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Abstract: Recently, with more portable diagnostic devices being moved to people anywhere, point-of-
care (PoC) imaging has become more convenient and more popular than the traditional “bed imaging”.
Instant image segmentation, as an important technology of computer vision, is receiving more and
more attention in PoC diagnosis. However, the image distortion caused by image preprocessing
and the low resolution of medical images extracted by PoC devices are urgent problems that need
to be solved. Moreover, more efficient feature representation is necessary in the design of instant
image segmentation. In this paper, a new feature representation considering the relationships among
local features with minimal parameters and a lower computational complexity is proposed. Since
a feature window sliding along a diagonal can capture more pluralistic features, a Diagonal-Axial
Multi-Layer Perceptron is designed to obtain the global correlation among local features for a more
comprehensive feature representation. Additionally, a new multi-scale feature fusion is proposed to
integrate nonlinear features with linear ones to obtain a more precise feature representation. Richer
features are figured out. In order to improve the generalization of the models, a dynamic residual
spatial pyramid pooling based on various receptive fields is constructed according to different sizes
of images, which alleviates the influence of image distortion. The experimental results show that the
proposed strategy has better performance on instant image segmentation. Notably, it yields an average
improvement of 1.31% in Dice than existing strategies on the BUSI, ISIC2018 and MoNuSeg datasets.

Keywords: point-of-care (PoC); medical image segmentation; efficient downsampling strategy;
MLP–CNN hybrid model; image distortion

1. Introduction

In recent years, the development of portable medical imaging devices has created
great potential for point-of-care (PoC) [1,2]. In other words, medical imaging services
are shepherded to places near to people such as pharmacies, gyms and supermarkets.
According to the U.S. Centers for Disease Control and Prevention (CDC) [3], the data
from ongoing imaging studies are growing by as much as 5% per year, while the number
of radiologists grows by only about 2% per year. Therefore, the development of image
analysis by AI is urgently needed to advance PoC. Instant image segmentation, as one of
the most important tasks in image analysis, is thus becoming a research hotpot.

In general, different portable PoC devices generate medical images with different sizes,
as shown in Figure 1. These medical images need preprocessing by resizing, normalization,
data augmentation and so on. In other words, image distortion due to preprocessing is in-
evitable. The distortion of the image leads to blurred edges and inconspicuous foreground–
background differences, which reduces the effectiveness of the semantic segmentation task.
After preprocessing, images are fed into deep learning models for image segmentation. The
pixels of these distorted images always interact with each other. And the complex diverse
features are difficult to extract. Without doubt, a more efficient feature representation for
distorted data needs to be designed. The instant image segmentation diagnosis results
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are shown on portable devices. With the advantages of strong feature extraction, a small
number of parameters and fast inference, MLP–CNN hybrid models [4] have better instant
segmentation ability and thus have more potential to be applied in PoC scenarios.
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Figure 1. An illustration of PoC image solutions based on image segmentation.

Generally, medical images are characterized by having complex and diverse features.
The existing downsampling structures of hybrid models are too single to make it difficult
to learn sufficient feature representations. Moreover, the preprocessing results in image
distortion, which is shown in Figure 2. Existing hybrid models frequently use a linear layer
in a Multilayer Perceptron (MLP) block. In other words, image distortion is particularly
severe in MLP–CNN hybrid models.
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Figure 2. Image distortion after resizing for ISIC2018 [5,6] and BUSI [7].

In this paper, a PoC image segmentation network (PIS-Net) is proposed to obtain a
richer feature representation and reduce the influences of image distortion. In this network,
we design a new Diagonal-Axial MLP Block to extract rich global features by utilizing par-
allel diagonally oriented sliding windows with connections between neighboring windows.
Additionally, a hybrid downsampling strategy (HBDS) is figured out to fuse multi-scale
features by complementing the linear features extracted by MLP with nonlinear features.
In addition, our proposed Dynamic Residual Spatial Pyramid Pooling (DR-SPP) can adap-
tively enrich the respective field of the feature set extracted in the downsampling stage to
reduce the influences of image distortion and simplify the network structure. The main
contributions of this paper are as follows:
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1. We propose a Diagonal-Axial MLP as a new MLP module with windows on the
diagonal axis, which uses parallel sliding windows in dual diagonal directions with
partial overlap between the windows. The module sufficiently enhances the feature
interactions between individual sliding windows in the channel dimension to achieve
the effect of modeling global long-range dependencies, which guarantees good local
feature extraction to obtain richer semantic features.

2. In order to enhance the semantic and geometric information representation capabil-
ities, we propose an HBDS. In the MLP stage of downsampling, we add a mixed
downsampling branch to supplement the linear features with nonlinear features to
achieve the effect of multi-scale feature fusion.

3. Inspired by the parallel pooling layers in spatial pyramid pooling (SPP) [8], we
construct a DR-SPP to provide various receptive fields with parallel pooling layers
for the upsampling stage, which mitigates the image distortion of the MLP–CNN
hybrid models.

The rest of the paper is organized as follows: Section 2 briefly describes the related
work of deep learning based on image segmentation. In Section 3, details of the PIS-Net are
given. Section 4 presents the experimental results, and Section 5 discusses some directions
related to PIS-Net. Our conclusion and future work are shown in Section 6.

2. Related Works

In terms of different baselines of image segmentation based on deep learning [9,10], ex-
isting methods can be classified in CNN-based models [11], transformer-based models [12]
and hybrid models.

2.1. CNN-Based Models

In the field of computer medicine, image segmentation methods based on convo-
lutional neural networks (CNNs) initially achieved advanced results. Long et al. [13]
proposed an FCN network consisting of convolutional and pooling layers with skip con-
nections, which had the advantage of accepting images of arbitrary sizes. Since the single
upsampling cannot yield clear segmentation results, Ronneberger et al. [14] introduced
the U-Net network based on the FCN, which achieves more accurate predictions by incor-
porating additional convolutional layers during upsampling. In recent years, researchers
have made significant breakthroughs by using U-Net as a baseline method. The U-Net++
model [15] combines long and short skip connections to integrate features from different
levels through feature concatenation, which improves feature fusion. ResU-Net [16] incor-
porates residual connections to alleviate gradient vanishing and enhances the integration
of contextual information. U-Net3+ [17] introduces full-scale skip connections to facilitate
the combination of low-level details and high-level semantics from different-scale feature
maps to enhance segmentation accuracy. To construct lightweight segmentation models,
DSNet [18] and Separable-U-Net [19] replace traditional convolutions with depthwise sep-
arable convolutions (DWConv), which effectively reduce the number of model parameters.

Although these CNN-based methods have achieved great success, due to the local-
ization of the convolution and the translation invariance, CNN-based models lack the
learning of global information when performing segmentation of complex images with
high requirements (e.g., medical images and remote sensing images).

2.2. Transformer-Based Models

Originally, transformer-based models were designed to solve natural language pro-
cessing (NLP) tasks [20,21]. Now, these models are widely used in machine translation, text
mining and other fields. Dosovitskiy [22] et al. adapted the transformer model to the field
of computer vision and proposed the Vision Transformer (ViT), which solves the problem
of the long input sequence and the complex computation of the models. TransU-Net [23]
modifies the ViT architecture into a U-shaped network for 2D medical image segmen-
tation. It encodes the tokenized image blocks in the CNN feature mapping to extract a
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global context to solve the problem of the limitation of remote dependency. MedT [24]
introduces an additional control mechanism for the self-attention module, along with a
two-branch architecture for learning both global and local features. TransBTS [25] uses 3D
CNN to extract 3D spatial features and input them into a transformer model for global
feature modeling. A progressive upsampling is performed to eventually obtain a detailed
segmentation map. UNETR [26] formulates the task of 3D medical image segmentation
as a sequence-to-sequence prediction problem and strengthens the interaction between
the encoder and decoder through powerful skip connections to efficiently capture global
multi-scale information.

Though the aforementioned transformer-based approaches have achieved highly
advanced levels of accuracy, they often suffer from issues such as excessively high com-
putational complexity, lengthy inference times and a large number of parameters. These
challenges can significantly hinder the practical application of these models in PoC (point-
of-care) scenarios.

2.3. Hybrid Models

In order to make full use of advantages of model research, hybrid models are mainly
aimed at combining different features of different models and are applied to image segmen-
tation. The main two hybrid models are the combining of CNN and transformer features
and CNN and MLP features for image segmentation. CNN–Transformer hybrid models
have the advantage of combining the feature extraction capabilities of CNNs with the
long-range dependency modeling capabilities of transformers. LET-Net [27] combines a
U-shaped CNN with a transformer effectively in a capsule embedding style to compen-
sate for respective deficiencies; Yuan et al. [28] proposed CTC-Net, which utilizes dual
coding paths of CNNs and transformer encoders to produce complementary features.
ScribFormer [29] improves model performance by utilizing a three-branch structure to
unify shallow and deep features, which consists of a mixture of CNN branches, transformer
branches, and attention-guided class activation map (ACAM) branches. CNN-MLP hybrid
models’ strength is that it can achieve better segmentation results while having a small
number of parameters and fast reasoning. UNeXt [4] introduces the sliding window idea
of the Swin Transformer [30] and designs the Tok-MLP module, which effectively enhances
the model’s ability to capture long-distance dependencies between features and achieves
advanced performance on the ISIC2018 and BUSI datasets with low consumption. The
subsequent works based on this foundation include G-UNeXt [31] and Res2-UNeXt [32].
The former uses linear computation to reduce the computational cost of redundant features,
and the latter enhances the fusion of multi-scale information.

These studies showed that the multi-stage mixed modeling framework consistently and
significantly outperformed the single-stage framework. Relative to the CNN–Transformer
hybrid model, the immediacy of MLP–CNN hybrid models offers more potential for PoC
scenarios. Nevertheless, the homogeneous downsampling of MLP–CNN hybrid models
cannot capture enough features for complex image segmentation. Compared to the existing
models for image segmentation, two different aspects are considered in this paper: (1) For
instant image segmentation, medical images always contain complex features and diverse
details. Existing MLP–CNN hybrid models cannot learn richer and more global features
for the robustness and generalization of models. (2) Various medical images must always
be resized for fixed-size image segmentation, while image distortion emerges and has great
influences on image segmentation. In this paper, we propose PIS-Net to obtain more global
features and implement results by image distortion.

3. Methodology
3.1. Overall Network Architecture

The overall architecture of PIS-Net is shown in Figure 3. PIS-Net is a multi-stage
network based on an encoder and decoder, including a CNN stage and MLP stage. The
CNN stage consists of conventional CNN blocks stacking together for powerful feature
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extraction capabilities. The MLP stage is mainly composed of our proposed Diagonal-Axial
MLP Block, which is different from the existing MLP block. We design a set of parallel shift
windows in the diagonal direction, which solves the problem of the single representation of
features extracted by the existing CNN–MLP hybrid models. Notably, the Diagonal-Axial
MLP Block has no increment of the number of parameters, especially when facing complex
medical images. To improve the model’s generalization ability, we use HBDS in the MLP
stage to extract rich multi-scale features. To address the serious distortion problem of
medical images, we insert DR-SPP at the end of downsampling to give the feature set more
diverse receptive fields and improve the overall robustness.
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Figure 3. Overall structure of the proposed PIS-Net.

3.2. Diagonal-Axial MLP Block (DA-MLP)

It is well known that windowing the feature set is an effective way to address the
model training cost, which has been studied in convolutional modules and attention
modules. However, the existing sliding window-based MLP blocks are not considered
the establishment of interactions between individual local windows in different channel
dimensions, which leads to the loss of global information and reduces the effectiveness of
modeling global long-range dependencies. In this paper, we propose the Diagonal-Axial
MLP Block to enhance the information interaction between the windows. We design a new
parallel sliding window in dual diagonal directions to achieve the effect of modeling global
long-range dependencies.

The internal structure of the Diagonal-Axial MLP Block is shown in Figure 4. Overall,
the structure of the Diagonal-Axial MLP Block is a three-layer network formed by inserting
a depthwise convolution (DWConv) layer between two of the shifted linear layers.
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Figure 4. Structure of the Diagonal-Axial MLP Block.
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The first shifted linear layer shifts the input features in height in the usual way, which
introduces window-based localized features to the regular MLP block. Then, the features
are projected into tokens and sent to the linear layer. Suppose that the input feature is Xin
and that Xh is the output feature of the first shifted linear layer. The process can be simply
executed as

Xh = fLinear(Tok(Shi f th(Xin)) (1)

where Shi f th denotes the routine method of Xin shifting in height and Tok denotes the
projection of the features into tokens.

After obtaining Xh, it passes through a DWConv [33] layer; this can encode the position
information [33] for Xh to obtain a more diversified set of features with a small number of
parameters, which we denote by Xm. The process can be simply executed as

Xm = fDWConv(Xh) (2)

Since the extracted feature representations from the independent conventional win-
dows are more homogeneous, they are not favorable for global feature extraction, and there
are redundant computations when applied to medical images with an edge-independent
nature. Therefore, we design a new training method with shifted windows in the sec-
ond shifted linear layer. First, a two-branch parallel training method is used, where the
shift directions of the windows in different branches are various, which realizes that the
extraction of richer feature representations can not increase the number of parameters.
Moreover, the shift distance of the windows is half of the window size, which causes
the windows to partially overlap with each other to establish a connection between the
windows. Additionally, it can realize the transfer of parameters between the windows and
strengthen the model’s learning of global information.

Assuming that the dimension of the current input feature Xm is (C, H, W), the size
of the shift window is denoted by shi f tsize. And shi f tsize will adaptively take the value
shi f tsize = ⌊ 4

√
H · W⌋. To maintain dimensional consistency, an edge padding operation

of paddingsize = ⌊ 4√H·W⌋
2 is performed on Xm. After the shifting is complete, Concat is

performed on the channel dimension with the feature set obtained on all branches to yield
the feature set Xd of dimension (2C, H, W). Eventually, Xd is fed into the linear layer
for training, and the training results are linearly summed with Xin, which results in a
feature set Xout containing rich feature representations. Assuming that Shi f tlr represents
the operation of moving the window from the bottom-left corner to the top-right corner
and that Shi f trl represents the operation of shifting the window from the bottom-right
corner to the top-left corner, the following equation accurately describes the process:

Xd = Tok( fConcat(Shi f tlr(Xm), Shi f trl(Xm)) (3)

Xout = Xin + fLinear(Xd) (4)

3.3. Hybrid Downsampling Strategy (HBDS)

In order to achieve multi-scale fusion, most deep-learning-based network models
involve the simple matrix splicing of features with different depths, which results in the
feature set containing many shallow and redundant features in the downsampling stage.
In this paper, we propose a hybrid downsampling strategy for the downsampling stage
to enhance the semantic and geometric information representation capabilities. Moreover,
more efficient multi-scale fusion with fewer parameters is obtained. Different from the
common multi-scale fusion methods, our proposed hybrid downsampling strategy aims to
fuse linear features with nonlinear features by designing a mixed downsampling branch
to supplement nonlinear features to a single linear downsampling branch. The specific
process is shown in Figure 5.
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Figure 5. Flow of the hybrid downsampling strategy, where K_num represents the number of kernels
in the depthwise separable convolution layer within the DA-MLP block.

Assume that the input feature map to the MLP stage is denoted as Fin with dimensions
h × w × c. After passing through the original linear downsampling branch, Fin will be
linearly downsampled twice to update the feature parameters. The output of the linear
downsampling generates a set of features denoted as FL with dimensions h/4 × w/4 × 4c.
Simultaneously, Fin enters the mixed downsampling branch. Fin first undergoes a MaxPool
layer with a pool size of 2 to divide Fin into several 2 × 2 squares. Within each square,
the maximum feature value is retained only, while the original spatial arrangement is
maintained. This process yields a nonlinear feature collection denoted as F′

in. Subsequently,
F′

in is input into a DA-MLP block with a kernel number of 4. This block performs linear
learning on F′

in to produce a feature set denoted as FM of dimensions h/4 × w/4 × 4c,
which combines linear and nonlinear features.

The concatenation operation is performed on the channel dimension between FL and
FM. The downsampling stage yields a feature set Fout that is enriched in both semantic and
geometric information. The above process can be executed as

FL = fDA−MLPs( fDA−MLPs(Fin)) (5)

FM = fDA−MLPl( fMaxPool(Fin)) (6)

Fout = fConcat(FL, FM) (7)

DA-MLPs and DA-MLPl represent DA-MLP blocks with ratios of the number of input
channels to the number of output channels of 1:2 and 1:4, respectively.

3.4. Dynamic Residual Spatial Pyramid Pooling Block (DR-SPP)

In the field of computer vision, the problem of image distortion due to resizing has
always been a key factor affecting the performance of models, especially in instant image
segmentation. Inspired by the spatial pyramid pooling layer and its variants [34], we
propose the more efficient DR-SPP Block to alleviate the image distortion of CNN-MLP
hybrid models for the first time.

The specific structures of SPP and DR-SPP are shown in Figure 6. Among them, a
parallel multi-scale pooling layer can give the feature set a richer receptive field, thus
enabling the model to adapt to the change in image dimensions and solving the problem of
edge blurring and foreground–background difference reduction caused by image distortion.
Moreover, our proposed DR-SPP can adaptively select the size of the pooling window
according to the dimensions of the input features; the addition of parallel convolutional
residual branches can render the pooling process more stable and reduce the fluctuations
in weights.
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Assuming that the size of the feature set input to the DR-SPP module is H′ × W ′ × C′,
the pooling kernel size of MaxPool2d is adaptively valued according to the input feature
set, i.e., ki = i×

√
H′ ·W ′
4 , i ∈ {1, 2, 3}. i is the level of pooling in DR-SPP. The value of

padding is adaptively set according to the pooling kernel size, i.e., p = ki
2 , i ∈ {1, 2, 3}.

After passing through the parallel MaxPool unit, the input feature maps will, respectively,
output a feature set Fi of size H′

ki
× W ′

ki
× C′, i ∈ {1, 2, 3}. The feature set concatenates Fi in

the channel dimensions; they are fed into a convolutional layer for fusion, which yields
dim = 4C′ and contains a feature set with multiple receptive fields. Through the above
steps, we ensure that, regardless of the resolution of the input image before resizing, the
final DR-SPP can effectively mitigate the loss of key information due to the distortion of
the image, ensuring the robustness of the model. Additionally, the pooling layer does not
need to optimize the parameters, which reduces the risk of model overfitting due to the
excessive number of layers.

3.5. Loss Function

Since the loss function can optimize the model by closing the gap between the pre-
dicted and true values, selecting a loss function that fits the model can yield better results.
In this work, we choose the combination of binary cross-entropy (BCE) and Dice loss to
train PIS-NET [35]. The computational procedure is defined as follows:

LBCE = − 1
N

N

∑
i
(ti log oi + (1 − ti) log(1 − oi)) (8)

LDice = 1 − 2 × ∑N
i oiti

∑N
i oi + ∑N

i ti
(9)

L = λ1LBCE + λ2LDice (10)

where i represents the index of all pixels, oi is the probability map and ti is the ground truth
annotation. We denote the total number of pixels by N. Finally, the coefficients λ1 and λ2
are empirically set as 0.5 and 1, respectively.
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4. Experiments and Result Analysis
4.1. Datasets and Preprocessing

In order to fully evaluate the performance of the model, we selected the Breast Ultra-
sound Images (BUSI), International Skin Imaging Collaboration (ISIC2018) and Multi-Organ
Kernel Segmentation (MoNuSeg 2018) [36,37] datasets as benchmarks.

1. BUSI: This dataset is derived from 600 female breast cancer patients. The images
have an average pixel size of 500 × 500. To ensure experimental fairness, similar to
the baseline model, only samples of the categories benign and malignant are used,
resulting in a total of 647 images with a resized resolution of 256 × 256. The dataset
is characterized by a small sample size, and the ultrasound images therein exhibit
low contrast and uneven grayscale, leading to the presence of a substantial amount
of noise.

2. ISIC2018: This dataset consists of skin images containing cases and corresponding
segmentation images of skin lesions, including a total of 2594 images. We resize all
images to 512 × 512. The images have a relatively high resolution, which leads to
significant distortion after resizing.

3. MoNuSeg 2018: The training data comprise 30 images labeled with approximately
22,000 nuclear boundaries, and the test data comprise 14 images labeled with more
than 7000 nuclear boundaries. In the experiment, we slice the sample images and
finally obtain 1080 training set and 504 validation set images with a resolution of
256 × 256. This dataset has a diversity of characteristics because it is collected from
different organs in multiple patients; at the same time, there are large differences in
the size of the cells.

In conclusion, conducting experimental comparisons on these three datasets with
distinct characteristics allows a comprehensive assessment of the model’s performance
and validates the generalization capability of our model across diverse medical image
segmentation tasks.

4.2. Comparison Methods

The principles guiding the selection of comparison methods are based on the repro-
ducibility principle. Apart from our baseline model, in this paper, we aim to select the latest
open-source models. The chosen methods are all considered classic and representative
within the medical image segmentation field. They encompass convolutional baselines such
as U-Net [14], U-Net++ [15], U-Net3+ [17] and ResU-Net [16]; recent transformer-based
baselines such as TransU-Net [23] and MedT [24]; the CNN–Transformer hybrid model
ScribFormer [29]; and the CNN–MLP hybrid model UNeXt [4].

Please note that the criteria used to assess the performance of our model encompass
segmentation metrics (Dice and IoU), the parameter count, the computational complexity
(measured in GFLOPs) and the inference time (measured in milliseconds), among others.
Due to the randomness associated with dataset partitioning, to ensure experimental fairness,
we re-conducted all comparison method experiments on the three datasets. All experiments
were conducted in the same hardware and software environment, with experimental
settings consistent with those described in the original paper. The expressions for the
quantitative metrics are as follows:

IoU =
TP

TP + FP + FN
(11)

Dice =
2TP

FP + 2TP + FN
(12)

where TP denotes true positives, indicating a correctly predicted change pixel; FP denotes
false positives, indicating an incorrectly predicted change pixel; and FN denotes false
negatives, indicating an incorrectly predicted unchanged pixel.
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4.3. Implementation Details

We developed PIS-Net using the Pytorch framework. For the optimizer, we chose
Adam with a learning rate of 0.0001 and momentum of 0.9. We also used a cosine annealing
learning rate scheduler with a minimum learning rate of 0.00001. The batch size was set to
8. The PIS-Net model was trained for a total of 400 epochs. We divided the dataset into
training and test sets at a ratio of 8:2, and we fixed the randomization of the division of the
dataset to ensure that all experiments were conducted on the same training and test sets.
All experiments were performed on RTX A5000 GPUs.

4.4. Comparative Experiments
4.4.1. Quantitative Analysis of the Results of Comparative Experiments

The results of the quantitative comparison experiments of the different methods on
the three datasets are shown in Table 1.

Table 1. Comparative experimental results for the three datasets.

Method Params
(in M)

Inference Speed
(in ms) GFLOPs BUSI ISIC2018 MoNuSeg

IoU Dice IoU Dice IoU Dice

U-Net 31.13 223 55.84 63.85 76.35 74.55 84.03 65.99 79.43
U-Net++ 9.16 173 34.65 64.33 77.54 75.12 84.96 66.04 79.49
ResU-Net 62.74 333 94.56 64.89 77.71 75.62 85.60 66.07 79.50
U-Net3+ 26.97 197 48.26 65.33 77.73 78.66 87.81 66.56 72.16
MedT 1.6 751 21.24 63.89 76.93 79.54 87.35 62.49 76.83
TransU-Net 105.32 246 38.52 66.81 78.34 80.51 88.91 66.17 79.55
ScribFormer 50.44 532 37.63 67.59 78.69 81.96 89.93 67.36 81.29
UNeXt 1.47 25 0.57 67.24 78.49 82.25 90.15 67.24 81.36
PIS-Net (ours) 5.46 29 0.82 68.28 80.66 82.68 90.76 70.40 82.51

Among the CNN-based models, U-Net++, ResU-Net and U-Net3+, all show a small
improvement in the Dice and IoU metrics compared to U-Net. However, U-Net++ has a
great advantage in terms of the number of parameters compared to the other CNN models
due to its flexible network structure, which enables the branching and trimming of the
model, with only 9.16 M. In the transformer-based model, MedT, although it has only 1.6 M
parameters, it does not show a significant improvement in the Dice and IoU metrics; due to
its use of a special sparse attention mechanism, the inference speed is also slower. Moreover,
TransU-Net has a significant improvement in the Dice and IoU metrics compared to the
traditional U-Net model and MedT, but the number of parameters reaches 105.32M, which
is equivalent to 20 times that of our model. ScribFormer has significant advantages in terms
of segmentation accuracy, but due to its three-branch structure, it has too many parameters
and is not suitable for PoC scenarios. In the hybrid CNN–MLP-based model, UNeXt and
PIS-Net (ours) achieve high Dice and IoU metrics while maintaining a small number of
parameters and GFLOPs; however, it is worth noting that the improvement that we made
in the PIS-Net model fails to affect the model’s inference speed, while outperforming all
the comparative models, improving the IoU by 1.04%, 0.43% and 3.16%, vs. the Dice
by 2.17%, 0.61% and 1.15% compared to UNeXt on the BUSI, ISIC2018 and MoNuSeg
datasets, respectively.

4.4.2. Visualization Analysis on BUSI

Figure 7 presents the visual results of comparative experiments on several challenging
samples from the BUSI dataset. Observing the source images of the samples shows that
effectively teaching the model to distinguish between noise and the target is the primary
challenge of the BUSI dataset in the context of semantic segmentation tasks. We have
indicated the areas in the source images that are prone to incorrect identification as true
positives—these are the noisy regions—using red circles. For the first three samples, all
models except ours misidentify the noisy regions as target regions to varying extents. In
the case of the fourth sample, only our model accurately recognizes the target region while
circumventing the interference caused by the noise.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 7. Visualization results on the BUSI dataset. (a) Original Image. (b) Ground Truth. (c) U-Net.
(d) U-Net++. (e) ResU-Net. (f) U-Net3+. (g) MedT. (h) TransU-Net. (i) UNeXt. (j) PIS-Net (ours).

4.4.3. Visualization Analysis on ISIC2018

Figure 8 presents the visual results of the comparative experiments on several challeng-
ing samples from the ISIC2018 dataset. Due to the high resolution of the ISIC2018 dataset
and the significant variations in the aspect ratio among many samples, image distortion
poses a pronounced challenge in semantic segmentation tasks. Among the CNN-based
models (c, d, e and f), the segmentation results for these four challenging samples are less
satisfactory, with notable instances of under-segmentation in comparison to other models.
It is worth noting that our model (j) achieves segmentation results along the edges of the
target regions that closely resemble the ground truth (b). This is attributed to the shifting
MLP window within the Diagonal-Axial MLP Block, which allows the model to effectively
learn the relative positional information between features.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 8. Visualization results on the ISIC2018 dataset. (a) Original Image. (b) Ground Truth. (c) U-Net.
(d) U-Net++. (e) ResU-Net. (f) U-Net3+. (g) MedT. (h) TransU-Net. (i) UNeXt. (j) PIS-Net (ours).

4.4.4. Visualization Analysis on MoNuSeg

Figure 9 presents the visual results of the comparative experiments on several challeng-
ing samples from the MoNuSeg dataset. By observing the original image, we can conclude
that a significant challenge in the semantic segmentation task of the MoNuSeg dataset is
achieving the accurate segmentation of small objects. For ease of comparison, we have
marked the difficult-to-segment small object regions with red circles. Among all the model
visualization results, PIS-Net demonstrates generally superior segmentation performance
compared to the other benchmark models. However, in the case of the third sample, there
is an issue of missed detection, indicating that our model’s precision in segmenting faint
small objects is not yet optimal. Enhancing the accuracy in the segmentation of such faint
small objects is a critical area for improvement in our model.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 9. Visualization results on the MoNuSeg dataset. (a) Original Image. (b) Ground Truth. (c) U-Net.
(d) U-Net++. (e) ResU-Net. (f) U-Net3+. (g) MedT. (h) TransU-Net. (i) UNeXt. (j) PIS-Net (ours).

4.5. Comparative Experiments

In order to verify the effects of the Diagonal-Axial MLP Block, DR-SPP Block and
hybrid downsampling strategy introduced during the model design process on the model
performance, we designed the following ablation experiments, which are referred to as
Experiment 1 to Experiment 6.

1. U-Net: The original U-Net with 64 channels in the first stage.
2. Conv Stage + Tok-MLP (UNeXt): The baseline model, built upon the U-Net architec-

ture, which replaces the fourth and fifth stages of the network with Tok-MLP blocks.
3. Conv Stage + Diagonal-Axial MLP: Built upon the UNeXt architecture, the fourth and fifth

stages of the network are replaced by the Diagonal-Axial MLP Block proposed by us.
4. Conv Stage + Diagonal-Axial MLP + DR-SPP: While incorporating the Diagonal-

Axial MLP Block, the model includes the insertion of the DR-SPP Block after the
downsampling process.

5. Conv Stage + Diagonal-Axial MLP + HBDS: While integrating the Diagonal-Axial
MLP Block, the model also employs the hybrid downsampling strategy, wherein a
parallel HBDS Block is introduced during the MLP stage of the downsampling process.

6. Conv Stage + Diagonal-Axial MLP + DR-SPP + HBDS (PIS-Net): This is our model,
PIS-Net, after adding all the improvements.

The results of the ablation experiments are shown in Table 2.

Table 2. Quantitative results of the model ablation experiments on the BUSI and ISIC2018 datasets.

Method Params
(in M)

Inf. Time
(in ms)

BUSI ISIC2018

IoU Dice IoU Dice

1. Original U-Net 31.19 223 63.85 76.35 74.55 84.03
2. Conv Stage + Tok-MLP (UNeXt) 1.47 25 65.86 78.49 82.05 90.15
3. Conv Stage + Diagonal-Axial MLP 1.61 27 65.99 79.01 82.31 90.32
4. Conv Stage + Diagonal-Axial MLP + DR-SPP 4.75 39 67.28 79.90 82.57 90.63
5. Conv Stage + Diagonal-Axial MLP + HBDS 1.78 27 66.71 79.65 82.49 90.54
6. Conv Stage + Diagonal-Axial MLP + DR-SPP + HBDS (ours) 5.46 29 68.28 80.66 82.68 90.76

In order to visualize the model’s “evolution” process, we show in Figure 10 a line
plot of the Dice metrics of the baseline model (2. UNeXt) and the ablation model on the
validation set when training on the BUSI dataset.
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D
i
ce

Epochs

Figure 10. Dice curves for the validation set of each ablation experiment model on the BUSI dataset.

Taking a comprehensive analysis of Table 2 and Figure 10 into account, it can be
observed that the MLP phase of Experiment 1, employing parallel diagonal-axial sliding
windows, enhances the inter-window feature interaction, effectively capturing global long-
range dependencies. This results in a 0.52 improvement in the Dice metric compared to
UNeXt, and the Dice curve converges to stability earlier. Upon the incorporation of the DR-
SPP module, image distortion issues are addressed, leading to a noticeable enhancement in
the Dice metric. The visualization results of Experiment 5 and Experiment 6 on difficult
samples are shown in Figure 11. After adding DR-SPP, the model can better fit the edges of
the target area and more accurately identify the foreground and background. However,
due to the broader receptive field of the feature set generated during the downsampling
phase, the Dice curve exhibits greater fluctuations during training.

(a) (b) (c)

BUSI

ISIC2018

Figure 11. Visualization results of Experiment 5 and Experiment 6. Among them, the green line in
(a) represents the ground truth. (b) The red lines represent the results of Experiment 5, and the green
lines represent the ground truth. (c) The red lines represent the results of Experiment 6, and the green
lines represent the ground truth.

Experiment 5 utilizes a mixed downsampling strategy in the downsampling phase,
supplementing nonlinear downsampling features with the linear ones from the MLP phase,
effectively achieving multi-scale feature fusion. This results in a significant improvement
in the Dice metric, while the training process remains relatively stable.

Finally, our “complete body” model, which combines all methods, achieves a 2.17 in-
crease in the Dice metric compared to the baseline model. The Dice curve is smoother and
converges earlier, showcasing advanced performance in semantic segmentation on the
BUSI dataset.
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5. Discussion

We show the IoU curves of the PIS-Net model on the three datasets for the training
set compared with the validation set in Figure 12, respectively. A comprehensive analysis
reveals that our model has achieved excellent performance on these three datasets, even
with the small sample sizes of the instant medical datasets. From Figure 12, the convergence
of our model on BUSI is lower. The reason lies in that more noise is presented in the BUSI
dataset than in the ISIC and MoNuSeg datasets. The IoU curves of our model for the BUSI
dataset show that the noise problem is more serious compared to the ISIC and MoNuSeg
datasets. In conclusion, the main areas for improvement in the PIS-Net model are to further
enhance the robustness on small-sample datasets and to further overcome the influence of
noise on the training process.

I
o
U

I
o
U

I
o
U

EpochsEpochsEpochs

Figure 12. The IoU curves of the PIS-Net model on the BUSI, ISIC and MoNuSeg datasets, with green
representing the training set and yellow the validation set.

6. Conclusions and Future Work

In this work, we propose an MLP–CNN hybrid model, PIS-Net, for medical instant
image segmentation with low resolution. In the MLP phase of the model, we propose
the Diagonal-Axial MLP Block to focus on local window attention by parallel diagonal-
axial sliding windows to enhance the information interactions among windows. The
designed Diagonal-Axial MLP Block also can achieve the effect of modeling global long-
range dependencies. At the end of the downsampling stage, the DR-SPP module with
parallel pooling is used to adaptively select the size of the pooling window according to
various dimensions of the input features. DR-SPP is inserted to obtain a richer output
feature map with a richer receptive field for model upsampling, which alleviates the image
distortion by preprocessing. The figured HBDS utilizes the complementarity of nonlinear
downsampling and linear downsampling to achieve the effect of multi-scale feature fusion
for a better feature representation. Our experiments on three public datasets show that
PIS-Net can obtain advanced performance metric scores (IoU and Dice), while the number
of model parameters is small and the training speed is fast. However, PIS-Net shows a
certain degree of overfitting on datasets with small sample sizes. Our future work will aim
to propose data augmentation and transfer learning methods for PIS-Net.
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