . . . , λn)UT and U is a unitary matrix, N3 ∈ N(0, QN3) such that QN3

is a diagonal covariance matrix, with elements given by (for the value of σ2
3,i, we considered the

one given in the correction note in https://tiangroup.engr.tamu.edu/publications/ (accessed on 3
January 2024) (although no derivation is given), where it is stated that σ2

3,i that appeared in the
derivation [[5], proof of theorem 4] should be multiplied by λi),

σ2
3,i =

min(λi, δi)

λi − min(λi, δi)
λi,

n

∑
i=1

min(λi, δi) = ∆X . (178)

(b) It is easy to verify that the above realization of ZT that uses the correction of footnote 6 is precisely
the realization given in [[6], Theorem 3A].
(c) Special Case: For scalar-valued RVs the auxiliary RV ZT reduces to

ZT = X + N3, N3 ∈ N
(
0,

∆XQX|Y
QX|Y − ∆X

)
, QX|Y > ∆X (179)

https://tiangroup.engr.tamu.edu/publications/
https://tiangroup.engr.tamu.edu/publications/
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Now, we examine whether the realization (179) corresponds to Wyner’s realization and induces
Wyner’s RDF. Recall that the Wyner’s [2] RDF, denoted by RX;Z|Y(∆X) and corresponding to
auxiliary RV Z, is

Z = HX + W, H =
QX|Y − ∆X

QX|Y
, W ∈ N(0, H∆X), (180)

RX;Z|Y(∆X) = I(X; Z|Y) = 1
2

log
(QX|Y

∆X

)
, ∆X ≤ QX|Y. (181)

Clearly, the two realizations (179) and (180) are different. Let R̂X;ZT|Y(∆X) denote the RDF
corresponding to the realization ZT. Then R̂X;ZT|Y(∆X) can be computed using I(X; ZT|Y) =
I(X; ZT)− I(Y; ZT) = −H(ZT|X) + H(ZT|Y) where H(·|·) denotes the conditional differential
entropy. Then, by using

QZT|X = QN3 =
∆XQX|Y

QX|Y − ∆X
, (182)

QZT|Y = QN3 + QX|Y. (183)

it is straightforward to show that

R̂X;ZT|Y(∆X) =− H(ZT|X) + H(ZT|Y) (184)

=− 1
2

log(2πe
∆XQX|Y

QX|Y − ∆X
) +

1
2

log(2πe
Q2

X|Y
QX|Y − ∆X

), ∆X < QX|Y (185)

However, we note that (i) unlike Wyner’s RDF given in (181), which gives RX;Z|Y(∆X) = 0 at
∆X = QX|Y, the corresponding R̂X;ZT|Y(∆X) = −∞ + ∞ at ∆X = QX|Y, and (ii) Wyner’s test

channel realization is Z = HX +W, H =
QX|Y−∆X

QX|Y
and W ∈ N(0, H∆X), which is different from

the test channel realization in (179). In particular, if QX|Y = ∆X , then H = 0 ⇒ W ∈ N(0, 0) and
Z = 0−a.s. On the other hand, for the test channel in (179), if QX|Y = ∆X , then N3 ∈ N

(
0,+∞

)
,

and thus the variance of ZT in (179) is not zero.
Further, in Proposition 6, we prove that for the multi-dimensional source, the test channel realization
in (179) does not achieve the RDF when water-filling is active, i.e., when at least one component of
the source is not reproduced.
(d) Special Case Classical RDF: The classical RDF is obtained as a special case if we assume X and Y
are independent or Y generates the trivial information {Ω, ∅}; i.e., Y is nonrandom. Clearly, in this
case, the RDF R̂S;ZT|Y(∆X) should degenerate to the classical RDF of the source X, i.e., RX(∆X),

and it should be that X̂ = ZT. However, for this case, (179) gives QZT = QX + ∆X QX
QX−∆X

=
Q2

X
QX−∆X

,
which is fundamentally different from Wyner’s degenerate, and correct values QX̂ = QZ =
max{0, QX − ∆X}.

Proposition 6. When S = X-a.s., Wyner’s [2] auxiliary RV Z and the auxiliary RV ZT given
in (177) i.e., the degenerate case of [5,6] (with the correction of footnote 6), are not related by an
invertible function. As a result, the computed RDF based on the two realizations are different.

Proof. Recall that, if the two auxiliary RVs ZT and Z are not related by an invertible
function, i.e., Z = f (ZT), where f (·) is invertible and both f and its inverse are measurable,
then I(X; ZT)− I(Y; ZT) ̸= I(X; Z)− I(Y; Z). It was shown earlier in this paper (and also
in [7]) that for the multivariate Wyner’s RDF, the auxiliary RV takes the form

Z = HX + W, W ∈ N(0, QW), (186)
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where QW = HΣ∆ = Udiag(σ2
w,1, . . . , σ2

w,n)UT, Σ∆ = Udiag(δ1, . . . , δn)UT, H = I −
Q−1

X|YΣ∆ = Udiag(h1, . . . , hn)UT and QX|Y = Udiag(λ1, . . . , λn)UT, where U is a unitary

matrix. The eigenvalues σ2
w,i and hi are given by

σ2
w,i =

min(λi, δi)(λi − min(λi, δi))

λi
, (187)

hi =
λi − min(λi, δi)

λi
, (188)

where ∑n
i=1 min(λi, δi) = ∆X . Hence, Equations (186), (187), and (188), imply that if σ2

w,i = 0
then hi = 0, and vice versa. Such zero values correspond to compression with water-filling.

On the other hand, from (177) and (178), if water-filling is active, then σ2
3,i =

λ2
i

λi−λi
. More-

over, by comparing Equations (187) with (178) and (188) with (177), it is straightforward to
show that f (·) = HU. If HU is not an invertible matrix for all values of the distortion ∆X ,
then I(X; ZT)− I(Y; ZT) ̸= I(X; Z)− I(Y; Z).

By (188) it is easy to show that if min(λi, δi) = λi, HU is not invertible. This implies
I(X; ZT)− I(Y; ZT) ̸= I(X; Z)− I(Y; Z).

5.2. Simulations

In this section, we provide an example to show the gap between the classical rate
distortion RX(∆X) defined in (154), the conditional distortion function RX|Y(∆X) (69), and
to verify the validity of Gray’s lower bound (8). Note that in Theorem 5 it is shown that
RX|Y(∆X) = R(∆X), and hence the plot for R(∆X) is omitted. For the evaluation, we pick a
joint covariance matrix (11) given by

Q(X,Y) =


2.5000 1.1250 0.4750 0.6125
1.1250 0.8125 0.2750 0.3063
0.4750 0.2750 0.1525 0.1625
0.6125 0.3063 0.1625 0.2031

, X : Ω → R2, Y : Ω → R2.

In order to compute the rates, we first have to find QX, QY, QXY and QX|Y. From the
definition of Q(X,Y) given in (11), it is easy to see that the covariance of X, Y, and the joint
covariance of X and Y are equal to

QX =

[
2.5000 1.1250
1.1250 0.8125

]
, QY =

[
0.1525 0.1625
0.1625 0.2031

]
, QXY =

[
0.4750 0.6125
0.2750 0.3063

]
.

Then, the conditional covariance QX|Y, which appears in RX|Y(∆X), can be computed from
(27). Using Singular Value Decomposition (SVD), we can calculate the eigenvalues of QX|Y.
For this case, the eigenvalues of the conditional covariance are {0.7538, 0.2}. Similarly, the
eigenvalues of QX can be determined. Finally, the eigenvalues of QX and QX|Y are passed
to the water-filling to compute the RX(∆X) and RX|Y(∆X), respectively.

The classical rate distortion, the conditional RDF, and the Gray’s lower bound for the
joint covariance above are illustrated in Figure 5. It is clear that RX|Y(∆X) is smaller, and as
the distortion ∆X increases, the gap between the classical and conditional RDF becomes
larger. Gray’s lower bound is achievable for some positive distortion values, as provided in
(71), i.e., for ∆X ∈ {∆X ∈ [0, ∞) : ∆X ≤ nxλnx}. Recall that the set of eigenvalues of QX|Y is
{0.7538, 0.2}, and the lower bound is achievable for ∆X ≤ 2 · 0.2 = 0.4; i.e., for these values
RX|Y(∆X) = RX(∆X)− I(X; Y).
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Figure 5. Comparison of classical RDF, RX(∆X), conditional RDF RX|Y(∆X) = R(∆X), and Gray’s
lower bound RX(∆X)− I(X; Y) (solid green line).

6. Conclusions

We derived nontrivial structural properties of the optimal test channel realizations
that achieve the optimal test channel distributions of the characterizations of RDFs for a
tuple of multivariate jointly independent and identically distributed Gaussian random
variables with mean-square error fidelity for two cases. Initially, the side information was
available at the encoder and decoder, and then it was only available at the decoder. Using
the realizations of the optimal test channels, we showed that when the side information is
known to the encoder and the decoder, it does not achieve a better compression compared
to when side information is only known to the decoder.
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Appendix A

Appendix A.1. Proof of Lemma 1

(a) By the chain rule of mutual information,

I(X; X̂, Y) =I(X; Y|X̂) + I(X; X̂) (A1)

=I(X; X̂|Y) + I(X; Y) (A2)

Since I(X; Y|X̂) ≥ 0, then from the above it follows

I(X; X̂) ≤I(X; X̂|Y) + I(X; Y) (A3)

I(X; X̂|Y) ≥I(X; X̂)− I(X; Y) (A4)
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The above shows (40). However, the inequality holds with equality if and only if I(X; Y|X̂) =
0, and this quantity is zero if and only if PX|X̂,Y = PX|X̂. Alternatively, we note the following:

I(X; X̂|Y) = E
[

log
PX|X̂,Y

PX|Y

]
= E

[
log

PX|X̂,Y

PX|Y

PX
PX

]
= E

[
log

PX|X̂,Y

PX
− log

PX|Y
PX

]
= E

[
log

PX|X̂
PX

− log
PX|Y
PX

]
, if and only if PX|X̂,Y = PX|X̂ .

This completes the statement of equality of (40); i.e., it establishes equality (41). (b) Consider
a test channel PX|X̂,Y such that E{||X − X̂||2Rnx ≤ ∆X, i.e., X̂ ∈ M0(∆X), and such that
PX|X̂,Y = PX|X̂ , for ∆X ∈ DC(X|Y) ⊆ [0, ∞). By (41) taking the infimum of both sides over

X̂ ∈ M0(∆X) such that PX|X̂,Y = PX|X̂, then (43) is obtained on a nontrivial surface, i.e.,
∆X ∈ DC(X|Y), which exists due to continuity and convexity of RX(∆X) for ∆X ∈ (0, ∞).
This completes the proof.

Appendix A.2. Proof of Theorem 2

(a) (1) By properties of conditional mutual information [18],

I(X; X̂|Y) (α)
= I(X; X̂, Xcm|Y) (A5)
(β)
= I(X; X̂|Xcm, Y) + I(X; Xcm|Y) (A6)
(γ)
≥ I(X; Xcm|Y) (A7)

where (α) is due to Xcm being a function of (Y, X̂), and a well-known property of the
mutual information [18] (β) is due to the chain rule of mutual information [18], and (γ) is
due to I(X; X̂|Xcm, Y) ≥ 0. Hence, inequality (45) is shown. (2) If (i) holds, i.e., X̂ = Xcm−
a.s, then I(X; X̂|Xcm, Y) = 0, and hence the inequality (45) becomes an equality. If (ii) holds,
since for fixed y ∈ Y the function e(y, ·) : X̂ → X , e(y, x̂) = xcm uniquely defines x̂, then
I(X; X̂|Xcm, Y) = 0, and the inequality (45) becomes an equality.
(b) The inequality (48) is well known due to the orthogonal projection theorem.

Appendix A.3. Proof of Theorem 7

Consider the realization (88). We identify the triple (H, G, QW) such that (84) or (87)
hold; i.e., we characterize the set MG,o

0 (∆X).

Case (i). cov(X̂, X̂|Y) ≻ 0, that is, rank(QX̂|Y) = nx. By Theorem 6, Case (i), we seek

the triple (H, G, QW) such that (84) holds, i.e., Xcm
= X̂ − a.s. Recall that Conditions 1 and

2 of Theorem 6 are sufficient for X̂ = Xcm.
Condition 1, i.e., (85). The left-hand side part of (85) is given by (this follows from mean-
square estimation theory, or an application of (26) with G = {Ω, ∅})

E
(

X
∣∣∣Y)

=E
(

X
)
+ cov(X, Y)cov(Y, Y)−1

(
Y − E

(
Y
))

(A8)

=cov(X, Y)cov(Y, Y)−1Y

=QX,YQ−1
Y Y (A9)

=QXCTQ−1
Y Y by model (15)–(18). (A10)
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Similarly, the right hand side of (85) is given by

E
(

X̂
∣∣∣Y)

=E
(

X̂
)
+ cov(X̂, Y)cov(Y, Y)−1

(
Y − E

(
Y
))

(A11)

=cov(X̂, Y)cov(Y, Y)−1Y

=
(

HQX,Y + GQY

)
Q−1

Y Y (A12)

=
(

HQXCT + GQY

)
Q−1

Y Y by (15)–(18) (A13)

Equating (A9) and (A12), then

E
(

X
∣∣∣Y)

= E
(

X̂
∣∣∣Y)

(A14)

=⇒ QX,YQ−1
Y Y =

(
HQX,Y + GQY

)
Q−1

Y Y by (A12) (A15)

=⇒ G =
(

I − H
)

QX,YQ−1
Y (A16)

=⇒ G =
(

I − H
)

QXCTQ−1
Y by (15)–(18). (A17)

Hence, G is obtained, and the reproduction is represented by

X̂ = HX +
(

I − H
)

QX,YQ−1
Y Y + W, (A18)

E
(

X̂
∣∣∣Y)

= QX,YQ−1
Y Y = E

(
X
∣∣∣Y)

, (A19)

X̂ − E
(

X̂
∣∣∣Y)

= HX − HQX,YQ−1
Y Y + W. (A20)

Condition 2, i.e., (86). To apply (86), the following calculations are needed.

QX|Y
△
= cov(X, X|Y) (A21)

= E
{(

X − E
(

X
∣∣∣Y))(

X − E
(

X
∣∣∣Y))T}

= QX − QX,YQ−1
Y QT

X,Y (A22)

= QX − QXCTQ−1
Y CQX by (15)–(18) (A23)

cov(X, X̂|Y) △
= E

{(
X − E

(
X
∣∣∣Y))(

X̂ − E
(

X̂
∣∣∣Y))T}

= E
{(

X − E
(

X
∣∣∣Y))(

X̂ − E
(

X
∣∣∣Y))T}

by (A19) (A24)

= E
{(

X − E
(

X
∣∣∣Y))(

X̂
)T}

by orthogonality (A25)

= QX HT − QX,YQ−1
Y QY,X HT by (A18), (A19) (A26)

= QX HT − QXCTQ−1
Y CQX HT by (15)–(18) (A27)

=
(

QX − QXCTQ−1
Y CQX

)
HT

= QX|Y HT. (A28)
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cov(X̂, X̂|Y) △
= E

{(
X̂ − E

(
X̂
∣∣∣Y))(

X̂ − E
(

X̂
∣∣∣Y))T}

(A29)

= HQX HT + QW − HQX,YQ−1
Y QY,X HT by (A20)

= HQX HT + QW − HQXCTQ−1
Y CQX HT by (15)–(18) (A30)

= H
(

QX − QXCTQ−1
Y CQX

)
HT + QW

= HQX|Y HT + QW . (A31)

By Condition 2 and (A28) and (A31),

cov(X, X̂|Y)cov(X̂, X̂|Y)−1 = Inx (A32)

=⇒ QX|Y HT
(

HQX|Y HT + QW

)−1
= Inx

=⇒ QW = QX|Y HT − HQX|Y HT (A33)

=⇒ QW =
(

Inx − H
)

QX|Y HT. (A34)

It remains to show QW = QT
W . This will follow shortly by identifying the equation for H as

follows. Conditions 1 and 2 imply

Σ∆ =cov(X, X|Y, X̂) (A35)

=cov(X, X|Y)− cov(X, X̂|Y)cov(X̂, X̂|Y)−1cov(X, X̂|Y)T, mboxby Propostion 1, (26) (A36)

=cov(X, X|Y)− cov(X, X̂|Y)T, by ( 86) (A37)

=QX|Y − HQX|Y , by (A28). (A38)

=⇒ HQX|Y = QX|Y − Σ∆ (A39)

=⇒ H = I − Σ∆Q−1
X|Y (A40)

By (A39), it then follows from (A33) that QW = QT
W . From the specification of G the

equation of QW given by (A33) and (A34) and HQX|Y, H given by (A39), and (A40) then
follows the realization of Theorem 4.(a) for the case QX|Y − Σ∆ ≻ 0. Properties (58)–(61)
are easily verified.

Case (ii). cov(X̂, X̂|Y) ⪰ 0 but not cov(X̂, X̂|Y) ≻ 0, that is, rank(QX̂|Y) = n1 < nx. We can
verify that the stated realization in Theorem 4.(a) is such that Condition (87) holds. By (83)
and the above calculations, we have

Xcm
= eG(Y, X̂) =E

(
X
∣∣∣Y)

+ cov(X, X̂|Y)
{

cov(X̂, X̂|Y)
}†(

X̂ − E
(

X̂
∣∣∣Y))

(A41)

=E
(

X
∣∣∣Y)

+
(

QX|Y − Σ∆

)(
QX|Y − Σ∆

)†(
X̂ − E

(
X̂
∣∣∣Y))

. (A42)

Since QX̂|Y = QX|Y −Σ∆, E
{(

X̂−E
(

X̂
∣∣∣Y))(

X̂−E
(

X̂
∣∣∣Y))T}

= QX|Y −Σ∆, and rank(L) =

n1, where L =
(

QX|Y − Σ∆

)(
QX|Y − Σ∆

)†
, then an application of Proposition 3, implies that

Condition (87) holds. Thus, we have established Theorem 3.(a) and the properties stated
under Theorem 4.(a). (i)–(iv). Finally, (96)–(101) are obtained from the realization, and hence
Theorem 3.(b) is achievable.

Appendix A.4. Proof of Corollary 1

(a) This part is a special case of a related statement in [22]. However, we include it
for completeness. By linear algebra [21], given two matrices A ∈ Sk×k

+ , B ∈ Sk×k
+ , then the

following statements are equivalent: (1) AB is normal and (2) AB ⪰ 0, where AB normal
means (AB)(AB)T = (AB)T(AB). Note that AB is normal if and only if AB = BA; i.e., they
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commute. Let A = UADAUT
A, B = UBDBUT

B, UAUT
A = Ik, UBUT

B = Ik,; i.e., there exists a
spectral representation of A, B in terms of unitary matrices UA, UB and diagonal matrices
DA, DB. Then, AB ⪰ 0 if and only if the matrices A and B commute; i.e., AB = BA, and A
and B commute if and only if UA = UB.
Suppose (105) holds. Letting A = QX|Y, B = Σ∆, then A = UADAUT

A, B = UBDBUT
B,

UAUT
A = Inx , UBUT

B = Inx , UA = UB. Since Q−1
X|Y = A−1 = UAD−1

A UT
A, then Σ∆Q−1

X|Y =

Q−1
X|YΣ∆; i.e., they commute. Hence,

HT
t =(Inx − (Σ∆Q−1

X|Y)
T = Inx − (Q−1

X|Y)
TΣT

∆ = Inx − Q−1
X|YΣ∆

=Inx − Σ∆Q−1
X|Y = H since QX|Y and Σ∆ commute. (A43)

By the definition of QW given in Theorem 4.(a), we have

QW = Σ∆HT = QT
W = HΣ∆. (A44)

Substituting (A43) into (A44), then

QW = Σ∆H. (A45)

Hence, {Σ∆, ΣX|Y, H, QW} are all elements of S p×p
+ having a spectral decomposition with

respect to the same unitary matrix UUT = Inx .
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