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Abstract: Building an underwater quantum network is necessary for various applications such as
ocean exploration, environmental monitoring, and national defense. Motivated by characteristics of
the oceanic turbulence channel, we suggest a machine learning approach to predicting the channel
characteristics of continuous variable (CV) quantum key distribution (QKD) in challenging seawater
environments. We consider the passive continuous variable (CV) measurement-device-independent
(MDI) QKD in oceanic scenarios, since the passive-state preparation scheme offers simpler linear
elements for preparation, resulting in reduced interaction with the practical environment. To provide
a practical reference for underwater quantum communications, we suggest a prediction of transmit-
tance for the ocean quantum links with a given neural network as an example of machine learning
algorithms. The results have a good consistency with the real data within the allowable error range;
this makes the passive CVQKD more promising for commercialization and implementation.

Keywords: continuous variable quantum key distribution; measurement-device-independent; oceanic
turbulence model; neural network

1. Introduction

Quantum key distribution is a kind of encrypted means of communication [1,2], which
uses the principle of quantum mechanics to enable legitimate parties to exchange secret keys
securely. Continuous variable quantum key distribution (CVQKD) has been developed
over decades due to its efficient source preparations and compatibility with current devices.
Recently, a kind of meliorative protocol called the continuous variable measurement-
device-independent (CV-MDI) protocol [3,4] has been proposed, in which a third party
Charlie performs Bell state measurement on the quantum states prepared by Alice and Bob,
and then broadcasts the result to Alice and Bob to generate the secret key. This detection
strategy could counter an attack on practical devices because the measurement is performed
by an untrusted third party rather than on Alice or Bob’s side. However, for the classical
CVQKD protocol, the quantum states are prepared actively, which requires high precision
modulators to reduce modulation error and achieve a complex modulation format, making
it expensive for practical implementations.

Currently, a kind of quantum key distribution has been suggested with passive state
preparations [5]. Compared with active state preparations, which require high extinction
ratio modulators, passive states can be derived from a thermal source for the passive
CVQKD. If the initial thermal state generated by the source is strong enough, this scheme
can tolerate high detector noise on Alice’s side. Additionally, the output of the source does
not need to be single-mode, as an optical homodyne detector can selectively measure a
single mode determined by the local oscillator. Since then, passive state preparation has
attracted much attention [6–9]. In 2018, passive states were applied to one-way classical
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quantum communication [10], and this has been experimentally demonstrated [11,12].
There have been many results of passive state preparations in recent years, such as security
analysis [13] and applications [14]. In 2019, passive states were used for the CV-MDI QKD
protocol [15].

Over time, the CV-MDI system has expanded from the free space channel to the ocean
quantum links [16–18]. However, in the implementation of the ocean quantum links, many
factors, such as seawater salinity, oceanic turbulence, and chlorophyll concentration, have
an affect on the propagation of light beams [19]. To solve these difficulties, we propose a
machine learning-based prediction of ocean transmittance to provide data reference for
engineering applications in practice. In recent years, in the field of QKD, machine learning
has been paid more and more attention. In 2020, Z. A. Ren et al. employed machine
learning methods to select an optimal QKD protocol [20]; in the same year, a random forests
algorithm was used to directly predict the optimal parameters of the QKD system [21]. Two
years later, Zhou et al. used neural networks to construct a secure key rate prediction model
for discrete modulation continuous variable systems [22]. In 2023, Ahmadian. M et al.
used machine learning to improve the polarization tracking compensation scheme of a
QKD system [23]. The organization of this paper is as follows. In Section 2, CV-MDI QKD
with passive state preparation is suggested. In Section 3, we analyze the characteristics of
the oceanic channel and propose a machine learning-assisted model based on an oceanic
turbulence model for transmittance prediction. In Section 4, the secret key rate in the
oceanic scenario is derived. Section 5 shows the simulation results, and then Section 6
draws the conclusions.

2. CV-MDI QKD with Passive State Preparation

The Gaussian-modulated coherent states (GMCS) QKD protocol is implemented based
on the prepare-and-measure scheme. And from Eve and Bob’s points of view, the state
from Alice is a single-mode thermal state with an average photon number of a half of
modulation variance. In fact, the security of the GMCS QKD is commonly proved based on
an equivalent entanglement-based protocol [24], where Alice performs conjugate homodyne
detection on one mode of a two-mode squeezed vacuum state and sends the other mode to
Bob. In this picture, the state from Alice is indeed thermal.

Here, we prepare the passive state by using a thermal source. There is a relationship
between the value of the number of photons output at the Alice terminal and the modulation
variance V in the GMCS QKD protocol, and the protocol with passive states requires a
Gaussian modulator with a modulation variance of V. The preparation of passive states is
implemented by taking advantage of a thermal source, beam splitters, optical attenuators,
and homodyne detectors rather than the amplitude and phase modulators. The CV-MDI
QKD protocol with passive state preparation is depicted in Figure 1, and its implementation
can be described as follows.

Step 1: Alice and Bob each prepare a thermal sources. They use a 50:50 beam splitter
to split the optical signal into two correlated spatial modes (the average number of photons
output by each source is n0), denoted by (ModA1, ModA2) (for Alice’s side) and (ModB1,
ModB2) (for Bob’s side), respectively. Next, Alice (Bob) attenuates the average photon
number of ModA1 (ModB1) down to a half of the variance of VA (VB) by using an optical
attenuator. The modulated signals are then transmitted to a third party, Charlie.

Step 2: Alice (Bob) performs heterodyne detection on both the X and P quadratures of
mode ModA2 (ModB2). They broadcast the measurement results to Charlie. The quadra-
tures of ModA1 (ModB1) at Charlie’s side have the relation with ModA2 (ModB2) as follows

(XA1 =
√

2ηA
ηD

XA2, PA1 =
√

2ηA
ηD

PA2) and (XB1 =
√

2ηB
ηD

XB2, PB1 =
√

2ηB
ηD

PB2). Here, ηA and
ηB represent the transmittance of the attenuator, while ηD represents the efficiency of the
practical homodyne detector.



Entropy 2024, 26, 207 3 of 13

(a)

XA2

PA2

Alice BobCharlie

XCPC

Quantum Key 
Distribution

Parameter Estimation

(d)(c)(b) BS
VOA

XB2

PB2

Quantum Key 
Distribution

Quadrature Displaceyment

Trusted Channel

Information Reconciliation Information Reconciliation

Parameter Estimation

Privacy Amplification Privacy Amplification

Mapping ,Syndromes

Hash
Undecoded Frames

Machine Learning

Send , Key Length

TELE

Figure 1. (a) Schematic diagram of the application of the underwater CV-MDI protocol. (b) Alice’s
side. (c) Charlie’s side. (d) Bob’s side. In the data processing stage, the machine learning module is
used to predict transmittance. The specific explanation of this algorithm can be found in part 3. VOA,
variable optical attenuator; TS, thermal source; the red dashed line denotes conjugate homodyne
detection. TELE, telescope.

Step 3: Charlie mixes the received ModA1 and ModB1 on a balanced beam splitter and
conducts Bell state measurement on them. The results are detected by conjugate homodyne
detection at the output ports. After that, Charlie broadcasts the quadratures (XC,PC) over a
classical public channel to Alice and Bob.

Step 4: After repeating these steps several times, Alice and Bob obtain a string of raw
keys. Next, they apply post-processing operations such as privacy amplification and error
correction to filter the data of (XA1, PA1), (XB1, PB1), and (XC, PC). Then, Alice and Bob get
the final secret keys. The process is similar to the traditional CV-MDI QKD protocol with
active state preparation, where communication parties can obtain final secret keys if the
detected total noise falls below a certain threshold value. Compared with the Gaussian
state, the passive state does not require the participation of a high-precision Gaussian
modulator, which reduces the complexity and cost of the system.

3. Transmittance Prediction with Machine Learning

In this section, we first analyze the effect of the oceanic turbulence channel on light
propagation, then we suggest a machine learning-based prediction model that can be used
as a reference for practical underwater quantum communication systems.

3.1. Optical Propagation Characteristics of the Oceanic Turbulence Channel

Based on the seawater chlorophyll model and the elliptical model, which have been
described in [25]—with the exception of the seawater extinction coefficient T—the Monte
Carlo method used in the elliptic beam model for the oceanic turbulence channel has
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general applicability to any other ocean. The seawater extinction coefficient is the sum
of the ocean absorption factor tabs and scattering factor tsca, which have an effect on the
absorption and scattering of light in the ocean. tabs and tsca are functions of the ocean depth
d and wavelength λ, the specific function varies depending on the type of ocean, and we
have analyzed the optical propagation characteristics in ocean type S1. Mathematically, tabs
and tsca has the form:

tabs = l0
c [uc(d)]

0.602 + lw + l0
f u f (d)e

−k f λ + l0
huh(d)e−khλ,

tsca = m0
s us(d) + m0

l ul(d) + mw,
(1)

where lw represents the absorption due to pure water in relation to wavelength λ, and lw,
corresponding to different wavelengths, is given by [26]. l0

h denotes the absorption coef-
ficient of chlorophyll α in relation to λ, and l0

h corresponding to different wavelengths is
given by [27]. The details of Equation (1) are given in Appendix A. By fitting the function,
we get the functional relationship between lw, l0

h, and λ, respectively. It should be noted that
this function does not contain quantum noise; parameters like the absorption coefficient of
chlorophyll α, the loss of light propagation in pure water, etc. are all related physical factors
that affect light propagation, and they quantified the effect of seawater on the propagation
of light.

The relationship between wavelengths, depth, absorption factor, and scattering factor
are given in Figure 2a,b.
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Figure 2. Variation of absorption and scattering factors with wavelength and depth. (a) Absorption
factor. (b) Scattering factor.

The characteristics of S1 can be clearly seen in Figure 2. The absorption and scattering
factors of the S1 ocean increase significantly at 100–150 m due to high chlorophyll concen-
tration and plankton enrichment at this depth, which leads to a sharp decrease in the secret
key rate near this depth, as detailed in Section 5.

3.2. Transmittance Prediction of Seawater Channel

In practice, the estimation of transmittance and excess noise requires the two legitimate
parties to sacrifice part of the raw keys for the parameter estimation procedure; the more
the raw keys are consumed, the more accurate the estimation of the transmittance and
the excess noise is. However, sacrificing too many raw keys will affect the efficiency
of communication. Meanwhile, the estimation for the transmittance in the parameter
estimation is intended to estimate its lower bound as much as possible to ensure the
absolute security of communication. In this scheme, we do not discard the parameter
estimation step. Instead of the transmittance obtained from the parameter estimation step,
we use the transmittance predicted by machine learning to participate in the estimation
of the secret key rate; the former is more accurately close to the true value than the lower
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bound of the transmittance (Tlow) and thus we can obtain a higher secret key rate without
sacrificing more raw keys.

This approach allows the CVQKD system to maintain stable performance in various
environmental conditions, thereby improving the system’s reliability. The structure of the
Elman neural network is illustrated in Figure 3, and the prediction procedure is outlined in
Figure 4.

Input Layer

...
X(k)

Input nodes

h(·) aih(·)h(·)

Context nodes

...
Z-1 WL1 WL2

g(·) aj Hidden Layer

...

Z-1

...

...
WL4

WL5

WL3

Y(k)
... ak Output Layer

Z-1

g(·) g(·)

f(·) f(·)

Figure 3. Structure of the Elman neural network. X(k), Y(k), input and output vectors; WLi (where
i = 1, 2,..., 5), connection weights; h(·), g(·), f (·), the nodal activation functions; ai, aj, ak, the thresholds;
Z−1, the unity delay.

Parameter Coding

Crossover

Calculate the fitness value

Yes

Genetic Algorithm

 Network Performance 
Evaluation

Mutation

Calculating population fitness

Selection

No

Selecting Network Topology

Error Feedback

Weight Updating

Yes

End Condition?

Initial weights

Obtaining Optimal Weights

The End

No

Elman Neural Network

Figure 4. Flowchart of GA-Elman algorithm.

The Elman neural network is a type of recurrent neural network (RNN) that is used
for time series prediction and sequence modeling [28]. It has a feedback loop that allows
information from previous time steps to be fed back into the network, enabling it to capture
temporal dependencies in the input sequence.

We present below an overview of its structure and training process. An Elman network
typically consists of three main layers: an input layer, which receives external inputs and
feeds them into the next layer; a hidden layer, which is a set of neurons that perform
computations based on both current input and a context vector received from the previous
time step. Each neuron has self-recurrent connections along with feedforward connections
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from the input layer; an output layer, which processes the outputs of the hidden layer
neurons to generate the final output; context units—a distinctive characteristic of the Elman
network is the context layer or ’memory’ units, which are a copy of the hidden layer
activations at one time step, which are then fed back into the hidden layer during the next
time step. This feedback loop enables the network to maintain some form of short-term
memory that can influence its future predictions.

There are basic steps for training an Elman network. Initialization: Assign random
initial weights and biases to all connections between layers; Forward Propagation: For
each sequence step, input the current time step data into the input layer. The hidden layer
computes its activations based on the current input and the previously stored context.
The output layer generates its prediction using the hidden layer activations; Backpropaga-
tion through time (BPTT): After making predictions for an entire sequence, calculate the loss
function comparing predicted outputs to target values across the sequence. BPTT extends
standard backpropagation by unrolling the network over time and computing gradients
through the unfolded network; Calculate the error gradient for each time step and update
the weight matrices and bias vectors accordingly; Parameter Update: Using an optimization
algorithm like stochastic gradient descent (SGD) or variants such as Adam, update the
network parameters according to the computed gradients, aiming to minimize the total
sequence loss; Iterative Training: Repeat this process over many iterations (epochs) until
the performance on a validation set stabilizes or starts to degrade, indicating convergence
or potential overfitting; Regularization: If necessary, apply regularization techniques to
control model complexity and prevent overfitting. During the training process, it is crucial
to monitor the learning curves, adjusting hyperparameters such as learning rate, batch
size, and the number of hidden units if needed, to ensure efficient and accurate learning of
temporal patterns in the data.

The GA-Elman algorithm [29] is a hybrid approach that combines the Elman recurrent
neural network with an adaptive genetic algorithm to optimize the network’s parameters
for time series prediction. The main idea is to use the genetic algorithm to search for
the optimal combination of weights and biases in the Elman network to minimize the
prediction error. The algorithm starts by initializing the Elman network with random
weights and biases. The training data are then fed into the network, and the output is
computed. The genetic algorithm is used to optimize the weights and biases based on
the prediction error. The genetic algorithm creates a population of candidate solutions,
which are evaluated based on their fitness, i.e., how well they minimize the prediction error.
The fittest solutions are selected for reproduction, and their offspring inherit their genetic
traits through crossover and mutation. The Elman network is trained using the optimized
weights and biases, and the process is repeated until the prediction error converges or the
maximum number of iterations is reached. The trained network is then used to predict
future values of the time series. The GA-Elman algorithm has several advantages over other
time series prediction methods. It can handle nonlinear and non-stationary time series,
and it can adapt to changing environments. The genetic algorithm allows for a global search
of the parameter space, which can lead to better solutions than gradient-based methods.

The relationship between tabs, tsca and transmittance T is T = e−(tabs+tsca)z [30], z is the
transmission distance. Combined with Equation (1), we can find that the transmittance is a
binary function whose independent variables are depth and transmission distance, so the
inputs to the machine learning model are the depth and transmission distance.

The transmittance prediction of the Elman and GA-Elman algorithms on transmission
can be seen in Figure 5. To provide a quantitative analysis of the performance improvements
made to the Elman algorithm, we present the prediction errors of GA-Elman and Elman
for 1200 sets of test samples, as shown in Figure 6. Prediction error refers to the difference
between the value of the transmittance output of the predicted model and the real value
when we input the depth and distance.
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Figure 5. Predictions for transmittance. (a) Performance of Elman algorithm. (b) Performance of
GA-Elman algorithm.
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Figure 6. Prediction error of Elman and GA-Elman algorithm. The average absolute percentage error
between Elman and GA-Elman are 2.814% and 0.506%, respectively.

The numerical analysis demonstrates that this model is capable of predicting the
fluctuation of transmittance within an acceptable error range, which has a strong correlation
with the actual transmission values. The prediction results can be used to assist actual
derivation and calculation under certain circumstances.

The elliptic model provides the probability density function (PDF) of the transmittance,
and an estimate of the transmittance is obtained by solving the inverse function of the
cumulative distribution function, but the value of the actual measured transmittance
can be any arbitrary value within the range of the PDF, and is not exactly equivalent to
the former. According to [25], the variance of the transmittance is estimated to be on
the order of 10−5, with a transmittance of at least 0.4 or higher at effective underwater
communication distances. Therefore, when the model predicts the transmittance based
on actual measurements, the error in the model’s prediction is within acceptable limits,
even if the actual value of the transmittance at the predicted location is the value of the
transmittance corresponding to a very small probability in the PDF.

The protocol performance under the transmittance prediction model based on machine
learning is shown in Figure 7.
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Figure 7. Performance improvement diagram of QKD system assisted by machine learning model.

The black dashed line represents the secret key rate curve after the transmittance
predicted by machine learning is applied to the parameter estimation, and the green dashed
line represents the secret key rate curve when the parameter estimation takes the lower
bound of the transmittance without the application of the machine learning model.

4. Security Analysis

According to the above-mentioned processing, we obtain the transmittance in seawater
channels, and hence we can establish the correlation among average transmittance, ocean
depth, and transmission distance. Moreover, the passive state for the CV-MDI QKD protocol
usually leads to excess noise, which provides an opportunity for eavesdropping through
joint attacks. From [3], we assume that Eve adopts the most general joint attack against
the protocol, which involves using the joint two-mode attack strategy that targets both
links simultaneously. This approach is considered more effective than a single-mode attack
strategy, which involves an additional layer of complexity to the security analysis.

4.1. Secret Key Rate in Asymptotic Scenarios

To begin with, we assume that the preparation sides have the same variance, thus
the covariance matrix (CM) can be written as VA1B1|C1

= VA1⊕B1 − ZC−1ZT , where VA1⊕B1
represents the reduced covariance matrix (CM) of Alice and Bob’s modes, while C denotes
the outcome CM of Charlie, and Z represents the complex correlations between these CMs.
Regarding the eavesdropping strategy, assuming a Gaussian distribution, Eve has the
potential to intercept the traveling modes A1 and B1, which are mixed with two quantum-
correlated ancillary modes. The reduced state VE1E2 can be written in the normal form:

VE1E2 =

(
ϖ1I2 G

G ϖ2I2

)
; (2)

ϖ1 and ϖ2 are the variance of the thermal excess noise disturbing the corresponding link,
with I2 = diag(1, 1), with G = diag(g,−g), where

g = min
[√

(ϖ1 − 1)(ϖ2 + 1),
√
(ϖ1 + 1)(ϖ2 − 1)

]
(3)

is set to minimize the secret key rate. From [3,31], the simplified covariance matrix between
Alice and Bob can be calculated as:

VA1B1|C =


(

V − TA(V2−1)
ϑ

)
I2

√
TATB(V2−1)

ϑ σZ
√

TATB(V2−1)
ϑ σZ

(
V − TB(V2−1)

ϑ

)
I2

, (4)
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with σZ = diag(1,−1), V = VA + 1 = VB + 1, and

ϑ = V(TA + TB) + ϖ1(1 − TA) + ϖ2(1 − TB)− 2g
√
(1 − TA)(1 − TB). (5)

Let XE denote the information that Eve can get by using the two-mode attack, and it is
given by

XE = S
(

ρA1B1|C

)
− S

(
ρB1|Cα

)
, (6)

where S
(

ρA1B1|C

)
and S

(
ρB1|Cα

)
can be calculated as:

S
(

ρA1B1|C

)
= H(λ1) + H(λ2),

S
(

ρB1|Cα

)
= H

[√
det
(

VA1B1|C

)]
,

(7)

with H(x) = 1+x
2 log2

(
1+x

2

)
− x−1

2 log2

(
x−1

2

)
. Here, λ1 and λ2 are the symplectic eigen-

values of VA1B1|C. The mutual information between Alice and Bob is given by:

IAB = log2
V

Xtotal
, (8)

where Xtotal can be divided into Xtotal = Xloss + εE. The pure loss in channel from senders
to Charlie is defined as Xloss, which has the form Xloss = 2 TA+TB

TATB
, and the total excess

noise εE = εP + ε0, where ε0 is the background noise, and εP is the total excess noise in the
process of passive state preparation. Therefore, we have:

εP = εA + εB,
εA = 2 VA

ηDn0
(1 + Vel)− VA

n0
,

εB = 2 VB
ηDn0

(1 + Vel)− VB
n0

,
(9)

where VA and VB are the modulation variance, Vel is the electronic noise of the homodyne
detector, ηD is the efficiency of the homodyne detector, and n0 is the average number of
photons output by the thermal source.

4.2. Secret Key Rate in the Finite-Size Case

In the finite-size condition, the secret key rate is given by [32,33]:

K =
n
N

[
K∞

(
Tlow

A , Tlow
B , ε

high
XC

, ε
high
PC

)
− ∆(n)

]
, (10)

where the signals exchanged by Alice and Bob are N. Due to the effects of finite size,
Alice and Bob should conduct the parameter estimation by using a number of m keys in
the practical condition. The remaining number n, which has the correlation with m, is
given by n = N − m, which is used to generate the secret key. The correction term ∆(n) is
simplified as:

∆(n) = 7

√
log2 2/ϵPA

n
. (11)

The estimation of error in privacy amplification ϵPA is set to 10−10. The noise terms of
XC and PC has the form:

εXC = εPC =εP +
1
2
[ϖ1(1 − TA) + ϖ2(1 − TB)]− g

√
(1 − TA)(1 − TB), (12)

δεXC = δεPC =

√
2εXC

m
. (13)
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The maximum noise of XC and PC generated in Charlie’s detection is given by:

ε
high
XC

= εXC + 6.5δεXC ,

ε
high
PC

= εPC + 6.5δεPC .
(14)

Considering the security of the protocol, the channel transmittance is considered in the
worst case because Alice and Bob are the same as Charlie and, consequently, only the case
between Alice and Charlie is introduced. The expression can be conducted from:

Tlow
A =

1
2

(
Xlow

2 − Xup
1

)
, (15)

with
Xlow

2 = X2 − 6.5
√

Var(X2), Xup
1 = X1 + 6.5

√
Var(X1),

X1 = ⟨TA⟩ −
〈√

TA

〉2
, X2 = ⟨TA⟩+

〈√
TA

〉2
,

Var(X1) = Var(X2) = σ2
⟨TA⟩ + 2σ4

⟨√TA⟩

1 + 2
µ2√TA

σ2
⟨√TA⟩

.

(16)

Here, we have notations σ2
⟨TA⟩

=
∫
(P(TA))

2σ2
T̂A

, σ2
⟨√TA⟩ =

∫
(P(TA))

2 Var
(√

T̂A

)
, and

µ√
TA

=
∫

P(TA)E
(√

T̂A

)
. Taking

√
T̂A =

√
2(ĈAC)

2

ηV2
A

; we obtain

δ2
T̂A

=
Var
(
ĈAC

)
8TA

ηV2
A

,

E
(√

T̂A

)
=
√

TA,

Var
(√

T̂A

)
=

2 Var
(
ĈAC

)
ηV2

A
.

(17)

The variance of ĈAC is (ηV2
ATA+VAVN)

m and VN is the variance of XN .

5. Simulation Results

In what follows, we demonstrate the performance of the CV-MDI QKD system in
terms of the secret key rate and transmission distance. In numerical simulations, we set
the average number of output photons to 800 per pulse and the modulation variance to 60.
For simplicity, we assume that the homodyne detector is noiseless and has an efficiency
of 0.95 [15]. The communication block size is 108, and thermal noise ϖ1 ∼ ϖ2 ∼ 1.01.
Depending on the distance between Alice and Bob, and Charlie, it can be classified as
asymmetric and symmetric. It is worth mentioning that the system performs better in the
asymmetric case when Alice and Charlie are closer to each other than in the symmetric
case. Therefore, we will only present the performance in the former case.

The variation relationship between the secret key rate as the dependent variable and
the transmission distance and depth as the independent variables is shown in Figure 8.

The title ’distance’ in Figure 8 means the distance between Alice and Bob, namely the
effective distance between two underwater communication parties. The green dashed line
represents the change of the secret key rate with depth when the communication distance
between the two communication parties is 1.65 m, so that the change of the dent of the
three-dimensional surface in a certain depth segment can be more clearly seen, which just
validates the previous analysis of the extinction coefficient, that is, the extinction coefficient
increases sharply in this depth segment, and naturally the corresponding secret key rate
should decline sharply in this depth segment.
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Figure 8. Secret key rate in asymmetric case.(a) Asymptotic case. (b) Finite-size case.

Additionally, we find how the secret key rate correlates with depth and transmission
distance. The green curves demonstrate that the impact of ocean depth on the secret key
rate is significant for a given transmission distance. This phenomenon is attributed to
the presence of a strong optical fading effect at a specific depth in the ocean, which is
denoted in Section 3. Therefore, it is advisable to avoid deploying communication devices
in areas where the extinction factor is concentrated. The red curve illustrates the accepted
phenomenon that the secret key rate decreases with increasing transmission distance for a
given depth. The trend of the secret key rates in the finite-size case is similar to that in ideal
conditions. However, the rates are lower due to the effects of the finite size.

6. Conclusions

We have proposed passive state CV-MDI to ocean scenarios. Then, we analyzed
the optical propagation characteristics of the oceanic turbulence channel; moreover, we
have presented a transmittance prediction model using the GA-Elman neural network.
This model exhibits a high level of predictive accuracy for quantum communication in
oceanic turbulence. The machine learning-assisted CVMDI protocol with passive states
has improved its performance, although, limited by the complexity of the underwater
environment and the attenuation of light propagation, the transmission distance has not
been significantly improved, which is the limitation of this paper. However, the method
for improving the lower bound of transmittance in parameter estimation by predicting
transmittance is also suitable for free-space channels. In the future, with the proposal of
quantum communication protocols with higher performance, it is expected to provide a
new idea for auxiliary QKD systems.

The secret key rates in the asymptotic and finite-size cases are derived and the perfor-
mance of the scheme is calculated. These above findings contribute to the advancement of
passive CV-MDI QKD in challenging underwater environments. The ability to accurately
predict transmittance in oceanic turbulence can enhance the security and reliability of
quantum communication systems operating in such conditions.
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Appendix A. The Seawater Chlorophyll Model

Many factors such as seawater density, turbulence, bubble surface have important
effects on light propagation in the ocean quantum links. From [25], the deterministic losses
caused by the ocean extinction has an effect on the transmittance

Text = e−zt, (A1)

Text is the extinction-induced transmittance, z denotes the transmission distance and t is
the seawater extinction coefficient which is related to the wavelength λ, and it is defined by
t = tabs + tsca. tabs is the ocean absorption factor which has the form

tabs = l0
c [uc(d)]

0.602 + lw + l0
f u f (d)e

−k f λ + l0
huh(d)e−khλ, (A2)

uc is the chlorophyll a content and it is defined as

uc(d) = ub + ds +
h
√

2π

ς
exp

(
− (d − dmax)

2

2ς2

)
. (A3)

The standard deviation of the concentration of chlorophyll ς is given by

ς =
h√

2π(uchl − ub − dmaxs)
, (A4)

the content of fulvic acid is defined as u f (d) = 1.74098uc(d)e0.12327uc(d), the concentration
of humic acid has the form uh(d) = 0.19334uc(d)e0.12343uc(d), where tsca = m0

s us(d) +
m0

l ul(d) + mw is the scattering factor, and the small particles’ concentration is defined as
us(d) = 0.01739uc(d)e0.11631uc(d), and ul(d) = 0.76284uc(d)e0.03092uc(d) is the large particles’
concentration. the meaning and parameter of these variables are summarized in Table A1.

Table A1. Variables of ocean model.

Meaning of the Variates Parameter

l0
c The absorption coefficient of chlorophyll a at wavelength λ 0.009 m2/mg

lw The loss of light propagation in pure water 0.0507 m−1

l0
f The fulvic acid’s absorption coefficient 35.959 m2/mg

k f The fulvic acid’s exponential coefficient 0.0189 nm−1

λ The wavelength 532 nm
l0
h The humic acid’s absorption of coefficient 18.828 m2/mg

kh The humic acid’s exponential coefficient 0.01105 nm−1

ub The surface’s background chlorophyll content 0.0429 mg/m3

s The vertical gradient of concentration −0.000103 mg/m2

h The total chlorophyll a above the background levels 11.87 mg
dmax The depth of the deep chlorophyll maximum 115.4 m
uchl The maximum chlorophyll concentration at the chlorophyll maximum layer 0.708 mg/m3

m0
s The scattering coefficient of small particulate matter 1.1513(400/λ)1.7

m0
l The scattering coefficient of large particulate matter 0.3411(400/λ)0.3

mw The scattering coefficient of the pure water 0.005826(400/λ)4.322

d The depth of ocean
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