
Citation: Chen, X.; Li, S. A Good View

for Graph Contrastive Learning.

Entropy 2024, 26, 208.

https://doi.org/10.3390/e26030208

Academic Editor: Yanchun Liang

Received: 15 January 2024

Revised: 25 February 2024

Accepted: 26 February 2024

Published: 27 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Good View for Graph Contrastive Learning
Xueyuan Chen 1 and Shangzhe Li 2,*

1 State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China;
xueyuanchen@buaa.edu.cn

2 School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China
* Correspondence: shangzheli@cufe.edu.cn

Abstract: Due to the success observed in deep neural networks with contrastive learning, there
has been a notable surge in research interest in graph contrastive learning, primarily attributed
to its superior performance in graphs with limited labeled data. Within contrastive learning, the
selection of a “view” dictates the information captured by the representation, thereby influencing the
model’s performance. However, assessing the quality of information in these views poses challenges,
and determining what constitutes a good view remains unclear. This paper addresses this issue by
establishing the definition of a good view through the application of graph information bottleneck
and structural entropy theories. Based on theoretical insights, we introduce CtrlGCL, a novel method
for achieving a beneficial view in graph contrastive learning through coding tree representation
learning. Extensive experiments were conducted to ascertain the effectiveness of the proposed view
in unsupervised and semi-supervised learning. In particular, our approach, via CtrlGCL-H, yields an
average accuracy enhancement of 1.06% under unsupervised learning when compared to GCL. This
improvement underscores the efficacy of our proposed method.

Keywords: graph contrastive learning; coding tree representation; structural entropy

1. Introduction

Contrastive learning has demonstrated its effectiveness in various domains, includ-
ing computer vision [1–3], natural language processing [4,5], and graph representation
learning [6]. Specifically, in the context of graph representation learning, graph contrastive
learning (GCL) [7] has proven to be a valuable approach. GCL boosts the performance of
downstream tasks by pre-training a Graph Neural Network (GNN) on extensive datasets,
often characterized by limited or absent annotations. This method has evolved into a
practical self-supervised learning technique for effectively capturing graph representations.

In the realm of graph contrastive learning, two key modules have been delineated:
graph augmentation and contrastive learning methodologies [8]. Similar to contrastive
learning methods in other domains, those designed for graphs aim to enhance agreement
among positive examples while minimizing it among negative samples. Graph augmen-
tation employs diverse strategies such as node dropping, edge perturbation, attribute
masking, and subgraph operations to generate augmented views [7]. Researchers have
highlighted the pivotal role of view quality in the performance of contrastive learning
models [9] and have focused on constructing effective views for graphs through data aug-
mentation [10,11]. Unlike images, generating high-quality contrastive samples for graphs
is challenging due to the intricate structural information embedded in graphical data [12].
This raises the following fundamental questions regarding how to address these challenges:

(1) What defines a good view?
(2) What information should a good view include or exclude?
(3) How can a good view be generated?

Entropy 2024, 26, 208. https://doi.org/10.3390/e26030208 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26030208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e26030208
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26030208?type=check_update&version=1

Entropy 2024, 26, 208 2 of 18

Recently, the information bottleneck (IB) theory has been applied to learn graph
representation [13]. This has inspired the proposition that a good view for graph repre-
sentation should possess minimal yet sufficient information, i.e., the essential information.
Consequently, a metric for quantifying the quality of information embedded in graphs is
indispensable. Taking cues from information theory, particularly the quantification of infor-
mation in communication systems [14], researchers have grappled with the formidable task
of measuring graph structural information, considered one of the “three great challenges
for half-century-old computer science” [15]. Recently, the concept of structural entropy for
graphs has been introduced to measure the uncertainty of graph structures, thus addressing
this challenge [16]. This theory posits that minimizing uncertainty in a graph, or reducing
its structural entropy, unveils the essential structure of the graph. In essence, a good view
aims to minimize structural uncertainty, providing minimal yet sufficient information, and
maximize benefits in graph contrastive learning with the least cost.

In this research, we present a novel approach named CtrlGCL (refer to Figure 1) de-
signed for graph contrastive learning, with a primary focus on the concept of a “good view”
as defined earlier. Our methodology employs an optimization algorithm to decode essential
structures by minimizing structural entropy. This decoding process generates coding trees,
which represent essential structures corresponding to the given graphs. Subsequently,
drawing inspiration from the message-passing mechanism inherent in Graph Neural Net-
works (GNNs), we propose an encoder tailored for learning representations from these
coding trees, effectively capturing essential information. In comparison to existing effective
views in previous studies, we conducted comprehensive experiments covering both semi-
supervised and unsupervised learning across various graph classification benchmarks. The
results demonstrate superior performance compared to state-of-the-art (SOTA) methods.
The contributions are as follows:

• We are the first, to the best of our knowledge, to formulate a definition for a “good
view” in the context of graph contrastive learning, grounded in the theories of graph
information bottleneck and structural entropy.

• Drawing on these theoretical insights, we introduce CtrlGCL as a method to actualize
the concept of a good view for graph contrastive learning, employing coding tree
representation learning.

• Our proposed methodology for constructing good views was comprehensively as-
sessed across various benchmarks, encompassing unsupervised and semi-supervised
learning scenarios. The results consistently showcase its superior performance com-
pared to state-of-the-art methods, underscoring the efficacy of our approach.
In this article, the initial section provides a comprehensive overview of the background
and outlines our specific contributions. The subsequent section delves into the existing
research on graph contrast learning and structural entropy. Following that, the third
section elucidates our theory and delineates the instantiation of our model. Moving
forward, the fourth and fifth sections expound upon the experimental setup and
present the obtained results. Finally, the concluding section encapsulates the essence
of our study, providing a succinct summary of our findings.

Entropy 2024, 26, 208 3 of 18

Figure 1. Framework. Our framework with the decoded essential graph structure for contrastive
learning consists of two blocks. We adopt a view from previous works regarding graph contrastive
learning. As for our good view, the original graphs are taken for coding tree transformation, and the
representation for contrastive loss estimation can be obtained through the coding tree encoder.

2. Related Work
2.1. Graph Contrastive Learning

In the wake of the success achieved by contrastive learning in Convolutional Neural
Networks (CNNs) for unsupervised image representation learning [2,9], the application
of contrastive learning for graph representation learning has gained traction due to the
scarcity of labels in real-world network data [7,10–12,17]. However, unlike image data
augmentation, which does not demand extensive domain knowledge, augmentation in
graph data is more intricate and challenging to analyze, posing difficulties in generating
high-quality contrast samples [12,17,18]. Thus, the investigation of the contrastive view
becomes a pivotal aspect of graph contrastive learning. Initially, contrastive pairs were
constructed from different graph components, forming diverse contrastive modes [6,19–21].
More recently, inspired by the heuristics view design in computer vision, GCL introduced
four types of views with random augmentation [7]. However, the optimal view combi-
nations needed extensive evaluation. Subsequent works, like JOAO, proposed a search
strategy based on the Min–Max principle for efficient view selection [11]. Similarly, AD-
GCL aimed to produce graph views through learnable edge dropping [10]. Furthermore,
LP-Info introduced a view-producing model via graph generation to avoid prefabricated
data augmentations that required domain knowledge [17]. In addition to these foundational
studies on GCL, an increasing number of researchers have employed the GCL methodology
for recommendation systems. Specifically, CGI [22] adheres to the design principles of
AD-GCL, learning to determine whether to drop an edge or node under the guidance of
the information bottleneck principle. On the other hand, LightGCL [23] opts for graph
reconstruction, leveraging singular-value decomposition for contrastive augmentation.

Despite the effectiveness of these graph views on various tasks, the data augmentations
proposed, such as random perturbation, in existing methods may introduce structural
damage and noisy information [7,10]. Similarly, learnable views through graph generation
(i.e., LP-Info and LightGCL), based on different experimental settings, may not prevent
artificially introduced noise. Additionally, methods like AD-GCL and CGI, relying on
forced edge dropping, might suffer from graph structure damage and yield an undesirable
performance in various regularizing settings [10]. In contrast, CtrlGCL provides theoretical
guiding principles for contrastive view generation via an optimization algorithm that
avoids random corruption and artificially introduced noisy information.

Entropy 2024, 26, 208 4 of 18

2.2. Structural Entropy

The need to measure information in communication networks gave rise to information
entropy [14]. Several metrics have been developed for quantifying information in graphs.
p(G) may be used to evaluate the entropy of graphs worldwide [24]. Different methods
attempt to quantify the structural entropy of nodes in a signal network. Based on distance,
the first example of local graph entropy measurement was presented [25]. Subsequently,
numerous research projects were undertaken in an effort to quantify a graph’s structural
information from various angles. These projects included Gibbs entropy [26], parametric
graph entropy [27], and von Neumann entropy [28]. However, these definitions all de-
structure the graph into an unstructured probability distribution and then apply Shannon
entropy to define the information of the graph. Therefore, these metrics do not suit the
measurement of structural information, which is crucial for graphs and the key to the
success of GNNs. In addition, these graph entropy definitions are only statistical mechanics
approaches, providing an approach to comparing the different models of networks rather
than an approach to figure out the minimal structural entropy of a given graph.

In more recent work, structural entropy was introduced and applied to evaluate the
hierarchical structure complexity in a graph [16]. It was based on coding trees. Structural en-
tropy was further established and used for decoding the fundamental graph structure, with
an emphasis on measuring graph information through fixed hierarchical structures [29].

3. Materials and Methods
3.1. Preliminaries

Here, we introduce some preliminary concepts and notations. In this study, given a
set of graphs G = G1, G2, · · · , GM, every graph can be written as G = (V , E), where V and
E are the sets of nodes and edges, respectively. The graph G may have node attributes
XV = Xv|v ∈ V .

3.1.1. Graph Representation Learning

Graph Neural Networks (GNNs) with a message-passing method were used as en-
coders in this work. The purpose of GNNs is to learn a vector hG ∈ R for the whole graph
G and an embedding vector hv ∈ R for each node. The initial node representation hv

is updated iteratively using the GNN, starting at h(0)v = Xv. When an L-layer GNN is
used, each node representation’s update takes into account data from the nodes that are
nearby within L hops. According to Gilmer et al. [30], the L-layer of a GNN may be written
as follows:

h(l)v = f l
U(h

(l−1)
v , f (l)M ((h(l−1)

v , h(l−1)
u)|u ∈ N(v))), (1)

where h is the node representation of v in the L-th layer, N(v) is the neighborhood node
set for node v, f l

U is the update function in the L-th layer, and f l
M is the trainable message-

passing function in the L-th layer. The node representation hv is similar to a subgraph in
that it is a summary of the nearby nodes. As a result, the whole-graph representation is
formalized as follows after L iterations:

hG = fR(hv|v ∈ V), (2)

where the readout function that pools the final collection of node representations is denoted
by fR.

3.1.2. The Mutual Information Maximization

Graph contrastive learning operates under the mutual information maximization
(InfoMax) principle [20], where the objective is to maximize the degree of correspondence
between a graph’s representations and various augmented perspectives. The goal of the
graph representation hG is to capture the unique characteristics of the graph G such that

Entropy 2024, 26, 208 5 of 18

the representation can effectively distinguish this graph from others. The following is how
mutual information maximization aims to be expressed:

InfoMax: max I(G; hG), where G ∼ PG, (3)

where I(·) signifies the mutual information between two random variables, and PG repre-
sents the distribution defined over the graph G.

3.1.3. Methodology

In this section, we begin by outlining our theoretical reasoning and then attempt to pro-
vide a definition of a good perspective. We next offer a particular instantiation of the good
view tailored for graph contrastive learning, building upon structural information theory.

3.2. The Essential Structure with Minimal Structural Uncertainty

Given the challenge of limited labeled data in real-world graph datasets, obtaining
meaningful representations and establishing effective pre-training is contingent upon self-
supervised models delving into the intrinsic information of graphs [31]. The choice of
“views” in self-supervised learning becomes pivotal as it dictates the information encapsu-
lated by the model’s representation [9]. While there have been prior works addressing the
design of effective views for graph contrastive learning from various perspectives [7,10],
none of them offer a clear definition of a good view aligned with the fundamental objective
stated above. Our investigation seeks to fill this gap by providing a precise definition of
what constitutes a good view in the context of graph contrastive learning.

In the realm of computer vision, researchers have provided an empirical solution,
suggesting that a good view involves compressing the mutual information between views
while preserving information relevant to downstream tasks [9]. The notion of the infor-
mation bottleneck, or more precisely the graph information bottleneck (GIB), has been
presented in relation to Graph Neural Networks (GNNs) [13]. A similar approach is put
out by GIB, which drives our investigation into what makes a good perspective for graph
contrastive learning. Models can obtain minimum yet adequate information for a particular
task by simultaneously minimizing mutual information between the input and the output
(i.e., min I(G; f (G))) and maximizing it between the model’s output and the target (i.e.,
max I(f (G); Y)). The following is how the GIB aim is stated:

GIB: max
f

I(f (G); Y)− βI(G; f (G)), (4)

where β is a positive constant and (G, Y) ∼ PG×Y . We suggest that, under the framework of
GIB, an optimal perspective for graph contrastive learning should capture the least amount
of information necessary for tasks that come after, hence optimizing gains at the lowest
possible expense.

It is undoubtedly important to note that the first part of GIB needs target-specific data
for the job at hand (that is, Y), which presents difficulties for the self-supervised training
framework. This challenge, however, directs our attention to the latter portion of GIB,
which is independent of such target-related data. This feature clarifies the investigation
of what, in the context of graph contrastive learning, makes a good view. Moreover,
the goal of decreasing the mutual information between the input graph and the learnt
representation (that is, min I(G; f (G))) emphasizes the essential information that graph
contrastive learning ought to include. This goal supports the notion that an excellent
perspective should emphasize gathering pertinent details while reducing redundancy,
providing insightful information for efficient graph representation learning.

To delve deeper into the essential information of graphs, we establish a property that
a good view should possess:

Entropy 2024, 26, 208 6 of 18

Definition 1. A good view is intended to be a substructure of the corresponding graph to mitigate
the introduction of artificially induced noise.

In computer vision, important information is frequently obtained via random dis-
turbance of the data, and the generated noise is known to support robust representation
learning [9]. Graph augmentation is more difficult to interpret and less intuitive than data
augmentation on photos, which does not require in-depth topic expertise. It is challenging
to produce high-quality contrastive samples for graphs because of this complexity [12,17].
Thus, we argue that random perturbation should not be used to introduce fake noise in a
decent representation of graphs.

Given a normal graph G and its G∗ view, the mutual information between G and G∗

may be written as follows:

I(G∗; G) = H(G∗)−H(G∗|G), (5)

where the entropy of G∗ is H(G∗), and the conditional entropy of G∗ conditioned on
G is H(G∗|G) (for simplicity, we ignore the graph encoder f without losing generality).
According to the definition of Shannon entropy [14], the uncertainties of G∗ and G are also
represented by the variablesH(G∗) andH(G), respectively.

Furthermore, we may deduce thatH(G∗|G) = 0 since, in accordance with Definition 1,
the information encoded in G∗ is a subset of the information in G. Thus, it is possible to
reduce the mutual information to the following:

I(G∗; G) = H(G∗). (6)

Consequently, to capture the essential information of the input graph, we need to
minimize the uncertainty of graph G, expressed as min,H(G∗). Here, we provide the
definition of a good view for graph contrastive learning (GCL).

Definition 2. The good view of a graph should have minimal structural uncertainty.

Shannon entropy is a useful measure for assessing structural information in graphs,
but it is not appropriate for our purposes. Brooks posed the dilemma of how to characterize
a graph’s underlying data in a way that makes it possible to understand its fundamental
structure [15]. Shannon likewise considered whether communication graph analysis could
be aided by a structural theory of information [32].

To measure the uncertainty of a graph’s structure, the notion of structural entropy was
recently proposed and described on graphs [16]. This structural information theory states
that a coding tree encodes a graph. The structural entropy of a graph G = (V , E) on its
coding tree T is defined as

HT(G) = − ∑
vτ∈T

gvτ

vol(V) log
vol(vτ)

vol(v+τ)
, (7)

where gvt denotes the number of edges with an endpoint in the leaf node partition of vt, v+t
is the parent of vt, and vol(V) and vol(vt) are the sums of degrees of leaf nodes in V and vt,
respectively. Moreover, vt is a nonroot node in T and can also be viewed as a node subset
⊂ V according to its leaf node partition in T.

The objective is to find the ideal coding tree T with the smallest entropy, or minTHT(G),
in order to interpret the fundamental structure of graph G with the least amount of struc-
tural uncertainty. A coding tree with a matching constant height is preferable because
real-world networks frequently have a natural structure with a defined hierarchy. Here, the
ideal coding tree with a height of k is decoded using the k-dimensional structural entropy:

Hk(G) = min
∀T:Height(T)=k

HT(G). (8)

Entropy 2024, 26, 208 7 of 18

An Instantiation of Essential Structure Decoding and Representation

In this subsection, we will initially present a practical instantiation for decoding the
essential structure to minimize structural uncertainty. Following this, we will introduce a
novel Graph Convolutional Network (GCN) for the coding tree representation based on
Graph Neural Networks (GNNs).

We seek a method to decode the coding tree of height k from a given graph, guided by
the notion of k-dimensional structural entropy. A coding tree T can be created for a graph
G = (V , E), with vr serving as the tree’s root node and V serving as its leaf nodes. Two
functions for the coding tree T are defined as follows:

Definition 3. Let T be any coding tree for the graph G = (V , E), where the leaf nodes are V and
the root node is vr. In T, let vi ∈ vr.children and vj ∈ vr.children be any two nodes (vi, vj).
Defining a function MERGET(vi, vj) for T that inserts a new node vε between (vi, vj) and vr

vε.children← vi; (9)

vε.children← vj; (10)

vr.children← vε; (11)

Definition 4. In accordance with the configuration described in Definition 3, given any two nodes
(vi, vj), where vi ∈ vj.children. Create the function deleteT(vi) for T in order to merge vi.children
with vj.children and delete vi from T:

vj.children← vi.children; (12)

Algorithm 1 provides a greedy algorithm based on the two provided functions that
computes the coding tree with a given height k using structural entropy minimization.
More specifically, starting from the bottom, a full-height binary coding tree is created. In
this step, the goal is to maximize the decrease in structural entropy by merging two child
nodes of the root to produce a new division in each iteration. In the second step, we must
eliminate nodes from the previous full-height binary coding tree in order to compress it
to meet a set number of graph coarsenings. Each time, we take an inner-node from T,
and after removing it, T has the lowest structural entropy. With the help of structural
entropy, we have already created a coding tree with a certain height k at the conclusion
of the second step. When implementing hierarchical pooling based on such a coding tree,
there can be nodes that, due to cross-layer linkages, do not have an immediate successor
in the following layer. This will result in nodes being missing. As a result, in order to
maintain the integrity of information transfer across layers and to avoid interfering with
G’s structural entropy on the coding tree T, we must complete the third step. Ultimately,
T = (VT , ET), VT = (VT

0 , . . . ,VT
k), and VT

0 = V may be used to create a coding tree T for
the provided graph G. Furthermore, it is possible to obtain the cluster assignment matrices
from ET , that is, S = (S1, . . . , Sk).

Complexity analysis of Algorithm 1. With hmax representing the height of the cod-
ing tree T following the first step, the runtime complexity of Algorithm 1 is O(2n +
hmax(m log n + n)). During the structural entropy reduction process, hmax will be about
log n, since coding tree T tends to be balanced. Algorithm 1’s runtime roughly grows
linearly with the number of edges, as a network often has more edges than nodes, namely
m≫ n. The algorithm under consideration maintains two data structures: a coding tree
and a graph. The space complexity of the algorithm is O(m + n), where n denotes the
number of nodes and m represents the number of edges. Specifically, the graph requires
O(n + m) space. The coding tree, on the other hand, necessitates O(n) space, given that the
number of nodes in the coding tree is less than or equal to 2n.

Entropy 2024, 26, 208 8 of 18

Algorithm 1 Coding tree with height k via structural entropy minimization.
Input: a graph G = (V , E), a positive integer k > 1
Output: a coding tree T with height k

1: Generate a coding tree T with a root node vr and all nodes in V as leaf nodes;
2: // Stage 1: Bottom to top construction;
3: while |vr.children| > 2 do
4: Select vi and vj from vr.children, conditioned on

argmax(vi ,vj)
{HT(G)−HTMERGE(vi ,vj)(G)};

5: MERGE(vi, vj);
6: end while
7: // Stage 2: Compress T to the certain height k;
8: while Height(T) > k do
9: Select vi from T, conditioned on

argminvi{H
TREMOVE(vi)(G)−HT(G)|

vi ̸= vr & vi /∈ V};
10: REMOVE(vi);
11: end while
12: // Stage 3: Fill T to avoid cross-layer links;
13: for vi ∈ T do
14: if |Height(vi.parent)−Height(vi)| > 1 then
15: insert a new node vε between vi and vj;
16: end if
17: end for
18: return T;

Coding tree representation learning. The coding tree functions act as a compact
representation of the original graph structure, preserving its essential information while
minimizing redundancy and avoiding noise introduced during augmentation. To seam-
lessly integrate the coding tree into the graph contrastive learning architecture, a novel
encoder is introduced. In order to capture the hierarchical structure of nodes within the
coding tree, a tree positional encoding mechanism is employed. This mechanism enables
the model to distinguish nodes located at different depths. The positional embedding pi

for nodes of height i is defined as follows:

pi = PositionEncoder(i), (13)

where PositionEncoder(i) generates unique embeddings for each layer of the coding tree.
In practical experiments, the implementation of PositionEncoder utilizes the embedding
layer provided by PyTorch.

The encoder, a novel recursive neural network, propagates information iteratively
from the bottom to the top. The process begins with the leaf nodes, and as iterations
progress, the model gradually learns representations for each non-leaf node by aggregating
the representations of its descendants. This iterative process culminates in the derivation of
the representation for the root node. We utilize a Gated Recurrent Unit (GRU) [33] as the
aggregate function. Consequently, the representation of a non-leaf node with height i in the
coding tree is computed as

r̂i
v = ∑u∈C(v) r(i−1)

u , (14)

ri
v = GRU

(
pi, r̂i

v

)
, (15)

Entropy 2024, 26, 208 9 of 18

where ri
v is the hidden representation of node v, p(i) is taken as the input, and r̂i

v is the
aggregated information from the children of node v, which represents the hidden state.
More specifically, ri

v is given by

si
v = σ

(
Ws pi + Us r̂i

v

)
, (16)

zi
v = σ

(
Wz pi + Uz r̂i

v

)
, (17)

r̃i
v = tanh

(
Wr pi + Ur(si

v ⊙ r̂i
v)
)

, (18)

ri
v = (1− zi

v)⊙ r̃i
v + zi

v ⊙ r̂i
v, (19)

where σ is the logistic sigmoid function, ⊙ denotes element-wise multiplication, W∗ and
U∗ refer to weight matrices used for linear transformations of vectors that control how the
input and hidden state are combined to produce the new state ri

v.
Complexity analysis of coding tree learning. The runtime complexity is O(nd2). This

process involves a propagation step, which traverses the tree from the leaf nodes to the
root, taking O(n) time. At each node, the GRU executes update and reset operations, both
of which involve matrix multiplications. Assuming the dimension of the hidden feature to
be d, these operations require O(d2) time. The space complexity of the learning process is
O(nd + d2), determined by the storage of the node features and the parameters of the GRU.
Each node in the tree possesses a d-dimensional feature vector, hence storing the features
for all tree nodes requires O(nd) space. The GRU parameters, which are of size O(d2), also
contribute to the space complexity.

For the contrastive loss calculation, xk
root (i.e., the feature vector of the root node) can

be used to represent the entire coding tree. However, recognizing the distinct functionality
of the natural hierarchy, we incorporate the embedded information from each iteration
through skip connections. Specifically, we learn the coding tree with concatenated layer
representations:

rT = [POOL({r0
v|v ∈ V0

T}) ; POOL({r1
v|v ∈ V1

T}) ; . . . ; xk
root)], (20)

where ri
v is the hidden representation and k is the height of tree T. In particular, POOL

in Equation (20) will be implemented by the widely used pooling approaches, such as
summation or averaging.

4. Experiment Setup

In this section, we dedicate ourselves to evaluating CtrlGCL through extensive experi-
ments. We begin by describing the experimental setup for graph classification, covering
both semi-supervised and unsupervised learning scenarios. Subsequently, we validate
the effectiveness of the proposed good view against state-of-the-art (SOTA) competitors,
contrasting with pre-defined rules for graph augmentation.

Given that our good view is orthogonal to previous works on graph augmentations,
we conduct additional analyses to demonstrate the collaborative capabilities of CtrlGCL
with existing approaches. This comprehensive evaluation aims to showcase the versatility
and effectiveness of CtrlGCL across various experimental settings and in collaboration with
diverse graph augmentation strategies.

4.1. Datasets

Various benchmarks for view validation are adopted from TUDatasets [34]. Specifically,
we utilized six datasets for social networks, including IMDB-BINARY, IMDB-MULTI,
COLLAB, REDDIT-MULTI-5K, REDDIT-BINARY, and GITHUB; two datasets for small
molecules, including NCI1 and MUTAG; and two datasets for bioinformatics, including
PROTEINS and DD.

We performed trials for several graph property prediction tasks on a large variety
of datasets from different disciplines. We offer thorough explanations of each of the ten

Entropy 2024, 26, 208 10 of 18

benchmark datasets utilized in this investigation. The statistics for these datasets are
summarized in Table 1.

Social Network. IMDB-BINARY and -MULTI are products of a movie set working
together. Actors or actresses are represented as nodes in these two databases, while their
collaboration in a certain film is represented by edges. Every graph has a label that relates to
the genre of the particular film that it is connected to. Comparably, COLLAB is a scientific
domain collaboration dataset made up of three public collaboration datasets: condensed
matter physics, high-energy physics, and astronomy. For the graphs in this benchmark,
researchers from different fields have created different ego networks. The study field that
each graph’s nodes belong to is indicated by its label. The balanced datasets REDDIT-
BINARY or -MULTTI-5K have graphs that each represent an online discussion, and the
nodes stand for users. If two nodes reply to one other’s comments, then an edge is formed
between them. Sorting each graph into the appropriate community or subreddit is the
current work at hand.

Bioinformatics. Protein structure diagrams are included in DD. Every node symbolizes
an amino acid, and edges arise when two nodes are separated by less than 6 A◦. If a protein
is an enzyme or not, it is indicated on the label. A dataset known as PROTEINS has
secondary structural elements (SSEs) as its nodes. If two nodes are next to one another in a
3D space or in the provided amino acid sequence, then an edge exists between them. Three
discrete labels that stand for helices, sheets, or turns are found in the dataset. The NCI1
dataset comes from the field of chemical informatics, where each input graph is used as a
representation of a compound: each vertex represents an atom of a molecule, and the edges
between vertices represent bonds between atoms. This dataset is related to anti-cancer
screening, where chemicals are evaluated as positive or negative for cellular lung cancer. A
total of 37 distinct labels make up this dataset. Seven different graph types are found in
MUTAG, which are formed from 188 different carcinogenic aromatic and heteroaromatic
nitro chemicals. Ten datasets were used, and their characteristics are compiled in Table 1.

Table 1. Statistics for the datasets from TUDataset.

Dataset #Graphs #Classes Avg. #Nodes Avg. #Edges

REDDIT-BINARY 2000 2 429.63 497.75
COLLAB 5000 3 74.49 2457.78
REDDIT-MULTI-5K 4999 5 508.52 594.87
IMDB-MULTI 1500 3 13.00 65.94
IMDB-BINARY 1000 2 19.77 96.53
GITHUB 12,725 2 113.79 234.64
MUTAG 188 2 17.93 19.79
NCI1 4110 2 29.87 32.30
DD 1178 2 284.32 715.66
PROTEINS 1113 2 39.06 72.82

4.2. Configuration

Our two-block contrastive learning framework with the decoded basic graph structure
is illustrated in Figure 1. In the block pertaining to graph augmentations, we utilize
the identical GNN architectures with their original hyper-parameters under different
experiment circumstances, as per the methodology used in GraphCL (the first technique
for graph contrastive learning) [7]. To be more precise, we utilized GIN with 32 hidden
units and 3 layers for unsupervised representation learning and ResGCN with 128 hidden
units and 5 layers for semi-supervised learning. Furthermore, graphs with a default
augmentation strength of 0.2 were subjected to the same data augmentations.

The number of tree encoder layers for coding tree representation learning was de-
termined by the tree height, which ranges from two to five. There were two layers in
each iteration of the MLP (Multilayer Perceptron). In order to preserve uniformity with
GraphCL across the different experiment configurations, the encoder’s hidden dimensions

Entropy 2024, 26, 208 11 of 18

are specified with the corresponding setting. The optimal hyper-parameter combination
was determined based on the performance on the validation sets.

Semi-Supervised Learning. We performed five trials for each dataset, with a 10% label
rate, meaning that each experiment corresponds to a 10-fold assessment, as described in [7].
For every experiment, we present the accuracy (%) mean, and standard deviation. A grid
search was used to set the epoch number to {20, 40, 60, 80, 100} and the learning rate to
{0.01, 0.001, 0.0001} for pre-training. We fine-tuned using the same parameters as described
in [7]: learning rate of 0.001, batch size of 128, hidden dimension of 128, and 100 epochs of
training for the pre-trained models.

Unsupervised Learning. Each experiment was carried out five times, and as shown
in [20], each experiment corresponds to a 10-fold assessment. For every experiment,
we present the accuracy (%) mean, and standard deviation. Models were tested every
10 epochs and trained for 20 epochs in order to learn the graph representations. The batch
size was 128 and the hidden dimension was 32.

Data Augmentations on Graphs. There are four common categories of data augmenta-
tions for graph-structured data, which correspond to the data augmentations utilized in
GraphCL [7].

Edge Perturbation. Here, the connectivities in G are disturbed by arbitrarily adding or
removing a specific percentage of edges. This operation is predicated on the notion that the
semantic meaning of G is relatively resilient to variations in edge connection patterns. To
add or remove each edge, we further adhered to an independent, identically distributed
(i.i.d.) uniform distribution.

Node Dropping. Node dropping, given the graph G, randomly discards a subset of
vertices and their connections. This procedure makes the assumption that the semantic
meaning of G is unaffected by the missing portion of vertices. The default independent
and identically distributed uniform distribution governs each node’s dropping probability.

Attribute Masking. With attribute masking, models are prompted to retrieve masked
vertex attributes by utilizing their context, that is, the remaining attributes. The underlying
premise of this operation is that the model’s predictions are not substantially impacted by
the missing partial vertex information.

Subgraphs. Using a random walk, this procedure samples a subgraph from G. It
makes the assumption that G’s partial local structure can effectively retain its semantics.

4.3. Learning Protocols

We employed the necessary learning techniques to enable fair comparison with state-
of-the-art (SOTA) efforts. All data were utilized for model pre-training in unsupervised
representation learning [20], after which the learnt graph embeddings were fed into an SVM
classifier for 10-fold cross-validation. Two learning settings were used for semi-supervised
learning [7]. Only the training dataset was used for pre-training when the datasets had a
public training/validation/test split. Ten percent of the training data was used for fine-
tuning, and the validation/test sets yielded the final assessment findings. All samples were
used for pre-training on datasets without these splits, and assessment and fine-tuning were
carried out across ten assessments.

4.4. The Compared Methods

In the two-block design of CtrlGCL, there were three types of results: (1) only graph
embedding, termed CtrlGCL-G; (2) only coding tree embedding, termed CtrlGCL-T; (3) and
the hybrid of graph embedding and coding tree embedding, termed CtrlGCL-H.

In unsupervised learning, we adopted eight baselines that fall into three categories.
We used the published hyper-parameters of these methods. The first set included three
state-of-the-art (SOTA) kernel-based methods: GL [35], WL [36], and DGK [37]. The
second set comprised four heuristic self-supervised methods: node2vec [38], sub2vec [39],
graph2vec [40], and InfoGraph [20]. GraphCL, the last technique in this group, uses the
same pre-established augmentation rules on graphs for unsupervised learning [7]. The

Entropy 2024, 26, 208 12 of 18

default augmentation ratio was 0.2 (dropping, perturbation, masking, and subgraph). In
addition to the individual use of particular data augmentation, GraphCL uses augmentation
pools for contrastive learning. Specifically, biological molecules are treated using node
dropping and subgraphs; all augmentations are applied to dense social networks; and for
sparse social networks, all except attribute masking are employed.

Under semi-supervised learning, we considered five baselines:

(1) A naive GCN without pre-training [7], which is directly trained with 10% labeled data
from random initialization.

(2) GAE [41], a predictive method based on edge-based reconstruction in the pre-training phase.
(3) Infomax [6], a node-embedding method with global–local representation consistency.
(4) ContextPred [19], a method using sub-structure information preserving.
(5) GraphCL [7], the first graph contrastive learning method with data augmentations.

5. Results
5.1. Unsupervised Learning

In the context of unsupervised learning, Table 2 summarizes the classification accuracy
of CtrlGCL and the comparative approaches. When considering the baselines, the results
show a notable boost in performance with the addition of a good view. When the last
column for average rank is taken into account, the three CtrlGCL variations have the
highest ranks. Significantly, our techniques outperform the competing approaches on all
seven benchmarks, with the exception of NCI1. In addition, in the case without kernel-
based techniques, CtrlGCL-G consistently achieves the maximum accuracy. Our findings
indicate that, in unsupervised learning scenarios, our techniques regularly beat the most
advanced approaches.

In addition to the overall superior performance of CtrlGCL, we delved deeper into
the specific performance of each variant. As indicated by the marker ∗ in Table 2, we
identified the best performances among the three variants. Among the four datasets
in social networks, CtrlGCL-T achieves the highest accuracies on COLLAB and IMDB-
BINARY, while CtrlGCL-H outperforms on the REDDIT datasets. Notably, the edge
density (average edges divided by average nodes) of COLLAB and IMDB-BINARY is
much higher than that of the REDDIT datasets, suggesting higher structural uncertainty
in COLLAB and IMDB-BINARY. Therefore, the performance of CtrlGCL-T/H on social
networks confirms the effectiveness of the proposed good view in minimizing structural
uncertainty. Additionally, for datasets with higher structural uncertainty, the proposed
good view provides high-quality graph representation, while for datasets with lower
structural uncertainty, the proposed method presents sufficient information for performance
improvement. In bioinformatics datasets, a similar phenomenon can be observed on the
PROTEINS dataset, which also has higher edge density. However, different results are
shown in DD, where the non-structural properties of this type of protein may explain the
variation. For the other two datasets with lower edge density, CtrlGCL-G, which employs
graph embedding, shows the best performance, implying lower structural uncertainty in
these two sets.

Entropy 2024, 26, 208 13 of 18

Table 2. The average classification accuracies (%), along with their standard deviations (±Std.),
obtained from five separate runs of the compared methods via unsupervised representation learning.
The bold text highlights the best overall performances among all methods. The marker ∗ indicates
the best performance among the three variations of CtrlGCL. The term A.R. stands for average rank,
which is used to assess the relative performance of each method. The results for the baselines were
obtained from previously published works.

NCI1 PROTEINS DD MUTAG COLLAB RED-B RED-M5K IMDB-B A.R.

Avg. #Nodes 29.87 39.06 284.32 17.93 74.49 429.63 508.52 19.77
Avg. #Edges 32.30 72.82 715.66 19.79 2457.78 497.75 594.87 86.53

GL - - - 81.66 ± 2.11 - 77.34 ± 0.18 41.01 ± 0.17 65.87 ± 0.98 8.3
WL 80.01 ± 0.50 72.92 ± 0.56 - 80.72 ± 3.00 - 68.82 ± 0.41 46.06 ± 0.21 72.30 ± 3.44 6.7
DGK 80.31 ± 0.46 73.30 ± 0.82 - 87.44 ± 2.72 - 78.04 ± 0.39 41.27 ± 0.18 66.96 ± 0.56 5.7

node2vec 54.89 ± 1.61 57.49 ± 3.57 - 72.63 ± 10.20 - - - - 9.3
sub2vec 52.84 ± 1.47 53.03 ± 5.55 - 61.05 ± 15.80 - 71.48 ± 0.41 36.69 ± 0.42 55.26 ± 1.54 10
graph2vec 73.22 ± 1.81 73.30 ± 2.05 - 83.15 ± 9.25 - 75.78 ± 1.03 47.86 ± 0.26 71.10 ± 0.54 7.0
InfoGraph 76.20 ± 1.06 74.44 ± 0.31 72.85 ± 1.78 89.01 ± 1.13 70.65 ± 1.13 82.50 ± 1.42 53.46 ± 1.03 73.03 ± 0.87 4.3
GraphCL 77.87 ± 0.41 74.39 ± 0.45 78.62 ± 0.40 86.80 ± 1.34 71.36 ± 1.15 89.53 ± 0.84 55.99 ± 0.28 71.14 ± 0.44 4.0

CtrlGCL-G 79.00 ± 0.72∗ 75.79 ± 0.27 78.15 ± 0.56 90.21 ± 0.66 * 70.73 ± 0.65 89.85 ± 0.56 55.27 ± 0.32 72.30 ± 0.24 2.9
CtrlGCL-T 74.92 ± 0.53 76.01 ± 0.42 * 77.34 ± 1.03 88.50 ± 1.30 74.12 ± 0.47 * 88.67 ± 0.60 52.26 ± 0.69 73.58 ± 0.44 * 3.4
CtrlGCL-H 78.86 ± 0.38 75.85 ± 0.46 78.76 ± 0.57 * 90.17 ± 0.97 71.44 ± 0.45 90.21 ± 0.65 * 56.13 ± 0.30 * 72.78 ± 0.64 2.0

5.2. Semi-Supervised Learning

Under semi-supervised learning, the accuracies of our models and the compared meth-
ods are presented in Table 3. Notably, GtrlGCL is better than these state-of-the-art (SOTA)
methods across all benchmarks. With the exception of CtrlGCL-T’s poor performance,
CtrlGCL-G and CtrlGCL-H rank as the top two methods overall. Specifically, CtrlGCL-G
achieves the highest accuracy on three out of the seven benchmarks, while CtrlGCL-H
holds this position in four out of the seven benchmarks. These results demonstrate the ef-
fectiveness of our methods under semi-supervised learning. The results from Table 3 show
that GtrlGCL-H, which incorporates both graph embedding and coding tree embedding,
achieves the highest mean rank and significant performance improvement compared to
CtrlGCL-G. This validates the effectiveness of our proposed good view in semi-supervised
learning. However, the poor performance of GtrlGCL-T is a concern. Nonetheless, the
overall results demonstrate the value of our methods in semi-supervised learning, with
CtrlGCL-G and CtrlGCL-H ranking highly.

Table 3. The comparison approaches’ average accuracies (%) and standard deviations (±Std) during
semi-supervised learning with 10% labels. The strategy that performed the best overall is highlighted
in the bold text. Average rank, or A.R., is used to evaluate the relative effectiveness of each approach.
The baseline results are from previously released publications.

NCI1 PROTEINS DD COLLAB RED-B RED-M5K GITHUB A.R.

No Pre-Train 73.72 ± 0.24 70.40 ± 1.51 73.56 ± 0.41 73.71 ± 0.27 86.63 ± 0.27 51.33 ± 0.44 60.87 ± 0.17 7.0
GAE 74.36 ± 0.24 70.51 ± 0.17 74.54 ± 0.68 75.09 ± 0.19 87.69 ± 0.40 53.58 ± 0.13 63.89 ± 0.52 5.0
Infomax 74.86 ± 0.26 72.27 ± 0.40 75.78 ± 0.34 73.76 ± 0.29 88.66 ± 0.95 53.61 ± 0.31 65.21 ± 0.88 4.0
ContextPred 73.00 ± 0.30 70.23 ± 0.63 74.66 ± 0.51 73.69 ± 0.37 84.76 ± 0.52 51.23 ± 0.84 62.35 ± 0.73 7.3
GraphCL 74.63 ± 0.25 74.17 ± 0.34 76.17 ± 1.37 74.23 ± 0.21 89.11 ± 0.19 52.55 ± 0.45 65.81 ± 0.79 3.3

CtrlGCL-G 74.72 ± 0.26 74.65 ± 0.54 76.33 ± 0.43 74.26 ± 0.27 89.40 ± 0.23 52.93 ± 0.37 65.92 ± 0.64 2.1
CtrlGCL-T 71.80 ± 0.35 73.31 ± 0.47 75.63 ± 0.58 73.36 ± 0.35 88.70 ± 0.15 52.11 ± 0.34 65.39 ± 0.58 5.6
CtrlGCL-H 75.09 ± 0.22 73.85 ± 0.53 75.82 ± 0.65 75.18 ± 0.22 89.35 ± 0.27 53.73 ± 0.28 66.01 ± 0.66 1.7

5.3. Orthogonal to Graph Augmentations

In this section, we evaluate the collaborative potential of CtrlGCL by integrating it with
four established graph augmentation techniques: AD-GCL [10], JOAO [11], AutoGCL [42],

Entropy 2024, 26, 208 14 of 18

and RGCL [8]. These approaches introduce innovative strategies for generating augmented
views, and we explore their synergy with CtrlGCL in an unsupervised learning setting.

AD-GCL [10]. We used the same configurations as before in the cooperative experi-
ment with AD-GCL, and we swapped out its anchor view with the proposed good view
from CtrlGCL. The approaches were assessed using a linear classifier after they had been
trained using the relevant self-supervised goal. We adhered to the linear assessment
methodology presented in AD-GCL [10]. Specifically, once the encoder provides represen-
tations, a Logistic (+L2) classifier is trained on top and evaluated for classification tasks.
The classifier was implemented using Scikit-learn [43] or LibLinear [44] solvers. Finally,
the lone hyper-parameter of the downstream linear model, that is, the L2 regularization
strength, is grid searched among {0.001, 0.01, 0.1, 1, 10, 100, 1000} on the validation set for
every single representation evaluation. Accuracy (%) was selected as the test parameter in
accordance with the usual procedure. Every AD-GCL experiment was ran ten times using
a different set of random seeds. For every dataset, we provided the mean and standard
deviation of the associated test measure.

The encoder utilized in the joint experiment with AD-GCL was the GIN encoder [45].
To guarantee a fair comparison, the encoder was fixed and not adjusted while performing
self-supervised learning (i.e., embedding dimension, number of layers, pooling type) for
all the approaches. This decision was made with the intention of completely attributing
any performance disparity to the self-supervised goal and excluding the encoder design.
The GIN encoder was configured with the following unique hyper-parameters: a batch
size of 32, a hidden dimension of 32, five GIN layers, summation as the graph readout
function, and a dropout set at 0.5. Adam was used for optimization, and the learning rates
in AD-GCL were adjusted to be within {0.01, 0.005, 0.001} for both the encoder and the
augmenter. Since asymmetric learning rates for the augmenter and encoder tend to render
the training non-stable, the learning rate was set to 0.001 for all datasets and experiments
were carried out to ensure stability [10]. Using the validation set, the number of training
epochs was selected as {20, 50, 80, 100, 150}.

JOAO(v2) [11]. We used the same experimental setup as the original study in our
collaboration with JOAO, but we made the following significant change: we swapped
out one of the two views with the “good view” suggested in CtrlGCL. We were able
to assess the effectiveness of our suggested view selection technique as a result. In this
experiment, GIN was also adopted as the basic graph encoder [45], while non-linear SVM
was employed for evaluation as GraphCL. To strike a compromise between the contrastive
loss and view distance, the hyper-parameter γ introduced in JOAO was adjusted within
the range {0.01, 0.1, 1}. Notably, because multiple projection heads were used, JOAOv2
was pre-trained twice as many epochs than JOAO, despite our 20 epochs of pre-training
JOAO. With this modification, we were able to evaluate the relative performance of the two
approaches and make a direct comparison.

AutoGCL [42]. We adopted the naive training strategy proposed in AutoGCL to make
a fair comparison. Specifically, we retained one of the two graph generators and assigned
our proposed anchor view to the blank position. In particular, AutoGCL extends the layer
number of the graph encoder from 3 to 5 and the hidden size from 32 to 128. Moreover,
AutoGCL was pre-trained with 30 epochs rather than 20 epochs.

RGCL [8]. In cooperation with RGCL [8], we faithfully followed the experiment
settings revealed in their codes while replacing one of the two rationale-augmented views
with SEGA. Note that, the tuned hyper-parameters in RGCL include the learning rate,
sampling ratio ρ, loss temperature τ, and loss balance λ. In particular, RGCL was pre-
trained on 40 epochs in total and evaluated every 5 epochs.

The unsupervised learning classification accuracies (%) of CtrlGCL in collaboration
with the four methods for augmentations are presented in Table 4. The last column displays
the average accuracies (%) over all datasets, and the three versions of CtrlGCL always
suppress their corresponding partner view, highlighting the efficacy of the proposed good
view in minimizing structural uncertainty. Specifically, when combined with AD-GCL-

Entropy 2024, 26, 208 15 of 18

FIX, CtrlGCL-T achieved the highest accuracies on three out of the nine datasets, while
CtrlGCL-H outperformed on the remaining six benchmarks. Despite a few setbacks in
the collaboration with JOAO, the overall superior performance underscores the success
of CtrlGCL in these extensive experiments. Furthermore, when paired with AutoGCL,
CtrlGCL-T attained the highest accuracies on two out of the eight datasets, while CtrlGCL-
H excelled on five out of the eight benchmarks. In the case of RGCL, the collaboration
yielded the highest results on all eight datasets. To elaborate, CtrlGCL-G outperformed
on the MUTAG dataset, CtrlGCL-T excelled on the RED-B and IMDB-B datasets, and
CtrlGCL-H achieved the best results on the remaining five datasets.

Table 4. The average accuracy (%) ± standard deviation (over five times) of various methods used in
unsupervised learning. Boldface type highlights the best performances for each individual dataset.
A.A. signifies the average accuracy across all datasets. The results of AD-GCL-FIX, JOAO(v2),
AutoGCL, and RGCL were obtained from their respective papers.

View1 View2 NCI1 PROTEINS DD MUTAG COLLAB RED-B RED-M5K IMDB-B IMDB-M A.A.

AD-GCL-FIX 69.57 ± 0.51 73.59 ± 0.65 74.49 ± 0.52 89.25 ± 1.45 73.71 ± 0.27 85.52 ± 0.79 53.00 ± 0.82 71.57 ± 1.01 49.04 ± 0.53 71.05

CtrlGCL-G
AD-GCL-Fix

69.93 ± 0.73 73.76 ± 0.57 74.62 ± 0.43 89.63 ± 1.54 73.77 ± 0.56 85.75 ± 0.67 53.88 ± 0.63 71.76 ± 0.57 49.44 ± 0.98 71.39
CtrlGCL-T 69.78 ± 0.32 74.61 ± 0.81 75.55 ± 0.51 88.20 ± 1.20 73.97 ± 0.55 86.73 ± 0.55 53.52 ± 0.31 72.32 ± 0.49 50.83 ± 0.34 71.72
CtrlGCL-H 70.38 ± 0.76 74.57 ± 0.50 75.84 ± 0.64 89.89 ± 0.69 75.03 ± 0.36 87.74 ± 0.39 54.29 ± 0.54 72.28 ± 1.40 50.03 ± 0.81 72.23

JOAO 78.07 ± 0.47 74.55 ± 0.41 77.32 ± 0.54 87.35 ± 1.02 69.50 ± 0.36 85.29 ± 1.35 55.74 ± 0.63 70.21 ± 3.08 74.75

CtrlGCL-G
JOAO

75.99 ± 0.59 74.95 ± 0.42 77.70 ± 0.85 87.12 ± 2.46 69.58 ± 0.27 86.57 ± 1.22 54.69 ± 0.73 71.46 ± 0.17 74.88
CtrlGCL-T 73.32 ± 0.37 75.44 ± 0.54 76.29 ± 0.55 85.13 ± 1.79 72.82 ± 0.35 86.09 ± 0.94 54.63 ± 0.64 71.74 ± 1.26 74.43
CtrlGCL-H 76.19 ± 0.77 75.18 ± 0.63 78.27 ± 1.32 87.70 ± 1.31 71.80 ± 0.33 86.79 ± 1.31 56.17 ± 0.67 71.66 ± 0.42 75.47

JOAOv2 78.36 ± 0.53 74.07 ± 1.10 77.40 ± 1.15 87.67 ± 0.79 69.33 ± 0.34 86.42 ± 1.45 56.03 ± 0.27 70.83 ± 0.25 75.01

CtrlGCL-G
JOAOv2

77.81 ± 0.73 75.22 ± 0.94 77.84 ± 0.84 87.82 ± 2.17 69.34 ± 0.31 87.97 ± 0.80 56.11 ± 0.33 71.68 ± 0.74 75.47
CtrlGCL-T 77.37 ± 0.31 75.94 ± 0.88 77.67 ± 0.48 86.77 ± 1.08 72.76 ± 0.27 87.32 ± 0.60 55.49 ± 0.32 72.52 ± 0.79 75.73
CtrlGCL-H 78.04 ± 0.19 75.25 ± 0.41 78.37 ± 1.26 88.53 ± 2.45 70.18 ± 0.34 87.98 ± 0.29 56.15 ± 0.29 72.50 ± 0.94 75.87

AutoGCL 82.00 ± 0.29 75.80 ± 0.36 77.57 ± 0.60 88.64 ± 1.08 70.12 ± 0.68 88.58 ± 1.49 56.75 ± 0.18 73.30 ± 0.40 76.60

CtrlGCL-G
AutoGCL

81.77 ± 0.32 75.63 ± 0.77 77.94 ± 0.85 88.84 ± 1.34 71.98 ± 0.83 88.75 ± 1.03 56.93 ± 0.28 73.87 ± 0.68 76.93
CtrlGCL-T 81.04 ± 0.41 76.43 ± 0.67 78.29 ± 0.59 88.63 ± 1.29 72.49 ± 0.47 89.59 ± 1.48 57.27 ± 0.75 73.95 ± 0.87 77.21
CtrlGCL-H 81.84 ± 0.53 76.38 ± 0.54 78.31 ± 1.37 89.03 ± 1.01 72.68 ± 0.23 89.88 ± 1.21 57.43 ± 0.37 73.94 ± 0.99 77.44

RGCL 78.14 ± 1.08 75.03 ± 0.43 78.86 ± 0.48 87.66 ± 1.01 70.92 ± 0.65 90.34 ± 0.58 56.38 ± 0.40 71.85 ± 0.84 76.15

CtrlGCL-G
RGCL

79.28 ± 0.94 75.28 ± 0.72 79.45 ± 0.63 88.87 ± 1.46 72.73 ± 0.55 90.47 ± 0.77 56.58 ± 0.41 72.19 ± 0.67 76.86
CtrlGCL-T 78.95 ± 1.53 75.87 ± 0.45 79.12 ± 0.88 87.50 ± 1.75 73.11 ± 0.24 90.90 ± 0.62 56.82 ± 0.29 72.75 ± 0.66 76.88
CtrlGCL-H 79.42 ± 0.82 76.21 ± 0.46 79.54 ± 1.14 88.79 ± 1.87 73.14 ± 0.37 90.75 ± 0.84 57.28 ± 0.42 72.61 ± 0.94 77.22

5.4. Memory Efficiency

To evaluate the scalability of the proposed approach, we conducted an in-depth
analysis of the GPU memory efficiency of CtrlGCL on Erdos–Renyi graphs [46]. In line
with the methodology employed in prior research [47], we generated Erdos–Renyi graphs
by modulating the number of nodes n while maintaining the edge size m at twice the
number of nodes m = 2n. As depicted in Figure 2, our CtrlGCL demonstrates high memory
efficiency, attributable to the computational efficiency of the tree encoder. This characteristic
renders it particularly practical for large-scale graph applications. Notably, a comparison of
memory usage across different tree heights with the same graph size reveals that the GPU
memory consumption remains relatively constant, further underscoring the scalability of
our proposed approach.

Entropy 2024, 26, 208 16 of 18

100 1000 5000 10000 15000 20000 25000 30000 40000
Nodes

0

2000

4000

6000

8000

G

P
U

 M
em

or
y

(M
ib

)

Tree Height
2
3
4
5

Figure 2. GPU memory efficiency of CtrlGCL with varying input graph sizes.

6. Conclusions

In this study, our focus is on exploring a good view for graph contrastive learning.
Upon leveraging insights from the structural information and graph information bottleneck
theory, we proposed the definition that a good view should possess minimal structural
uncertainty for a graph. Taking this concept further, we introduced CtrlGCL, a practical
implementation for graph contrastive learning through coding tree representations. Our ap-
proach utilized an optimization algorithm driven by structural entropy to approximate the
minimization of structural uncertainty, resulting in coding trees that encapsulate essential
graph information. The encoder, designed with the convolution mechanism of GNNs, was
tailored for learning representations from coding trees. The effectiveness of our proposed
approach was extensively validated across various benchmarks in both unsupervised and
semi-supervised learning. This validation was reflected in the average ranking and av-
erage accuracy, demonstrating superior performance compared to other state-of-the-art
methods. Specifically, our approach, implemented via GtrlGCL-H, yielded an average
accuracy enhancement of 1.06% in the context of unsupervised learning when compared to
GraphCL. In the semi-supervised learning scenario, CtrlGCL-G outperformed GraphCL,
with an increase of 0.22%. Notably, in orthogonal experiments, almost all versions of
CtrlGCL-H surpassed the corresponding baselines by more than 1% for average accuracy
under unsupervised learning.

Despite the superiority of the proposed “good view” for graph contrastive learning
based on structural entropy, the current definition of structural entropy only considers
the structural information. This limitation may affect tasks such as node classification
and link prediction that heavily rely on node features, potentially limiting the benefits of
the proposed good view. Our future research direction entails enhancing our methods
through the refinement of the structural entropy theory or by exploring the amalgamation
of multiple entropy measures. The emphasis on minimizing uncertainty in node features
suggests promising avenues for future research, exploration, and improvement. We look
forward to continuing our work in this exciting field.

Author Contributions: Methodology, X.C.; Writing—original draft, S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by NSFC (Grant No. 61932002).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Entropy 2024, 26, 208 17 of 18

References
1. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 9729–9738.
2. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In

Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1597–1607.
3. Rezaeifar, S.; Voloshynovskiy, S.; Asgari Jirhandeh, M.; Kinakh, V. Privacy-Preserving Image Template Sharing Using Contrastive

Learning. Entropy 2022, 24, 643. [CrossRef]
4. Gao, T.; Yao, X.; Chen, D. Simcse: Simple contrastive learning of sentence embeddings. arXiv 2021, arXiv:2104.08821.
5. Albelwi, S. Survey on self-supervised learning: Auxiliary pretext tasks and contrastive learning methods in imaging. Entropy

2022, 24, 551. [CrossRef] [PubMed]
6. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. ICLR 2019, 2, 4.
7. You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph contrastive learning with augmentations. Adv. Neural Inf. Process.

Syst. 2020, 33, 5812–5823.
8. Li, S.; Wang, X.; Zhang, A.; Wu, Y.; He, X.; Chua, T.S. Let Invariant Rationale Discovery Inspire Graph Contrastive Learning. In

Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 13052–13065.
9. Tian, Y.; Sun, C.; Poole, B.; Krishnan, D.; Schmid, C.; Isola, P. What makes for good views for contrastive learning? Adv. Neural

Inf. Process. Syst. 2020, 33, 6827–6839.
10. Suresh, S.; Li, P.; Hao, C.; Neville, J. Adversarial graph augmentation to improve graph contrastive learning. Adv. Neural Inf.

Process. Syst. 2021, 34, 15920–15933.
11. You, Y.; Chen, T.; Shen, Y.; Wang, Z. Graph contrastive learning automated. In Proceedings of the International Conference on

Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 12121–12132.
12. Feng, S.; Jing, B.; Zhu, Y.; Tong, H. Adversarial graph contrastive learning with information regularization. In Proceedings of the

the ACM Web Conference 2022, Virtual, 25–29 April 2022; pp. 1362–1371.
13. Wu, T.; Ren, H.; Li, P.; Leskovec, J. Graph information bottleneck. Adv. Neural Inf. Process. Syst. 2020, 33, 20437–20448.
14. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
15. Brooks, F.P., Jr. Three great challenges for half-century-old computer science. J. ACM 2003, 50, 25–26. [CrossRef]
16. Li, A.; Pan, Y. Structural information and dynamical complexity of networks. IEEE Trans. Inf. Theory 2016, 62, 3290–3339.

[CrossRef]
17. You, Y.; Chen, T.; Wang, Z.; Shen, Y. Bringing your own view: Graph contrastive learning without prefabricated data augmenta-

tions. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Lyon, France, 25–29 April
2022; pp. 1300–1309.

18. Guo, Q.; Liao, Y.; Li, Z.; Liang, S. Multi-Modal Representation via Contrastive Learning with Attention Bottleneck Fusion and
Attentive Statistics Features. Entropy 2023, 25, 1421. [CrossRef]

19. Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies For Pre-training Graph Neural Networks. In
Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 30 April 2020.

20. Sun, F.Y.; Hoffman, J.; Verma, V.; Tang, J. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning
via Mutual Information Maximization. In Proceedings of the International Conference on Learning Representations, Addis
Ababa, Ethiopia, 30 April 2020.

21. Li, W.; Zhu, E.; Wang, S.; Guo, X. Graph Clustering with High-Order Contrastive Learning. Entropy 2023, 25, 1432. [CrossRef]
[PubMed]

22. Wei, C.; Liang, J.; Liu, D.; Wang, F. Contrastive Graph Structure Learning via Information Bottleneck for Recommendation. Adv.
Neural Inf. Process. Syst. 2022, 35, 20407–20420.

23. Cai, X.; Huang, C.; Xia, L.; Ren, X. LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation. In
Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023.

24. Mowshowitz, A.; Dehmer, M. Entropy and the complexity of graphs revisited. Entropy 2012, 14, 559–570. [CrossRef]
25. Raychaudhury, C.; Ray, S.; Ghosh, J.; Roy, A.; Basak, S. Discrimination of isomeric structures using information theoretic

topological indices. J. Comput. Chem. 1984, 5, 581–588. [CrossRef]
26. Bianconi, G. Entropy of network ensembles. Phys. Rev. E 2009, 79, 036114. [CrossRef] [PubMed]
27. Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008,

201, 82–94. [CrossRef]
28. Braunstein, S.L.; Ghosh, S.; Severini, S. The Laplacian of a graph as a density matrix: A basic combinatorial approach to

separability of mixed states. Ann. Comb. 2006, 10, 291–317. [CrossRef]
29. Li, A.L.; Yin, X.; Xu, B.; Wang, D.; Han, J.; Wei, Y.; Deng, Y.; Xiong, Y.; Zhang, Z. Decoding topologically associating domains with

ultra-low resolution Hi-C data by graph structural entropy. Nat. Commun. 2018, 9, 3265. [CrossRef]
30. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of

the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1263–1272.
31. Ma, Y.; Tang, J. Deep Learning on Graphs; Cambridge University Press: Cambridge, UK, 2021.
32. Shannon, C. The lattice theory of information. Trans. IRE Prof. Group Inf. Theory 1953, 1, 105–107. [CrossRef]

http://doi.org/10.3390/e24050643
http://dx.doi.org/10.3390/e24040551
http://www.ncbi.nlm.nih.gov/pubmed/35455214
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1145/602382.602397
http://dx.doi.org/10.1109/TIT.2016.2555904
http://dx.doi.org/10.3390/e25101421
http://dx.doi.org/10.3390/e25101432
http://www.ncbi.nlm.nih.gov/pubmed/37895553
http://dx.doi.org/10.3390/e14030559
http://dx.doi.org/10.1002/jcc.540050612
http://dx.doi.org/10.1103/PhysRevE.79.036114
http://www.ncbi.nlm.nih.gov/pubmed/19392025
http://dx.doi.org/10.1016/j.amc.2007.12.010
http://dx.doi.org/10.1007/s00026-006-0289-3
http://dx.doi.org/10.1038/s41467-018-05691-7
http://dx.doi.org/10.1109/TIT.1953.1188572

Entropy 2024, 26, 208 18 of 18

33. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

34. Morris, C.; Kriege, N.M.; Bause, F.; Kersting, K.; Mutzel, P.; Neumann, M. TUDataset: A collection of benchmark datasets for
learning with graphs. arXiv 2020, arXiv:2007.08663.

35. Shervashidze, N.; Vishwanathan, S.; Petri, T.; Mehlhorn, K.; Borgwardt, K. Efficient graphlet kernels for large graph comparison.
In Proceedings of the Artificial Intelligence and Statistics, PMLR, Clearwater Beach, FL, USA, 16–18 April 2009; pp. 488–495.

36. Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E.J.; Mehlhorn, K.; Borgwardt, K.M. Weisfeiler-lehman graph kernels. J. Mach.
Learn. Res. 2011, 12, 2539–2561.

37. Yanardag, P.; Vishwanathan, S. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 1365–1374.

38. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

39. Adhikari, B.; Zhang, Y.; Ramakrishnan, N.; Prakash, B.A. Sub2vec: Feature learning for subgraphs. In Proceedings of the
Pacific-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, VIC, Australia, 3–6 June 2018; pp. 170–182.

40. Annamalai, N.; Mahinthan, C.; Rajasekar, V.; Lihui, C.; Yang, L.; Jaiswal, S. graph2vec: Learning Distributed Representations of
Graphs. In Proceedings of the 13th International Workshop on Mining and Learning with Graphs (MLG), Halifax, NS, Canada,
14 August 2017.

41. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308v1.
42. Yin, Y.; Wang, Q.; Huang, S.; Xiong, H.; Zhang, X. AutoGCL: Automated graph contrastive learning via learnable view generators.

Proc. AAAI Conf. Artif. Intell. 2022, 36, 8892–8900. [CrossRef]
43. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
44. Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res.

2008, 9, 1871–1874.
45. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the ICLR, New Orleans,

LA, USA, 6–9 May 2019.
46. Erdős, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 1960, 5, 17–60.
47. Baek, J.; Kang, M.; Hwang, S.J. Accurate Learning of Graph Representations with Graph Multiset Pooling. In Proceedings of the

International Conference on Learning Representations, Vienna, Austria, 4 May 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1609/aaai.v36i8.20871

	Introduction
	Related Work
	Graph Contrastive Learning
	Structural Entropy

	Materials and Methods
	Preliminaries
	Graph Representation Learning
	The Mutual Information Maximization
	Methodology

	The Essential Structure with Minimal Structural Uncertainty

	Experiment Setup
	Datasets
	Configuration
	Learning Protocols
	The Compared Methods

	Results
	Unsupervised Learning
	Semi-Supervised Learning
	Orthogonal to Graph Augmentations
	Memory Efficiency

	Conclusions
	References

