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Abstract: We propose a two-sample testing procedure for high-dimensional time series. To obtain
the asymptotic distribution of our ℓ∞-type test statistic under the null hypothesis, we establish
high-dimensional central limit theorems (HCLTs) for an α-mixing sequence. Specifically, we derive
two HCLTs for the maximum of a sum of high-dimensional α-mixing random vectors under the
assumptions of bounded finite moments and exponential tails, respectively. The proposed HCLT
for α-mixing sequence under bounded finite moments assumption is novel, and in comparison with
existing results, we improve the convergence rate of the HCLT under the exponential tails assumption.
To compute the critical value, we employ the blockwise bootstrap method. Importantly, our approach
does not require the independence of the two samples, making it applicable for detecting change
points in high-dimensional time series. Numerical results emphasize the effectiveness and advantages
of our method.

Keywords: two-sample testing; high-dimensional time series; α-mixing; Gaussian approximation;
blockwise bootstrap

1. Introduction

A fundamental testing problem in multivariate analysis involves assessing the equality
of two mean vectors, denoted as µX and µY. Since its inception by [1], the Hotelling T2

test has proven to be a valuable tool in multivariate analyses. Subsequently, numerous
studies have addressed the testing of µX = µY, within various contexts and under distinct
assumptions. See refs. [2,3], along with their respective references.

Consider two sets of observations, {Xt}n1
t=1 and {Yt}n2

t=1, where Xt = (Xt,1, . . . , Xt,p)T

and Yt = (Yt,1, . . . , Yt,p)T. These observations are drawn from two populations with means
µX and µY, respectively. The classical test aims to test the hypotheses:

H0 : µX = µY versus H1 : µX ̸= µY. (1)

When {Xt}n1
t=1 and {Yt}n2

t=1 are two independent sequences and independent with each
other, a considerable body of literature focuses on testing Hypothesis (1). The ℓ2-type test
statistic corresponding to (1) is of the form (X̄ − Ȳ)TS−1(X̄ − Ȳ), where X̄ = n−1

1 ∑n1
t=1 Xt,

Ȳ = n−1
2 ∑n2

t=1 Yt and S−1 is the weight matrix. A straightforward choice for S−1 is the
identity matrix Ip [4,5], implying equal weighting for each dimension. Several classical
asymptotic theories have been developed based on this selection of S−1. However, this
choice disregards the variability in each dimension and the correlations between them,
resulting in suboptimal performance, particularly in the presence of heterogeneity or the
existence of correlations between dimensions. In recent decades, numerous researchers
have investigated various choices for S−1 along with the corresponding asymptotic theories.
See refs. [6,7]. In addition, some researchers have developed a framework centered on
ℓ∞-type test statistics, represented as maxj∈[p] |(S−1/2(X̄ − Ȳ))j| [8–10]. Extreme value
theory plays a pivotal role in deriving the asymptotic behaviors of these test statistics.
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However, when {Xt}n1
t=1 and {Yt}n2

t=1 are two weakly dependent sequences and are
not independent of each other, the above methods may not work well. In this paper,
we introduce an ℓ∞-type test statistic Tn := (n1n2)

1/2(n1 + n2)
−1/2|X̄ − Ȳ|∞ for test-

ing H0 under two dependent sequences. Based on Σ, which represents the variance
of (n1n2)

1/2(n1 + n2)
−1/2(X̄ − Ȳ), we construct a Gaussian maxima, denoted as TG

n , to
approximate Tn under the null hypothesis. When n1 = n2 = n, Tn can be written as |Sn|∞,
the maximum of a sum of high-dimensional weakly dependent random vectors, where
Sn = n−1/2 ∑n

t=1(Xt − Yt). Let TG
n = |G|∞ with G = (G1, . . . , Gp)T∼N{0, var(Sn)} and A

be a class of Borel subsets in Rp. Define

ρn(A) = sup
A∈A

|P(Sn ∈ A)− P(G ∈ A)|.

Paticularly, let Amax consists of all sets Amax of the form Amax = {(a1, . . . , ap)T ∈ Rp:
maxj∈[p] |aj| ≤ x} with some x ∈ R. Then we have

ρn(Amax) = sup
x∈R

|P(Tn ≤ x)− P(TG
n ≤ x)|.

Note that ρn(Amax) is the Kolmogorov distance between Tn and TG
n .

When dimension p diverges exponentially with respect to the sample size n, several
studies have focused on deriving ρn(Amax) = o(1) under a weakly dependent assumption.
Based on the coupling method for β-mixing sequence, ref. [11] obtained ρn(Amax) = o(1)
under the β-mixing condition, contributing to the understanding of such phenomena.
Ref. [12] extended the scope of the investigation to the physical dependence framework
introduced by [13]. Considering three distinct types of dependence—namely α-mixing,
m-dependence, and physical dependence measures—ref. [14] made significant strides. They
established nonasymptotic error bounds for Gaussian approximations of sums involving
high-dimensional dependent random vectors. Their analysis encompassed various sce-
narios of A, including hyper-rectangles, simple convex sets, and sparsely convex sets. Let
Are be the class of all hyper-rectangles in Rp. Under the α-mixing scenario and some mild
regularity conditions, [14] showed

ρn(Are) ≲
{log(pn)}7/6

n1/9 ,

hence the Gaussian approximation holds if log(pn) = o(n2/21). In this paper, under some
conditions similar to or even weaker than [14], we obtain

ρn(Amax) ≲
{log(pn)}3/2

n1/6 ,

which implies the Gaussian approximation holds if log(pn) = o(n1/9). Refer to Remark 1
for more details on the comparison of the convergence rates. By using the Gaussian-to-
Gaussian comparison and Nazarov’s inequality for p-dimensional random vectors, we
can easily extend our result to ρn(Are) ≲ {log(pn)}3/2n−1/6. Given that our framework
and numerous testing procedures rely on ℓ∞-type test statistics, we thus propose our
results under Amax. When p diverges polynomially with respect to n, to the best of our
knowledge, there is no existing literature providing the convergence rate of ρn(Amax) for
α-mixing sequences under bounded finite moments.

Based on the Gaussian approximation for high-dimensional independent random
vectors [15,16], we employ the coupling method for α-mixing sequence [17] and “big-
and-small” block technique to specify the convergence rate of ρn(Amax) under various
divergence rates of p. For more details, refer to Theorem 1 in Section 3.1 and its correspond-
ing proof in Appendix A. Given that Σ is typically unknown in practice, we develop a
data-driven procedure based on blockwise wild bootstrap [18] to determine the critical



Entropy 2024, 26, 226 3 of 33

value for a given significance level α. The blockwise wild bootstrap method is widely used
in the time series analysis. See [19,20] and references within.

The independence between {Xt}n1
t=1 and {Yt}n2

t=1 is not a necessary assumption in our
method. We only require the pair sequence {(Xt, Yt)} is weakly dependent. Therefore, our
method can be applied effectively to detect change points in high-dimensional time series.
Further details on this application can be found in Section 4.

The rest of this paper is organized as follows. Section 2 introduces the test statistic
and the blockwise bootstrap method. The convergence rates of Gaussian approximations
for high-dimensional α-mixing sequence and the theoretical properties of the proposed
test can be found in Section 3. In Section 4, an application to change point detection for
high-dimensional time series is presented. The selection method for tuning parameter and
a simulation study to investigate the numerical performance of the test are displayed in
Section 5. We apply the proposed method to the opening price data from multiple stocks
in Section 6. Section 7 provides discussions on the results and outlines our future work.
The proofs of the main results in Section 3 are detailed in the Appendices A–D.

Notation: For any positive integer p ≥ 1, we write [p] = {1, . . . , p}. We use |a|∞ =
maxj∈[p] |aj| to denote the ℓ∞-norm of the p-dimensional vector a. Let ⌊x⌋ and ⌈x⌉ represent
the greatest integer less than or equal to x and the smallest integer greater than or equal to
x, respectively. For two sequences of positive numbers {an} and {bn}, we write an ≲ bn
or bn ≳ an if lim supn→∞ an/bn ⩽ c0 for some positive constant c0. Let an ≍ bn if an ≲ bn
and bn ≲ an hold simultaneously. Denote 0p = (0, . . . , 0)T ∈ Rp. For any m × m matrix
A = (aij)m×m, let |A|∞ = maxi,j∈[m] |aij| and ∥A∥2 be the spectral norm of A. Additionally,
denote λmin(A) as the smallest eigenvalue of A. Let 1(·) be the indicator function. For any
x, y ∈ R, denote x ∨ y = max{x, y} and x ∧ y = min{x, y}. Given γ > 0, we define
the function ψγ(x) := exp(xγ) − 1 for any x > 0. For a real-valued random variable
ξ, we define ∥ξ∥ψγ := inf[λ > 0 : E{ψγ(|ξ|/λ)} ≤ 1]. Throughout the paper, we use
c, C ∈ (0, ∞) to denote two generic finite constants that do not depend on (n1, n2, p),
and may be different in different uses.

2. Methodology
2.1. Test Statistic and Its Gaussian Analog

Consider two weakly stationary time series {Xt, t ∈ Z} and {Yt, t ∈ Z} with
Xt = (Xt,1, . . . , Xt,p)T and Yt = (Yt,1, . . . , Yt,p)T. Let µX = E(Xt) and µY = E(Yt). The
primary focus is on testing equality of mean vectors of the two populations:

H0 : µX = µY versus H1 : µX ̸= µY.

Given the observations {Xt}n1
t=1 and {Yt}n2

t=1, the estimations of µX and µY are, respectively,
µ̂X = n1

−1 ∑n1
t=1 Xt and µ̂Y = n2

−1 ∑n2
t=1 Yt. In this paper, we assume n1 ≍ n2 ≍ n. It is

natural to consider the ℓ∞-type test statistic Tn = (n1n2)
1/2(n1 + n2)

−1/2|µ̂X − µ̂Y|∞. Write
ñ = max{n1, n2}. Define two new sequences {X̃t}ñ

t=1 and {Ỹt}ñ
t=1 with

X̃t = Xt∧n11(1 ≤ t ≤ n1) and Ỹt = Yt∧n21(1 ≤ t ≤ n2).

For each t ∈ [ñ], let

Zt =

√
n2ñ

n1(n1 + n2)
X̃t −

√
n1ñ

n2(n1 + n2)
Ỹt.

Then, Tn can be rewritten as

Tn =

∣∣∣∣ 1√
ñ

ñ

∑
t=1

Zt

∣∣∣∣
∞

. (2)
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We reject the null hypothesis H0 if Tn > cvα, where cvα represents the critical value at
the significance level α ∈ (0, 1). Determining cvα involves deriving the distribution of Tn
under H0. However, due to the divergence of p in a high-dimensional scenario, obtaining
the distribution of Tn is challenging. To address this challenge, we employ the Gaussian
approximation theorem [15,16]. We seek a Gaussian analog, denoted as TG

n , satisfying the
property that the Kolmogorov distance between Tn and TG

n converges to zero under H0.
Then, we can replace cvα by cvG

α := inf{x > 0 : P(TG
n > x) ≤ α}. Define a p-dimensional

Gaussian vector

G ∼ N (0p, Ξñ) with Ξñ = var
(

1√
ñ

ñ

∑
t=1

Zt

)
. (3)

We then define the Gaussian analogue of Tn as

TG
n = |G|∞.

Proposition 1 below demonstrates that the null distribution of Tn can be effectively approx-
imated by the distribution of TG

n .

2.2. Blockwise Bootstrap

Note that the long-run covariance matrix Ξñ specified in (3) is typically unknown. As a
result, determining cvG

α through the distribution of TG
n becomes challenging. To address

this challenge, we introduce a parametric bootstrap estimator for Tn using the blockwise
bootstrap method [18].

For some positive constant ϑ ∈ [1/2, 1), let S ≍ ñ1−ϑ and B = ⌈ñ/S⌉ be the size of
each block and the number of blocks, respectively. Denote Ib = {(b − 1)S + 1, . . . , bS} for
b ∈ [B − 1] and IB = {(B − 1)S + 1, . . . , ñ}. Let {ϱb}B

b=1 be the sequence of i.i.d. standard
normal random variables and ϱ′ = (ϱ′1, . . . , ϱ′ñ), where ϱ′t = ϱb if t ∈ Ib. Define the
bootstrap estimator of Tn as

T̂G
n =

∣∣∣∣ 1√
ñ

ñ

∑
t=1

(Zt − Z̄)ϱ′t

∣∣∣∣
∞

,

where Z̄ = ñ−1 ∑ñ
t=1 Zt. Based on this estimator, we define the estimated critical value

ĉvα as

ĉvα := inf{x > 0 : P(T̂G
n > x | E) ≤ α}, (4)

where E = {X1, . . . , Xn1 , Y1, . . . , Yn2}. Then, we reject the null hypothesis H0 if Tn > ĉvα.
The procedure for selecting the parameter ϑ (or block size S) is detailed in Section 5.1.
In practice, we obtain ĉvα through the following bootstrap procedure: Generate K inde-
pendent sequences {ϱ′(1),t}

ñ
t=1, . . . , {ϱ′(K),t}

ñ
t=1, with each {ϱ′(k),t}

ñ
t=1 generated as {ϱ′t}ñ

t=1.

For each k ∈ [K], calculate T̂G
(k),n with {ϱ′(k),t}

ñ
t=1. Then, ĉvα is the (1 − α)K-th largest value

among {T̂G
(1),n, . . . , T̂G

(K),n}. Here, K is the number of bootstrap replications.

3. Theoretical Results

We employ the concept of ‘α-mixing’ to characterize the serial dependence of {(Xt, Yt)},
with the α-mixing coefficient at lag κ defined as

α(κ) := sup
r

sup
A∈F r

−∞ ,B∈F∞
r+κ

|P(AB)− P(A)P(B)|, (5)

where Fr
−∞ and F∞

r+κ are the σ-fields generated by {(Xt, Yt) : t ≤ r} and {(Xt, Yt) : t ≥ r + κ},
respectively. We call the sequence {(Xt, Yt)} is α-mixing if α(κ) → 0 as κ → ∞.
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3.1. Gaussian Approximation for High-Dimensional α-Mixing Sequence

To show that the Kolmogorov distance between Tn and TG
n converges to zero under

various divergence rates of p, we need the following central limit theorems for high-
dimensional α-mixing sequence.

Theorem 1. Let {ξt}n
t=1 be an α-mixing sequence of p-dimensional centered random vectors

and {α(κ)}κ≥1 denote the α-mixing coefficients of {ξt}, defined in the same manner as (5). Write
Sn = (Sn,1, . . . , Sn,p)T = n−1/2 ∑n

t=1 ξt and W = (W1, . . . , Wp)T ∼ N (0p, Σn) with
Σn = E(SnST

n). Define

ρn = sup
x∈R

|P(|Sn|∞ ≤ x)− P(|W|∞ ≤ x)|.

(i) If maxt∈[n] maxj∈[p] E(|ξt,j|m) ≤ C∗
1 , α(κ) ≤ C∗

2 κ−τ and λmin(Σn) ≥ C∗
3 for some m > 3,

τ > max{2m/(m − 3), 3} and constants C∗
1 , C∗

2 , C∗
3 > 0, we have

ρn ≲
p1/2(log p)1/4

nτ̃

provided that p = o(n2τ̃), where τ̃ = τ/(11τ + 12).

(ii) If maxt∈[n] maxj∈[p] ∥ξt,j∥ψγ1
≤ Mn, α(κ) ≤ C∗∗

1 exp(−C∗∗
2 κγ2) and minj∈[p](Σn)j,j ≥

C∗∗
3 for some Mn ≥ 1, γ1 ∈ (0, 2], γ2 > 0 and constants C∗∗

1 , C∗∗
2 , C∗∗

3 > 0, we have

ρn ≲
Mn{log(pn)}max{(2γ2+1)/2γ2,3/2}

n1/6

provided that {log(pn)}3 = o{nγ1γ2/(2γ1+2γ2−γ1γ2)} and M2
n{log(pn)}1/γ2 = o(n1/3).

Remark 1. In scenarios where the dimension p diverges polynomially with respect to n, Theorem 1(i)
represents a novel contribution to the existing literature. Moreover, if τ → ∞(i.e., α(κ) ≲
exp(−Cκ) for some constant C > 0), we have τ̃ → 1/11, and thus ρn = o(1) if p(log p)1/2 =
o(n2/11). Compared with Theorem 1 in [14], which provides a Gaussian approximation result
when p diverges exponentially with respect to n, Theorem 1(ii) has three improvements. Firstly,
all conditions of Theorem 1(ii) are equivalent to those in Theorem 1 of [14], with the exception
that we permit γ1 ∈ (0, 1), thereby offering a weaker assumption that is more broadly applicable.
Secondly, the convergence rate dependent on n via n−1/6 in Theorem 1(ii) outperforms the rate of
n−1/9 demonstrated in Theorem 1 of [14]. Note that the convergence rate in Theorem 1 of [14] can
be rewritten as [

Mn{log(pn)}(2γ2+1)/2γ2

n1/6

]2/3

+
Mn{log(pn)}7/6

n1/9 .

To ensure ρn = o(1), in our result, it is necessary to allow M6
n{log(pn)}(6γ2+3)/γ2 = o(n)

when γ2 ≤ 2/3 and M6
n{log(pn)}max{(6γ2+3)/γ2,9} = o(n) when γ2 > 2/3, respectively.

Comparatively, the basic requirements under Theorem 1 of [14] are M6
n{log(pn)}(6γ2+3)/γ2 =

o(n) when γ2 ≤ 2/3 and M9
n{log(pn)}21/2 = o(n) when γ2 > 2/3, respectively. Due to

(6γ2 + 3)/γ2 < 21/2 when γ2 > 2/3, our result permits a larger or equal divergence rate of p
compared with Theorem 1 in [14].

3.2. Theoretical Properties

In order to derive the theoretical properties of Tn, the following regular assumptions
are needed.

Assumption 1.

(i) For some m > 4, there exists a constant C1 > 0 s.t. maxt∈[ñ] maxj∈[p] E(|Zt,j|m) ≤ C1.
(ii) There exists a constant C2 > 0 s.t. α(κ) ≤ C2κ−τ for some τ > 3m/(m − 4).
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(iii) There exists a constant C3 > 0 s.t. λmin(Ξñ) ≥ C3.

Assumption 2.

(i) There exists a constant C′
1 > 0 s.t. maxt∈[ñ] maxj∈[p] ∥Zt,j∥ψ2 ≤ C′

1.
(ii) There exist two constants C′

2, C′
3 > 0 s.t. α(κ) ≤ C′

2 exp(−C′
3κ).

(iii) There exists a constant C′
4 > 0 s.t. minj∈[p](Ξñ)j,j ≥ C′

4.

Remark 2. The two mild Assumptions, 1 and 2, delineate the necessary assumptions for {(Xt, Yt)}
to facilitate the development of Gaussian approximation theories for the dimension p divergence,
characterized by polynomial and exponential rates relative to the sample size n, respectively. As-
sumptions 1(i) and 1(ii) are common assumptions in multivariate time series analysis. Due to
n1 ≍ n2 ≍ n, if maxt∈[n1],j∈[p] E(|Xt,j|m) ≤ C and maxt∈[n2],j∈[p] E(|Yt,j|m) ≤ C, then Assump-
tion 1(i) holds, as verified by the triangle inequality. Additionally, Assumption 1(iii) necessitates the
strong nondegeneracy of Ξñ, a requirement commonly assumed in Gaussian approximation theories
(see refs. [21,22], among others). Note that Assumption 2(iii) is implied by Assumption 1(iii).
The latter assumption only necessitates the nondegeneracy of minj∈[p] var(ñ−1/2 ∑ñ

t=1 Zt,j). We
can modify Assumption 2(i) to maxt∈[ñ] maxj∈[p] ∥Zt,j∥ψγ ≤ C for any γ ∈ (0, 2], a standard
assumption in the literature on ultra-high-dimensional data analysis. This assumption ensures
subexponential upper bounds for the tail probabilities of the statistics in question when p ≫ n,
as discussed in [23,24]. The requirement of sub-Gaussian properties in Assumption 2(i) is made
for the sake of simplicity. If {Xt} and {Yt} share the same tail probability, Assumption 2(i) is
satisfied automatically. Assumption 2(ii) necessitates that the α-mixing coefficients decay at an
exponential rate.

Write ∆n := max{n1, n2} − min{n1, n2}. Define two cases with respect to the distinct
divergence rates of p as

• Case1: {Xt}n1
t=1 and {Yt}n2

t=1 satisfy Assumption 1, and the dimension p satisfies
p2 log p = o{n4τ/(11τ+12)} and ∆2

n log p = o(n);
• Case2: {Xt}n1

t=1 and {Yt}n2
t=1 satisfy Assumption 2, and the dimension p satisfies

log(pn) = o(n1/9) and ∆2
n log p = o(n).

Note that ∆2
n log p = o(n) mandates the maximum difference between the two sam-

ple sizes. Proposition 1 below demonstrates that, under the aforementioned cases and
H0, the Kolmogorov distance between Tn and TG

n converges to zero as the sample size
approaches infinity. Proposition 1 can be directly derived from Theorem 1. Note that,
in the scenario where the dimension p diverges in a polynomial rate with respect to n,
obtaining Proposition 1 requires only m > 3 and τ > max{2m/(m − 3), 3}, an assumption
weaker than Assumption 1. The more stringent restrictions m > 4 and τ > 3m/(m − 4) in
Assumption 1 are imposed to establish the results presented in Theorems 2 and 3.

Proposition 1. In either Case1 or Case2, it holds under the null hypothesis H0 that

sup
x∈R

|P(Tn ≤ x)− P(TG
n ≤ x)| = o(1).

According to Proposition 1, the critical value cvα can be substituted with cvG
α . However,

in practical scenarios, the long-run covariance Ξñ defined in (3) is typically unknown.
This implies that obtaining cvG

α directly from the distribution of TG
n is not feasible. We

introduce a bootstrap method for obtaining the estimator ĉvα defined in (4). In situations
where the dimension p diverges at a polynomial rate relative to the sample size n, we
require an additional Assumption 3 to ensure that ĉvα serves as a reliable estimator for cvα.
Assumption 3 places restrictions on the cumulant function, a commonly assumed criterion
in time series analysis. Refer to [25,26] for examples of such assumptions in the literature.
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Assumption 3. For each i, j ∈ [p], define cumi,j(h, t, s) = cov(Z̊0,iZ̊h,j, Z̊t,iZ̊s,j)−γt,i,iγs−h,j,j −
γs,i,jγt−h,j,i, where γh,i,j = cov(Z0,i, Zh,j) and Z̊t,j = Zt,j − E(Zt,j). There exists a constant
C4 > 0 s.t.

max
i,j∈[p]

∞

∑
h=−∞

∞

∑
t=−∞

∞

∑
s=−∞

|cumi,j(h, t, s)| < C4.

Similar to Case1 and Case2, we consider two cases corresponding to different diver-
gence rates of the dimension p, as outlined below:

• Case3: {Xt}n1
t=1 and {Yt}n2

t=1 satisfy Assumptions 1 and 3.
• Case4: {Xt}n1

t=1 and {Yt}n2
t=1 satisfy Assumption 2.

Theorem 2. In either Case3 with p log p = o[nmin{(1−ϑ)/4,2τ/(11τ+12)}] and ∆2
n log p = o(n),

or Case4 with log(pn) = o[nmin{(1−ϑ)/2,ϑ/7,1/9}] and ∆2
n log p = o(n), it holds under H0 that

supx∈R |P(Tn ≤ x)− P(T̂G
n ≤ x | E)| = op(1). Moreover, it holds under H0 that

P(Tn > ĉvα) → α as n → ∞.

Theorem 3. In either Case3 with p = o{n(1−ϑ)/4} or Case4 with log(pn) = o[nmin{ϑ/3,(1−ϑ)/2}],
if maxj∈[p] |µX,j − µY,j| ≫ n−1/2(log p)1/2, it holds that

P(Tn > ĉvα) → 1 as n → ∞.

Remark 3. The different requirements for the divergence rates of p follow from the fact that we do
not rely on the Gaussian approximation and comparison results under certain alternative hypotheses.
By Theorem 2 and Theorem 3, the optimal selections for ϑ are 1/2 and 7/9 in Case3 and Case4,
respectively. This implies that limn→∞PH0(Tn > ĉvα) = α holds with p log p = o(n1/8) in
Case3 and log(pn) = o(n1/9) in Case4. Under certain alternative hypotheses, limn→∞PH1(Tn >
ĉvα) = 1 holds with p = o(n1/8) in Case3 and log(pn) = o(n1/9) in Case4.

4. Application: Change Point Detection

In this section, we elaborate that our two-sample testing procedure can be regarded as
a novel method for detecting change points for high-dimensional time series. To illustrate,
we provide a notation for the detection of a single change point, with the understanding
that it can be easily extended to the multiple change points case.

Consider a p-dimensional time series {Xt}n
t=1. Let µt = E(Xt). Consider the following

hypothesis testing problem:

H′
0 : µ1 = · · · = µn versus H′

1 : µ1 = · · · = µτ0−1 ̸= µτ0
= · · · = µn.

Here, τ0 is the unknown change point. Let w be a positive integer such that w < min{τ0, n− τ0}.
We define µ̄t = w−1 ∑t+w/2

l=t−w/2+1 µl , µ̄(1) = w−1 ∑w
l=1 µl and µ̄(2) = w−1 ∑n

l=n−w+1 µl . Then
for each t ∈ [3w/2, n − 3w/2], define ∆t,(1) = µ̄t − µ̄(1) and ∆t,(2) = µ̄t − µ̄(2). Thus,

∆t,(1) =


0p , if 3w/2 ≤ t ≤ τ0 − w/2,(
µ̄(2) − µ̄(1)) t+w/2−τ0

w , if τ0 − w/2 < t ≤ τ0 + w/2,
µ̄(2) − µ̄(1) , if τ0 + w/2 < t ≤ n − 3w/2,

∆t,(2) =


µ̄(1) − µ̄(2) , if 3w/2 ≤ t ≤ τ0 − w/2,(
µ̄(1) − µ̄(2))−t+w/2+τ0

w , if τ0 − w/2 < t ≤ τ0 + w/2,
0p , if τ0 + w/2 < t ≤ n − 3w/2.

Assume |µ̄(1) − µ̄(2)|∞ = O(1), which represents the sparse signals case. Define t1(ε
t,(1)) =

min{t ∈ [3w/2, n − 3w/2] : |∆t,(1)| > εt,(1)} and t2(ε
t,(2)) = max{t ∈ [3w/2, n − 3w/2] :
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|∆t,(2)| > εt,(2)} with two well-defined thresholds εt,(1), εt,(2) ≥ 0. Due to the symmetry of
|∆t,(1)| and |∆t,(2)|, it holds under H′

1 that

τ0 =
t1(ε

t,(1)) + t2(ε
t,(2))

2
.

The sample estimators of µ̄t, µ̄(1) and µ̄(2) are, respectively, ˆ̄µt = w−1 ∑t+w/2
l=t−w/2+1 Xl , ˆ̄µ(1) =

w−1 ∑w
l=1 Xl and ˆ̄µ(2) = w−1 ∑n

l=n−w+1 Xl . Based on the method proposed in Section 2,
with n1 = n2 = w, we define the following two test statistics:

Tt,(1)
w =

√
w| ˆ̄µt − ˆ̄µ(1)|∞ and Tt,(2)

w =
√

w| ˆ̄µt − ˆ̄µ(2)|∞.

Given a significance level α > 0, we choose εt,(1) = cvt
1α and εt,(2) = cvt

2α, where cvt
1α

and cvt
2α are, respectively, the (1 − α)-quantiles of the distributions of Tt,(1)

w and Tt,(2)
w .

The estimated critical values ĉvt
1α and ĉvt

2α can be obtained by (4). Thus, t̂1 = min{t ∈
[3w/2, n − 3w/2] : Tt,(1)

w > ĉvt
1α} and t̂2 = max{t ∈ [3w/2, n − 3w/2] : Tt,(2)

w > ĉvt
2α}.

Hence, the estimator of τ0 is given by

τ̂0 =
t̂1 + t̂2

2
.

We utilize Tt,(1)
w as an illustrative example to elucidate the applicability of our proposed

method. Let w be an even integer. For any t ∈ [5w/2, n − 3w/2], we have Tt,(1)
w =

|w−1/2 ∑w
l=1(Xt−w/2+l − Xl)|∞, where the sequence {Xt−w/2+l − Xl}w

l=1 possesses the same
weakly dependence properties and similar moment/tail conditions as {Xl}n

l=1. For t ∈
[3w/2, 5w/2 − 1], let {X̃l}t−w/2

l=1 be defined as X̃l = Xl when l ∈ [1, w] and X̃l = 0p

when l ∈ [w + 1, t − w/2]. Additionally, define {Ỹl}2t−w
l=t−w/2+1 as Ỹl = Xl when l ∈

[t − w/2 + 1, t + w/2] and Ỹl = 0p when l ∈ [t + w/2 + 1, 2t − w]. Then, Tt,(1)
w can be

expressed as |w−1/2 ∑t/2−w/4
l=1 {(Ỹt−w/2+l − X̃l) + (Ỹ2t−w+1−l − X̃t−w/2+1−l)}|∞,

and {(Ỹt−w/2+l − X̃l) + (Ỹ2t−w+1−l − X̃t−w/2+1−l)}t/2−w/4
l=1 shares the same weakly depen-

dence properties and similar moment/tail conditions as {Xl}n
l=1. Hence, our method can

be applied to change point detection.
The selections of w and α are crucial in this method. We will elaborate on the specific

choices for them in future works.

5. Simulation Study
5.1. Tuning Parameter Selection

Given the observations {Xt}n1
t=1 and {Yt}n2

t=1, we use the minimum volatility (MV)
method proposed in [27] to select the block size S.

When the data are independent, by the multiplier bootstrap method described in [28],
we set B = ñ (thus S = 1). In this case,

Ξ̂ñ = var
(

1√
ñ

ñ

∑
t=1

(Zt − Z̄)ϱ′t
∣∣ Z1, . . . , Zñ

)

=
1
ñ

B

∑
b=1

{(
∑

t∈Ib

(Zt − Z̄)
)(

∑
t∈Ib

(Zt − Z̄)
)T}

=
1
ñ

ñ

∑
t=1

(Zt − Z̄)(Zt − Z̄)T

proves to be a reliable estimator of Ξñ introduced in Section 3. When the data are weakly
dependent (and thus nearly independent), we expect a small value for S and a large value
for B. Therefore, we recommend exploring a narrow range of S, such as S ∈ {1, . . . , m},
where m is a moderate integer. In our theoretical proof, the quality of the bootstrap
approximation depends on how well the Ξ̂ñ approximates the covariance Ξñ. The idea
behind the MV method is that the conditional covariance Ξ̂ñ should exhibit stable behavior
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as a function of S within an appropriate range. For more comprehensive discussions on the
MV method and its applications in time series analysis, we refer readers to [27,29]. For
a moderately sized integer m, let S1 < S2 < · · · < Sm be a sequence of equally spaced
candidate block sizes, and S0 = 2S1 − S2, Sm+1 = 2Sm − Sm−1. For each i ∈ {0, . . . , m + 1}, let

Υi
j =

B(Si)

∑
b=1

{
∑

t∈Ib

(Zt,j − Z̄j)

}2

,

where j ∈ [p] and B(S) = ⌈ñ/S⌉. Then for each i ∈ {1, . . . , m}, we compute

Υi =
p

∑
j=1

sd
(
{Υl

j}i+1
l=i−1

)
,

where sd(·) is the standard deviation. Then, we select the block size Si∗ with i∗ =
arg mini∈{1,...,m} Υi.

5.2. Simulation Settings

We present the results of a simulation study aimed at evaluating the performance of
tests based on Tn, as defined in (2), in finite samples. To assess the finite-sample proper-
ties of the proposed test, we employed the following fundamental generating processes:
W = HA + f(a) ∈ Rn×p, where A ∈ Rp×p is the loading matrix, f(·) : R → Rn×p

is a constant function, the parameter a belongs to the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6},
representing the distance between the null and alternative hypotheses. Additionally,

H = (H1, . . . , Hn)T ∈ Rn×p with Ht = ρHt−1 + εt ∈ Rp×1, where εt
iid∼ N (0p, Ip) and

ρ ∈ {0, 0.1, 0.2}. Construct fi(a) = (m(i)
1 , . . . , m(i)

n )T ∈ Rn×p such that m(i)
t = (m(i)

t,1, . . . , m(i)
t,p)

T

for i ∈ {1, 2}, where m(1)
t,j = aj and m(2)

t,j = a(1 − j/p) for each t ∈ [n] and j ∈ [p]. Then
f1(·) and f2(·) represent the sparse and dense signal cases, respectively. We consider three
different loading matrices for A as follows:

(M1). Let V = (vk,l)1≤k,l≤p s.t. vk,l = 0.995|k−l|, then let A = V1/2.
(M2). Let A = (ak,l)1≤k,l≤p s.t. ak,k = 1, ak,l = 0.7 for |k − l| = 1 and ak,l = 0 otherwise.
(M3). Let r = ⌈p/2.5⌉, V = (vk,l)1≤k,l≤p, where vk,k = 1, vk,l = 0.9 for r(q − 1) + 1 ≤

k ̸= l ≤ rq with q = 1, . . . , ⌊p/r⌋, and vk,l = 0 otherwise. Let A = V1/2.

We assess the finite sample performance of our proposed test (denoted by Yang) in
comparison with tests introduced by [5] (denoted by Dempster), [4] (denoted by BS), [6]
(denoted by SD), and [8] (denoted by CLX). All tests in our simulations are conducted at
the 5% significance level with 1000 Monte Carlo replications, and the number of bootstrap
replications is set to 1000. We consider dimensions p ∈ {50, 200, 400, 800} and sample size
pairs (n1, n2) ∈ {(200, 220), (400, 420)}.

5.3. Simulation Results

For the testing of the null hypothesis, consider independent generations of {Xt} and
{Yt}, following the same process as W, with identical values for ρ and f(a) = 0. The choice
of f(a) = 0 here is made for the sake of simplicity. We exclusively present the simulation
results for (M1) in the main body of the paper. The results obtained for (M2) and (M3) are
analogous to those of (M1) and are detailed in the Appendix E.

Table 1 presents the performance of various methods in controlling Type I errors based
on (M1). As the dimension p or sample size (n1, n2) increases, the results of all methods
exhibit small changes, except BS’s. When ρ equals 0, indicating samples are generated
from independent Gaussian distributions, both Yang’s method and BS’s method effectively
control Type I errors at around 5%, while the control achieved by the other three methods
is less optimal. It is noteworthy that, with an increase in ρ, the data generated by the AR(1)
model significantly influence the other methods. In contrast, Yang’s method demonstrates
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superior and more stable results with increasing ρ. These comparative effects are also
observable in the results based on (M2) and (M3) in the Appendix E. For this reason, we
exclusively compare the empirical power results by different methods with ρ = 0.

Figures 1 and 2 depict the empirical power results of various methods for sparse
and dense signals based on (M1). Similarly, as the dimension p increases, the results of all
methods show little variation, except Dempster’s. However, with an increase in sample size
(n1, n2), most methods exhibit improvement in their results. In Figure 1, it is evident that
Yang’s method outperforms others significantly when the signal is sparse. Methods like SD,
BS, and Dempster rely on the ℓ2-norm of the data, aggregating signals across all dimensions
for testing. This makes them less effective when the signal is sparse, i.e., anomalies appear
in only a few dimensions. CLX’s approach, akin to Yang’s, tests whether the largest signal
is abnormal. Consequently, CLX performs better than the other three methods in scenarios
with sparse signals but still falls short of Yang’s method. On the contrary, when the
signal is dense, Figure 2 shows that all methods yield favorable results, with Dempster’s
method proving to be the most effective. Yang’s method performs at a relatively high
level among these methods. In contrast, the CLX’s method, which performs well in sparse
signals, exhibits a relatively lower level of performance in dense signals. In conclusion,
the proposed method exhibits the most stable performance across all methods and performs
exceptionally well on sparse data.

Table 1. The Type I error rates, expressed as percentages, were calculated by independently generated
sequences {Xt}n1

t=1 and {Yt}n2
t=1 based on (M1). The simulations were replicated 1000 times.

(n1, n2) ρ p Yang Dempster BS SD CLX

(200,220) 0 50 5 18.5 5.8 0.9 0.3
200 5.9 16.5 6.6 0.4 0.4
400 5.4 17.4 6.2 0.2 0.3
800 4.2 13.5 6.7 0.3 0.2

0.1 50 6.5 22.8 9.3 2 1
200 6.6 22.6 9.6 1.2 0.8
400 7.4 22.9 10.4 1 0.8
800 5.8 22.5 12.4 1 1.2

0.2 50 6.8 30.2 13.8 3.1 2.5
200 7.7 29.9 14.3 2.2 2.7
400 9.3 30.5 18.2 2.2 2.4
800 7.9 33.3 21.3 3 3.2

(400,420) 0 50 5.2 17.6 6.8 1 0.5
200 5.3 17.2 6.8 0.5 0.1
400 4.6 15.1 5.7 0.3 0
800 5.2 14.2 6.3 0.3 0.4

0.1 50 5.6 22.4 9.6 1.4 1
200 6.3 22.5 9.6 1.3 0.8
400 6.1 21.4 9.7 0.8 0.8
800 6.5 23.6 12.1 0.7 1.2

0.2 50 6.7 26.9 12.8 2.5 1.9
200 7.6 29.2 14.9 2.3 2.4
400 7.6 29.4 15.1 1.5 2.9
800 8.3 36.3 21.9 2.5 3.8
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Figure 1. The empirical powers with sparse signals were evaluated by independently generated
sequences {Xt}n1

t=1 based on (M1), f(·) = 0 and ρ = 0, and {Yt}n2
t=1 based on (M1), f(·) = f1(·)

and ρ = 0. The parameter a represents the distance between the null and alternative hypotheses.
The simulations were replicated 1000 times.

Figure 2. The empirical powers with dense signals were evaluated by independently generated
sequences {Xt}n1

t=1 based on (M1), f(·) = 0 and ρ = 0, and {Yt}n2
t=1 based on (M1), f(·) = f2(·)

and ρ = 0. The parameter a represents the distance between the null and alternative hypotheses.
The simulations were replicated 1000 times.

6. Real Data Analysis

In this section, we apply the proposed method to a dataset comprised of stock data
obtained from Bloomberg’s public database. This dataset includes daily opening prices
from 1 January 2018 to 31 December 2021 for 30 companies in the Consumer Discretionary
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Sector (CDS) and 31 companies in the Information Technology Sector (ITS), all listed in
the S&P 500. The sample sizes for the years 2018, 2019, 2020, and 2021 are 251, 250, 253,
and 252, respectively. The findings are presented in Table 2. Regarding the data for the
Consumer Discretionary (CD) and Information Technology (IT) sectors, all p-values from
the tests between two consecutive years are 0. This suggests a significant variation in the
average annual opening prices across different years for both CDs and ITs.

For data visualization, Figure 3 displays the average annual opening prices of 30 com-
panies in the CDS (left subgragh) and 31 companies in the ITS (right subgragh) in 2018,
2019, 2020, and 2021. The two subgraghs both exhibit a pattern of annual growth in the
opening prices of nearly every stock. These results are well in line with the conclusion of
Table 2.

Table 2. The p-values for testing the equality of average annual opening prices across two consecutive
years in the Consumer Discretionary Sector and Information Technology Sector, respectively.

Sector of S&P 500 2018–2019 2019–2020 2020–2021

Consumer
Discretionary 0 0 0

Information
Technology 0 0 0

Figure 3. The average annual opening prices of 30 Consumer Discretionary corporations and
31 Information Technology corporations in 2018, 2019, 2020, and 2021.

7. Discussion

In this paper, we propose a two-sample test for high-dimensional time series based on
blockwise bootstrap. Our ℓ∞-type test statistic is designed to detect the largest abnormal
signal among dimensions. Unlike some frameworks, we do not necessarily require inde-
pendence within each observation or between the two sets of observations. Instead, we rely
on the weak dependence property of the pair sequence {(Xt, Yt)} to ensure the asymptotic
properties of our proposed method. We derive two Gaussian approximation results for two
cases in which the dimension p diverges, one at a polynomial rate relative to the sample
size n and the other at an exponential rate relative to the sample size n. In the bootstrap
procedure, the block size serves as the tuning parameter, and we employ the minimum
volatility method, as proposed by [27], for block size selection.

Our test statistic is designed to pinpoint the maximum value among dimensions,
facilitating the detection of significant differences in certain dimensions. In cases where
differences in each dimension are minimal, it is more appropriate to consider the ℓ2-type
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test statistic rather than the ℓ∞-type one. Consequently, in the absence of prior information,
the utilization of test statistics that combine both types proves advantageous. However,
deriving theoretical results from such a combined approach is a significant challenge.
As discussed in Section 4, our two-sample testing procedure can be applied to change point
detection in high-dimensional time series. The choices of w, the size of each subsample
mean, and the significance level α play crucial roles in this change point detection procedure.
We leave these considerations for future research.

Funding: This research received no external funding.

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Proof of Theorem 1

Appendix A.1. Proof of Theorem 1(i)

Proof. We first show that, for any τ > (q − 1)m/(m − q) with some q ∈ [2, ⌊m⌋],

max
j∈[p]

E
(∣∣∣∣ n

∑
t=1

ξt,j

∣∣∣∣q) ≲ nq/2. (A1)

If q = 2, due to ∑∞
κ=1 α

m−2
m (κ) ≲ ∑∞

κ=1 κ−
(m−2)τ

m < ∞, Equation (1.12b) (Davydov’s inequal-
ity) of [30] yields

E
{( n

∑
t=1

ξt,j

)2}
=

n

∑
t=1

E(|ξt,j|2) + ∑
t1 ̸=t2

cov(ξt1,j, ξt2,j)

≲ n + ∑
t1 ̸=t2

{E(|ξt1,j|m)}
1
m {E(|ξt2,j|m)}

1
m α

m−2
m (|t1 − t2|)

≲ n + n
n

∑
κ=1

α
m−2

m (κ) ≲ n (A2)

for any j ∈ [p]. For q > 2 and j ∈ [p], Theorem 6.3 of [30] yields

E
(∣∣∣∣ n

∑
t=1

ξt,j

∣∣∣∣q) ≤ aqsq
n,j + nbq

∫ 1

0
[α−1(u) ∧ n]q−1

{
sup
t∈[n]

Qt,j(u)
}q

du,

where aq, bq > 0 are two constants depending only on q, s2
n,j = ∑n

t1,t2=1 |Cov(ξt1,j, ξt2,j)|,
α−1(u) = ∑κ≥0 1(u ≤ α(κ)) and Qt,j(u) = inf{x : P(|ξt,j| > x) ≤ u}. By (A2), it
holds that sq

n,j = (s2
n,j)

q/2 ≲ nq/2. Due to maxt∈[n] maxj∈[p] E(|ξt,j|m) ≤ C, we have

maxt∈[n] maxj∈[p] Qt,j(u) ≲ u− 1
m . By the denifition of α−1(·), we know that α−1(u) ≲ u− 1

τ .
Thus ∫ 1

0
[α−1(u) ∧ n]q−1

{
sup
t∈[n]

Qt,j(u)
}q

du ≲
∫ 1

0
u− q−1

τ − q
m du ≤ C,

where the last inequality follows from τ > (q − 1)m/(m − q). Hence, we have

E
(∣∣∣∣ n

∑
t=1

ξt,j

∣∣∣∣q) ≲ nq/2

for any j ∈ [p]. By combining above results, we complete the proof of (A1).
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Now, we begin to prove Theorem 1(i). Define

ωn = sup
x>0

∣∣∣∣P(max
j∈[p]

Sn,j ≤ x
)
− P

(
max
j∈[p]

Wj ≤ x
)∣∣∣∣.

Let Šn = (Šn,1, . . . , Šn,2p)
T = (Sn,1,−Sn,1, . . . , Sn,p,−Sn,p)T and W̌ = (W̌1, . . . , W̌2p)

T =

(W1,−W1, . . . , Wp,−Wp)T. Then, we have maxj∈[p] |Sn,j| = maxj∈[2p] Šn,j and
maxj∈[p] |Wj| = maxj∈[2p] W̌j. Then, to obtain Theorem 1(i), without loss of generality,
it suffices to specify the convergence rate of ωn.

For some constant ς ∈ (0, 1), let Bn = ⌊nς⌋ and Kn = ⌈n/Bn⌉ be the number of
blocks and the size of each block, respectively. For simplicity, we assume Bn ≍ nς and
Kn = n/Bn ≍ n1−ς. We first decompose the sequence {1, . . . , n} into Bn blocks: Gb =
{(b − 1)Kn + 1, . . . , bKn} for b ∈ [Bn]. Let gn ≫ kn be two non-negative integers such
that Kn = gn + kn. We then decompose each Gb (b ∈ [Bn]) to a “large” block Ib with
length gn and a “small” block Jb with length kn: Ib = {(b − 1)Kn + 1, . . . , bKn − kn} and
Jb = {bKn − kn + 1, . . . , bKn}. Let Hb = (Hb,1, . . . , Hb,p)

T = K−1/2
n ∑t∈Ib

ξt. For each
b ∈ [Bn] and some Dn → ∞, define H+

b = (H+
b,1, . . . , H+

b,p)
T with H+

b,j = Hb,j1(|Hb,j| ≤
Dn)−E{Hb,j1(|Hb,j| ≤ Dn)} and H−

b = (H−
b,1, . . . , H−

b,p)
T with H−

b,j = Hb,j1(|Hb,j| > Dn)−
E{Hb,j1(|Hb,j| > Dn)}. For each j ∈ [p], by Theorem 2 of [17], there exists an independent
sequence {H̃b,j}Bn

b=1 such that H̃b,j has the same distribution as H+
b,j and

E(|H̃b,j − H+
b,j|) ≲

∫ α(kn)

0
inf{x ∈ R : P(|H+

b,j| > x) ≤ u}du.

Due to |H+
b,j| ≤ 2Dn, we have inf{x ∈ R : P(|H+

b,j| > x) ≤ u} ≲ Dn for any u ≥ 0, which
implies

E(|H̃b,j − H+
b,j|) ≲ Dnα(kn). (A3)

Define S̃n = (S̃n,1, . . . , S̃n,p)T = B−1/2
n ∑Bn

b=1 H̃b with S̃n,j = B−1/2
n ∑Bn

b=1 H̃b,j and

ω̃n = sup
x>0

∣∣∣∣P(max
j∈[p]

S̃n,j ≤ x
)
− P

(
max
j∈[p]

Wj ≤ x
)∣∣∣∣. (A4)

For any ϵ1 > 0, triangle inequality implies

P
(

max
j∈[p]

Sn,j ≤ x
)
≤ P

(
max
j∈[p]

S̃n,j ≤ x + ϵ1

)
+ P

(∣∣∣∣max
j∈[p]

Sn,j − max
j∈[p]

S̃n,j

∣∣∣∣ > ϵ1

)
≤ P

(
max
j∈[p]

Wj ≤ x + ϵ1

)
+ ω̃n + P

(∣∣∣∣max
j∈[p]

Sn,j − max
j∈[p]

S̃n,j

∣∣∣∣ > ϵ1

)
≤ P

(
max
j∈[p]

Wj ≤ x
)
+ P

(
x − ϵ1 < max

j∈[p]
Wj ≤ x + ϵ1

)
+ ω̃n + P

(∣∣∣∣max
j∈[p]

Sn,j − max
j∈[p]

S̃n,j

∣∣∣∣ > ϵ1

)
for any x > 0, then P(maxj∈[p] Sn,j ≤ x)−P(maxj∈[p] Wj ≤ x) ≤ P(x − ϵ1 < maxj∈[p] Wj ≤
x + ϵ1) + ω̃n + P(|maxj∈[p] Sn,j − maxj∈[p] S̃n,j| > ϵ1). Likewise, P(maxj∈[p] Sn,j ≤ x) −
P(maxj∈[p] Wj ≤ x) ≥ −P(x − ϵ1 < maxj∈[p] Wj ≤ x + ϵ1) − ω̃n − P(|maxj∈[p] Sn,j −
maxj∈[p] S̃n,j| > ϵ1). Due to minj∈[p](Σn)j,j ≥ λmin(Σn) ≥ c, Lemma A.1 of [31] yields

sup
x∈R

P
(

x − ϵ1 < max
j∈[p]

Wj ≤ x + ϵ1

)
≲ ϵ1(log p)1/2
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for any ϵ1 > 0. Thus, we can conclude that

ωn ≲ ω̃n + P
(∣∣∣∣max

j∈[p]
Sn,j − max

j∈[p]
S̃n,j

∣∣∣∣ > ϵ1

)
+ ϵ1(log p)1/2. (A5)

Define S+
n = (S+

n,1, . . . , S+
n,p)

T = B−1/2
n ∑Bn

b=1 H+
b . By triangle inequality,

∣∣∣∣max
j∈[p]

Sn,j − max
j∈[p]

S+
n,j

∣∣∣∣ ≤ max
j∈[p]

|Sn,j − S+
n,j| ≤ max

j∈[p]

∣∣∣∣ 1
n1/2

Bn

∑
b=1

∑
t∈Jb

ξt,j

∣∣∣∣+ max
j∈[p]

∣∣∣∣ 1

B1/2
n

Bn

∑
b=1

H−
b,j

∣∣∣∣.
By (A1), we have E(|Hb,j|3) ≤ C. Thus E(|H−

b,j|
3) ≲ E(|Hb,j|3) ≤ C, and

E(|H−
b,j|

2) ≲ E{|Hb,j|21(|Hb,j| > Dn)} ≤ E(|Hb,j|3)D−1
n ≲ D−1

n . (A6)

Similar to (A2), we have E(|∑Bn
b=1 ∑t∈Jb

ξt,j|) ≲ B1/2
n k1/2

n for any j ∈ [p], and

E
{( Bn

∑
b=1

H−
b,j

)2}
=

Bn

∑
b=1

E(|H−
b,j|

2) + ∑
b1 ̸=b2

cov(H−
b1,j, H−

b2,j)

≲ BnD−1
n + ∑

b1 ̸=b2

α
1
3
{

kn1(|b1 − b2| = 1) + |b2 − b1 − 1|Kn1(|b1 − b2| > 1)
}

≲ BnD−1
n + ∑

|b1−b2|=1
α

1
3 (kn) + ∑

|b1−b2|>1
α

1
3 (|b1 − b2 − 1|Kn) ≲ BnD−1

n + Bnk−
τ
3

n , (A7)

where the last inequality follows from τ > 3. Thus, E(|∑Bn
b=1 H−

b,j|) ≲ B1/2
n (D−1/2

n + k−τ/6
n ) and

E
(∣∣∣∣max

j∈[p]
Sn,j −max

j∈[p]
S+n,j

∣∣∣∣) ≲
pk1/2

n

K1/2
n

+
p

D1/2
n

+
p

kτ/6
n

. (A8)

Due to H̃b,j having the same distribution as H+
b,j and |H+

b,j| ≤ 2Dn, by (A3), we have

E(|H̃b,j − H+
b,j|

s) ≲ Ds
nk−τ

n for s ∈ {2, 3}. Thus, following the same arguments as in the
proof of (A7), it holds that

E
[{ Bn

∑
b=1

(H̃b,j − H+
b,j)

}2]

≲
Bn

∑
b=1

D2
nk−τ

n + D2
nk−2τ/3

n

{
∑

|b1−b2|=1
α

1
3 (kn) + ∑

|b1−b2|>1
α

1
3 (|b1 − b2 − 1|Kn)

}
≲BnD2

nk−τ
n .

Thus, E(|∑Bn
b=1(H̃b,j − H+

b,j)|) ≲ B1/2
n Dnk−τ/2

n and

E
(∣∣∣∣max

j∈[p]
S̃n,j − max

j∈[p]
S+

n,j

∣∣∣∣) ≤ E
(

max
j∈[p]

|S̃n,j − S+
n,j|

)
≲

pDn

kτ/2
n

.

Together with (A8), we have

E
(∣∣∣∣max

j∈[p]
Sn,j − max

j∈[p]
S̃n,j

∣∣∣∣) ≲
pk1/2

n

K1/2
n

+
p

D1/2
n

+
p

kτ/6
n

+
pDn

kτ/2
n

.
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Let ϵ1 = p1/2(log p)−1/4(k1/2
n K−1/2

n + D−1/2
n + k−τ/6

n + Dnk−τ/2
n )1/2. It holds by (A5) and

Markov inequality that

ωn ≲ ω̃n + p1/2(log p)1/4
(

k1/2
n

K1/2
n

+
1

D1/2
n

+
1

kτ/6
n

+
Dn

kτ/2
n

)1/2

. (A9)

Define Σ̃G = B−1
n ∑Bn

b=1 var(H̃b) and ∆ = |Σn − Σ̃G|, where Σn = E(SnST
n). Note that

∆ =

∣∣∣∣ 1
Bn

Bn

∑
b=1

{
var(H̃b)− var(H+

b )
}
+

1
Bn

Bn

∑
b=1

{
var(H+

b )− var(Hb)
}
+

1
Bn

Bn

∑
b=1

var(Hb)− Σn

∣∣∣∣
≤ 1

Bn

Bn

∑
b=1

∣∣var(H̃b)− var(H+
b )

∣∣
︸ ︷︷ ︸

∆1

+
1

Bn

Bn

∑
b=1

∣∣var(H+
b )− var(Hb)

∣∣
︸ ︷︷ ︸

∆2

+

∣∣∣∣ 1
Bn

Bn

∑
b=1

var(Hb)− Σn

∣∣∣∣︸ ︷︷ ︸
∆3

. (A10)

In this sequel, we specify the convergence rates of |∆1|∞, |∆2|∞, and |∆3|∞, respectively.
Note that the (i, j)-th element of var(H̃b)− var(H+

b ) is E(H̃b,i H̃b,j − H+
b,i H

+
b,j). Due to H̃b,j

having the same distribution as H+
b,j and |H+

b,j| ≲ Dn for any b ∈ [Bn] and j ∈ [p], it holds
by (A3) that

|E(H̃b,i H̃b,j − H+
b,i H

+
b,j)| ≤ |E{(H̃b,i − H+

b,i)H̃b,j}|+ |E{(H̃b,j − H+
b,j)H̃+

b,i}| ≲ D2
nk−τ

n

for any b ∈ [Bn] and i, j ∈ [p]. Thus, we can conclude that |∆1|∞ ≲ D2
nk−τ

n . The (i, j)-th ele-
ment of var(H+

b )− var(Hb) is E(H+
b,i H

+
b,j − Hb,i Hb,j). Note that E(|H−

b,j|) ≲ E{|Hb,j|1(|Hb,j|
> Dn)} ≤ E(|Hb,j|3)D−2

n ≲ D−2
n . Due to Hb,j = H+

b,j + H−
b,j, it holds by (A6) that

|E(H+
b,i H

+
b,j − Hb,i Hb,j)| =|E{H+

b,i H
+
b,j − (H+

b,i + H−
b,i)(H+

b,j + H−
b,j)}|

≤|E(H+
b,i H

−
b,j)|+ |E(H+

b,jH
−
b,i)|+ |E(H−

b,i H
−
b,j)| ≲ D−1

n

for any b ∈ [Bn] and i, j ∈ [p]. Thus, we can conclude that |∆2|∞ ≲ D−1
n . The (i, j)-th ele-

ment of Σn − Bn
−1 ∑Bn

b=1 var(Hb) is n−1 ∑n
t1,t2=1 E(ξt1,iξt2,j)− n−1 ∑Bn

b=1 ∑t1,t2∈Ib
E(ξt1,iξt2,j),

and ∣∣∣∣ 1
n

n

∑
t1,t2=1

E(ξt1,iξt2,j)−
1
n

Bn

∑
b=1

∑
t1,t2∈Ib

E(ξt1,iξt2,j)

∣∣∣∣
=

1
n

∣∣∣∣ ∑
b1 ̸=b2

E
{(

∑
t∈Gb1

ξt,i

)(
∑

t∈Gb2

ξt,j

)}

+
Bn

∑
b=1

E
{(

∑
t∈Ib

ξt,i

)(
∑

t∈Jb

ξt,j

)
+

(
∑

t∈Jb

ξt,i

)(
∑

t∈Gb

ξt,j

)}∣∣∣∣. (A11)

Similar to the proof of (A2), we have∣∣∣∣E{(
∑

t∈Jb

ξt,i

)(
∑

t∈Gb

ξt,j

)}∣∣∣∣
=

∣∣∣∣ ∑
t∈Jb

cov(ξt,i, ξt,j) + ∑
t1 ̸=t2 :t1,t2∈Jb

cov(ξt1,i, ξt2,j) + ∑
t1∈Jb

∑
t2∈Ib

cov(ξt1,i, ξt2,j)

∣∣∣∣
≲ kn + ∑

t1 ̸=t2 :t1,t2∈Jb

{E(|ξt1,i|3)}
1
3 {E(|ξt2,j|3)}

1
3 α

1
3 (|t1 − t2|)

+ ∑
t1∈Jb

∑
t2∈Ib

{E(|ξt1,i|3)}
1
3 {E(|ξt2,j|3)}

1
3 α

1
3 (|t1 − t2|) ≲ kn.
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Similarly, we can also obtain∣∣∣∣E{(
∑

t∈Ib

ξt,i

)(
∑

t∈Jb

ξt,j

)}∣∣∣∣ ≲ kn.

Thus, ∣∣∣∣ Bn

∑
b=1

E
{(

∑
t∈Ib

ξt,i

)(
∑

t∈Jb

ξt,j

)
+

(
∑

t∈Jb

ξt,i

)(
∑

t∈Gb

ξt,j

)}∣∣∣∣ ≲ knBn.

Analogously to the proof of (A2), if b1 < b2, due to τ > 2m/(m − 3),∣∣∣∣E{(
∑

t∈Gb1

ξt,i

)(
∑

t∈Gb2

ξt,j

)}∣∣∣∣ ≲ ∑
t1∈Gb1

∑
t2∈Gb2

{E(|ξt1,i|m)}
1
m {E(|ξt2,i|m)}

1
m α

m−2
m (|t1 − t2|)

≲
Kn

∑
δ=1

δα
m−2

m {(b2 − b1 − 1)Kn + δ}

≲ 1(b2 − b1 = 1) + K2
nα

m−2
m {(b2 − b1 − 1)Kn}1(b2 − b1 > 1).

Then,

∑
b1<b2

∣∣∣∣E{(
∑

t∈Gb1

ξt,i

)(
∑

t∈Gb2

ξt,j

)}∣∣∣∣ ≲ Bn + BnK
2m−(m−2)τ

m
n

Bn

∑
δ=1

δ
−(m−2)τ

m ≲ Bn.

The same result still holds for b1 > b2. Thus, we can conclude that

∑
b1 ̸=b2

∣∣∣∣E{(
∑

t∈Gb1

ξt,i

)(
∑

t∈Gb2

ξt,j

)}∣∣∣∣ ≲ Bn.

Then, by (A11), it holds that∣∣∣∣ 1
n

n

∑
t1,t2=1

E(ξt1,iξt2,j)−
1
n

Bn

∑
b=1

∑
t1,t2∈Ib

E(ξt1,iξt2,j)

∣∣∣∣ ≲ kn

Kn

for any i, j ∈ [p]. Thus, |∆3|∞ ≲ knK−1
n . By (A10), we can conclude that

|∆|∞ ≤ |∆1|∞ + |∆2|∞ + |∆3|∞ ≲
D2

n
kτ

n
+

1
Dn

+
kn

Kn
.

Let {H̃G
b }

Bn
b=1 be a sequence of an independent Gaussian vector such that H̃G

b = (H̃G
b,1, . . . , H̃G

b,p)
T

∼N{0p, var(H̃b)} for each b ∈ [Bn], where H̃b = (H̃b,1, . . . , H̃b,p)
T. By Theorem 1.1 of [15],

Cauchy–Schwarz inequality and Jensen’s inequality,

sup
x>0

∣∣∣∣P(max
j∈[p]

1

B1/2
n

Bn

∑
b=1

H̃b,j ≤ x
)
− P

(
max
j∈[p]

1

B1/2
n

Bn

∑
b=1

H̃G
b,j ≤ x

)∣∣∣∣
≲ p1/4 ·

{ Bn

∑
b=1

E(|Σ̃−1/2
G B−1/2

n H̃b|32)
}

≲
p1/4

B3/2
n

∥Σ̃
−1/2
G ∥3

2 ·
[ Bn

∑
b=1

E
{( p

∑
j=1

H̃2
b,j

)3/2}]

≲
p7/4

B3/2
n

∥Σ̃
−1/2
G ∥3

2 ·
{ Bn

∑
b=1

max
j∈[p]

E(|H̃b,j|3)
}

,
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where Σ̃G = B−1
n ∑Bn

b=1 var(H̃b). Note that

|λmin(Σ̃G)− λmin(Σn)| ≤ ∥∆∥2 ≤ p|∆|∞.

Due to λmin(Σn) ≥ c, we have λmin(Σ̃G) ≥ c as long as p|∆|∞ = o(1). Thus, if p|∆|∞ = o(1),
we have ∥Σ̃

−1/2
G ∥2 ≤ C. Since Hb,j = K−1/2

n ∑t∈Ib
ξt,j, (A1) yields E(|H̃b,j|3) = E(|H+

b,j|
3) ≲

E(|Hb,j|3) ≤ C for any b ∈ [Bn] and j ∈ [p], which implies

sup
x>0

∣∣∣∣P(max
j∈[p]

1

B1/2
n

Bn

∑
b=1

H̃b,j ≤ x
)
− P

(
max
j∈[p]

1

B1/2
n

Bn

∑
b=1

H̃G
b,j ≤ x

)∣∣∣∣ ≲ p7/4

B1/2
n

(A12)

provided that p|∆|∞ = o(1). By Proposition 2.1 of [16], we have

sup
x>0

∣∣∣∣P(max
j∈[p]

1

B1/2
n

Bn

∑
b=1

H̃G
b,j ≤ x

)
− P

(
max
j∈[p]

Wj ≤ x
)∣∣∣∣ ≲ |∆|1/2

∞ log p. (A13)

Then, by (A4), (A12), and (A13), we have

ω̃n ≲
p7/4

B1/2
n

+ |∆|1/2
∞ log p

provided that p|∆|∞ = o(1). Together with (A9),

ωn ≲
p7/4

B1/2
n

+ |∆|1/2
∞ log p + p1/2(log p)1/4

(
k1/2

n

K1/2
n

+
1

D1/2
n

+
1

kτ/6
n

+
Dn

kτ/2
n

)1/2

provided that p|∆|∞ = o(1). Select Dn ≍ n4τ/(11τ+12), kn ≍ n12/(11τ+12) , and ς =
7τ/(11τ + 12). Then, if p = o{n2τ/(11τ+12)}, we have

ωn ≲
p7/4

n7τ/(22τ+24)
+

log p
n2τ/(11τ+12)

+
p1/2(log p)1/4

nτ/(11τ+12)
≲

p1/2(log p)1/4

nτ/(11τ+12)
.

Hence, we complete the proof of Theorem 1(i).

Appendix A.2. Proof of Theorem 1(ii)

Proof. Define {(Gb, Ib,Jb)}Bn
b=1, {H+

b }
Bn
b=1, and {H−

b }
Bn
b=1 in the same manner as in the

proof of Theorem 1(i) with Bn ≍ nς, Kn ≍ n1−ς, kn ≪ n1−ς and Dn → ∞, where ς ∈ (0, 1).
Let

ωn = sup
x>0

∣∣∣∣P(max
j∈[p]

Sn,j ≤ x
)
− P

(
max
j∈[p]

Wj ≤ x
)∣∣∣∣.

Analogously to (A5), due to minj∈[p](Σn)j,j > c, we have

ωn ≲ ω̃n + P
(∣∣∣∣max

j∈[p]
Sn,j − max

j∈[p]
S̃n,j

∣∣∣∣ > ϵ2

)
+ ϵ2(log p)1/2 (A14)

for some ϵ2 > 0, where S̃n,j = B−1/2
n ∑Bn

b=1 H̃b,j with {H̃b,j} specified in the same manner as
in the proof of Theorem 1(i), and

ω̃n = sup
x>0

∣∣∣∣P(max
j∈[p]

S̃n,j ≤ x
)
− P

(
max
j∈[p]

Wj ≤ x
)∣∣∣∣.
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Define S+
n = (S+

n,1, . . . , S+
n,p)

T = B−1/2
n ∑Bn

b=1 H+
b . By triangle inequality,

∣∣∣∣max
j∈[p]

Sn,j − max
j∈[p]

S+
n,j

∣∣∣∣ ≤ max
j∈[p]

|Sn,j − S+
n,j| ≤ max

j∈[p]

∣∣∣∣ 1
n1/2

Bn

∑
b=1

∑
t∈Jb

ξt,j

∣∣∣∣+ max
j∈[p]

∣∣∣∣ 1

B1/2
n

Bn

∑
b=1

H−
b,j

∣∣∣∣.
Note that P(|ξt,j Mn

−1| > x) ≲ exp(−Cxγ1) for any x > 0. Let γ̃ = (1/γ1 + 1/γ2)
−1.

By Theorem 1 of [32] and Bonferroni inequality, we have

P
(

max
j∈[p]

∣∣∣∣ 1
n1/2

Bn

∑
b=1

∑
t∈Jb

ξt,j

∣∣∣∣ > x
)
≲ pBnkn exp

(
− Cnγ̃/2xγ̃

Mγ̃
n

)
+ p exp

(
− Cnx2

M2
nBnkn

)
(A15)

for any x ≫ Mnn−1/2. Similarly, by Theorem 1 of [32] again, for any x ≫ MnK−1/2
n ,

P(|Hb,j| > x) = P
(∣∣∣∣ 1

K1/2
n

∑
t∈Ib

ξt,j

∣∣∣∣ > x
)
≲ Kn exp

(
− CKγ̃/2

n xγ̃

Mγ̃
n

)
+ exp

(
− Cx2

M2
n

)
.

Then, if Dn > Mn,

E{H2
b,j1(|Hb,j| > Dn)} = 2

∫ Dn

0
xP(|Hb,j| > Dn)dx + 2

∫ ∞

Dn

xP(|Hb,j| > x)dx

≲ D2
n

{
Kn exp

(
− CKγ̃/2

n Dγ̃
n

Mγ̃
n

)
+ exp

(
− CD2

n
M2

n

)}

+ Kn

∫ ∞

Dn

x exp
(
− CKγ̃/2

n xγ̃

Mγ̃
n

)
dx +

∫ ∞

Dn

x exp
(
− Cx2

M2
n

)
dx

≲ D2
n

{
Kn

(
− CKγ̃/2

n Dγ̃
n

Mγ̃
n

)
+ exp

(
− CD2

n
M2

n

)}
.

Thus, for any b ∈ [Bn] and j ∈ [p],

E(|H−
b,j|

2) ≲ E{H2
b,j1(|Hb,j| > Dn)} ≲ D2

n

{
Kn

(
− CKγ̃/2

n Dγ̃
n

Mγ̃
n

)
+ exp

(
− CD2

n
M2

n

)}
. (A16)

Select Dn = C∗Mn{log(pn)}1/2 for some sufficiently large constant C∗ > 0. Thus, for any
x ≥ 0,

P
(

max
j∈[p]

∣∣∣∣ 1

B1/2
n

Bn

∑
b=1

H−
b,j

∣∣∣∣ > x
)
≤

pB1/2
n maxj∈[p] maxb∈[Bn ] E(|H

−
b,j|)

x
≲

(pn)−1

x

provided that log(pn) = o{Kγ̃/(2−γ̃)
n }. Then, by (A15), we can conclude that for any

x ≫ Mnn−1/2,

P
(∣∣∣∣max

j∈[p]
Sn,j − max

j∈[p]
S+

n,j

∣∣∣∣ > x
)
≲ pBnkn exp

(
− Cnγ̃/2xγ̃

Mγ̃
n

)
+ p exp

(
− Cnx2

M2
nBnkn

)
+

(pn)−1

x
(A17)

provided that log(pn) = o{Kγ̃/(2−γ̃)
n }. Similar to (A3), we have

E(|H̃b,j − H+
b,j|) ≲ Dnα(kn) ≲ Dn exp(−Ckγ2

n ) . (A18)

Select kn = C∗∗{log(pn)}1/γ2 for some sufficiently large constant C∗∗ > 0. By (A18) and
triangle inequality,

P
(∣∣∣∣max

j∈[p]
S̃n,j − max

j∈[p]
S+

n,j

∣∣∣∣ > x
)
≤

pB1/2
n maxb∈[Bn ] maxj∈[p] E(|H̃b,j − H+

b,j|)
x

≲
(pn)−1

x
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for any x ≥ 0. Thus, by (A17), for any x ≫ Mnn−1/2,

P
(∣∣∣∣max

j∈[p]
Sn,j − max

j∈[p]
S̃n,j

∣∣∣∣ > x
)
≲ pBnkn exp

(
− Cnγ̃/2xγ̃

Mγ̃
n

)
+ p exp

(
− Cnx2

M2
nBnkn

)
+

(pn)−1

x
(A19)

provided that log(pn) = o{Kγ̃/(2−γ̃)
n }. Let ϵ2 = C∗∗∗Mnk1/2

n K−1/2
n {log(pn)}1/2 for some

sufficient large constant C∗∗∗ > 0. It holds by (A14) that

ωn ≲ ω̃n +
Mn{log(pn)}(2γ2+1)/2γ2

K1/2
n

(A20)

provided that log(pn) = o{kγ̃/(2−γ̃)
n Bγ̃/(2−γ̃)

n ∧ Kγ̃/(2−γ̃)
n }. Define Σ̃G = B−1

n ∑Bn
b=1 var(H̃b)

and ∆ = |Σn − Σ̃G|, where Σn = E(SnST
n). Note that

∆ =

∣∣∣∣ 1
Bn

Bn

∑
b=1

{
var(H̃b)− var(H+

b )
}
+

1
Bn

Bn

∑
b=1

{
var(H+

b )− var(Hb)
}
+

1
Bn

Bn

∑
b=1

var(Hb)− Σn

∣∣∣∣
≤ 1

Bn

Bn

∑
b=1

∣∣var(H̃b)− var(H+
b )

∣∣
︸ ︷︷ ︸

∆1

+
1

Bn

Bn

∑
b=1

∣∣var(H+
b )− var(Hb)

∣∣
︸ ︷︷ ︸

∆2

+

∣∣∣∣ 1
Bn

Bn

∑
b=1

var(Hb)− Σn

∣∣∣∣︸ ︷︷ ︸
∆3

. (A21)

In this sequel, we will specify the convergence rates of |∆1|∞, |∆2|∞ and |∆3|∞, respectively.
Note that the (i, j)-th element of var(H̃b)− var(H+

b ) is E(H̃b,i H̃b,j − H+
b,i H

+
b,j). Due to H̃b,j

has the same distribution as H+
b,j and |H+

b,j| ≲ Dn for any b ∈ [Bn] and j ∈ [p], it holds
by (A18) that

|E(H̃b,i H̃b,j − H+
b,i H

+
b,j)| ≤ |E{(H̃b,i − H+

b,i)H̃b,j}|+ |E{(H̃b,j − H+
b,j)H̃+

b,i}| ≲ (pn)−1

for any b ∈ [Bn] and i, j ∈ [p]. Thus, we can conclude that |∆1|∞ ≲ (pn)−1. The (i, j)-th
element of var(H+

b )− var(Hb) is E(H+
b,i H

+
b,j − Hb,i Hb,j). Due to Hb,j = H+

b,j + H−
b,j, then it

holds by (A16) that

|E(H+
b,i H

+
b,j − Hb,i Hb,j)| = |E{H+

b,i H
+
b,j − (H+

b,i + H−
b,i)(H+

b,j + H−
b,j)}|

≤|E(H+
b,i H

−
b,j)|+ |E(H+

b,jH
−
b,i)|+ |E(H−

b,i H
−
b,j)| ≲ (pn)−1

for any b ∈ [Bn] and i, j ∈ [p] provided that log(pn) = o{Kγ̃/(2−γ̃)
n }. Thus, we can

conclude that |∆2|∞ ≲ (pn)−1 provided that log(pn) = o{Kγ̃/(2−γ̃)
n }. The (i, j)-th element

of Σn − Bn
−1 ∑Bn

b=1 var(Hb) is n−1 ∑n
t1,t2=1 E(ξt1,iξt2,j)− n−1 ∑Bn

b=1 ∑t1,t2∈Ib
E(ξt1,iξt2,j), and

∣∣∣∣ 1
n

n

∑
t1,t2=1

E(ξt1,iξt2,j)−
1
n

Bn

∑
b=1

∑
t1,t2∈Ib

E(ξt1,iξt2,j)

∣∣∣∣
=

1
n

∣∣∣∣ ∑
b1 ̸=b2

E
{(

∑
t∈Gb1

ξt,i

)(
∑

t∈Gb2

ξt,j

)}

+
Bn

∑
b=1

E
{(

∑
t∈Ib

ξt,i

)(
∑

t∈Jb

ξt,j

)
+

(
∑

t∈Jb

ξt,i

)(
∑

t∈Gb

ξt,j

)}∣∣∣∣ . (A22)

Note that E(|ξt,j|r) ≲ Mr
n for any constant integer r > 0. Equation (1.12b) of [30] yields∣∣∣∣E{(

∑
t∈Jb

ξt,i

)(
∑

t∈Gb

ξt,j

)}∣∣∣∣
=

∣∣∣∣ ∑
t∈Jb

cov(ξt,i, ξt,j) + ∑
t1 ̸=t2 :t1,t2∈Jb

cov(ξt1,i, ξt2,j) + ∑
t1∈Jb

∑
t2∈Ib

cov(ξt1,i, ξt2,j)

∣∣∣∣
≲ M2

nkn + ∑
t1 ̸=t2 :t1,t2∈Jb

{E(|ξt1,i|3)}
1
3 {E(|ξt2,j|3)}

1
3 α

1
3 (|t1 − t2|)
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+ ∑
t1∈Jb

∑
t2∈Ib

{E(|ξt1,i|3)}
1
3 {E(|ξt2,j|3)}

1
3 α

1
3 (|t1 − t2|) ≲ M2

nkn. (A23)

Similarly, we can also obtain∣∣∣∣E{(
∑

t∈Ib

ξt,i

)(
∑

t∈Jb

ξt,j

)}∣∣∣∣ ≲ M2
nkn .

Thus, ∣∣∣∣ Bn

∑
b=1

E
{(

∑
t∈Ib

ξt,i

)(
∑

t∈Jb

ξt,j

)
+

(
∑

t∈Jb

ξt,i

)(
∑

t∈Gb

ξt,j

)}∣∣∣∣ ≲ M2
nknBn .

By Equation (1.12b) of [30], if b1 < b2,∣∣∣∣E{(
∑

t∈Gb1

ξt,i

)(
∑

t∈Gb2

ξt,j

)}∣∣∣∣
≲ ∑

t1∈Gb1

∑
t2∈Gb2

{E(|ξt1,i|3)}
1
3 {E(|ξt2,j|3)}

1
3 α

1
3 (|t1 − t2|)

≲ M2
n

Kn

∑
δ=1

δ exp[−C{(b2 − b1 − 1)Kn + δ}γ2 ]

≲ M2
n1(b2 − b1 = 1) + M2

nK2
n exp{−C(b2 − b1 − 1)γ2 Kn

γ2}1(b2 − b1 > 1).

Thus,

∑
b1<b2

∣∣∣∣E{(
∑

t∈Gb1

ξt,i

)(
∑

t∈Gb2

ξt,j

)}∣∣∣∣
≲ M2

nBn + M2
nK2

n

Bn−1

∑
b2−b1=2

exp{−C(b2 − b1 − 1)γ2 Kn
γ2} ≲ M2

nBn.

Same result holds for b1 > b2. Thus we can conclude that

∑
b1 ̸=b2

∣∣∣∣E{(
∑

t∈Gb1

ξt,i

)(
∑

t∈Gb2

ξt,j

)}∣∣∣∣ ≲ M2
nBn.

Note that the above upper bounds do not depend on (i, j). Then by (A22), it holds that
|∆3|∞ ≲ M2

nknK−1
n . By (A21), we can conclude that

|∆|∞ ≲
M2

nkn

Kn
(A24)

provided that log(pn) = o{Kγ̃/(2−γ̃)
n }. Let {H̃G

b }
Bn
b=1 be a sequence of independent Gaus-

sian vector such that H̃G
b = (H̃G

b,1, . . . , H̃G
b,p)

T∼N{0p, var(H̃b)} for any b ∈ [Bn], where

H̃b = (H̃b,1, . . . , H̃b,p)
T. Due to kn ≍ {log(pn)}1/γ2 , we know that minj∈[p](Σ̃G)j,j > c pro-

vided that M2
n{log(pn)}1/γ2 = o(Kn) and log(pn) = o{Kγ̃/(2−γ̃)

n }. Due to H̃b,j ≤ 2Dn ≲

Mn{log(pn)}1/2, it holds that E(H̃4
b,j) ≲ D2

nE(H̃2
b,j) ≲ M4

n log(pn) for any b ∈ [Bn] and

j ∈ [p], where the last inequality follows from E(H̃2
b,j) = E(|H+

b,j|
2) ≲ E(H2

b,j) and the
similar arguments as in the proof of (A23). By Theorem 2.1 of [16], we have

sup
x>0

∣∣∣∣P(max
j∈[p]

S̃n,j ≤ x
)
− P

(
max
j∈[p]

1

B1/2
n

Bn

∑
b=1

H̃G
b,j ≤ x

)∣∣∣∣ ≲ Mn{log(pn)}3/2

B1/4
n

. (A25)
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provided that M2
n{log(pn)}1/γ2 = o(Kn) and log(pn) = o{Kγ̃/(2−γ̃)

n }. By Proposition 2.1
of [16] and (A24), we have

sup
x>0

∣∣∣∣P(max
j∈[p]

1

B1/2
n

Bn

∑
b=1

H̃G
b,j ≤ x

)
− P

(
max
j∈[p]

Wj ≤ x
)∣∣∣∣

≲ |∆|1/2
∞ log p ≲

Mn{log(pn)}(2γ2+1)/2γ2

K1/2
n

. (A26)

By (A20), (A25) and (A26), due to γ̃ = (1/γ1 + 1/γ2)
−1, we have

ωn ≲
Mn{log(pn)}3/2

B1/4
n

+
Mn{log(pn)}(2γ2+1)/2γ2

K1/2
n

provided that log(pn) = o{Bγ1γ2/(γ1+2γ2−γ1γ2)
n ∧ Kγ1γ2/(2γ1+2γ2−γ1γ2)

n } and M2
n{log(pn)}

1/γ2

= o(Kn). Select ς = 2/3. Then Bn ≍ n2/3, Kn ≍ n1/3 and

ωn ≲
Mn{log(pn)}max{(2γ2+1)/2γ2,3/2}

n1/6

provided that M2
n{log(pn)}1/γ2 = o(n1/3) and {log(pn)}3 = o{nγ1γ2/(2γ1+2γ2−γ1γ2)}.

Thus we complete the proof of Theorem 1(ii).

Appendix B. Proof of Proposition 1

Proof. Define

T̊n =

∣∣∣∣ 1√
ñ

ñ

∑
t=1

Z̊t

∣∣∣∣
∞

,

where Z̊t = Zt − E(Zt). Under H0, we know that µX = µY =: µ. Recall n1 ≍ n2 ≍ n
and ∆n = n1 ∨ n2 − n1 ∧ n2. Without loss of generality, we assume n1 ≤ n2. By triangle
inequality, for any j ∈ [p],

∣∣∣∣ ñ

∑
t=1

Z̊t,j −
ñ

∑
t=1

Zt,j

∣∣∣∣ ≲ n1

∑
t=1

∣∣∣∣
√

n2
2

n1(n1 + n2)
−

√
n1

(n1 + n2)

∣∣∣∣+ n2

∑
t=n1+1

∣∣∣∣√ n1

(n1 + n2)

∣∣∣∣ = O(∆n).

Thus |Tn − T̊n| = O(∆nn−1/2). Write δn = ∆nn−1/2πn, where πn > 0 diverges at a
sufficiently slow rate. Thus, we have

P(Tn ≤ x) ≤ P(T̊n ≤ x + δn) + P(|Tn − T̊n| > δn)

≤ P(TG
n ≤ x + δn) + sup

x∈R
|P(T̊n ≤ x)− P(TG

n ≤ x)|+ o(1)

≤ P(TG
n ≤ x) + sup

x∈R
P(x − δn ≤ TG

n ≤ x + δn) + sup
x∈R

|P(T̊n ≤ x)− P(TG
n ≤ x)|+ o(1) .

Analogously, we can also obtain that P(Tn ≤ x) ≥ P(TG
n ≤ x)− supx∈R P(x − δn ≤ TG

n ≤
x + δn)− supx∈R |P(T̊n ≤ x)− P(TG

n ≤ x)| − o(1). Thus,

sup
x∈R

|P(Tn ≤ x)− P(TG
n ≤ x)|

≤ sup
x∈R

P(x − δn ≤ TG
n ≤ x + δn) + sup

x∈R
|P(T̊n ≤ x)− P(TG

n ≤ x)|+ o(1).

In Case1, by Assumption 1(iii), we have minj∈[p](Ξñ)j,j > c. Then by Lemma A.1 of [31],
due to ∆2

n log p = o(n), we have supx∈R P(x − δn ≤ TG
n ≤ x + δn) ≲ ∆nn−1/2πn
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(log p)1/2 = o(1). By Assumption 1(i), we have maxt∈[ñ] maxj∈[p] E(|Z̊t,j|m) ≤ C. Note that
Ξñ = E(ñ−1/2 ∑ñ

t=1 Z̊t, ñ−1/2 ∑ñ
t=1 Z̊T

t ). Then by Assumption 1 and Theorem 1(i), due to
3m/(m − 4) > max{2m/(m − 3), 3}, we have supx∈R |P(T̊n ≤ x)− P(TG

n ≤ x)| = o(1)
provided that p2 log p = o{n4τ/(11τ+12)}. Thus, if p2 log p = o{n4τ/(11τ+12)},

sup
x∈R

|P(Tn ≤ x)− P(TG
n ≤ x)| = o(1).

Similarly, in Case2, by Assumption 2 and Theorem 1(ii) with (Mn, γ1, γ2) = (C, 2, 1),
we have supx∈R P(x − δn ≤ TG

n ≤ x + δn) ≲ ∆nn−1/2πn(log p)1/2 = o(1) and
supx∈R |P(T̊n ≤ x) − P(TG

n ≤ x)| = o(1) provided that log(pn) = o(n1/9). Thus,
if log(pn) = o(n1/9),

sup
x∈R

|P(Tn ≤ x)− P(TG
n ≤ x)| = o(1).

We complete the proof of Proposition 1.

Appendix C. Proof of Theorem 2

Appendix C.1. Proof of Theorem 2 under Case3

Proof. By Proposition 1 under Case1, it suffices to show

sup
x∈R

|P(T̂G
n ≤ x | E)− P(TG

n ≤ x)| = op(1).

Recall TG
n = |G|∞ with G ∼ N (0, Ξñ) and T̂G

n = |ñ−1/2 ∑ñ
t=1(Zt − Z̄)ϱ′t|∞, where Ξñ =

var(ñ−1/2 ∑ñ
t=1 Zt). Let

Ξ̂ñ =
1
ñ

B

∑
b=1

{(
∑

t∈Ib

(Zt − Z̄)
)(

∑
t∈Ib

(Zt − Z̄)
)T}

. (A27)

By Proposition 2.1 of [16], we have

sup
x∈R

|P(T̂G
n ≤ x | E)− P(TG

n ≤ x)| ≲ Γ1/2 log p, (A28)

where

Γ = |Ξñ − Ξ̂ñ|∞ =
1
ñ

∣∣∣∣ B

∑
b=1

{(
∑

t∈Ib

(Zt − Z̄)
)(

∑
t∈Ib

(Zt − Z̄)
)T}

− var
( ñ

∑
t=1

Zt

)∣∣∣∣
∞

.

Let Z̊t = (Z̊t,1, . . . , Z̊t,p)T = Zt −E(Zt). Then, for any i, j ∈ [p], triangle inequality yields∣∣∣∣ B

∑
b=1

{(
∑

t∈Ib

(Zt,i − Z̄i)

)(
∑

t∈Ib

(Zt,j − Z̄j)

)}
−E

{( ñ

∑
t=1

Z̊t,i

)( ñ

∑
t=1

Z̊t,j

)}∣∣∣∣
=

∣∣∣∣ B

∑
b=1

{(
∑

t∈Ib

(Z̊t,i − ¯̊Zi)

)(
∑

t∈Ib

(Z̊t,j − ¯̊Zj)

)}
−E

{( ñ

∑
t=1

Z̊t,i

)( ñ

∑
t=1

Z̊t,j

)}∣∣∣∣
≤

∣∣∣∣ B

∑
b=1

{(
∑

t∈Ib

(Z̊t,i − ¯̊Zi)

)(
∑

t∈Ib

(Z̊t,j − ¯̊Zj)

)}
−

B

∑
b=1

E
{(

∑
t∈Ib

Z̊t,i

)(
∑

t∈Ib

Z̊t,j

)}∣∣∣∣
+

∣∣∣∣ B

∑
b=1

E
{(

∑
t∈Ib

Z̊t,i

)(
∑

t∈Ib

Z̊t,j

)}
−E

{( ñ

∑
t=1

Z̊t,i

)( ñ

∑
t=1

Z̊t,j

)}∣∣∣∣
≤

∣∣∣∣ B

∑
b=1

∑
t1,t2∈Ib

{Z̊t1,iZ̊t2,j −E(Z̊t1,iZ̊t2,j)}
∣∣∣∣︸ ︷︷ ︸

I1,i,j

+
S
ñ

∣∣∣∣( ñ

∑
t=1

Z̊t,i

)( ñ

∑
t=1

Z̊t,j

)∣∣∣∣︸ ︷︷ ︸
I2,i,j
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+

∣∣∣∣ B

∑
b=1

E
{(

∑
t∈Ib

Z̊t,i

)(
∑

t∈Ib

Z̊t,j

)}
−E

{( ñ

∑
t=1

Z̊t,i

)( ñ

∑
t=1

Z̊t,j

)}∣∣∣∣︸ ︷︷ ︸
I3,i,j

.

In this sequel, we will specify the upper bounds of I1,i,j, I2,i,j and I3,i,j, respectively. With-
out loss of generality, we assume ñ = BS with B ≍ nϑ and S ≍ n1−ϑ. By Assumption 1(i), it
holds that maxt∈[ñ] maxj∈[p] E(|Z̊t,j|m) ≤ C for some m > 4. Then, due to τ > 3m/(m − 4),
(A1) yields

E
([

∑
t1,t2∈Ib

{Z̊t1,iZ̊t2,j −E(Z̊t1,iZ̊t2,j)}
]2)

≤ E
{(

∑
t∈Ib

Z̊t,i

)2(
∑

t∈Ib

Z̊t,j

)2}
≲ S2.

By triangle inequality,

E
([ B

∑
b=1

∑
t1,t2∈Ib

{Z̊t1,iZ̊t2,j −E(Z̊t1,iZ̊t2,j)}
]2)

≲ BS2 +
B−1

∑
b=1

B−b

∑
s=1

∣∣∣∣ ∑
t1,t2∈Ib

∑
t3,t4∈Ib+s

cov(Z̊t1,iZ̊t2,j, Z̊t3,iZ̊t4,j)

∣∣∣∣
≤ BS2 +

B−1

∑
b=1

B−b

∑
s=1

∣∣∣∣ ∑
t1,t2∈Ib

∑
t3,t4∈Ib+s

cumi,j(t2 − t1, t3 − t1, t4 − t1)

∣∣∣∣
+

B−1

∑
b=1

B−b

∑
s=1

∣∣∣∣ ∑
t1,t2∈Ib

∑
t3,t4∈Ib+s

E(Z̊t1,iZ̊t3,i)E(Z̊t2,jZ̊t4,j)

∣∣∣∣
+

B−1

∑
b=1

B−b

∑
s=1

∣∣∣∣ ∑
t1,t2∈Ib

∑
t3,t4∈Ib+s

E(Z̊t1,iZ̊t4,j)E(Z̊t3,iZ̊t2,j)}
∣∣∣∣. (A29)

By Assumption 3, ∑t1,t2∈Ib ∑t3,t4∈Ib+s
cumi,j(t2 − t1, t3 − t1, t4 − t1) ≲ S, which implies

B−1

∑
b=1

B−b

∑
s=1

∣∣∣∣ ∑
t1,t2∈Ib

∑
t3,t4∈Ib+s

cumi,j(t2 − t1, t3 − t1, t4 − t1)

∣∣∣∣ ≲ B2S. (A30)

For any b ∈ [B − 1] and s ∈ [B − b], due to τ > 3m/(m − 4), Equation (1.12b) of [30] yields∣∣∣∣ ∑
t1∈Ib

∑
t3∈Ib+s

E(Z̊t1,iZ̊t3,i)

∣∣∣∣ ≤ ∑
t1∈Ib

∑
t3∈Ib+s

|E(Z̊t1,iZ̊t3,i)|

≲ ∑
t1∈Ib

∑
t3∈Ib+s

{E(|Zt1,i|m)}
1
m {E(|Zt3,i|m)}

1
m α

m−2
m (t3 − t1) ≲ ∑

t1∈Ib

∑
t3∈Ib+s

α
m−2

m (t3 − t1)

≲
S

∑
h=1

hα
m−2

m {h + (s − 1)S} ≲ 1(s = 1) + S
2m−(m−2)τ

m (s − 1)−
(m−2)τ

m 1(s > 1).

Similarly, we also have∣∣∣∣ ∑
t2∈Ib

∑
t4∈Ib+s

E(Z̊t2,jZ̊t4,j)

∣∣∣∣ ≲ 1(s = 1) + S
2m−(m−2)τ

m (s − 1)−
(m−2)τ

m 1(s > 1).

Thus,

B−1

∑
b=1

B−b

∑
s=1

∣∣∣∣ ∑
t1,t2∈Ib

∑
t3,t4∈Ib+s

E(Z̊t1,iZ̊t3,i)E(Z̊t2,jZ̊t4,j)

∣∣∣∣
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≲
B−1

∑
b=1

B−b

∑
s=1

{
1(s = 1) + S

4m−2(m−2)τ
m (s − 1)−

2(m−2)τ
m 1(s > 1)

}
≲ B. (A31)

Analogously, we also have ∑B−1
b=1 ∑B−b

s=1 |∑t1,t2∈Ib ∑t3,t4∈Ib+s
E(Z̊t1,iZ̊t4,j)E(Z̊t3,iZ̊t2,j)}| ≲ B.

Combining this with (A29)–(A31), due to B ≥ S,

E
([ B

∑
b=1

∑
t1,t2∈Ib

{Z̊t1,iZ̊t2,j −E(Z̊t1,iZ̊t2,j)}
]2)

≲ B2S.

Then it holds that

I1,i,j = Op(BS1/2). (A32)

Similar to (A1), we have |(∑ñ
t=1 Z̊t,i)(∑ñ

t=1 Z̊t,j)| = Op(n). Thus, we know that

I2,i,j = Op(S). (A33)

Note that

I3,i,j ≤ ∑
b1 ̸=b2

∣∣∣∣E{(
∑

t∈Ib1

Z̊t,i

)(
∑

t∈Ib2

Z̊t,j

)}∣∣∣∣.
For b1 < b2, due to τ > 3m/(m − 4), Equation (1.12b) of [30] yields∣∣∣∣E{(

∑
t∈Ib1

Z̊t,i

)(
∑

t∈Ib2

Z̊t,j

)}∣∣∣∣
≲

S

∑
s=1

s{E(|Zt,i|m)}
1
m {E(|Zt+s,j|m)}

1
m α

m−2
m {s + (b2 − b1 − 1)S}

≲ 1(b2 − b1 = 1) + S
2m−(m−2)τ

m (b2 − b1 − 1)−
(m−2)τ

m 1(b2 − b1 > 1).

Thus,

∑
b1<b2

∣∣∣∣E{(
∑

t∈Ib1

Z̊t,i

)(
∑

t∈Ib2

Z̊t,j

)}∣∣∣∣ ≲ B + S
2m−(m−2)τ

m ∑
b2−b1>1

(b2 − b1 − 1)−
(m−2)τ

m ≲ B.

Similarly, we can also obtain ∑b1>b2
|E{(∑t∈Ib1

Z̊t,i)(∑t∈Ib2
Z̊t,j)}| ≲ B, which implies

I3,i,j ≲ B. Then by (A32) and (A33), it holds that

1
ñ

∣∣∣∣ B

∑
b=1

(
∑

t∈Ib

(Zt,i − Z̄i)

)(
∑

t∈Ib

(Zt,j − Z̄j)

)
−E

{( ñ

∑
t=1

Z̊t,i

)( ñ

∑
t=1

Z̊t,j

)}∣∣∣∣ = Op(S−1/2).

Then, by Markov’s inequality,

Γ = |Ξñ − Ξ̂ñ|∞ = Op(p2S−1/2). (A34)

By (A28), due to S ≍ n1−ϑ, it holds that

sup
x∈R

|P(T̂G
n ≤ x | E)− P(TG

n ≤ x)| = op(1) (A35)

provided that p log p = o{n(1−ϑ)/4}.
Recall ĉvα = inf{x > 0 : P(T̂G

n > x | E) ≤ α}. For any ϵ > 0, let cv(ϵ)
α and cv(−ϵ)

α

be two constants which satisfy P{TG
n > cv(ϵ)

α } = α + ϵ and P{TG
n > cv(−ϵ)

α } = α − ϵ,
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respectively. We claim that for any ϵ > 0, it holds that P{cv(ϵ)
α < ĉvα < cv(−ϵ)

α } → 1 as
n → ∞. Otherwise, if ĉvα ≤ cv(ϵ)

α , by (A35), we have

α = P(T̂G
n > ĉvα | E) ≥ P{T̂G

n > cv(ϵ)
α | E} = P{TG

n > cv(ϵ)
α }+ op(1) = α + ϵ + op(1),

which is a contradiction with probability approaching one as n → ∞. Analogously, if
ĉvα ≥ cv(−ϵ)

α , by (A35), we have

α = P(T̂G
n > ĉvα | E) ≤ P{T̂G

n > cv(−ϵ)
α | E} = P{TG

n > cv(−ϵ)
α }+ op(1) = α − ϵ + op(1),

which is also a contradiction with probability approaching one as n → ∞.
For any ϵ > 0, define the event E1,ϵ = {cv(ϵ)

α < ĉvα < cv(−ϵ)
α }. Then P(E1,ϵ) → 1 as

n → ∞. On the one hand, by Proposition 1,

P(Tn > ĉvα) ≤ P(Tn > ĉvα | E1,ϵ) + P(E c
1,ϵ) ≤ P{Tn > cv(ϵ)

α }+ o(1)

= P{TG
n > cv(ϵ)

α }+ o(1) = α + ϵ + o(1),

which implies that limn→∞P(Tn > ĉvα) ≤ α + ϵ. On the other hand, by Proposition 1,

P(Tn > ĉvα) ≥ P(Tn > ĉvα | E1,ϵ) ≥ P{Tn > cv(−ϵ)
α } − P(E c

1,ϵ)

≥ P{TG
n > cv(−ϵ)

α } − o(1) = α − ϵ − o(1),

which implies that limn→∞P(Tn > ĉvα) ≥ α − ϵ. Since P(Tn > ĉvα) does not depend on
ϵ, by letting ϵ → 0+, we have limn→∞P(Tn > ĉvα) = α. Thus we complete the proof of
Theorem 2 under Case3.

Appendix C.2. Proof of Theorem 2 under Case4

Proof. By Proposition 1 under Case2 and the arguments in Appendix C.1, it suffices
to show

sup
x∈R

|P(T̂G
n ≤ x | E)− P(TG

n ≤ x)| ≲ Γ1/2 log p = op(1),

where
Γ ≤ max

i,j∈[p]
ñ−1|I1,i,j|+ max

i,j∈[p]
ñ−1|I2,i,j|+ max

i,j∈[p]
ñ−1|I3,i,j|

with I1,i,j, I2,i,j and I3,i,j specified in Appendix C.1. In this sequel, we will specify the upper
bounds of maxi,j∈[p] |I1,i,j|, maxi,j∈[p] |I2,i,j| and maxi,j∈[p] |I3,i,j|, respectively.

Without loss of generality, we assume ñ = BS with B ≍ ñϑ and S ≍ ñ1−ϑ for some ϑ ∈
[1/2, 1). Let Wb,i,j = ∑t1,t2∈Ib

Z̊t1,iZ̊t2,j −E(∑t1,t2∈Ib
Z̊t1,iZ̊t2,j). For Rn > C∗S with some suf-

ficiently large constant C∗ > 0, denote W+
b,i,j = Wb,i,j1(|Wb,i,j| ≤ Rn)−E{Wb,i,j1(|Wb,i,j| ≤

Rn)} and W−
b,i,j = Wb,i,j1(|Wb,i,j| > Rn)−E{Wb,i,j1(|Wb,i,j| > Rn)}. Then for some Cn > 0,

it holds by Bonferroni inequality that

P
(

max
i,j∈[p]

∣∣∣∣ B

∑
b=1

Wb,i,j

∣∣∣∣ > ñx
)
≤ p2 max

i,j∈[p]
P
(∣∣∣∣ B

∑
b=1

W+
b,i,j

∣∣∣∣+ ∣∣∣∣ B

∑
b=1

W−
b,i,j

∣∣∣∣ > ñx
)

≤ p2 max
i,j∈[p]

{
P
(∣∣∣∣ B

∑
b=1

W+
b,i,j

∣∣∣∣ > ñx − Cn

)
+ P

(∣∣∣∣ B

∑
b=1

W−
b,i,j

∣∣∣∣ > Cn

)}

for all x > Cnñ−1. Note that

E{W2
b,i,j1(|Wb,i,j| > Rn)} = 2

∫ Rn

0
xP(|Wb,i,j| > Rn)dx + 2

∫ ∞

Rn
xP(|Wb,i,j| > x)dx
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By Assumptions 2(i)–(ii) and Cauchy–Schwarz inequality, E(∑t1,t2∈Ib
Z̊t1,iZ̊t2,j) ≲ S. By As-

sumptions 2(i)–(ii) again and Theorem 1 of [32], we know that

P
(∣∣∣∣ ∑

t∈Ib

Z̊t,i

∣∣∣∣ > x
)
≲ S exp(−Cx2/3) + exp(−CS−1x2)

for any x → ∞. Thus, for any x > CS, we have

P(|Wb,i,j| > x) ≤ P
(∣∣∣∣ ∑

t∈Ib

Z̊t,i

∣∣∣∣∣∣∣∣ ∑
t∈Ib

Z̊t,j

∣∣∣∣ > Cx
)

≤ P
(∣∣∣∣ ∑

t∈Ib

Z̊t,i

∣∣∣∣ > Cx1/2
)
+ P

(∣∣∣∣ ∑
t∈Ib

Z̊t,j

∣∣∣∣ > Cx1/2
)
≲ S exp(−Cx1/3) + exp(−CS−1x).

Due to Rn > CS, we can show that

E(|W−
b,i,j|

2) ≲ E{W2
b,i,j1(|Wb,i,j| > Rn)} ≲ R2

nS exp(−CR1/3
n ) + R2

n exp(−CS−1Rn).

Selecting Rn = C∗∗S log(pn) for some sufficiently large constant C∗∗ > 0, and Cn ≍ B1/2,
it holds by Markov’s inequality that

p2 max
i,j∈[p]

P
(∣∣∣∣ B

∑
b=1

W−
b,i,j

∣∣∣∣ > Cn

)
≲ p2B1/2 max

i,j∈[p]
max
b∈[B]

E(|W−
b,i,j|) = o(1)

provided that log(pn) = o(S1/2). Due to |W+
b,i,j| ≤ 2Rn, by Theorem 1 of [33],

P
(∣∣∣∣ B

∑
b=1

W+
b,i,j

∣∣∣∣ > ñx − Cn

)
≲ exp

{
− Cñ2x2

BR2
n + Rnñx(log B)(log log B)

}

for any x > CB−1/2S−1. Thus, we can conclude that

max
i,j∈[p]

ñ−1|I1,i,j| = max
i,j∈[p]

∣∣∣∣ 1
ñ

B

∑
b=1

Wb,i,j

∣∣∣∣ = Op

[
{log(pn)}3/2

B1/2

]

provided that log(pn) = o[min{S1/2, B(log n log log n)−2}]. By Bonferroni inequality and
Theorem 1 of [32], we know that

P
(

max
i,j∈[p]

ñ−1|I2,i,j| > x
)
≲ p2 max

i∈[p]
P
(∣∣∣∣ ñ

∑
t=1

Z̊t,i

∣∣∣∣ > CS−1/2nx1/2
)

≲ p2n exp(−CS−1/3n2/3x1/3) + p2 exp(−CS−1nx)

for any x ≫ Sn−2. Then, we can conclude that maxi,j∈[p] ñ−1|I2,i,j| = Op{B−1 log(pn)}
provided that log(pn) = o(n1/2). Finally, Equation (1.12b) of [30] yields∣∣∣∣ B

∑
b=1

E
{(

∑
t∈Ib

Z̊t,i

)(
∑

t∈Ib

Z̊t,j

)}
−E

{( ñ

∑
t=1

Z̊t,i

)( ñ

∑
t=1

Z̊t,j

)}∣∣∣∣
≤

B−1

∑
b=1

B−b

∑
κ=1

∣∣∣∣ ∑
t1∈Ib

∑
t2∈Ib+κ

E(Z̊t1,iZ̊t2,j)

∣∣∣∣ ≲ B−1

∑
b=1

B−b

∑
κ=1

B

∑
δ=1

δ exp[−C{δ + (κ − 1)S}]

≲
B−1

∑
b=1

B

∑
δ=1

δ exp(−Cδ) +
B−1

∑
b=1

B−b

∑
κ=2

B2 exp{−C(κ − 1)S} ≲ B + B3 exp(−CS) ≲ B,
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which implies maxi,j∈[p] ñ−1|I3,i,j| = O(S−1). Thus,

Γ = Op

[
{log(pn)}3/2

B1/2 +
1
S

]
(A36)

provided that log(pn) = o[min{S1/2, B(log n log log n)−2}]. It holds that

sup
x∈R

|P(T̂G
n ≤ x | E)− P(TG

n ≤ x)| ≲ Γ1/2 log p = op(1)

provided that log(pn) = o[nmin{(1−ϑ)/2,ϑ/7}]. The proof of the second result of Theorem 2
under Case4 is the same as in the proof of the second result of Theorem 2 under Case3.
Thus, we complete the proof of Theorem 2.

Appendix D. Proof of Theorem 3

Proof. Let s = Cπn p2S−1/2 in Case3 and s = Cπn[B−1/2{log(pn)}3/2 + CS−1] in Case4,
where πn > 0 diverges at a sufficiently slow rate. Then s = o(1) provided that p = o(S1/4)
in Case3 and log(pn) = o(B1/3) in Case4. Define an event

Φ(s) =
{

max
j∈[p]

∣∣∣∣ (Ξ̂ñ)j,j

(Ξñ)j,j
− 1

∣∣∣∣ ≤ s
}

,

where Ξ̂ñ and Ξñ are specified in (A27) and (3), respectively. By (A34) and (A36) in
Appendix C, we have

max
j∈[p]

|(Ξ̂ñ)j,j − (Ξñ)j,j| ≤ |Ξ̂ñ − Ξñ|∞ = op(s)

holds under Case3 and Case4 with log(pn) = o(S1/2). By Assumption 1(iii) and Assump-
tion 2(iii) , we know that minj∈[p](Ξñ)j,j > c holds under Case3 and Case4. Therefore,

max
j∈[p]

∣∣∣∣ (Ξ̂ñ)j,j

(Ξñ)j,j
− 1

∣∣∣∣ ≤ maxj∈[p] |(Ξ̂ñ)j,j − (Ξñ)j,j|
minj∈[p](Ξñ)j,j

= op(s).

Then it holds that P{Φc(s) | E} = op(1) under Case3 and Case4. Let ϱ = maxj∈[p](Ξñ)j,j.
Restricted on Φ(s), there exists a constant C0 > 0 such that

E(T̂G
n | E) ≤ C0(log p)1/2 max

j∈[p]
(Ξ̂ñ)

1/2
j,j ≤ (1 + s)1/2C0(log p)1/2ϱ1/2.

By Borell inequality for Gaussian process,

P{T̂G
n > E(T̂G

n | E) + x | E} ≤ 2 exp
{
− x2

2 maxj∈[p](Ξ̂ñ)j,j

}

for any x > 0. Let x0 = ϱ1/2(1 + s)1/2[C0(log p)1/2 + {2 log(4/α)}1/2]. Restricted on Φ(s),
we have

x0 ≥ E(T̂G
n | E) + (2ϱ)1/2(1 + s)1/2 log1/2

(
4
α

)
,

which implies

P{T̂G
n > x0 , Φ(s) | E} ≤ 2 exp

{
− 2ϱ(1 + s) log(4/α)

2ϱ(1 + s)

}
=

α

2
.

Since P{Φc(s) | E} = op(1), then P{Φc(s) | E} ≤ α/4 with probability approaching one.
Hence, P(T̂G

n > x0 | E) ≤ α with probability approaching one. Similar to the proof of (A1),
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we know that ϱ ≤ C under Case3 and Case4. By the definition of ĉvα, it holds with
probability approaching one that

ĉvα ≤ ϱ1/2(1 + s)1/2[C0(log p)1/2 + {2 log(4/α)}1/2] ≲ (log p)1/2

under Case3 with p = o(S1/4) and Case4 with log(pn) = o(B1/3 ∧ S1/2). Let µX =
(µX,1, . . . , µX,p)

T = E(Xt), µY = (µY,1, . . . , µY,p)
T = E(Yt) and j0 = arg maxj∈[p] |µX,j −

µY,j|, then

Tn =

√
n1n2

n1 + n2
|µ̂X − µ̂Y|∞ ≥

√
n1n2

n1 + n2

∣∣∣∣ 1
n1

n1

∑
t=1

Xt,j0 −
1
n2

n2

∑
t=1

Yt,j0

∣∣∣∣
=

√
n1n2

n1 + n2

∣∣∣∣ 1
n1

n1

∑
t=1

(Xt,j0 − µX,j0)−
1
n2

n2

∑
t=1

(Yt,j0 − µY,j0) + µX,j0 − µY,j0

∣∣∣∣
≥

√
n1n2

n1 + n2
|µX,j0 − µY,j0 | −

√
n1n2

n1 + n2

∣∣∣∣ 1
n1

n1

∑
t=1

(Xt,j0 − µX,j0)−
1
n2

n2

∑
t=1

(Yt,j0 − µY,j0)

∣∣∣∣.
Similar to the proof of (A1), we know that∣∣∣∣ 1

n1

n1

∑
t=1

(Xt,j0 − µX,j0)−
1
n2

n2

∑
t=1

(Yt,j0 − µY,j0)

∣∣∣∣ = Op(n−1/2)

under Case3 and Case4. If |µX,j0 −µY,j0 | ≫ n−1/2, we can conclude thatP(Tn ≥ C∗n1/2|µX,j0
−µY,j0 |) → 1 as n → ∞ for some constant C∗ > 0. Due to ĉvα ≲ (log p)1/2 = o(n1/2|µX,j0 −
µY,j0 |) under Case3 and Case4, we have that Theorem 3 holds under Case3 and Case4.

Appendix E. Additional Simulation Results

Table A1. The Type I error rates, expressed as percentages, were calculated by independently
generated sequences {Xt}n1

t=1 and {Yt}n2
t=1 based on (M2). The simulations were replicated 1000 times.

(n1, n2) ρ p Yang Dempster BS SD CLX

(200,220) 0 50 4.6 2.3 6.4 4.5 3
200 3.3 0 6.7 5.8 3.4
400 3.7 0 5 4.4 4.1
800 3.3 0 6.4 5.2 4.2

0.1 50 6.2 12.4 23.4 18.4 9.8
200 5.2 1.8 43.2 39.5 12.9
400 5.8 0.1 63 59.7 14.7
800 5.3 0 88.7 87.3 19.4

0.2 50 8.1 35.6 51.3 44.3 21.9
200 7.7 23.5 87.2 85.5 37.9
400 9.2 16.9 98.5 98.3 43
800 9.6 9.8 100 100 54.5

(400,420) 0 50 4.9 1.8 5.4 3.6 3.5
200 3.5 0 6.4 5.3 3.2
400 5 0 5.7 4.8 4.4
800 4.3 0 6 5 4.5

0.1 50 6.9 12.2 21.7 17 9.3
200 4.9 1.9 41.7 39 11.1
400 7.8 0.1 63.6 61.4 17.7
800 7.3 0 87.9 86.7 18.3

0.2 50 8.6 33.7 46.9 40.7 20.6
200 7.7 23.7 86.3 84.7 31
400 9.4 17.1 99.2 99 43.6
800 9 9.5 100 100 53.2
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Figure A1. The empirical powers with sparse signals were evaluated by independently generated
sequences {Xt}n1

t=1 based on (M2), f(·) = 0 and ρ = 0, and {Yt}n2
t=1 based on (M2), f(·) = f1(·)

and ρ = 0. The parameter a represents the distance between the null and alternative hypotheses.
The simulations were replicated 1000 times.

Figure A2. The empirical powers with dense signals were evaluated by independently generated
sequences {Xt}n1

t=1 based on (M2), f(·) = 0 and ρ = 0, and {Yt}n2
t=1 based on (M2), f(·) = f2(·)

and ρ = 0. The parameter a represents the distance between the null and alternative hypotheses.
The simulations were replicated 1000 times.
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Table A2. The Type I error rates, expressed as percentages, were calculated by independently
generated sequences {Xt}n1

t=1 and {Yt}n2
t=1 based on (M3). The simulations were replicated 1000 times.

(n1, n2) ρ p Yang Dempster BS SD CLX

(200,220) 0 50 5.7 16.8 7.7 3 1.6
200 4.3 14.9 6.9 0.9 1.6
400 3.5 14.7 7.7 0.2 1.2
800 4.2 15.4 6.9 0.2 1.7

0.1 50 7.9 25.2 13.7 5.5 5.4
200 6.2 23 12 2.7 5
400 5.5 23.3 12.5 1.2 4.2
800 6.9 24 12.9 0.7 5.5

0.2 50 8.6 33.8 21 10.7 12.8
200 7.5 32.5 19.7 5.8 13.9
400 6.9 30.4 20.2 4.4 15
800 9.3 32.3 20.7 1.7 18.4

(400,420) 0 50 5.4 13.9 6.7 1.7 1.6
200 5.1 15.5 6.4 1 1.1
400 5.3 14.1 7.1 0.8 1.3
800 4 16.2 6.3 0.1 1.3

0.1 50 6.9 21.3 10.7 4.7 5.4
200 6.6 23.1 12.5 2.7 4.9
400 7.3 22 11.4 1.7 5.9
800 6.2 23.8 12.7 0.6 5.4

0.2 50 8.2 31.8 18.2 8.6 11
200 8.2 31 19.6 5.2 13.5
400 8.7 32.6 18.9 3.9 14.7
800 7.4 35.2 21.3 1.8 17.3

Figure A3. The empirical powers with sparse signals were evaluated by independently generated
sequences {Xt}n1

t=1 based on (M3), f(·) = 0 and ρ = 0, and {Yt}n2
t=1 based on (M3), f(·) = f1(·)

and ρ = 0. The parameter a represents the distance between the null and alternative hypotheses.
The simulations were replicated 1000 times.
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Figure A4. The empirical powers with dense signals were evaluated by independently generated
sequences {Xt}n1

t=1 based on (M3), f(·) = 0 and ρ = 0, and {Yt}n2
t=1 based on (M3), f(·) = f2(·)

and ρ = 0. The parameter a represents the distance between the null and alternative hypotheses.
The simulations were replicated 1000 times.
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