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Abstract: In the signal analysis context, the entropy concept can characterize signal properties for
detecting anomalies or non-representative behaviors in fiscal systems. In motor fault detection
theory, entropy can measure disorder or uncertainty, aiding in detecting and classifying faults or
abnormal operation conditions. This is especially relevant in industrial processes, where early motor
fault detection can prevent progressive damage, operational interruptions, or potentially dangerous
situations. The study of motor fault detection based on entropy theory holds significant academic
relevance too, effectively bridging theoretical frameworks with industrial exigencies. As industrial
sectors progress, applying entropy-based methodologies becomes indispensable for ensuring ma-
chinery integrity based on control and monitoring systems. This academic endeavor enhances the
understanding of signal processing methodologies and accelerates progress in artificial intelligence
and other modern knowledge areas. A wide variety of entropy-based methods have been employed
for motor fault detection. This process involves assessing the complexity of measured signals from
electrical motors, such as vibrations or stator currents, to form feature vectors. These vectors are
then fed into artificial-intelligence-based classifiers to distinguish between healthy and faulty motor
signals. This paper discusses some recent references to entropy methods and a summary of the most
relevant results reported for fault detection over the last 10 years.

Keywords: entropy; motor fault detection; artificial-intelligence-based classifiers; feature vectors

1. Introduction

Recently, the pursuit of more reliable and accurate techniques for motor fault detection
has increased, driving the critical role that electric machines play in various modern
industrial applications. Entropy-based methods have gained significant attention among
the many emerging methodologies due to their unique ability to capture complex system
behaviors and anomalies based on mathematical algorithms.

Entropy, which is a foundational concept that was introduced by Rudolf Julious
Emanuel Clausius, has been used as a fundamental tool in signal analysis by assessing the
variability and sparsity of signals in different knowledge areas. This pioneering work laid
the groundwork for new studies about entropy forms, like information entropy [1], fuzzy
entropy [2], and sample entropy [3], which have become useful tools in fault diagnosis
methodologies. In recent studies, there has been a growing emphasis on the application
of entropy-based methodologies for motor fault detection; for instance, in [4], a feature
extraction approach based on entropy was undertaken, where this paper introduced the
“weighted multi-scale fluctuation-based dispersion entropy (wtMFDE)” method. Designed
for condition monitoring in planetary gearboxes (PGB), wtMFDE harnesses the intricacies of
entropy to discern fault signatures from mixed noisy signals. This entropy-based technique
seamlessly integrates with adaptive and non-adaptive signal processing methodologies,
positioning it ahead of the previously established multi-scale fluctuation-based disper-
sion entropy (MSFDE) method. When evaluated alongside advanced classifiers, such as
multilayer perceptron (MLP), the wtMFDE approach capitalizes on entropy’s power, achiev-

Entropy 2024, 26, 299. https://doi.org/10.3390/e26040299 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26040299
https://doi.org/10.3390/e26040299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2785-5060
https://doi.org/10.3390/e26040299
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26040299?type=check_update&version=1


Entropy 2024, 26, 299 2 of 21

ing an unparalleled 100% classification accuracy for specific fault types, as exemplified
by sun chipping.

In [5], a fault diagnosis method for rolling bearings leveraging entropy-based tech-
niques is presented. Ensemble empirical mode decomposition (EEMD) initially dissects
training samples, with dispersion entropy (DE) quantifying their features. Principal com-
ponent analysis (PCA) further refines these features, and the Gath–Geva (GG) clustering
method categorizes them. When tested against various data sets, including the Case
Western Reserve University (CWRU) data set, the method demonstrated its robustness,
particularly with DE’s superior stability over other entropy measures and GG’s efficacy in
clear sample categorization.

In [6], a method to detect sparking faults in DC motors using stray flux signals is
proposed. It employs spectral entropy for signal analysis and introduces a severity indicator
based on Mel frequency cepstral coefficients. Evaluations under various motor conditions
highlight the method’s consistent effectiveness, positioning it as a promising tool for
integrating into DC motor diagnosis systems.

While entropy-based techniques have enriched our understanding of rotatory machine
dynamics, there remains a challenge in effectively capturing temporal details. To overcome
these temporal limitations, authors have developed multi-scale and multi-modal techniques
in order to obtain reliable results [7–9].

2. Entropy Methods
2.1. Shannon Entropy

The first concept of entropy was introduced by Shannon in order to calculate the
irregularity and self-similarity of signals. The Shannon entropy H(x) of a random signal x
with n possible outcomes is defined by

H(x) = −
n

∑
i=1

p(xi)log2(p(xi)) (1)

where p(xi) is the probability density function of the signal xi [10,11].
Shannon entropy can be used to measure a time series’s complexity. By definition,

Shannon entropy should be a monotonic increasing function and a continuous function.
Lastly, if the probability can be divided into the sum of individual values, so should the
Shannon entropy.

Thanks to its characteristics, Shannon entropy is a popular method, not only for fault
detection but also for other applications, such as for the analysis of biological signals [12],
computational applications [13], and environmental data [14].

Reported Works That Used Shannon Entropy

The reported works that used Shannon entropy for fault detection are mostly devoted
to analyzing vibration signals. Some of the most relevant works are listed in Table 1, where
the methods, type of signals, type of faults, and accuracy of the classification are detailed.
Notice that half of these works are proposed to detect bearing faults: inner race (IR), outer
race (OR), and ball.

2.2. Approximate Entropy

Approximate entropy measures the probability of occurrence of a new pattern based
on the observation of the embedding dimension m and the similarity coefficient r. ApEn
is a scale-invariant indicator, given that it relies on the similarity coefficient, which is an
equivalent of a standard deviation of a time series.
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Table 1. Motor fault detection using Shannon entropy.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2014. Hojat Heidari
Bafroui, et al. [15]

Continuous wavelet
transform + Shannon

entropy + feed-forward
MLP

Vibrations
(Amirkabir

University of
Technology)

Gearbox: chipped and
worn 94.13–97.21%

2016. David Camarena-
Martinez, et al. [11]

K-means cluster +
Shannon entropy Current (own) 1/2 BRB, 1 BRB, and

2 BRBs 95–100%

2017. Shaojiang
Dong, et al. [16]

Local mean
decomposition +

Shannon entropy +
fuzzy f-means

flustering

Vibrations (CWRU
and own) IR, OR, and ball damage 95%

2022. Yongbo
Li, et al. [17]

Local mean
decomposition +

Shannon entropy +
fuzzy f-means

flustering

Vibrations (CWRU
and own) IR, OR, and ball damage 95%

ApEn can be defined as follows [10,18]:

ApEn = ϕm(r)− ϕm+1(r) (2)

where ϕm(r) is the mean value of the logarithm pattern mean count and r is the similarity coeffi-
cient; on the other hand, ϕm(r) and ϕ(m+1)(r) can be calculated with the following expression:

ϕm(r) =
1

N − m + 1
×

N−m+1

∑
i=1

lncm
i (r) (3)

where cm
i (r) can be defined as follows:

cm
i (r) =

n
N − m + 1

; i, j = 1, 2, ..., N − m + 1, i ̸= j (4)

Previous studies demonstrated the advantages of the ApEn, such as its insensitivity to
inference and noise, its suitability for random and certain signals, and its stable estimation
without requiring large amounts of data.

ApEn is also employed for analyzing short data sets [19], computational applica-
tions [20], and brain signals [21–24].

Reported Works That Used ApEn

ApEn emerged as an improvement of Shannon entropy, and its use in the fault detec-
tion area has been devoted mainly to analyzing vibration signals. In Table 2, some of the
relevant works that used ApEn are listed. ApEn-improved methods, like refined composite
multi-scale approximate entropy (RCMSAE), are commonly employed together with meth-
ods like empirical mode decomposition (EMD) and probabilistic neural network (PNN).

2.3. Permutation Entropy

Permutation entropy (PE) considers a signal’s non-linear behavior and describes the
time series’s complexity by making a phase space reconstruction. PE only requires the order
of the amplitude of the signal. In this regard, this type of entropy has a faster calculation
time than others.
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Table 2. Motor fault detection using ApEn.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2007. Ruqiang
Yan, et al. [25] ApEn Vibrations (own) Structural bearing

damage Not reported

2013. ShuanFeng
Zhao, et al. [26] EMD + ApEn Vibrations (own) Bearing: spall-like faults Not reported

2016. Diego Luchesi
Sampaio, et al. [18] ApEn Vibrations (own) Cracked shaft and

misalignment Not reported

2017. Xueli An, et al. [27]
ApEn + k-nearest

neighbor + adaptive
local iterative filtering

Vibrations (own) IR, OR, and ball bearing
fault 100%

2021. Jianpeng
Ma, et al. [28]

RCMSAE + improved
coyote

optimization-PNN

Vibrations (CWRU
and own)

IR, OR (CWRU and own),
and ball bearing faults

94.9% (CWRU) and
93.9% (own)

PE can be expressed in terms of the relative frequency p(π) for each permutation π as
follows [10,29]:

PE = −∑ p(π)log2 p(π) (5)

p(π) =
num{Xm

i has type π, i|1, 2, ..., N − m + 1}]
N − m + 1

(6)

PE is an adequate indicator of the complexity of signals from nonlinear processes;
furthermore, PE’s advantages have been highlighted in other works, such as its high calcu-
lation efficiency, its robust ability against noise, and its good complexity estimation [10].

Some other applications of PE include the analysis of electroencephalographic sig-
nals [30–32] and financial time series [33,34].

Reported Works That Used PE

Permutation-entropy-based methods for fault detection are listed in Table 3. Notice
that all of these works are devoted to the detection of bearing faults by using vibration
signals, as is common in most of the works that use PE [35–40].

Together with PE, methods for signals processing and fault classification are used,
such as continuous wavelet coefficient (CWC), ensemble empirical mode decomposition
(EEMD), support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS),
flexible analytical wavelet transform (FAWT), composite multi-scale permutation entropy
(CMSWPE), grey wolf optimizer (GWO) SVM, composite multi-scale permutation entropy
(CMSPE), reverse cognitive fruit fly optimization algorithm (RCFOA), particle swarm
optimization (PSO), improved multi-scale permutation entropy (IMSPE), and extreme
learning machine (ELM). Moreover, not only is PE employed but also improved methods,
such as multi-scale permutation entropy (MSPE), generalized composite multi-scale per-
mutation entropy (GCMSPE), and time-shift multi-scale weighted permutation entropy
(TSMSWPE) [41].

2.4. Sample Entropy

Sample entropy (SE) measures the irregularity of a signal independent of the similarity
coefficient r and the embedding dimension m.
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Table 3. Motor fault detection using PE.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2013. Shuen-De
Wu, et al. [29]

MSE, MSPE, MBSE,
and MSRMS + SVM Vibrations (CWRU) IR, OR, and ball bearing

damage 96.01–99.79%

2014.
Vakharia, et al. [42] CWC + PE + SVM Vibrations (CWRU) IR, OR, and ball bearing

damage 97.5%

2016. Yongbo
Li, et al. [43]

Local mean
decomposition + MSPE

+ Laplacian score +
improved SVM based

on binary tree

Vibrations (CWRU) IR, OR, and ball bearing
damage 97.5%

2017. Jinde
Zheng, et al. [44]

GCMSPE + Laplacian
score + PSO-based SVM

Vibrations (CWRU
and own)

IR, OR (CWRU and own),
and ball bearing damage

(CWR)

88.89–100% (CWR)
and 96.67–100%

(own)

2018. Moshen
Kuai, et al. [45]

Complete EEMD with
adaptative noise + PE +

ANFIS
Vibrations (own)

Gear faults: broken, one
missing tooth, and tooth

root crack
80–100%

2019. Wenhua
Du, et al. [46]

SOF logic classifier +
MSPE + LDA

Vibrations (CWRU
and own)

IR, OR, and ball damage
(CWRU); cracked and
peeled bearing (own)

92.66–100% (CWR)
and 97.75–99.25%

(own)

2019. Jinde
Zheng, et al. [47] CMSWPE + ELM

Vibrations (CWRU
and Suzhou
University)

IR, OR (CWRU and
Suzhou U.), and ball

bearing damage (CWR)

90.48–100% (CWR)
and 100% (Suzhou U.)

2019. Xiaoming
Xue, et al. [48] PE + VMD + RF Vibrations (CWRU) IR, OR, and ball damage

(CWRU)
98.44% and 99.09%
for different loads

2019. Zhilin
Dong, et al. [49]

TSMSWPE +
GWO-SVM Vibrations (CWRU)

IR, OR, and ball damage
(CWRU and Soochow

University)

100% (CWR) and
93.5–100%

(Soochow U.)

2020. Snehsheel
Sharma, et al. [50] PE + FAWT + SVM Vibrations (CWRU) IR, OR, and ball damage 95–100%

2020. Cheng
He, et al. [51]

CMSPE + RCFOA-ELM
+ PSO-VMD Vibrations (CWRU) IR, OR, and ball damage 97.33–98.67%

2021. Amrinder Singh
Minhas, et al. [52]

IMSPE + dominant
statistical parameters +

extreme gradient
boosting

Vibrations (CWRU
and own)

IR, OR (CWRU and own),
and ball damage

(CWRU)

96.6–100% (CWRU)
and 96.2–100% (own)

2021. Govind
Vashishtha, et al. [53] ELM + SWD + PE Vibrations (CWRU

and own)

IR, OR (CWRU and own),
and ball damage

(CWRU)
100%

Consider a signal S of data length N expressed by S = {x1, x2, ..., xN}. A pattern is
formed by m sequential points of the signal S; for example, Xi = [xi, xi+1, ..., xi+m+1] would
represent the ith pattern. Hence, the pattern space X is defined as follows:

X =


x1 x2 · · · xm
x2 x3 · · · xm+1
...

...
. . .

...
xN−m+1 xN−m+2 · · · xN

 (7)
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SE can be calculated as follows:

SE = −ln(
Bm+1(r)

Bm(r)
) (8)

where Bm(r) represents the mean value of the pattern mean count; Bm(r) and Bm+(r) are
calculated according to the following expression:

Bm(r) =
1

N − m
1

N − m + 1

N−m

∑
i=1

N−m+1

∑
j=1

G(dij, r) (9)

where dij = ∥Xi − Xj∥ and G(·) is the Heaviside function. In the context of SE, the sug-
gestion of use for r is to select a value of 0.2 times the standard deviation of the data
set [54].

Besides the motor’s fault detection, other applications that rely on SE’s properties are
biomedical [55,56], electrical vehicles [57,58], and weather data series [59].

Reported Works That Used SE

In the following Table 4, a summary of some of the most relevant works that utilized
SE and improved methods, such as generalized refined composite multi-scale sample
entropy (GRCMSSE) for motor fault detection, is presented. Most of them aim to detect
bearing faults, but two of the cited works propose the detection of gear and impeller faults.

Table 4. Motor fault detection using SE.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2015. Minghong
Han, et al. [60]

Local mean
decomposition + SE +

SVM
Vibrations (CWRU) IR, OR, and ball bearing

damage 100%

2017. Qing Ni, et al. [61]
SE, root-mean-square

value, crest,
and kurtosis

Vibrations (Lu Nan
wind farm) IR bearing fault Not reported

2019. Yongbo
Li, et al. [62]

MSSE + Vold–Kalman
filter + least squares

SVM
Vibrations (UESTC) Gear fault: cracked tooth

and distributed wear 100%

2019. Zhaoyi
Guan, et al. [63]

EMD + SE + deep belief
network Vibrations (own) Structural faults 99–100%

2020. Zhenya
Wang, et al. [64]

GRCMSSE + S-isomap +
Grasshopper
optimization

algorithm-SVM

Vibrations
(Drivetrain
diagnostics
simulator)

IR, OR, and ball bearing
faults 100%

2.5. Fuzzy Entropy

Fuzzy entropy (FE) emerged as an improvement of the sample entropy because FE
uses a Gaussian function for measuring the similarity between two time series instead of
the Heaviside function that SE uses.

Given a signal u(i), i = 1, 2, ..., N of N samples, a vector set {Xm
i , i = 1, 2, ..., N −m+ 1}

is formed. Each vector has m sequential elements from the signal u(i) in the form of

Xi
m = {u(i), u(i + 1), ..., u(i + m − 1)} − uo(i) (10)

where uo(i) represents the average of the vector Xm
i .
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Then, the similarity FE for a time series is defined as follows:

Dm
ij = µ(dm

ij , n, r) = e−ln2(dm
ij /r)n

(11)

where dm
ij is the distance between Xm

i and Xm
j , r represents the similarity tolerance, and

µ(dm
ij , n, r) is a fuzzy function.

On the other hand, the function φm(n, r) is expressed as

φm(n, r) =
1

N − m

N−m

∑
i−1

(
1

N − m − 1

N−m

∑
j=1,j ̸=i

Dm
ij ) (12)

Finally, FE can be defined as follows [10]:

FE(m, n, r, N) = lnφm(n, r)− lnφm+1(n, r) (13)

FE considers the ambiguous uncertainties from the highly irregular time series, making
it insensitive to background noise.

Fuzzy entropy has been applied in different fields, like image processing [65,66],
the analysis of biomedical signals [67–70], and decision making [31,71,72].

Reported Works That Used FE

In Table 5, a summary of some of the most relevant works that utilized FE for motor
fault detection is presented. Most of them aim to detect bearing faults, but two of the cited
works propose the detection of gear and impeller faults.

Some of the improved methods based on FE are multi-scale fuzzy entropy (MSFE),
refined composite multi-scale fuzzy entropy (RCMSFE), generalized composite multi-
scale fuzzy entropy (GCMSFE), multi-scale refined composite standard deviation fuzzy
entropy (MSRCSDFE), and multivariable multi-scale fuzzy distribution entropy (MMSFDE).
Although these methods extend the scope of FE by adding, for example, the multi-scale or
the generalized analysis, all of them are still driven by FE principles [73–83].

Table 5. Motor fault detection using FE.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2016. Huimin
Zhao, et al. [84] EEMD + MSFE + SVM Vibrations (CWRU) IR, OR, and ball bearing

damage 95–100%

2018. Wu
Deng, et al. [85] EWT + FE + SVM Vibrations (simulated

signals)
IR, OR, and ball bearing

damage 90–100%

2018. Jinde
Zheng, et al. [86]

Sigmoid-based
RCMSFE + t-SNE +

VPMCD
Vibrations (CWRU) IR, OR, and ball bearing

damage 100%

2018. Yu Wei, et al. [74]

Intrinsic
characteristic-scale

decomposition +
GCMSFE + Laplacian

score + PSO-SVM

Vibrations (Harbin
Intitute of

Technology and
CWRU)

IR, OR (Harbin I.T. and
CWR), and impeller
faults (Harbin I.T.)

98.13–100% (Harbin
I.T.) and 100&

(CWRU)

2019. Amrinder Singh
Minhas, et al. [87] MSRCSDFE + EEMD Vibrations (own) IR and OR 92.77–100%

2021. Xu Chen, et al. [88]

RCMSFE +
out-of-sample
embedding +
MPA-SVM

Vibrations (CWRU
and own) IR and OR 100%
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Table 5. Cont.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2021. Yanli Ma, et al. [28] MMSFDE + Fisher
score + SVM

Vibrations (Hunan
University and own)

Drive gear (case 1) and
bearing + gear fault

(case 2)

97.71–100% (case 1)
and 92.5–99.5%

(case 2)

2022. Yongbo
Li, et al. [17] SFE and MSFE

Vibrations (ADVC
Laboratory and

Paderborn
University)

OR faults: sharp trench,
drilling, pitting (ADVC),

and rubbing
(Paderborn U.)

99.88% (ADVC) and
99.3% (Paderborn U.)

2.6. Energy Entropy

Energy entropy (EE) estimates a signal’s complexity based on its intrinsic mode
functions (IMFs). Its calculation starts with the energy of the ith IMF as follows:

Ei =
m

∑
j=1

|cij|2 (14)

where m is the length of the IMF. Then, the total energy of the n IMFs is given by

E =
n

∑
i=1

Ei (15)

Finally, the energy entropy Hen of the signal is calculated based on the following
expression:

Hen = −
n

∑
j=1

pilog(pi) (16)

where pi = Ei/E represents the percentage of the ith IMF relative to the total energy
entropy [10].

The energy entropy provides very good results when analyzing non-stationary and
nonlinear complex signals; for example, if a fault in the motor provokes a change in the
signal’s frequency, the energy distribution will change. Hence, energy entropy can be used
to effectively portray the signal’s characteristics [89].

Other fields besides fault detection where the EE has been applied are milling chatter
detection [90], computational chemistry [91], and thermomechanics applications [92].

Reported Works That Used EE

Some of the latest relevant works that used energy entropy for fault detection are
listed in Table 6. Unlike the previously mentioned methods, by using EE, more types of
faults have been detected, such as misalignment, imbalance, and bearing faults. It is also
important to recall that one of these works relied on current signals for the analysis [93,94].

Table 6. Motor fault detection using EE.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2017. Yancai
Xiao, et al. [89]

IEMD energy entropy +
PSO + SVM Vibrations (own)

Parallel, angle,
and comprehensive

misalignment
98.913%

2017. Yancai
Xiao, et al. [93]

Dual-tree complex
wavelet transform + EE

+ PSO
Current (simulation)

Parallel, angle,
and comprehensive

misalignment
96%
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Table 6. Cont.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2018. Bin
Pang, et al. [95]

CFBEE + improved
singular spectrum
decomposition +

Hilbert transform +
SVM

Vibrations (own)
Local rubbing, oil film
whirl, and imbalance

fault
100%

2021. Shuzhi
Gao, et al. [96]

IEE + triangulation of
amplitude attenuation +

correlation analysis
Vibrations (own) IR, OR, and ball bearing

damage 91–99.67%

Improved methods for EE are also proposed for fault detection, such as characteristic
frequency band energy entropy (CFBEE) and improved energy entropy (IEE).

2.7. Dispersion Entropy

The dispersion entropy (DE) of a signal x of n samples can be calculated with the
following steps [97,98]:

First, the signal x is normalized between 0 and 1. To do so, a sigmoid function is
usually employed for this mapping. Some works have reported using normal cumulative
distribution functions (NCDF) for this step [97,98]. Hence, the time series y is obtained
from the NCDF of the signal x, which is defined as follows:

yi =
1

σ
√

2π

∫ xi

−∞
e
−(t−µ)2

2σ2 dt (17)

where σ represents the standard deviation and µ is the mean of the signal x.
The second step consists of mapping the time series y to c classes by multiplying yi by

c, then adding 0.5 and rounding to the nearest integer, as follows:

zc
i = round(c × yi + 0.5) (18)

where zc
i represents the ith term of the classified time series zc.

In the third step, the time series zm,c
j is constructed based on the embedding dimension

m and the time delay d:

zm,c
j = {zc

j , zc
j+d, ..., zc

j+(m−1)d}j = 1, 2, .., N − (m − 1)d (19)

Then, zm,c
j is mapped into a dispersion pattern πv0v1...vm−1 :

zc
i = v0, zc

i+d = v1, zc
i+2d = v2, ..., zc

i+(m−1)d = vm−1 (20)

Here, the number of feasible dispersion patterns is cm given that each zm,c
j is conformed

by m elements, which can be an integer from to c.
The fourth step corresponds to the calculation of the relative frequency of each disper-

sion pattern πv0v1...vm−1 , which is given by

p(πv0v1...vm−1) =
num{j|j ≤ N − (m − 1)d, zm,c

j has type πv0v1...vm−1}
N − (m − 1)d

(21)

Finally, the DE is calculated as follows:

DE(x, m, c, d) = −
cm

∑
π=1

p(πv0v1...vm−1)× ln(p(πv0v1...vm−1)) (22)
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where m represents the embedding dimension, c is the number of classes, and d is the
time delay.

Some works prefer to express the DE in its normalized form, which is given by

NDE(x, m, c, d) =
DE(x, m, c, d)

ln(cm)
(23)

The advantages of DE have been used for other applications, such as the analysis of
biomedical signals [70] and image processing [99].

Reported Works That Used DE

In Table 7, relevant works that used DE for motor fault detection are listed. Notice that
DE has become popular, especially during the last few years; authors rely on this method
due to its high stability.

Some of the improved methods based on DE are hierarchical symbolic dynamic
entropy (HSDE), improved multi-scale dispersion entropy (IMSDE), refined composite
multi-scale dispersion entropy (RCMSDE), weighted refined composite multi-scale dis-
persion entropy (WRCMSDE), time-shift multi-scale dispersion entropy (TSMSDE), multi-
scale dispersion entropy (MSDE), and stacking modified composite multi-scale dispersion
entropy (SMCMSDE).

Table 7. Motor fault detection using DE.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2018. Mostafa
Rostaghi, et al. [97] HSDE Vibrations (CWRU,

University of Tabriz)

IR, OR, ball bearing
faults (CWRU),

and medium worn and
broken teeth of a spur

gear of the gearbox
(U. of Tabriz)

Not reported

2018. Xiaoan
Yan, et al. [98]

IMSDE + mRMR +
ELM Vibration (CWRU) IR, OR, and ball bearing

faults +98%

2019. Weibo
Zhang, et al. [100]

RCMSDE + fast EEMD
+ mRMR + random

forest classifier
Vibration (CWRU) IR, OR, and ball bearing

faults 96.6–100%

2020. Amrinder Singh
Minhas, et al. [101]

Complementary EEMD
+ WRCMSDE,

WRCMSFE, WRCMSPE
+ SVM

Vibration (CWRU
and own) and

acoustics (own)

IR, OR (CWRU and own),
and ball bearing faults

(CWRU)
70–100%

2020. Kaixuan
Shao, et al. [102]

VMD + TSMSDE +
SVM + vibrational

Harris hawks
optimization

Vibration (CWRU
and Cincinnati IMS)

IR, OR, and ball bearing
faults

96.56–98.81% (CWRU)
and 79–100% (IMS)

2021. Snehsheel
Sharma, et al. [7]

Multi-scale fluctuation
based DE + local mean
decomposition + SVM

Vibration (CWRU) IR, OR, and ball bearing
faults 98–100%

2021. Xiong
Zhang, et al. [5]

EEMD + MSDE + PCA
+ Gath–Gera clustering

method

Vibration (CWRU,
QPZZ-II,

and Cincinnati IMS)

OR (all), IR, and ball
bearing faults (CWRU

and QPZZ-II)
100%
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Table 7. Cont.

Year and Author Methods Type of Signal
(Database) Type of Fault Reported Accuracy

2021. Hongchuang
Tan, et al. [103]

SMCMSDE +
equilibrium

optimizer-SVM +
complete EEMD with

adaptative noise

Vibration (CWRU
and own)

IR, OR, and ball bearing
fault

99.75% (CWRU) and
99.9% (own)

2021. Qiang
Xue, et al. [104]

HDE + joint
approximate

diagonalization of
eigenmatrices

Vibration (CWRU
and own)

IR, OR, and ball bearing
faults 100%

2021. Fuming
Zhou, et al. [105]

MHMSFDE +
multi-cluster feature

selection + GWO based
kernel ELM

Vibration (CWRU
and QPZZ-II)

IR, OR, ball bearing
faults (CWRU), pinion

wear, gearwheel pitting,
gearwheel tooth

breaking, and gearwheel
pitting + pinion wear

(QPZZ-II)

100% (CWRU) and
98.5–99.24%
(QPZZ-II)

2.8. Multi-Scale Entropy

The multi-scale version of any type of entropy method consists of the calculation of
the entropy at different scales. To this end, a coarse-grained data sequence y(s)j should be

obtained by a coarse-grained process of the original signal x. Then, y(s)j can be expressed as
follows [64]:

y(s)j =
1
s

js

∑
i=(j−1)s+1

xi; j = 1, 2, ...,
N
s

(24)

where s represents a scale factor. Therefore, the signal x is transformed into a coarse grain
sequence of length N/s.

The multi-scale entropy (MSE) accuracy is constrained by the single-scale method;
however, it is usually preferred over the one-scale analysis because it provides more
information despite the increase in the calculation time.

The type of applications where the MSE can be used are as vast as the applications of
each single-scale method, such as the analysis of time series [106,107]; biological signals,
such as heartbeats and encephalographics [108–110]; image processing [111]; and hydro-
logic applications [112]. There are some interesting works on improvements around the
MSE, as presented in [113], where the authors successfully diagnosed gearbox and milling
tool faults. The method utilizes a novel technique that combines MPE with contrastive learn-
ing (LE), yielding results that improve the accuracy of traditional entropy-based methods.

Finally, in Table 8, a summary of each method’s advantages and disadvantages is
presented to provide a wider panorama of its characteristics.

2.9. Practical Example: Applied Entropy Methods for Broken Bar Detection

To provide an example of the use of different entropy methods and their effects on the
classification accuracy, an implementation of three of the methods presented in this paper
was conducted: Shannon entropy, approximate entropy, and energy entropy. These three
methods were applied to the same signals from a motor with a healthy bar (HB) and with a
broken bar (BB), without any preprocessing. A set of 50 current signals in the steady state
were analyzed, as shown in Figure 1. Further explanation about the experimental setup to
acquire these signals can be found in [114], where the authors performed an early broken
bar detection. As can be observed from Figure 1, the signals were quite similar; therefore,
an entropy method could be helpful to discern between the two conditions of the motor.
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Figure 1. Current signals from the two conditions of a motor: healthy and one broken bar.

Results are displayed in Figure 2 comparing the entropy for the two conditions of the
motor. Notice that the use of entropy allowed for a separability of data in a similar way
that other traditional methods could provide, such as motor current signature analysis.
According to the nature of the signal and the aim of the analysis, a certain method of
entropy could be more useful than others. For example, energy entropy could be more
suitable for this application since it only depends on the intrinsic characteristics of the
signal. It is worth noticing from Figure 2 that the separability of data using this type
of entropy is better than using Shannon or approximate entropy. Actually, approximate
entropy is commonly employed for vibration signals, which are usually more irregular than
current signals. Also, according to the characteristics of the phenomenon, certain entropy
methods could be discarded; for example, when analyzing a high-frequency phenomenon,
dispersion entropy is not adequate.

HB BB

1

1.5

2

2.5

3

10
-3 Shannon entropy

HB BB

0.15

0.2

0.25

0.3

Approximate entropy Energy entropy

Figure 2. Comparison of three different entropy methods for a practical case of broken bar fault detection.

The selection of the type of entropy is also dependent on its application. A signal
with higher separability, such as the comparison between a healthy motor and a motor
with a medium level of damage, could be successfully classified with more straightforward
methods, such as Shannon entropy, or a faster method, such as permutation entropy.
But regarding a more complex analysis, a multi-scale analysis could be necessary.

3. The Role of Entropy in the Fault Diagnosis of Electromechanical Systems: Challenges
and Advances

As a statistical measure, entropy is capable of quantifying the complexity of signals,
which is closely related to the functional status of an electromechanical system. Conse-



Entropy 2024, 26, 299 13 of 21

quently, entropy emerges as a promising non-parametric tool to extract characteristics
from a system. Recently, several studies applied entropy indices for fault diagnosis, detec-
tion, and prediction in electric machines. Some of them employed more than one entropy
index to obtain a multi-modal analysis. Despite the existence of several entropy-based
algorithms for fault detection, most of them are based on Shannon entropy for random
or deterministic behavior detection in signals from electric machines. The different forms
of entropy employed for fault detection are usually based on the assessment of aleatory
and complexity metrics of the signals, and any change in these indices could be related to
important changes in the system behavior.

Depending on the nature of the signals, a specific index may be more useful than
other; for this reason, it is necessary to apply different entropy metrics in combination with
different classification methods, with the aim to cover all the possible faults. The entropy
indices described in Sections 2.1–2.7 are commonly used for fault detection. Unfortunately,
the classical models of these entropy-based indices are only useful for analyzing signals at
one level (monoscale analysis), which does not provide the complete feature extraction of
the signal.

To overcome the limitations of a monoscale analysis, multiscale-entropy-based meth-
ods were proposed, such as the method presented in Section 2.8. Despite their advantages,
there exist some problems with this kind of method, like indeterminacy problems and insta-
bility for short signals, in addition to its low sensibility for high-frequency systems. Based
on these, the main challenge and the current research status on entropy-based methods is a
multiresolution analysis, which is needed to obtain indices that entirely describe the dynam-
ics of the signal under study based on all of its oscillatory components [115–118]. In general,
new entropy-based methods aim to provide information about the signal’s state at various
levels of oscillation, and thus, better extract the characteristics of the signals under study in
order to detect a fault. It is important to mention that the actual trend is the combination of
entropy indices with artificial intelligent methods to improve the accuracy of the control
systems and fault classification. Another important aspect about entropy based methods is
the computational complexity, which allows for online hardware implementations.

However, the advantages of entropy-based methods are evident, in contrast with other
methodologies, due the capability of the entropy indices to give information about the
dynamics at different abstraction levels of the electromechanic systems. Some of the infor-
mation aspects provided by entropy indices are systems complexity, stability and regularity,
changes detection, resilience to disturbances, hidden patterns and structures, anomalies
detection, future events prediction, and model validation, among others. In contrast to
other methods, the calculation of entropy indices does not require a large amount of data,
nor does it depend on the model and parameters of electric machines.

Table 8. Advantages and disadvantages of different entropy methods.

Method Advantages Disadvantages

ShanEn
Allows for the assessment of the quantity of
information in a signal. It is the basis of the

following methods.

Its value only depends on the elements with
probability ̸= 0; therefore, some elements could

be neglected.

ApEn Uncertainty estimation regarding future
observations based on past observations.

Dependent on the selection of the
hyperparameters. Dependent on the length of

the signal. Self-similarity feature [87].

SE Better performance and less sensitivity to data
length compared with ApEn

Dependent on selecting the hyperparameters.
Similarity criteria dependent on the Heaviside

function [50].
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Table 8. Cont.

Method Advantages Disadvantages

FuzzyEn

Better consistency and less dependent on the
signal length compared with SE. Reflects the
complexity and self-similarity features of a
signal in a better way than SE and ApEn.

Dependent on the selection of parameters.

PerEn High computational speed. Suitable for
stationary and non-stationary signals.

Low discrimination capacity given that it does
not consider amplitude values.

DE Faster calculation speed than PerEn.
High stability.

Only analyzes the low-frequency part of
the signal.

MSE Analyzes the signal in multiple scales
Efficiency dependent on the single-scale

entropy method. Slower method given the
entropy calculation within a range of scales.

4. Future Trends

Over the years, the use of entropy methods has evolved, with the aim to obtain
more accurate and robust results. To this end, improved methods were proposed, such as
generalized, multi-scale, composite, hierarchical, and multivariable entropy methods.

Some works also proposed combined methods in order to overcome the drawbacks
of using only one type of entropy. But most importantly, entropy methods are usually
employed together with signal processing techniques, such as PCA, EMD, and EWT.
Artificial-intelligence-based classifications are also commonly used with entropy methods
to achieve good classification accuracies when more than one type of fault is being analyzed.

As a summary, some of the trends observed during the elaboration of this work are
listed below:

• Most of the entropy methods are applied to vibration signals. This can be attributed
to the nature of the signal and the straightforward acquisition. The presence of a
fault in a motor usually increases the complexity of the vibration signal, given that it
would introduce abnormal components in the spectrum. In this regard, it is expected
that vibration analysis remains the preferred type of signal for entropy-based fault
detection techniques.

• Bearing fault detection is the type of fault that is mostly covered in entropy-based
works. Other faults analyzed with entropy methods are gearbox faults, misalignment,
and broken rotor bars, among other less common faults. However, these types of fault
represent less than 10% of the work compared with those that analyze bearing faults.

• PE and FE are the most popular methods for motor fault detection. During the last few
years, DE has also gained attention. Therefore, it is expected that these would remain
the preferred methods, along with their variations, such as composite, weighted,
refined, generalized, and multi-variable approaches.

• The development of new entropy-based methods for multiresolution analysis to cover
more than one oscillation pattern.

• Multimodal analysis in combination with artificial intelligence techniques for monitor-
ing, control, and multiple fault detection.

• Adaptive entropy-based techniques capable of dynamically adjusting to change the
operational conditions of electric motors.

• Emphasis on computational complexity improvements based on algorithmic optimiza-
tion techniques.

• Hardware implementation of entropy-based methodologies for online monitoring.

It is important to mention that aspects such as algorithmic optimization and hard-
ware implementation are fundamental areas of study. These areas aim to adapt fault
detection technology to the emerging trends in electrical systems, particularly in line with
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the philosophy of smart systems that embrace trends like Industry 4.0 and the Internet
of things.

5. Conclusions

Different entropy methods were proposed over the years, with some of them aiming
to improve the performance of the older ones. In general, the entropy methods are used for
extracting characteristics of the motor’s signal to provide a classification that is commonly
based on artificial intelligence.

Vibration analysis stands out as the preferred signal type among all the entropy
methods reported in this work. In the future, it would be valuable for the state of the art to
propose analysis based on other physical variables, such as the current or flux.

In the same regard, the analysis of a wider range of faults would be valuable given
that over the years; the focus has been maintained on bearing fault detection.

Fuzzy entropy and dispersion entropy are some of the most reliable methods for
entropy-based fault detection thanks to their high stability and reliability, and they are
not dependent on the selection of parameters, like the sample entropy and approximate
entropy. Permutation entropy is another popular method, and it has shown very good
classification accuracies when applied with a classification method like SVM or ELM.

Multi-scale entropy has been preferred in recent years given that it provides more
accurate results than a one-scale entropy analysis. Although selecting a multi-scale analysis
could have the drawback of a slower calculation, usually, this is not relevant given that the
progression of a fault, such as a bearing fault, is rather slow compared with the computation
times of the method.

As machinery includes more sophisticated technologies and the demand for unin-
terrupted services by society increases, it is imperative to find new efficient and accurate
mechanisms for fault detection and classification. Entropy-based methods are poised to
play a pivotal role in the next generation of monitoring and control systems in conjunc-
tion with machine learning methods due to their capability to detect changes in dynamic
systems over time.
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Abbreviations
The following abbreviations are used in this manuscript:

ANFIS Adaptive neuro-fuzzy inference system
ApEn Approximate entropy
CFBEE Characteristic frequency band energy entropy
CMSPE Composite multi-scale permutation entropy
CMSWPE Composite multi-scale weighted permutation entropy
CWC Continuous wavelet coefficients
CWRU Case Western Reserve University
DE Dispersion entropy
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EE Energy entropy
EEMD Ensemble empirical mode decomposition
ELM Extreme learning machine
EMD Empirical mode decomposition
EWT Empirical wavelet transform
FAWT Flexible analytical wavelet transform
GCMSFE Generalized composite multi-scale fuzzy entropy
GCMSPE Generalized composite multi-scale permutation entropy
GRCMSE Generalized refined composite multi-scale sample entropy
GCMSSDE Generalized composite multi-scale symbol dynamic entropy
GCMSWPE Generalized composite multi-scale weighted permutation entropy
GRCMSSE Generalized refined composite multiscale sample entropy
GWO Grey wolf optimizer
HSDE Hierarchical symbolic dynamic entropy
HDE Hierarchical dispersion entropy
HSE Hierarchical sample entropy
HPE Hierarchical permutation entropy
IEE Improved energy entropy
IEMD Improved empirical mode decomposition
IMSDE Improved multi-scale dispersion entropy
IMSPE Improved multi-scale permutation entropy
IR Inner race
ISSD Improved singular spectrum decomposition
IMS Intelligence maintenance systems
LDA Linear discriminant analysis
MBSE Multi-band spectrum entropy
MHSE Marginal Hilbert spectrum entropy
MLP Multi-layer perceptron
WSST Wavelet semi-soft threshold
MPA Marine predators algorithm
MSE Multi-scale entropy
MSDE Multi-scale dispersion entropy
MSFDE Multi-scale fluctuation-based dispersion entropy
MSFE Multi-scale fuzzy entropy
MSSFE Multi-scale symbolic fuzzy entropy
MMSFDE Multivariable multi-scale fuzzy distribution entropy
MSPE Multi-scale permutation entropy
MSSE Multi-scale sample entropy
MSSDE Multi-scale symbolic dynamic entropy
MSRCSDFE Multi-scale refined composite standard deviation fuzzy entropy
MHMSFDE Multivariable hierarchical multi-scale fluctuation dispersion entropy
mRMR Max-relevance min-redundancy
OR Outer race
PCA Principal component analysis
PE Permutation entropy
PGB Planetary gearboxes
PSO Particle swarm optimization
PNN Probabilistic neural network
RCFOA Reverse cognitive fruit fly optimization algorithm
RCMSAE Refined composite multi-scale approximate entropy
RCMSDE Refined composite multi-scale dispersion entropy
RCMSFE Refined composite multi-scale fuzzy entropy
RF Random forest
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SFE Symbolic fuzzy entropy
SVM Support vector machine
SWD Swarm decomposition
SMCMSDE Stacking modified composite multi-scale dispersion entropy
t-SNE t-distributed stochastic neighbor embedding
TSMSWPE Time-shift multi-scale weighted permutation entropy
TSMSDE Time-shift multi-scale dispersion entropy
VPMCD Variable predictive models based discrimination
WMSFDE Weighted multi-scale fluctuation-based dispersion entropy
WRCMSDE Weighted refined composite multi-scale dispersion entropy
WRCMSDE Weighted refined composite multi-scale dispersion entropy
WRCMSFE Weighted refined composite multi-scale fuzzy entropy
WRCMSPE Weighted refined composite multi-scale permutation entropy
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