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Abstract: Hyper-ballistic diffusion is shown to arise from a simple model of microswimmers mov-
ing through a porous media while competing for resources. By using a mean-field model where
swimmers interact through the local concentration, we show that a non-linear Fokker–Planck equa-
tion arises. The solution exhibits hyper-ballistic superdiffusive motion, with a diffusion exponent
of four. A microscopic simulation strategy is proposed, which shows excellent agreement with
theoretical analysis.

Keywords: anomalous diffusion; porous media; microswimmers

1. Introduction

The transport of self-propelled particles through an obstacle-laden or porous envi-
ronments is of importance to a broad range of scientific disciplines [1]. With applications
ranging from the dispersion of contaminants in soils to transport of cells inside the body,
and even medical applications in the context of micro- and nano-robotics, such processes
provide a fruitful and important avenue of research from theoretical, experimental and
industrial perspectives.

Transport of passive particles, such as Brownian colloids or tracers, through disordered
porous media have been studied intensively in recent decades, and is, to a large extent,
understood through theories such as the framework presented by Brenner [2]. Biological
swimmers, on the other hand, display a plethora of phenomena not seen in the passive
counterparts, most of which arise from their active nature, i.e., their ability to absorb energy
from the environment [3]. In the majority of cases, it is assumed that this energy is used to
produce directed persistent motion, after which it is dissipated back into the environment.
This break both the classical fluctuation-dissipation theorem and detailed balance, making
such systems non-equilibrium and fundamentally different from passive systems [4]. Self-
propelled motion in porous media is an active area of research, displaying many intriguing
phenomena such as enhanced motion and optimal swimming strategies [5–11], directional
locking [12,13], and hydrodynamic trapping at obstacles [14,15].

Persistent motion of self-propelled particles is known to be the origin of many inter-
esting phenomena in active systems. One example is the motility-induced accumulation
of particles near solid obstacles or surfaces. Such accumulation can be purely dynamical
in origin, where the finite-time correlations in the particle direction of motion give rise
to extended durations, whereby a particle collides with the solid [1,16–18]. In porous
media, this may give rise to long durations of trapping in dead-ends of the porous matrix.
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Combined with other effects of geometric confinement present in media with a high filling
fraction, this can give rise to anomalous diffusion of the sub-diffusive type, whereby the
particles mean square displacement scales in time as ⟨r2(t)⟩ ∼ t2τ , with 0 ≤ τ ≤ 1/2 [19].
This is typically attributed to power-law distributed trapping times, and is common for
both passive and active systems in strongly heterogeneous environments [20–26].

Superdiffusion with 1/2 ≤ τ ≤ 1 can also be observed, with typical examples in-
cluding Lévy flights, animal migration patterns and tracers in turbulent flows [27–31].
Hyper-ballistic diffusion, on the other hand, where τ ≥ 1, is much more rare. Hyper-
ballistic diffusion seems almost like a contradiction, since it suggests transport that is
faster than motion without any change in the direction of motion. There are still a few
systems that exhibit such behavior. The random acceleration process is a model where
⟨r2(t)⟩ ∼ t3, which has seen many applications [32]. For example, it can be mapped onto
the motion of a semi-flexible polymer inside a tube [33]. Quantum interference effects
give Gaussian distribution with ⟨r2(t)⟩ ∼ t3 [34,35]. Such effects have also been observed
in optical experiments studying wave packets moving through random potentials [36],
an effect which is related to Anderson localization [37]. Both in classical and quantum
systems, hyper-ballistic transport may occur for particles that receive unbounded amounts
of energy from some random potential. For example, Golubovic et al. finds superdiffusion
with ⟨r2(t)⟩ ∼ t18/8 in a time-dependent random potential [38]. A simple random walk
model with memory effects, called the “elephant random walk” because elephants have
long memories, also gives rise to superdiffusion, but with sub-ballistic behavior [39].

One way in which hyper-ballistic diffusion can appear is when the particle velocity
is allowed to grow without bounds [40]. For normal Langevin systems, such behavior
is not possible, since the fluctuation-dissipation theorem ensures a balance between the
fluctuations driving the system and the dissipation. For active systems, such as biological
microswimmers, the fluctuation-dissipation theorem is famously broken, making these
systems potential candidates for hyper-ballistic diffusion. In this paper, we propose a
simple model where self-propelled swimmers move in a porous media while competing
for resources. Hyper-ballistic motion is shown to arise as a direct consequence of a nutrient
landscape that dynamically changes with the swimmer density.

2. Model of Competing Swimmers

The N swimmers move in an isotropic porous medium that defines a mean free
path length λ (see Figure 1). The swimmers are assumed to move in straight lines at a
speed v(x, t) until they hit the walls of the porous media. As mentioned above, some
cells generate more persistent straight-lined motion when starved or in the absence of
external signals [41,42]. When the swimmers collide with the walls of the medium, after
a characteristic distance λ, they randomly change direction. The porous medium is only
represented in this minimal way, so that the effect of potential trapping in dead ends or
near obstacle surfaces is ignored [19].

The swimmers also move through a nutrient concentration CN(x, t) which can change
dynamically in time due to the swimmers presence. The study of swimmers motion in
various chemical gradients, chemotaxis, has been studied for decades in the biological and
biophysical communities [43,44]. The motion of cells may also change drastically under
starved conditions, when the nutrient concentration is low. While some cells respond to
such conditions by deactivating flagellar motors [45], other observations include more
persistent straight-lined motion [41,42]. More recent studies have modeled nutrient or
activity landscapes implicitly as time- or space-dependent self-propulsion speeds in models
of active matter [46–49]. Recently, a dynamical resource landscape was considered in a
lattice model [50].
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Figure 1. Swimmers in a porous medium with a characteristic pore size λ. Lighter colors indicate
nutrition depletion.

In the present context, we consider in the simplest case an inverse relationship CN(x, t)
∼ 1/C(x, t) between the nutrient concentration CN(x, t) and swimmer concentration
C(x, t), implying that the presence of many swimmers deplete the nutrients in that re-
gion. For example, the nutrients can be supplied at a given rate from the walls in the
medium, for example due to prior accumulation. We shall take the pore size to be much
smaller than the nutrient diffusion length, so that the nutrient supply is limited by the re-
lease rate from the walls. Each swimmer eats at a rate ∼ CN(x, t) and we shall assume that
the nutrient supply is almost depleted, so that CN(x, t) is much smaller than the saturation
limit, hence the competition. In a given pore volume, the food consumption will thus be
∼ CN(x, t)C(x, t). This consumption is balanced by the constant supply from the walls so
that the nutrient concentration scales as CN(x, t) ∼ 1/C(x, t), as above.

Since the swimmers move against a Stokes drag force ∝ v, the power they dissipate
by swimming is proportional to v2. Assuming that they convert a constant fraction of
the energy they consume into this power, we arrive at a swimming velocity scaling as
v2(x, t) ∼ CN(x, t). A similar scaling is also found in microscopic models for active
particles where energy consumption is explicitly modeled [51–53]. Combining the above,
we arrive at

|v(C)| ≡ v(C) = v0

(
C
C0

)−1/2
(1)

where v0 is the velocity at some reference concentration C0. In other words, the swimmers
will accelerate once their concentration is down and the food competition is reduced. Their
motion is diffusive in the sense that swimmers perform a random walk with a concentration
dependent step length λ. This concentration dependence represents an interaction with the
neighboring swimmers that define the local concentration.

3. Simulation Model

In order to simulate the collective motion of the swimmers, we represent them as point
particles with positions xi, i = 1, . . . N that are updated according to the algorithm

xi(t + dt) = xi(t) + v(C(xi))dt (2)

vi(t + dt) =
{

Rv(C(xi)) if ∆xi > λ,
v(C(xi)) otherwise,

(3)

where dt is fixed small timestep, R is a rotation operator representing a random collision
that uniformly re-orients the swimmers direction of motion, and ∆xi is the displacement,
since the last application of the random rotation operator R. We emphasize that, in the
above algorithm, the velocity vector v(C(xi)) only depends on the local concentration
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through its magnitude through Equation (1). The random re-orientations due to collisions
only affect the swimmers direction of motion. To sample the local concentration around
particle i, we use a scheme similar to that in Ref. [40]. Here, a number of interaction partners
Nr is introduced, along an associated volume Vr(x) of a sphere that contains the Nr nearest
neighbors. This is illustrated in Figure 2. We emphasize that this type of interaction is
non-local, in the sense that the range of interaction has no bounds. The local concentration
used in Equations (2) and (3) is then sampled as

C(xi(t)) =
Nr

Vr(xi(t))
(4)

The operator R in Equation (3) rotates vi into a new arbitrary direction without changing
the speed, and the distance ∆xi is calculated from this point, so that the next application of
R may be determined. So, the swimmers are random walkers with a step length λ, and
potentially, they spend several time steps to move λ along straight lines.

r

r

V

Figure 2. The volume Vr from which the concentration is calculated. Here, Nr = 10.

3.1. The Fokker–Planck Equation

Following the classical methods [54,55], we derive the Fokker–Planck equation that
governs the time evolution of the particle concentration. The general form of the master
equation takes the standard form

∂C(x, t)
∂t

=
∫

d3r[C(x − r, t)W(x − r, r)− C(x, t)W(x,−r)] , (5)

where W(x, r) is the jump rate associated with a step x → x + r. In the present case, the
size of a step a swimmer takes depends on the nutrient concentration and, hence, also on
the particle concentration. Assuming a slowly varying spatial dependence in the jump
rates W(x − r, r), we may Taylor expand around x in its first argument. This results in the
Fokker–Planck equation

∂C(x, t)
∂t

=
1
2

∫
d3rrirj

∂2

∂xi∂xj
[C(x, t)W(x, r)] , (6)

Rearranging the derivatives, we have

∂C(x, t)
∂t

=
1
2
∇2[a2(x)C(x, t)] , (7)

where a2(x) is the second moment of the jump length per time,

a2(x) =
∫

d3r
r2

3
W(x, r) =

1
3

λ2

τ
=

1
3

λv, (8)
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where τ is the local mean free time, and we have used that the local swimmer velocity is
v = λ/τ. The factor of 1/3 comes from the identity r2 = 3r2

i . Using v = v0(C/C0)
−1/2,

we obtain
∂C
∂t

=
v0λC1/2

0
2

∇2C1/2 , (9)

or
∂C
∂t

= D0∇ ·
((

C
C0

)−1/2
∇C

)
, (10)

where D0 = v0λ/4. It may be shown [56] that this equation has the normalizable solution

C(r, t) ∝
[

y(r, t)2 +
8π4

N2

]−2

t−2 (11)

where y(r, t) = r/(C0(D0t)2). At large values of r, the solution has a tail C(r, t) ∼ r−4. For
other properties of the solution to concentration dependent diffusivity, see Ref. [56].

3.2. Mean Square Displacement and Simulation Results

From the above solution, we can calculate the mean squared displacement ⟨r2(t)⟩ or,
equivalently, the root-mean-squared displacement (rms) rrms ≡

√
⟨r2(t)⟩, by the integrals

r2
rms = ⟨r2(t)⟩=

∫
dVr2C(r, t)∫
dVC(r, t)

=

∫ ∞
0 drr4C(r, t)∫ ∞
0 drr2C(r, t)

, (12)

where dV = dxdydz is the volume element in three dimensions, and where we changes
to radial coordinates in the second equality, with r the radius from where the swimmers
are released. To extract the leading temporal scaling at late times, we observe that from
Equation (11) we have for any exponent α the scaling

∫ ∞

0
drrαC(r, t) ∼ t2+2α

∫ ∞

0
dy
[

y2 +
8π4

N2

]−2

, (13)

where we changed integration variable from r to y(r, t), as given above. With this change in
the variable, the time-dependence has been made explicit. Using this result together with
Equation (12) immediately gives

r2
rms ∼ t4. (14)

This is a remarkable result, as it predicts a spreading rate which is beyond that of ballistic
growth. Ballistic growth, which would result if the swimmers would move at constant
speed and never change direction of motion, would give ⟨r2(t)⟩ ∼ t2.

Note that, since r4C(r, t) ∼ r0 for large r, the integral in the numerator diverges.
However, as was pointed out in Ref. [40], there will always be a maximal swimmer position
rmax in any numerical realization, which effectively acts as a cut-off. This means that the
proportionality with t4 survives and that the prefactor varies linearly with rmax. Since
rmax fluctuates in each simulation, the prefactor in Equation (14) is noisy, even with large
ensemble numbers. Figure 3a. shows results from numerical simulations where particle
concentration was initialized as a delta-peak. The results show that the swimmers indeed
conform to the prediction of Equation (14). They are indeed noisy, as expected, since the
largest swimmer positions contribute significantly to the rrms(t) evaluation.
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Figure 3. (a) The mean square displacement compared to the theoretical values of Equation (14) for
different swimmer numbers N. The solid line shows the predicted slope, but there is no prediction
for the pre-factor in this case. Here, Nr = 4. (b) The mean square displacement compared to
the theoretical values of Equation (15) τ = 0.91 and 1.05 (stapled lines) when γ = 0.3 and 0.35,
respectively. Here, N = 100 and Nr = 4.

Generalizing the model to v ∼ λC−γ where γ ̸= 1/2, the solution becomes C(r, t) ∼
(y2 + k)−1/γ. Now, the integrals in Equation (12) converges when γ < 0.4 and, in this case,
the ⟨r2⟩(t) becomes significantly less noisy. The generalized solution leads to rrms(t) ∼ tτ ,
where [40]

τ =
1

2 − 3γ
. (15)

In order to validate both the analytical and computational model, we have carried out simu-
lations using this generalized concentration dependence in the velocity. The results, which
are shown in Figure 3b, demonstrate close agreement between simulations and theory.

4. Conclusions

We have studied the diffusive behavior of microswimmers competing for resources.
Through simple arguments, we have derived a density-dependent Fokker–Planck equation
that effectively models this scenario, and have proposed a microscopic numerical model that
agrees with the theory. We find that the swimmers exhibit a hyper-ballistic superdiffusive
behavior, where the growth of the mean squared displacement in time is quartic.

Author Contributions: Conceptualization, E.G.F. and A.H.; Formal analysis, K.S.O., E.G.F. and A.H.;
Visualization, K.S.O.; Writing—original draft, K.S.O., E.G.F. and A.H.; Writing—review and editing,
K.S.O., E.G.F. and A.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the Research Council of Norway through its Centers of
Excellence funding scheme, project number 262644. KSO acknowledges support by the Deutsche
Forschungsgemeinschaft (DFG) through the SPP 2265, under grant number LO 418/25-1, and the
Nordita fellowship program. Nordita is partially supported by Nordforsk.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded

environments. Rev. Mod. Phys. 2016, 88, 045006. [CrossRef]
2. Brenner, H. Dispersion resulting from flow through spatially periodic porous media. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys.

Sci. 1980, 297, 81–133.

http://doi.org/10.1103/RevModPhys.88.045006


Entropy 2024, 26, 274 7 of 8

3. Marchetti, M.C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T.B.; Prost, J.; Rao, M.; Simha, R.A. Hydrodynamics of soft active matter.
Rev. Mod. Phys. 2013, 85, 1143. [CrossRef]

4. Loi, D.; Mossa, S.; Cugliandolo, L.F. Effective temperature of active matter. Phys. Rev. E 2008, 77, 051111. [CrossRef] [PubMed]
5. Alonso-Matilla, R.; Chakrabarti, B.; Saintillan, D. Transport and dispersion of active particles in periodic porous media. Phys. Rev.

Fluids 2019, 4, 043101. [CrossRef]
6. Pattanayak, S.; Das, R.; Kumar, M.; Mishra, S. Enhanced dynamics of active Brownian particles in periodic obstacle arrays and

corrugated channels. Eur. Phys. J. E 2019, 42, 62. [CrossRef]
7. Khalilian, H.; Fazli, H. Obstruction enhances the diffusivity of self-propelled rod-like particles. J. Chem. Phys. 2016, 145, 164909.

[CrossRef]
8. Bertrand, T.; Zhao, Y.; Bénichou, O.; Tailleur, J.; Voituriez, R. Optimized diffusion of run-and-tumble particles in crowded

environments. Phys. Rev. Lett. 2018, 120, 198103. [CrossRef]
9. Chepizhko, O.; Franosch, T. Random motion of a circle microswimmer in a random environment. New J. Phys. 2020, 22, 073022.

[CrossRef]
10. Makarchuk, S.; Braz, V.C.; Araújo, N.A.; Ciric, L.; Volpe, G. Enhanced propagation of motile bacteria on surfaces due to forward

scattering. Nat. Commun. 2019, 10, 4110. [CrossRef]
11. Van Roon, D.M.; Volpe, G.; da Gama, M.M.T.; Araújo, N.A. The role of disorder in the motion of chiral active particles in the

presence of obstacles. Soft Matter 2022, 18, 6899–6906. [CrossRef]
12. Reichhardt, C.; Reichhardt, C. Directional locking effects for active matter particles coupled to a periodic substrate. Phys. Rev. E

2020, 102, 042616. [CrossRef]
13. Yu, H.; Kopach, A.; Misko, V.R.; Vasylenko, A.A.; Makarov, D.; Marchesoni, F.; Nori, F.; Baraban, L.; Cuniberti, G. Confined

catalytic janus swimmers in a crowded channel: Geometry-driven rectification transients and directional locking. Small 2016,
12, 5882–5890. [CrossRef] [PubMed]

14. Takagi, D.; Palacci, J.; Braunschweig, A.B.; Shelley, M.J.; Zhang, J. Hydrodynamic capture of microswimmers into sphere-bound
orbits. Soft Matter 2014, 10, 1784–1789. [CrossRef] [PubMed]

15. Spagnolie, S.E.; Moreno-Flores, G.R.; Bartolo, D.; Lauga, E. Geometric capture and escape of a microswimmer colliding with an
obstacle. Soft Matter 2015, 11, 3396–3411. [CrossRef] [PubMed]

16. Junot, G.; Darnige, T.; Lindner, A.; Martinez, V.A.; Arlt, J.; Dawson, A.; Poon, W.C.; Auradou, H.; Clément, E. Run-to-tumble
variability controls the surface residence times of E. coli bacteria. Phys. Rev. Lett. 2022, 128, 248101. [CrossRef] [PubMed]

17. Li, G.; Tang, J.X. Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys.
Rev. Lett. 2009, 103, 078101. [CrossRef] [PubMed]

18. Moen, E.Q.Z.; Olsen, K.S.; Rønning, J.; Angheluta, L. Trapping of active Brownian and run-and-tumble particles: A first-passage
time approach. Phys. Rev. Res. 2022, 4, 043012. [CrossRef]

19. Bhattacharjee, T.; Datta, S.S. Bacterial hopping and trapping in porous media. Nat. Commun. 2019, 10, 2075. [CrossRef]
20. Bouchaud, J.P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications.

Phys. Rep. 1990, 195, 127–293. [CrossRef]
21. Olsen, K.S.; Angheluta, L.; Flekkøy, E.G. Active Brownian particles moving through disordered landscapes. Soft Matter 2021,

17, 2151–2157. [CrossRef] [PubMed]
22. Havlin, S.; Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 1987, 36, 695–798. [CrossRef]
23. Olsen, K.S.; Campbell, J.M. Diffusion Entropy and the Path Dimension of Frictional Finger Patterns. Front. Phys. 2020, 8, 83.

[CrossRef]
24. Olsen, K.S.; Flekkøy, E.G.; Angheluta, L.; Campbell, J.M.; Måløy, K.J.; Sandnes, B. Geometric universality and anomalous diffusion

in frictional fingers. New J. Phys. 2019, 21, 063020. [CrossRef]
25. Olsen, K.S.; Löwen, H. Dynamics of inertial particles under velocity resetting. arXiv 2024, arXiv:2401.12685.
26. Sokolov, I.M. Models of anomalous diffusion in crowded environments. Soft Matter 2012, 8, 9043–9052. [CrossRef]
27. Shlesinger, M.F.; West, B.; Klafter, J. Lévy dynamics of enhanced diffusion: Application to turbulence. Phys. Rev. Lett. 1987,

58, 1100. [CrossRef]
28. Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.V.; Murphy, E.J.; Prince, P.A.; Stanley, H.E. Lévy flight search patterns of wandering

albatrosses. Nature 1996, 381, 413–415. [CrossRef]
29. Viswanathan, G.M.; Buldyrev, S.V.; Havlin, S.; Da Luz, M.; Raposo, E.; Stanley, H.E. Optimizing the success of random searches.

Nature 1999, 401, 911–914. [CrossRef]
30. Vilk, O.; Aghion, E.; Nathan, R.; Toledo, S.; Metzler, R.; Assaf, M. Classification of anomalous diffusion in animal movement data

using power spectral analysis. J. Phys. A Math. Theor. 2022, 55, 334004. [CrossRef]
31. Vilk, O.; Aghion, E.; Avgar, T.; Beta, C.; Nagel, O.; Sabri, A.; Sarfati, R.; Schwartz, D.K.; Weiss, M.; Krapf, D.; et al. Unravelling the

origins of anomalous diffusion: From molecules to migrating storks. Phys. Rev. Res. 2022, 4, 033055. [CrossRef]
32. Burkhardt, T.W. First passage of a randomly accelerated particle. In First-Passage Phenomena and Their Applications; World Scientific:

Hackensack, NJ, USA, 2014; pp. 21–44.
33. Burkhardt, T.W. Free energy of a semiflexible polymer in a tube and statistics of a randomly-accelerated particle. J. Phys. A Math.

Gen. 1997, 30, L167. [CrossRef]

http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/PhysRevE.77.051111
http://www.ncbi.nlm.nih.gov/pubmed/18643030
http://dx.doi.org/10.1103/PhysRevFluids.4.043101
http://dx.doi.org/10.1140/epje/i2019-11826-7
http://dx.doi.org/10.1063/1.4966188
http://dx.doi.org/10.1103/PhysRevLett.120.198103
http://dx.doi.org/10.1088/1367-2630/ab9708
http://dx.doi.org/10.1038/s41467-019-12010-1
http://dx.doi.org/10.1039/D2SM00694D
http://dx.doi.org/10.1103/PhysRevE.102.042616
http://dx.doi.org/10.1002/smll.201602039
http://www.ncbi.nlm.nih.gov/pubmed/27628242
http://dx.doi.org/10.1039/c3sm52815d
http://www.ncbi.nlm.nih.gov/pubmed/24800268
http://dx.doi.org/10.1039/C4SM02785J
http://www.ncbi.nlm.nih.gov/pubmed/25800455
http://dx.doi.org/10.1103/PhysRevLett.128.248101
http://www.ncbi.nlm.nih.gov/pubmed/35776449
http://dx.doi.org/10.1103/PhysRevLett.103.078101
http://www.ncbi.nlm.nih.gov/pubmed/19792689
http://dx.doi.org/10.1103/PhysRevResearch.4.043012
http://dx.doi.org/10.1038/s41467-019-10115-1
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1039/D0SM01942A
http://www.ncbi.nlm.nih.gov/pubmed/33443273
http://dx.doi.org/10.1080/00018738700101072
http://dx.doi.org/10.3389/fphy.2020.00083
http://dx.doi.org/10.1088/1367-2630/ab25bf
http://dx.doi.org/10.1039/c2sm25701g
http://dx.doi.org/10.1103/PhysRevLett.58.1100
http://dx.doi.org/10.1038/381413a0
http://dx.doi.org/10.1038/44831
http://dx.doi.org/10.1088/1751-8121/ac7e8f
http://dx.doi.org/10.1103/PhysRevResearch.4.033055
http://dx.doi.org/10.1088/0305-4470/30/7/004


Entropy 2024, 26, 274 8 of 8

34. Jayannavar, A.; Kumar, N. Nondiffusive quantum transport in a dynamically disordered medium. Phys. Rev. Lett. 1982,
48, 553–556. [CrossRef]

35. Pires, M.A.; Molfetta, G.M.; Queiros, S.M.D. Multiple transitions between normal and hyperballistic diffusion in quantum walks
with time-dependent jumps. Nat. Sci. Rep. 2019, 9, 19292. [CrossRef]

36. Levi, L.; Krivolapov, Y.; Fishman, S.; Segev, M. Hyper-transport of light and stochastic acceleration by evolving disorder. Nat.
Phys. 2012, 8, 912–917. [CrossRef]

37. Anderson, P. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109, 1492–1505. [CrossRef]
38. Golubovic, L.; Feng, S.; Zeng, F. Classical and Quantum Superdiffusion in a Time-Dependent Random Potential. Phys. Rev. Lett.

1991, 67, 2115–2118. [CrossRef] [PubMed]
39. Schutz, G.; Trimper, S. Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk.

Phys. Rev. E 2004, 70, 045101. [CrossRef] [PubMed]
40. Flekkøy, E.G.; Hansen, A.; Baldelli, B. Hyperballistic superdiffusion and explosive solutions to the non-linear diffusion equation.

Front. Phys. 2021, 9, 640560. [CrossRef]
41. Van Haastert, P.J.; Bosgraaf, L. Food searching strategy of amoeboid cells by starvation induced run length extension. PLoS ONE

2009, 4, e6814. [CrossRef] [PubMed]
42. Li, L.; Nørrelykke, S.F.; Cox, E.C. Persistent cell motion in the absence of external signals: A search strategy for eukaryotic cells.

PLoS ONE 2008, 3, e2093. [CrossRef] [PubMed]
43. Berg, H.C. Chemotaxis in bacteria. Annu. Rev. Biophys. Bioeng. 1975, 4, 119–136. [CrossRef] [PubMed]
44. Xie, L.; Wu, X. Bacterial Motility Patterns Reveal Importance of Exploitation over Exploration in Marine Microhabitats. Part I:

Theory. Biophys. J. 2014, 107, 1712–1720. [CrossRef] [PubMed]
45. Wei, X.; Bauer, W.D. Starvation-Induced Changes in Motility, Chemotaxis, and Flagellation of Rhizobium meliloti. Appl. Environ.

Microbiol. 1998, 64, 1708–1714. [CrossRef]
46. Babel, S.; Ten Hagen, B.; Löwen, H. Swimming path statistics of an active Brownian particle with time-dependent self-propulsion.

J. Stat. Mech. Theory Exp. 2014, 2014, P02011. [CrossRef]
47. Khadem, S.; Siboni, N.; Klapp, S. Transport and phase separation of active Brownian particles in fluctuating environments. Phys.

Rev. E 2021, 104, 064615. [CrossRef]
48. Caprini, L.; Bettolo Marconi, U.M.; Wittmann, R.; Löwen, H. Active particles driven by competing spatially dependent self-

propulsion and external force. Scipost Phys. 2022, 13, 065. [CrossRef]
49. Caprini, L.; Marconi, U.M.B.; Wittmann, R.; Löwen, H. Dynamics of active particles with space-dependent swim velocity. Soft

Matter 2022, 18, 1412–1422. [CrossRef]
50. Varga, L.; Libál, A.; Reichhardt, C.; Reichhardt, C. Active regimes for particles on resource landscapes. Phys. Rev. Res. 2022,

4, 013061. [CrossRef]
51. Schweitzer, F.; Ebeling, W.; Tilch, B. Complex motion of Brownian particles with energy depots. Phys. Rev. Lett. 1998, 80, 5044.

[CrossRef]
52. Ebeling, W.; Schweitzer, F.; Tilch, B. Active Brownian particles with energy depots modeling animal mobility. BioSystems 1999,

49, 17–29. [CrossRef] [PubMed]
53. Schweitzer, F.; Farmer, J.D. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences; Springer:

Berlin/Heidelberg, Germany, 2003; Volume 1.
54. van Kampen, N. Stochastic Processes in Physics and Chemistry, 3rd ed.; North Holland: Amsterdam, The Netherlands, 2007.
55. Risken, H.; Risken, H. Fokker-Planck Equation; Springer: Berlin/Heidelberg, Germany, 1996.
56. Hansen, A.; Flekkøy, E.; Baldelli, B. Anomalous Diffusion in Systems with Concentration-Dependent Diffusivity: Exact Solutions

and Particle Simulations. Front. Phys. 2020, 8, 519624. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevLett.48.553
http://dx.doi.org/10.1038/s41598-019-55642-5
http://dx.doi.org/10.1038/nphys2463
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.67.2115
http://www.ncbi.nlm.nih.gov/pubmed/10044344
http://dx.doi.org/10.1103/PhysRevE.70.045101
http://www.ncbi.nlm.nih.gov/pubmed/15600446
http://dx.doi.org/10.3389/fphy.2021.640560
http://dx.doi.org/10.1371/journal.pone.0006814
http://www.ncbi.nlm.nih.gov/pubmed/19714242
http://dx.doi.org/10.1371/journal.pone.0002093
http://www.ncbi.nlm.nih.gov/pubmed/18461173
http://dx.doi.org/10.1146/annurev.bb.04.060175.001003
http://www.ncbi.nlm.nih.gov/pubmed/1098551
http://dx.doi.org/10.1016/j.bpj.2014.07.058
http://www.ncbi.nlm.nih.gov/pubmed/25296325
http://dx.doi.org/10.1128/AEM.64.5.1708-1714.1998
http://dx.doi.org/10.1088/1742-5468/2014/02/P02011
http://dx.doi.org/10.1103/PhysRevE.104.064615
http://dx.doi.org/10.21468/SciPostPhys.13.3.065
http://dx.doi.org/10.1039/D1SM01648B
http://dx.doi.org/10.1103/PhysRevResearch.4.013061
http://dx.doi.org/10.1103/PhysRevLett.80.5044
http://dx.doi.org/10.1016/S0303-2647(98)00027-6
http://www.ncbi.nlm.nih.gov/pubmed/10091970
http://dx.doi.org/10.3389/fphy.2020.519624

	Introduction
	Model of Competing Swimmers
	Simulation Model
	The Fokker–Planck Equation
	Mean Square Displacement and Simulation Results

	Conclusions
	References

