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Procedures for the Exploitation of the Entropy Inequality:
Korteweg Fluids and Strain-Gradient Elasticity as Examples
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85100 Potenza, Italy; vito.cimmelli@unibas.it

Abstract: In continuum physics the dissipation principle, first proposed by Coleman and Noll in
1963, regards second law of thermodynamics as a unilateral differential constraint on the constitutive
equations. In 1996, Muschik and Ehrentraut provided a rigorous proof of such an approach under
the assumption that, at an arbitrary instant, t0, in an arbitrary point, P0, of a continuous system, the
entropy production is zero if, and only if, P0 is in thermodynamic equilibrium. In 2022, Cimmelli
and Rogolino incorporated such an assumption in a more general formulation of the second law of
thermodynamics. In this paper, we prove that the same conclusions hold if both the fundamental
balance laws and their gradients are substituted into the entropy inequality. Such a methodology is
applied to analyze the strain-gradient elasticity.

Keywords: entropy principle; dissipation inequality; weakly non-local constitutive equations;
non-reversible direction axiom; extended Coleman–Noll procedure; strain-gradient elasticity

1. Introduction
1.1. Thermodynamic Compatibility of Korteweg Fluids

In this subsection, we prove that the classical Coleman–Noll method to obtain the
consequences of the second law of thermodynamics on the mathematical models of continua
fails in dealing with weakly non-local constitutive equations. To achieve this task, we
consider the so-called Korteweg fluids, along with the density gradients in the stress
tensor model capillarity effects. For such systems, in 1901, D. J. Korteweg postulated the
constitutive equation [1],

Tij = (−p + αϱ,kk + βϱ,kϱ,k)δij + δϱ,iϱ,j + γϱ,ij, (1)

with Tij as the components of the stress tensor, ϱ(x, t) as the mass density, and p as the
pressure. The material functions α, β, γ, and δ depend on mass density and temperature, ϑ,
and the symbol f,i in Equation (1) denotes the partial derivative of function f with respect
to the spatial coordinate xi.

Our aim here is not to develop a general thermodynamic model of such fluids, since
an extensive study of them has been carried out in [2]. Here, we aim to illustrate the math-
ematical procedure used in [2], whose mathematical foundations will be analyzed more
extensively in Sections 2 and 3. Hence, in order to make this illustration more immediate,
we make some simplifying assumptions that allow the reader to avoid cumbersome calcu-
lations. Readers who are interested in the complete analysis, without any approximation,
are referred to [2].

If the heat supply is zero, the classical local balances of mass and energy,

ϱ,t + ϱ,ivi + ϱvi,jδij = 0, (2)
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ϱε ,t + ϱε ,ivi − Tijvi,j + qi,i = 0, (3)

hold, with vi and qi as the components of the velocity and of the heat flux, respectively, and
ε as the specific internal energy.

Furthermore, the dissipation inequality,

ϱs,t + ϱs,ivi + Ji,i ≥ 0, (4)

with s as the specific entropy and Ji as the components of the entropy flux, must be satisfied
for an arbitrary thermodynamic process.

Remark 1. Here we do not discuss the problem of the definition of the entropy for general
non-equilibrium processes but, according to the fundamental literature of early continuum
thermodynamics [3–6], we assume that the entropy production for an arbitrary material particle, c,
of a continuum system in the absence of heat source can be expressed as

d
dt

∫
c

ρsdc +
∫

∂c
Jinidσ =

d
dt

∫
c

ρsdc +
∫

c
Ji,idc , (5)

where s is the internal entropy per unit of mass and Ji is the local entropy flux through the boundary
of c. In [4,5], it is assumed that Ji = qi/ϑ, with ϑ the absolute temperature. Here, we do not specify
the form of Ji in order to incorporate both the classical expression, qi/ϑ, and also that postulated by
Müller, Ji = qi/ϑ + ki, wherein ki is known as entropy extraflux [7]. The arbitrariness of domain c
and the regularity of the integrand function in (5), together with the requirement that the right-hand
side of (5) is non-negative, lead to the inequality (4). For a recent discussion on non-equilibrium
entropy, we refer the reader to [8] (see Section 4 therein).

In order to prove that for such a class of materials the classical Coleman–Noll procedure [4]
fails in investigating the thermodynamic compatibility, we apply it to the materials de-
scribed by the set of constitutive equations,

F = F(ϱ, ϱ,k, ε, ε ,k), (6)

where F is an element of the set
{

Tij, qi, s, Ji
}

. The Korteweg fluids described by Equation (1)
fall into this class if α = γ = 0.

Remark 2. It is important to remark that this is a very simple model of Korteweg fluid. Moreover,
we are aware that Korteweg fluids are only a subclass of more general higher-grade fluids, whose
thermodynamic compatibility would require the introduction of a hyperstress [9]. Here, we follow
the approach of Dunn and Serrin [10], with the sole difference being that we do not introduce any
energy extra flux accounting for the so-called interstitial working, as those authors do. Indeed, the
focus of the present paper is the mathematical structure of weakly non-local constitutive theories,
which will be developped in Sections 2 and 3 below. The simple model analyzed here allow us to
show to the reader that the classical exploitation procedures of the second law do not allow one to
prove that they are compatible with thermodynamics without modifying the classical balances of
energy or entropy.

In the following section,we develop our calculations by using the index notation and
not the compact one, which uses vectors. As we will see immediately, although a little
bit longer, such a symbology allows one to better understand the mathematical structure
of the quantities entering our equations and, in the case of tensors, the part of them that
must vanish.

Due to (6), the local balance of energy (3) may be rewritten as

ϱε ,t + ϱε ,ivi − Tijvi,j +
∂qi
∂ϱ

ϱ,i +
∂qi
∂ϱ,j

ϱ,ji +
∂qi
∂ε

ε ,i +
∂qi
∂ε ,j

ε ,ji = 0. (7)
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The constitutive Equation (6) must be assigned in such a form to satisfy the inequal-
ity (4), namely,

ϱ

(
∂s
∂ϱ

ϱ,t +
∂s

∂ϱ,i
ϱ,it +

∂s
∂ε

ε ,t +
∂s

∂ε ,i
ε ,it

)

+ϱvi

(
∂s
∂ϱ

ϱ,i +
∂s

∂ϱ,j
ϱ,ji +

∂s
∂ε

ε ,i +
∂s

∂ε ,j
ε ,ji

)

+
∂Ji
∂ϱ

ϱ,i +
∂Ji
∂ϱ,j

ϱ,ji +
∂Ji
∂ε

ε ,i +
∂Ji
∂ε ,j

ε ,ji ≥ 0.

(8)

Since both ϱ and ε enter the state space, their balances must be substituted into the
inequality (8) in order to characterize the process that is being constrained.

Remark 3. Let us observe that, in order to prove Equation (3), the balance of linear momentum
must be used. Thus, Equation (3) also includes information on such a balance.

Then, the coupling of Equations (2), (3), and (8) yields

ϱ
∂s

∂ϱ,i
ϱ,it + ϱ

∂s
∂ε ,i

ε ,it +

〈
∂Ji
∂ϱ,j

− ∂s
∂ε

∂qi
∂ϱ,j

+ ϱvi
∂s

∂ϱ,j

〉
ϱ,ij

+

〈
∂Ji
∂ε ,j

− ∂s
∂ε

∂qi
∂ε ,j

+ ϱvi
∂s

∂ε ,j

〉
ε ,ji +

(
∂s
∂ε

Tij − ϱ2 ∂s
∂ϱ

δij

)
vi,j

−∂s
∂ε

(
∂qi
∂ϱ

ϱ,i +
∂qi
∂ε

ε ,i

)
+

∂Ji
∂ϱ

ϱ,i +
∂Ji
∂ε

ε ,i ≥ 0,

(9)

wherein the symbol
〈

Fij
〉

denotes the symmetric part of the tensor function, Fij.
The obtained inequality is linear with respect to the higher derivatives of the state

functions ϱ,it, ε ,it, ϱ,ji, ε ,ji, and vi,j, which are completely arbitrary [4].

Remark 4. The 27-dimensional vector y =
{

ϱ,it, ε ,it, ϱ,ji, ε ,ji, vi,j

}
is called by Muschik and

Ehrentraut the precess-direction vector. With such a definition, these authors postulate the following
amendment to the second law of thermodynamics: “Except in equilibria, reversible process-directions
in the state space do not exist” [11].

Thus, the inequality (9) can be satisfied along arbitrary thermodynamic processes if,
and only if, all the coefficients of the elements of y vanish, and the remaining part of (9) is
non-negative. Then we have the following:

Theorem 1. The entropy inequality (8) is satisfied, whatever the thermodynamic process is, if, and
only if, the following thermodynamic restrictions hold:

s = s(ϱ, ε), (10)〈
∂Ji
∂ϱ,j

− ∂s
∂ε

∂qi
∂ϱ,j

〉
= 0, (11)

〈
∂Ji
∂ε ,j

− ∂s
∂ε

∂qi
∂ε ,j

〉
= 0, (12)

Tij = ϱ2
(

∂s
∂ε

)−1 ∂s
∂ϱ

δij, (13)
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−∂s
∂ε

(
∂qi
∂ϱ

ϱ,i +
∂qi
∂ε

ε ,i

)
− ϱ2 ∂s

∂ϱ
vi,i +

∂Ji
∂ϱ

ϱ,i +
∂Ji
∂ε

ε ,i ≥ 0. (14)

It is evident from Equations (10) and (13) that the stress tensor is completely local,
and this leads to the conclusion that the constitutive Equation (1) is incompatible with the
second law of thermodynamics. Several different proposals can be found in the literature
to circumvent such a problem. All of them modify the energy balance (3) by introducing
generalized energy or entropy fluxes [10,12]. An alternative approach, which changes the
mathematical method but leaves the remaining balance equations unaltered, also regards
the gradients of such equations as constraints, up to the order of the gradients entering the
state space. That way, the number of constraints coincides with the number of independent
thermodynamic variables. In this way, the first-order weakly non-local materials described
by Equation (6) are compatible with the second law of thermodynamics [2]. In order to
avoid lengthy and cumbersome calculations, here we prove such a statement under a
semi-linear approximation, which consists of neglecting the terms constituted by a function
defined on the state space multiplied by the product of two or more spatial derivatives.
Thus, we calculate the gradients of Equations (2) and (3) by neglecting such terms. Thus,
we obtain

ϱ,it + ϱ,ikvk + ϱ,kvk,i + ϱ,ivk,jδkj + ϱvk,ijδkj = 0, (15)

ϱε ,it + ϱε ,kivk − Tkjvk,ji +
∂qk
∂ϱ

ϱ,ki +
∂qk
∂ϱ,j

ϱ,jki +
∂qk
∂ε

ε ,ki +
∂qk
∂ε ,j

ε ,jki = 0, (16)

wherein, according to the approximation established above, the partial derivatives of the
Cauchy stress do not enter Equation (16).

The substitution of Equations (15) and (16) into (9) leads to the extended inequality〈
∂s

∂ε ,i

∂qk
∂ϱ,j

〉
ϱ,jki +

〈
∂s

∂ε ,i

∂qk
∂ε ,j

〉
ε ,jki +

〈
∂s

∂ε ,i
T,kj + ϱ2 ∂s

∂ϱ,i
δ,kj

〉
ij

vk,ij

+

〈
∂Ji
∂ϱ,j

− ∂s
∂ε

∂qi
∂ϱ,j

+ ϱvi
∂s

∂ϱ,j
− ϱvj

∂s
∂ϱ,i

〉
ϱ,ij +

〈
∂Ji
∂ε ,j

− ∂s
∂ε

∂qi
∂ε ,j

+ ϱvi
∂s

∂ε ,j
− ϱvj

∂s
∂ε ,i

〉
ε ,ji

+

(
∂s
∂ε

Tij − ϱ2 ∂s
∂ϱ

δij −
∂s

∂ϱ,j
ϱ,i −

∂s
∂ϱ,k

ϱ,kδij

)
vi,j

−∂s
∂ε

(
∂qi
∂ϱ

ϱ,i +
∂qi
∂ε

ε ,i

)
+

∂Ji
∂ϱ

ϱ,i +
∂Ji
∂ε

ε ,i ≥ 0,

(17)

wherein the symbol
〈

Fkij

〉
ij

denotes the symmetric part of the tensor function, Fkij, with

respect to the couple, (i, j). In such a case, the entropy inequality is linear in the higher
derivatives ϱ,ij, ε ,ij, and vi,j, and in the highest derivatives, i.e., the spatial derivatives whose
order is the highest one, ϱ,ijk, ε ,ijk, and vi,jk. Since such derivatives can assume arbitrary
values [2], we can enunciate the following theorem:

Theorem 2. The entropy inequality (17) is satisfied whatever the thermodynamic process is, if, and
only if, the following thermodynamic restrictions hold:〈

∂s
∂ε ,i

∂qk
∂ϱ,j

〉
= 0, (18)

〈
∂s

∂ε ,i

∂qk
∂ε ,j

〉
= 0, (19)
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〈
∂s

∂ε ,i
T,kj + ϱ2 ∂s

∂ϱ,i
δ,kj

〉
ij
= 0, (20)

〈
∂Ji
∂ϱ,j

− ∂s
∂ε

∂qi
∂ϱ,j

+ ϱvi
∂s

∂ϱ,j
− ϱvj

∂s
∂ϱ,i

〉
= 0, (21)

〈
∂Ji
∂ε ,j

− ∂s
∂ε

∂qi
∂ε ,j

+ ϱvi
∂s

∂ε ,j
− ϱvj

∂s
∂ε ,i

〉
= 0, (22)

Tij =

(
∂s
∂ε

)−1
(

ϱ2 ∂s
∂ϱ

+
∂s

∂ϱ,k
ϱ,kδij +

∂s
∂ϱ,j

ϱ,i

)
, (23)

−∂s
∂ε

(
∂qi
∂ϱ

ϱ,i +
∂qi
∂ε

ε ,i

)
− ϱ2 ∂s

∂ϱ
vi,i +

∂Ji
∂ϱ

ϱ,i +
∂Ji
∂ε

ε ,i ≥ 0. (24)

It is evident that the restrictions above do not prevent s to depend on the gradient of
ϱ. The constitutive equation for the Cauchy stress in Equation (1), with α = γ = 0, can be
achieved by taking

s = s0(ϱ, ε) + s1(ϱ)ϱ,kϱ,k + s2(ε)ϱ,kϱ,k (25)

with
ϱ2ϑ

∂s0

∂ϱ
= −p,

1
2

ϱ2ϑ
∂s1

∂ϱ
+ s1 + s2 = β, s1 + s2 = δ, (26)

wherein the thermodynamic relation
∂s
∂ε

=
1
ϑ

has been used.

Remark 5. By relaxing the semi-linear approximation, the restrictions above would be more
complex. However, our aim here is not to develop a complete thermodynamic model of second-grade
Korteweg fluids, for which we refer the reader to [2], but simply to show how the inclusion of the
gradient extensions into the dissipation inequality ensures the thermodynamic compatibility.

1.2. Second Law and Extended Procedures

Let B be a continuous body whose evolution in spacetime is governed by a system of
balance laws. Here, and in the following, we assume that memory effects are negligible for
B, so that the constitutive equations that characterize its material properties are functions
defined on a local-in-time state space, and not on a space of histories. Our results do not
cover the non-equilibrium history effects addressed by the celebrated theory of Coleman [6],
but one should note that this is not the sole way of accounting for non-equilibrium effects.
To this end, the presence of gradients in the state space allows one to represent inhomo-
geneities that are typical of non-equilibrium situations. For instance, inhomogeneity in the
temperature produces a heat flux, which pushes the system out of equilibrium. According
to such a point of view, in addition, the actions at distance are supposed to be weakly
non-local, in such a way that the response of B in a point depends only on the value of
the state functions and of their spatial gradients in a small neighborhood of that point.
In this way, the evolution of B in space and time can be described by a system of partial
differential equations, with unknown functions defined in R3 × [0, ∞]. Finally, one should
note that the Coleman approach to materials with memory relies on an additional physical
assumption, the fading memory (see Section 5 in [6]), which makes the resulting system
of integro-differential equations mathematically manageable. However, as proven by
Fichera [13], such a hypothesis depends on the choice of a suitable function space and, for
elastic materials, it becomes completely meaningless due to the impossibility of choosing,
on the basis of pure physical considerations, an appropriate function space.
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Thus, here we limit ourselves to consider a system of partial differential equations. It
can be represented as follows,

zβ,t + zβ,jvj + Φβ
k,k = rβ, β = 1 . . . N, (27)

with vj as the components of the velocity field on B entering the total time derivative,

Φβ
k as the components of the flux of zβ, and rβ as the production of zβ (for the sake of

simplicity, we assume that the supplies are zero). The equations above can represent, for
instance, the Grad hierarchical system of extended thermodynamics [14]. However, if
the productions, rβ, are equal to zero, it can also represent the balances of mass, linear
momentum, and energy of rational thermodynamics in the absence of source terms [15].
We suppose that the fluxes, Φβ

k , and the productions, rβ, depend on N unknown fields,
zα(xj, t), and on their spatial derivatives, zα,j(xj, t). Their constitutive equations must
be assigned in accordance to constraint (4). Such a requirement, which is known as the
dissipation (or entropy) principle, was clearly established for the first time by Coleman
and Noll in 1963 [4], and later on by Coleman and Mizel [5]. Coleman established the
same principle in dealing with materials with memory [6]. It is worth observing that even
though the dissipation principle is a useful operative assumption it is not dictated by a
general physical law. Thus, in principle, nothing prevents one from regarding the second
law as a restriction on the thermodynamic processes by selecting, among the solutions
of Equation (27), those that can actually occur in nature. In 1996, in order to decide the
correct approach, Muschik and Ehrentraut [11] proposed the amendment to the second
law mentioned above. It expresses the physical evidence that in a continuum body the
entropy production is zero if, and only if, it is in thermodynamic equilibrium. Under the
validity of the amendment, those authors proved that the second law of thermodynamics
necessarily restricts the constitutive equations and not the thermodynamic processes. In
2022, Cimmelli and Rogolino, with the aim of formulating this important result within a
geometric framework, generalized this result by including such an amendment in a more
general formulation of second law of thermodynamics [16]. Finally, in 2023, Cimmelli
further generalized the previous result by encompassing non-regular processes and shock-
wave propagation [17]. It is worth noting that in [16,17] only classical (i.e., not extended)
exploitation procedures have been considered. Thus, the aim of the present article is to
reformulate the Muschik and Ehrentraut theorem in such a way as to include the extended
exploitation procedures illustrated above.

The paper runs as follows.
In Section 2, we provide an overview of a new thermodynamic framework for non-

equilibrium thermodynamics developped in [16]. In Section 3, we prove the Muschik
and Ehrentraut theorem in the case of extended exploitation procedures. In Section 4,
we apply an extended procedure to investigate the thermodynamic compatibility of the
strain-gradient elasticity [18,19]. Finally, conclusions and future perspectives are illustrated
in Section 5.

2. A Geometric Framework for Thermodynamics

In this section, we resume the geometric framework developed in [16] in order to
formulate our main result. To this end, we start by providing some basic definitions already
introduced in [16].

The N-dimensional vector space, Ct, structured as a finite-dimensional manifold,
spanned by the solutions zα(xj, t) of Equation (27), is called the space of the configurations
at the instant t.

The disjoint union
C =

⋃
t∈[0, ∞]

{t} × Ct, (28)

structured as a fiber bundle over [0, ∞], is called the configuration bundle.
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If Ct = C ∀t, then C has the topology of the Cartesian product,

C = [0, ∞]× C. (29)

A thermodynamic process, π, of initial point τ0 and duration τ is a vector valued
function, π : t ∈ [τ0, τ0 + τ] ⊆ [0, ∞] → zα(xj, t) ∈ C.

For t0 ∈]τ0, τ0 + τ], a restricted thermodynamic process, p, of initial point t0 and
duration τ0 + τ − t0 is a vector-valued function, p : t ∈ [t0, τ0 + τ] ⊆ [0, ∞] → zα(xj, t) ∈ C.
In order to solve system (27), suitable constitutive equations for the quantities Φα

k and rα

must be assigned on a chosen state space.
The 4N-dimensional vector space,

Σt =
{

zα(xj, t), zα,j(xj, t)
}

, (30)

for any value of t is the state space at the instant t, while the disjoint union,

S =
⋃

t∈[0, ∞]

{t} × Σt, (31)

is its thermodynamic bundle.
On Σt, the balance Equation (27) and the local form of the second law of thermody-

namics (local entropy inequality) take the forms

zα,t + zα,kvk +
∂Φα

j

∂zβ
zβ,j +

∂Φα
k

∂zβ,k
zβ,kj = rα, (32)

σ(s) = ϱ
∂s

∂zα
zα,t + ϱ

∂s
∂zα,j

zα,jt + ϱ
∂s

∂zα
zα,jvj + ϱ

∂s
∂zα,k

zα,kjvj +
∂Jk
∂zα

zα,k +
∂Jk

∂zα,j
zα,jk ≥ 0. (33)

Equation (27) can be rewritten in compact form as

Aβα(S)yα = Cβ(S), (34)

with the 10N × 1 column vector function

yα ≡
(

zα,t, zα,jt, zα,kj

)T
, (35)

the N × 1 column vector

Cβ ≡ rβ − zβ,jvj −
∂Φβ

j

∂zα
zα,j, β = 1 . . . N, (36)

and the N × 10N matrix

Aβα ≡

δβα,
∂Φβ

j

∂zα,k

 (j, k = 1, 2, 3), (37)

where Cβ and Aβα depend on the elements of S .
Analogously, inequality (33) can be rearranged as follows,

Bα(S)yα ≥ D(S), (38)

with the 10N × 1 column vector

Bα(S) ≡
(

ρ
∂s

∂zα
, ρ

∂s
∂zα,j

,
(

ρ
∂s

∂zα,k
vi +

∂Ji
∂zα,k

))T

(39)
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and the scalar function
D(S) ≡ −ρ

∂s
∂zα

zα,jvj −
∂Ji
∂zα

zα,i. (40)

The local-in-time 10N-dimensional vector space,

Ht =
{

zα,t, zα,mt, zα,jk

}
, (41)

and the fiber bundle,
H =

⋃
t∈[0, ∞]

{t} × Ht, (42)

represent the space of the higher derivatives that, at the instant t, satisfy balance Equation (34)
and its fiber bundle, respectively. Moreover, the 6N-dimensional equilibrium subspace of
Ht and its fiber bundle are provided by

Et =
{

zα,jk

}
(43)

and
E =

⋃
t∈[0, ∞]

{t} × Et. (44)

The local-in-time 10N-dimensional vector space at time t,

Wt =
{

zα,t, zα,mt, zα,jk

}
, (45)

and the fiber bundle,
W =

⋃
t∈[0, ∞]

{t} × Wt, (46)

represent the vector space of the higher derivatives that, at the instant t, satisfy the entropy
inequality Equation (33) and its fiber bundle, respectively. Moreover, the 6N-dimensional
equilibrium subspace of Wt and its fiber bundle are provided by

Êt =
{

zα,jk

}
(47)

and
Ê =

⋃
t∈[0, ∞]

{t} × Et. (48)

Let us now consider a fixed point, P0 ∈ B, and a fixed instant of time, t0 ∈ [τ0, τ0 + τ].
Whatever t0 is, it can always be considered as the initial time of a restricted process
of duration τ0 + τ − t0. When evaluated in (P0, t0), balance Equation (27) and entropy
inequality (33) transform into the algebraic relations

Aβα(Σ0)yα = Cβ(Σ0), (49)

σ(s)(Σ0) = Bα(Σ0)yα − D(Σ0) ≥ 0, (50)

where Σ0 is the vector space Σt(P0, t0). In the following, the spaces H0 = Ht(P0, t0) and
E0 = Et(P0, t0) will also be considered. From now on, we pursue our analysis under
the hypothesis that B occupies the whole space. Then, for arbitrary t0 ∈ [τ0, τ0 + τ] we
consider the restricted process, p, of initial instant, t0, and duration, τ0 + τ − t0, and
suppose that it corresponds to the solution of the Cauchy problem for the system (27) with
the initial conditions

zα(xj, t0) = zα 0(xj), ∀P ∈ C. (51)

The problem concerning (27) and (51) in general is very difficult to solve, so finding a
solution for it and verifying ex post if it also satisfies (33) is not easy. For this reason, in 1963
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Coleman and Noll [4] postulated the constitutive principle referred to in Section 1, ref. [20].
Therefore, it is important to investigate if the Coleman and Noll postulate is a consequence
of a general physical law or if it is an arbitrary, although very useful, assumption [11].

To this end, we observe that, since all the elements of Equation (27) have been substi-
tuted into the entropy inequality, we do not have other equations allowing us to determine
the value of the higher derivatives in (P0, t0). Of course, by spatial derivation of the initial
conditions (51), we obtain

zα,jk(xj, t0) = zα 0,jk(xj), (52)

which, once evaluated in P0, provides 6N components of yα. However, since the initial
conditions (51) can be assigned arbitrarily, the 6N quantities determined by Equation (52)
can assume arbitrary values. Thus, the 10N components of yα are completely arbitrary.
Then, it is not guaranteed that the inequality (50) is satisfied, whatever yα is. Such an
observation suggests the following definitions.

A vector yα ∈ H0 is said to be the following:

• real, if σ(s)(yα)(P0, t0) > 0 ;

• ideal, if σ(s)(yα)(P0, t0) = 0 ;

• over-ideal, if σ(s)(yα)(P0, t0) < 0 .

The definitions above allow us to establish the following assumption, whose experi-
mental meaning is straightforward.

Assumption 1. Second law of thermodynamics (local formulation). The local space of the
higher derivatives, W0, does not contain over-ideal vectors. Moreover, a vector, yα ∈ W0, is ideal if,
and only if, (P0, t0) is in thermodynamic equilibrium.

Remark 6. We note that the local formulation of the second law of thermodynamics prohibits
over-ideal vectors from being in W0 but does not prevent them from being in H0.

Let γ be the curve representative in C of an arbitrary thermodynamic process of initial
instant t0 and duration τ0 + τ − t0. The process, p, is said to be as follows:

• reversible, if in any point of γ σ(s)(yα)(P0, t0) = 0;

• over-reversible, if there exists a point of γ in which σ(s)(yα)(P0, t0) < 0;
• irreversible, if p is not over-reversible and there exists a point of γ in which

σ(s)(yα)(P0, t0) > 0.

The definitions above allow one to enunciate the following assumption.

Assumption 2. Second law of thermodynamics (global formulation). Over-reversible
processes do not occur in nature. Moreover, a thermodynamic process is reversible if, and only if,
any point, P ∈ B, at any instant, t, is in thermodynamic equilibrium.

Owing to Assumptions 1 and 2, the following results have been proven in [16]:

Theorem 3. If Assumption 1 is true, then, H0 = W0.

Corollary 1. H = W .

Theorem 4. If Assumptions 1 and 2 are true, then the second law restricts the constitutive equations
and not the thermodynamic processes.

3. The Muschik and Ehrentraut Theorem for Extended Procedures

For the purposes clarified in Section 1, we need to calculate the spatial differential
consequences of balance Equation (27), namely, their gradient extensions. They read
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zα,mt + zα,kmvk + zα,kvk,m +
∂2Φα

j

∂zγ∂zβ
zβ,jzγ,m +

∂2Φα
j

∂zγ,k∂zβ
zβ,jzγ,km +

∂Φα
j

∂zβ
zβ,jm+ (53)

∂2Φα
j

∂zγ∂zβ,k
zβ,kjzγ,m +

∂2Φα
j

∂zγ,l∂zβ,k
zβ,kjzγ,lm +

∂Φα
j

∂zβ,k
zβ,kjm =

∂rα

∂zγ
zγ,m +

∂rα

∂zγ,l
zγ,lm.

In Equation (53), we may individuate the 10N highest derivatives,
{

zα,jkm

}
, which

are the highest spatial derivatives of the unknown fields. The (local-in-time) space of the
highest derivatives and its fiber bundle are provided by

Ut =
{

zα,jkm

}
(54)

and
U =

⋃
t∈[0, ∞]

{t} × Ut, (55)

respectively.
It is worth observing that inequality (33) holds for arbitrary thermodynamic processes,

so that it does not contain any information on the type of process ruled by Equation (27), i.e.,
on the evolution of the independent thermodynamic variables,

{
zα(xj, t), zα,j(xj, t)

}
. Thus,

it is necessary to substitute Equations (27) and (53) into inequality (33). We then obtain

ϱ
∂s

∂zα

[
−zα,kvk −

∂Φα
j

∂zβ
zβ,j −

∂Φα
k

∂zβ,k
zβ,kj + rα

]
+ (56)

+ϱ
∂s

∂zα,m

[
−zα,kmvk − zα,kvk,m −

∂2Φα
j

∂zγ∂zβ
zβ,jzγ,m −

∂2Φα
j

∂zγ,k∂zβ
zβ,jzγ,km −

∂Φα
j

∂zβ
zβ,jm

]

+ϱ
∂s

∂zα,m

[
−

∂2Φα
j

∂zγ∂zβ,k
zβ,kjzγ,m −

∂2Φα
j

∂zγ,l∂zβ,k
zβ,kjzγ,lm −

∂Φα
j

∂zβ,k
zβ,kjm +

∂rα

∂zγ
zγ,m +

∂rα

∂zγ,l
zγ,lm

]
+

+ϱ
∂s

∂zα
zα,jvj + ϱ

∂s
∂zα,k

zα,kjvj +
∂Jk
∂zα

zα,k +
∂Jk

∂zα,j
zα,jk ≥ 0.

The inequality above can be rewritten as follows:

−ϱ
∂s

∂zα

∂Φα
k

∂zβ,k
zβ,kj + ϱ

∂s
∂zα,k

zα,kjvj +
∂Jk

∂zα,j
zα,jk (57)

−ϱ
∂s

∂zα,m

[
zα,kmvk +

∂2Φα
j

∂zγ,k∂zβ
zβ,jzγ,km +

∂Φα
j

∂zβ
zβ,jm

]

−ϱ
∂s

∂zα,m

[
∂2Φα

j

∂zγ∂zβ,k
zβ,kjzγ,m +

∂Φα
j

∂zβ,k
zβ,kjm +

∂rα

∂zγ,l
zγ,lm

]

−ϱ
∂s

∂zα,m

∂2Φα
j

∂zγ,l∂zβ,k
zβ,kjzγ,lm

ϱ
∂s

∂zα

[
−zα,kvk −

∂Φα
j

∂zβ
zβ,j + rα

]
− ϱ

∂s
∂zα,j

zα,kvk,j − ϱ
∂s

∂zα,m

∂2Φα
j

∂zγ∂zβ
zβ,jzγ,m

+ϱ
∂s

∂zα
zα,jvj + ϱ

∂s
∂zα,j

∂rα

∂zγ
zγ,j + ϱ

∂s
∂zα

zα,jvj +
∂Jk
∂zα

zα,k ≥ 0.



Entropy 2024, 26, 293 11 of 18

In inequality (57), we may individuate the 10N highest derivatives,
{

zα,jkm

}
, which

are the highest spatial derivatives of the unknown fields entering the generalized entropy
inequality. The local-in-time space of such highest derivatives and their fiber bundles are
provided by

Ût =
{

zα,jkm

}
(58)

and
Û = ∪t∈[0, ∞]{t} × Ût, (59)

respectively. We note that the time derivatives have now been eliminated from the entropy
inequality so that all the higher derivatives therein are elements of Êt.

The first three lines in Equation (57) are constituted by the terms that are linear in the
elements êα ∈ Êt and in the elements ûα ∈ Ût, the fourth line is quadratic in the elements
êα ∈ Êt, and the last two lines contain only terms that are defined on the state space. Thus,
it can be written as

Bα(Σt)êα + Fα(Σt)ûα + Cαβ(Σt)êα êβ ≥ D(Σt), (60)

with êα and ûα as elements of Êt and Ût, respectively, Bα a 6N × 1 column vector, Fα a
10N × 1 column vector, Cαβ a 6N × 6N matrix, and D a scalar. Moreover, when evaluated
in (P0, t0), it yields

Bα(Σ0)êα + Fα(Σ0)ûα + Cαβ(Σ0)êα êβ ≥ D(Σ0), (61)

with êα ∈ Ê0 and ûα ∈ Û0.
Theorems 3 and 4 cannot be considered as valid for the generalized procedures con-

sidered here, since inequality (57) contains elements that are not present in inequality (33),
belonging to vector spaces that are different from H0 and W0. In particular, the linear terms
in the 10N highest derivatives, which can be obtained by a further spatial derivative of the
initial conditions (51), are then completely arbitrary, and the quadratic terms in the higher
derivatives, also completely arbitrary, do not appear in inequality (33). Thus, we define
the vector space, Vt = Et ∪ Ut, which contains the set of the higher and highest derivatives
satisfying the gradient extensions (53), and the vector space V̂t = Êt ∪ Ût, which contains
the set of the higher and highest derivatives satisfying the entropy inequality (56). Their
fiber bundles are, respectively, V = ∪t∈[0, ∞]{t} × Vt and V̂ = ∪t∈[0, ∞]{t} × V̂t. Moreover,
V0 and V̂0 denote such spaces evaluated in (P0, t0). Our aim is to investigate if V̂0 = V0
or V̂0 ⊂ V0. To this end, we define the subspace V̂0 id of V̂0 constituted by the vectors
v̂α = {êα, ûα} ∈ V̂0, such that Bα(Σ0)êα + Fα(Σ0)ûα + Cαβ(Σ0)êα êβ = D(Σ0).

A vector, vα = {eα, uα} ∈ V0, is said to be as follows:

• admissible, if vα ∈ V̂0 − V̂0 id;

• ideally admissible, if vα ∈ V̂0 id;

• not-admissible, if vα ∈ V0 − V̂0.

We can now prove the following proposition:

Theorem 5. Let B be a body, and let the couple (P0, t0) represent an arbitrary point of B at an
arbitrary instant t0 ∈ [τ0, τ0 + τ]. Then, V0 = V̂0.

Proof. We start by observing that in a point (P0, t0) the vector space, V0, cannot contain both
admissible and ideally admissible vectors, nor both not-admissible and ideally admissible
vectors, otherwise the point should be in both thermodynamic equilibrium and outside of
thermodynamic equilibrium. Thus, in V0 there are either only ideally admissible vectors
(equilibrium), or only admissible and not-admissible vectors (out of equilibrium).

Let y1
α be a real vector and y2

α an over-ideal vector of H0, and let us suppose that y1
α

corresponds to an admissible vector in V0 and y2
α corresponds to a not-admissible vector in
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V0. Let us consider the linear combination y3
α = λy1

α + (1 − λ)y2
α, with λ ∈]0, 1[. Since y1

α

and y2
α are in H0, they satisfy the following equations:

Aβα(Σ0)y1
α = Cβ(Σ0), (62)

Aβα(Σ0)y2
α = Cβ(Σ0). (63)

The combination of Equation (62) multiplied by λ and Equation (63) multiplied by
(1 − λ) leads to

Aβα(Σ0)y3
α = Cβ(Σ0), (64)

namely, y3
α is also in H0. Let v1

α = (e1
α, u1

α) be the admissible vector corresponding to
element y1

α and v2
α = (e2

α, u2
α) be the not-admissible vector, corresponding to element y2

α. It
is fundamental to observe that, with y1

α being real and y2
α being over-ideal, as a consequence

of the local formulation of the second law of thermodynamics point (P0, t0) is not in
thermodynamic equilibrium.

Consider now the linear combination vα = λv1
α + (1 − λ)v2

α, which corresponds to the
solution y3

α of Equation (64).
The entropy production corresponding to vα is

σ(vα, λ) = λ[Bα(Σ0)e1
α + Fα(Σ0)u1

α + Cαβ(Σ0)e1
αe1

β − D(Σ0)]+ (65)

(1 − λ)[Bα(Σ0)e2
α + Fα(Σ0)u2

α + Cαβ(Σ0)e2
αe2

β − D(Σ0)].

We note that the right-hand side of Equation (65) is a continuous function of λ in the
interval [0, 1]. On the other hand, with {e2

α, u2
α} being not-admissible and {e1

α, u1
α} being

admissible, we have

σ(vα, λ = 0) = [Bα(Σ0)e2
α + Fα(Σ0)u2

α + Cαβ(Σ0)e2
αe2

β − D(Σ0)] < 0 (66)

and
σ(vα, λ = 1) = [Bα(Σ0)e1

α + Fα(Σ0)u1
α + Cαβ(Σ0)e1

αe1
β − D(Σ0)] > 0. (67)

Hence, with σ(vα λ) being a continuous function of λ in the interval [0, 1], there exists
a value λ̄ ∈]0, 1[, such that σ(vα, λ̄) = 0. Thus, in V0 there exists an ideally admissible
vector, v̄α = λ̄v1

α + (1 − λ̄)v2
α, which contradicts the fact that (P0, t0) is out of equilibrium.

Then, V0 cannot contain both admissible and not-admissible vectors, i.e., the vectors of
V0 are either all admissible or all not-admissible. On the other hand, since the point
(P0, t0) is arbitrary, if all the vectors in V0 are not-admissible, no gradient extension of the
solution of the balance laws (27) is compatible with the second law of thermodynamics.
However, such gradient extensions enter the process-direction vectors yα ∈ H0, and then
such vectors are all over-ideal. Since this contradicts the local formulation of the second
law of thermodynamics (Assumption 1), we must conclude that all the vectors in V0 are
admissible, i.e., V0 = V̂0.

Remark 7. With (P0, t0) being arbitrary, if all the process-direction vectors, yα ∈ H0, are over-
ideal, then all the thermodynamic processes are over-reversible, against the global formulation of the
second law of thermodynamics (Assumption 2).

Corollary 2. V̂ = V .

Proof. This statement immediately follows the arbitrariness of the initial instant, t0, and of
the point P0.

Theorem 6. Inequality (57) restricts the constitutive equations and not the thermodynamic processes.
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Proof. As a consequence of Theorem 5 and Remark 7, if zα(xj, t) is a solution of the balance
laws (27), the substitution of its gradient extension into the entropy inequality does not
generate not-admissible vectors and, as a consequence, over-reversible processes that must
be excluded by the second law of thermodynamics. As in the classical case investigated in
[11,16], all the thermodynamic processes can only be either irreversible or reversible, but
not over-reversible. On the other hand, given the state space, only for suitable forms of Φβ

k ,
rβ, s, and Jk is the entropy production non-negative. Then, the role of the second law is
only to select such forms.

Remark 8. Regarding the consequences of inequality (61) on the constitutive equations, the
following theorem has been proven in [21]:

Theorem 7. Inequality (61) is satisfied by arbitrary vectors v̂α ∈ V̂0 if, and only if,

Bα(Σ0) = 0, Fα(Σ0) = 0, D(Σ0) > 0 (68)

and Cαβ(Σ0) is positive semidefinite.

4. Strain Gradient Elasticity

When the dimensions of an elastic structure become comparable to the size of its
material micro-structure, size effects and micro-structural effects manifest themselves at the
macroscopic scale. Typical examples of such phenomena are those arising in nanostructured
materials. Since the classical theory of elasticity is not capable of describing such behavior,
a generalized constitutive theory, correlating the micro-structure with the macro-structure,
is necessary.

Mindlin, in two celebrated papers [18,19], proposed two enhanced strain gradient
elastic theories to describe the linear elastic behavior of isotropic materials with micro-
structural effects. To achieve that task, he introduced a potential energy density depending
not only on the strain but also on the gradient of the strain. From a thermodynamic point
of view, such a dependency is difficult to achieve, because the classical Coleman–Noll
procedure leads to the conclusion that the thermodynamic potentials, and hence the stress
tensor, cannot depend on the spatial derivatives of the unknown fields. An efficient way to
achieve such a compatibility is to modify the local balances of linear momentum and energy
(first law of thermodynamics) through the introduction of a hyperstress tensor. The local
balance of entropy (second law of thermodynamics) is also modified, by introducing a new
thermal variable that reduces to the absolute temperature in the absence of micro-structural
effects [22–26].

Our aim here is to show that, if the entropy inequality is exploited through the
procedure illustrated in Section 1, then no modification is necessary and the compatibility
can be proven directly by the classical entropy inequality. For the sake of simplicity, we limit
ourselves to consider the one-dimensional case. Then, for a thermoelastic solid undergoing
small deformations, the classical balances of linear momentum and energy, in the absence
of body forces and heat sources, read

ϱü − T,x = 0, (69a)

ϱε̇ + q,x − TĖ = 0, (69b)

wherein ϱ is the mass density, u the displacement, T the stress tensor, ε the specific internal
energy, E = u,x the strain tensor, and q the heat flux. Moreover, according to the fundamen-
tal tenets of extended irreversible thermodynamics (EIT) [27], we assign a balance law for
the heat flux, namely,

τq̇ + q = −κ̄ε ,x − ΛE,x, (70)

wherein κ̄ = κ/c, with κ being the thermal conductivity and c the specific heat. Finally, Λ
is a thermophysical parameter having the dimension of a heat flux times a length.
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Equation (70) generalizes the classical Maxwell–Cattaneo equation [28] by the presence
of an additional heat flux due to the inhomogeneity of the strain. Also in this case, one can
observe that, indeed, the classical Maxwell–Cattaneo equation,

τq̇ + q = −κ̄ε ,x, (71)

is a special case of the Volterra–Boltzmann integral for the history dependence of heat flux,
namely, of the more general constitutive equation [29]:

q = −
∫ ∞

0
a(s)g(t − s)ds. (72)

When g = ε,x, Equation (72) yields (71) under the hypothesis a(s) = (κ̄/τ) exp−s/τ [29].
As already observed in Section 1, in the present paper we restrict our study to systems of
partial differential equations, and then we postulate Equation (70) as an extension of (71).

Thus, in order to close the system (69a)–(70), we must assign a constitutive equation
for the stress tensor. We suppose that it is defined on the following weakly non-local
state space:

Σ = {ε, E, q, ε ,x, E,x, q,x}. (73)

We do not include Ė in Σ, as we did in [4,5], since we are interested only to ex-
plore the consequences of spatial weak non-locality and not those of viscosity on the
constitutive equations.

We assume that T can be represented as the sum of the classical stress tensor of
homogeneous and isotropic linear thermoelastic solids plus an extra-stress, which may also
depend on the strain gradient, namely,

T = (λ + 2µ)E − b̄ε + T̂(ε, q, E, ε ,x, E,x, q,x), (74)

with b̄ = (3λ + 2µ)α/c and α as the coefficient of thermal expansion. The coupling of
Equations (69b) and (74) yields

ϱε̇ + q,x − (λ + 2µ)EĖ + b̄εĖ − T̂Ė = 0. (75)

In order to apply the procedure illustrated in Section 1, we need to calculate the
gradient extension of Equations (70) and (75). Therefore, we obtain

τq̇,x + q,x = −κ̄ε ,xx − ΛE,xx, (76a)

ϱε̇ ,x + q,xx +
[
−(λ + 2µ)E + b̄ε − T̂

]
Ė,x +[

− (λ + 2µ)E,x + b̄ε ,x −
∂T̂
∂ε

ε ,x −
∂T̂
∂q

q,x −
∂T̂
∂E

E,x −
∂T̂
∂ε ,x

ε ,xx −
∂T̂
∂q,x

q,xx −
∂T̂
∂E ,x

E,xx

]
Ė = 0. (76b)

Balance Equation (70) and constitutive Equation (74) must satisfy the second law of
thermodynamics, i.e., the local balance of entropy, which reads

ϱṡ + Jx ≥ 0, (77)

with s as the specific entropy and J as the entropy flux. For these quantities, we must also
assign a constitutive equation. The above inequality on the state space takes the form

ϱ

(
∂s
∂ε

ε̇ +
∂s
∂q

q̇ +
∂s
∂E

Ė +
∂s

∂ε ,x
ε̇ ,x +

∂s
∂q,x

q̇,x +
∂s

∂E,x
Ė,x

)
+

∂J
∂ε

ε ,x +
∂J
∂q

q,x +
∂J
∂E

E,x +
∂J

∂ε ,x
ε ,xx +

∂J
∂q,x

q,xx +
∂J

∂E,x
E,xx ≥ 0.

(78)
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In order to derive the consequences of such constraint on the constitutive quantities T,
s, and J, we must substitute it in the balance Equations (69b) and (70), together with their
differential consequences, (76a) and (76b). Therefore, we obtain[∂s

∂ε
(λ + 2µ)E − ∂s

∂ε
b̄ε +

∂s
∂ε

T̂ + ϱ
∂s
∂E

+
∂s

∂ε ,x
(λ + 2µ)E,x

− ∂s
∂ε ,x

b̄ε ,x +
∂s

∂ε ,x

∂T̂
∂ε

ε ,x +
∂s

∂ε ,x

∂T̂
∂q

q,x +
∂s

∂ε ,x

∂T̂
∂E

E,x

]
Ė

+
[ ∂s

∂ε ,x

∂T̂
∂ε ,x

ε ,xx +
∂s

∂ε ,x

∂T̂
∂q,x

q,xx +
∂s

∂ε ,x

∂T̂
∂E ,x

E,xx

]
Ė

+

(
∂J

∂q,x
− ∂s

∂ε ,x

)
q,xx +

(
∂J

∂ε ,x
− ∂s

∂q,x

κ̄

τ
+

)
ε ,xx +

(
∂J

∂E,x
− ∂s

∂q,x

Λ
τ

)
E,xx+(

− ∂s
∂ε ,x

b̄ε +
∂s

∂ε ,x
T̂ +

∂s
∂ε ,x

(λ + 2µ)E + ϱ
∂s

∂E,x

)
Ė,x + f (Σ) ≥ 0,

(79)

wherein f (Σ) is a suitable function defined on the state space. Thus, since in Equation (79)
the higher derivatives (Ė, ε ,xx, E,xx, Ė,x) are independent of their coefficients and can take
arbitrary values, the terms that are linear in such derivatives must vanish. Moreover,
according to Theorem 7 the quadratic part in the higher derivatives must be non-negative.
Then, the following theorem is true.

Theorem 8. The generalized entropy inequality (79) is satisfied whatever the thermodynamic
process is if, and only if, the following thermodynamic restrictions hold:

∂s
∂ε
(λ + 2µ)E − ∂s

∂ε
b̄ε +

∂s
∂ε

T̂ + ϱ
∂s
∂E

+
∂s

∂ε ,x
(λ + 2µ)E,x + (80)

− ∂s
∂ε ,x

b̄ε ,x +
∂s

∂ε ,x

∂T̂
∂ε

ε ,x +
∂s

∂ε ,x

∂T̂
∂q

q,x +
∂s

∂ε ,x

∂T̂
∂E

E,x = 0,

∂J
∂q,x

− ∂s
∂ε ,x

= 0, (81)

∂J
∂ε ,x

− ∂s
∂q,x

κ̄

τ
= 0, (82)

∂J
∂E,x

− ∂s
∂q,x

Λ
τ

= 0, (83)

∂s
∂ε ,x

T̂ +
∂s

∂ε ,x
(λ + 2µ)E + ϱ

∂s
∂E,x

− ∂s
∂ε ,x

b̄ε = 0, (84)

∂s
∂ε ,x

∂T̂
∂ε ,x

ε ,xx Ė +
∂s

∂ε ,x

∂T̂
∂q,x

q,xx Ė +
∂s

∂ε ,x

∂T̂
∂E ,x

E,xx Ė + f (Σ) ≥ 0. (85)

The last inequality can be written as follows
∂s

∂ε,x
∂T̂
∂ε ,x 0 0

0 ∂s
∂ε,x

∂T̂
∂q,x

0

0 0 ∂s
∂ε,x

∂T̂
∂E ,x


 ε ,xx

q,xx
E,xx

Ė
Ė
Ė

+ f (Σ) ≥ 0. (86)
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According to Theorem 7, the inequality above is satisfied for arbitrary values of
ε ,xx, q,xx, E,xx, and Ė if, and only if, the matrix

∂s
∂ε,x

∂T̂
∂ε ,x 0 0

0 ∂s
∂ε,x

∂T̂
∂q,x

0

0 0 ∂s
∂ε,x

∂T̂
∂E ,x


is positive semidefinite and, moreover, f (Σ) ≥ 0. This is possible, in principle, by assigning
suitable constitutive equations for s, J, and T̂.

The following considerations are in order:

• the restrictions above show that T, J, and, remarkably, s may depend on all the
gradients of the unknown variables (ε, q, E);

• the dependency of the stress tensor on E,x has been achieved without changing the
fundamental laws of thermodynamics, but it was a natural consequence of the mathe-
matical technique applied to exploit the entropy inequality;

• the classical thermodynamic relation
∂s
∂ε

=
1
ϑ

leads to the conclusion that the tempera-

ture may also depend on the non-equilibrium variables (q, ε ,x, q,x, E,x), as well as on
the equilibrium ones, ε and E;

• the restrictions (81)–(83) show that the constitutive equation of the entropy flux takes

a form that is more general than that postulated in [4–6], i.e., J =
q
ϑ

.

Remark 9. The dependency of the specific entropy, s, and of the absolute temperature,

ϑ =

(
∂s
∂ε

)−1
, on ε ,x is a peculiarity of the extended procedures and cannot be achieved by

applying the classical ones (see, for instance, Equation (5.2) in [4], Equation (4.15) in [5], and
Equation (6.27b) in [6]). In order to see by a practical example, the subsequent changes in the
mathematical structure of the theory, let us neglect for a while the dependency of all the constitu-
tive functions and of the heat equation on q,x and E,x and suppose T̂ = −b̄L0ε ,x, where L0 is a
characteristic length. In this way, T = (λ + 2µ)E − b̄ε − b̄L0ε ,x. In the linear approximation,
according to which the product ε ,x Ė is negligible, the system of equations ruling the evolution of the
continuous at hand now becomes

ϱü − (λ + 2µ)u,xx − b̄ε ,x − b̄L0ε ,xx = 0, (87a)

ϱε̇ + q,x −
[
(λ + 2µ)E − b̄ε

]
u̇,x = 0, (87b)

τq̇ + q + κ̄ε ,x = 0. (87c)

It is easy to see that, due to the presence of the term ε ,xx in Equation (87a), the system above
is parabolic, although the classical Fourier law q = −κ̄ε ,x has been generalized with Cattaneo’s
Equation (87c) [28]. This result sheds new light on the classical theory of linear thermoelasticity, in
which it is believed that the replacement of Fourier’s law with Cattaneo’s equation is sufficient to
make the system hyperbolic, which guarantees the propagation of thermomechanical waves.

5. Conclusions

In continuum thermodynamics, the second law is regarded as a constraint on the
constitutive equations [4]. Muschik and Ehrentraut provided a rigorous proof of such an
assumption under the hypothesis that, at an arbitrary instant, t0, in an arbitrary point, P0, of
a continuous system, the entropy production is zero if, and only if, P0 is in thermodynamic
equilibrium [11]. Recently, Cimmelli and Rogolino incorporated such an assumption into a
more general formulation of the second law of thermodynamics [16].

In [17], we extended the results in[16] to the case in which there are surfaces across
which the unknown fields suffer jump discontinuities. Here, we have shown that the same
conclusions achieved in [11,16] hold when the classical Coleman–Noll procedure for the
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exploitation of the entropy inequality is generalized by also introducing into the dissipation
inequality the gradient extensions of the basic equations. An extended Coleman–Noll
procedure was applied to analyze the strain-gradient elasticity.

Such an investigation seems to be important for both practical and theoretical ends.
From the practical point of view, in the last decades substantial effort was dedicated to

fabricating microstructured or functionally graded materials, with the scope of controlling
their physical properties, [30,31]. Many of these materials are suitably described by non-
local constitutive equations, whose compatibility with the second law of thermodynamics
must be proven. In Section 4, we have analyzed the thermodynamic compatibility of such
equations for a one-dimensional thermoelastic solid with the gradient of the strain entering
the state space. Such an analysis has been carried out without modifying the classical forms
of the first and second laws of thermodynamics.

From a theoretical point of view, the present investigation leads to a deeper view of
the role of the second law of thermodynamics in the presence of generalized exploitation
procedures, in which some differential consequences of the basic balance laws are also
considered as constraints to be substituted into the entropy inequality. In general, for
arbitrary weakly non-local constitutive equations, it is important to investigate if the
thermodynamic compatibility makes it necessary to modify the basic thermodynamic laws
or not.

In future research, we aim at extending the present results by considering different
nanostructured systems such as, for instance, non-local thermoelectric heat conductors or
thermal rectifiers.
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