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Abstract: Sustainable development is a practical path to optimize industrial structures and enhance
investment efficiency. Investigating risk contagion within ESG industries is a crucial step towards
reducing systemic risks and fostering the green evolution of the economy. This research constructs
ESG industry indices, taking into account the possibility of extreme tail risks, and employs VaR and
CoVaR as measures of tail risk. The TENET network approach is integrated to to capture the structural
evolution and direction of information flow among ESG industries, employing information entropy
to quantify the topological characteristics of the network model, exploring the risk transmission
paths and evolution patterns of ESG industries in an extreme tail risk event. Finally, Mantel tests are
conducted to examine the existence of significant risk spillover effects between ESG and traditional
industries. The research finds strong correlations among ESG industry indices during stock market
crash, Sino–US trade frictions, and the COVID-19 pandemic, with industries such as the COAL,
CMP, COM, RT, and RE playing key roles in risk transmission within the network, transmitting
risks to other industries. Affected by systemic risk, the information entropy of the TENET network
significantly decreases, reducing market information uncertainty and leading market participants
to adopt more uniform investment strategies, thus diminishing the diversity of market behaviors.
ESG industries show resilience in the face of extreme risks, demonstrating a lack of significant risk
contagion with traditional industries.

Keywords: ESG; tail risk network; information entropy; risk contagion

1. Introduction

Systemic risk is an unavoidable risk that has the potential to trigger widespread disrup-
tion and turmoil in financial markets, such as the Chinese stock market crash, the Sino–US
trade frictions, and the COVID-19 pandemic. These systemic risks spread rapidly and
have a broad impact, swiftly cascading from one market to others [1,2], thereby affecting
the stability and growth potential of the entire economy. This risk contagion can lead to
interruptions in capital liquidity, credit tightening, and a decline in consumer confidence,
exacerbating the risk of economic recession [3]. Furthermore, the implications of systemic
risk extend beyond the economic and financial domains, potentially having significant
effects on social stability and political situations. In a globalized world, where economies
and financial markets are highly interdependent, systemic risk events can quickly spread
globally [4], affecting international trade, investment flows, and the operations of multina-
tional corporations.

ESG, the investment philosophy and industry evaluation criteria proposed by the
United Nations Environment Programme in 2004, focuses on environmental, social, and gov-
ernance performance. In recent years, there has been a surge in demand for ESG invest-
ments due to the favorable risk/return characteristics of ESG assets [5,6]. However, a stable
market environment is crucial for collaborative development, and systemic risks could
hinder progress towards achieving carbon neutrality and ecological benefits due to risk
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contagion among ESG industries [7]. Therefore, researching and revealing the risk conta-
gion within ESG industries is vital for achieving carbon neutrality goals, implementing
new development concepts, effectively enhancing the efficiency of financial services to the
substantial economy, and supporting economic transformation [6].

This research is driven by two main motivations: (1) to investigate whether there is
significant risk contagion among ESG industries during systemic events and how the conta-
gion paths evolve; and (2) to explore whether ESG industries exhibit risk interconnections
with traditional industries, meaning whether these industries show interdependent risk
response patterns in the face of macroeconomic shocks. Through these motivations, this
research aims to provide new perspectives and in-depth analysis for understanding the role
of ESG industries in systemic risk management. By analyzing the risk contagion among
ESG industries and the risk interconnections between ESG and traditional industries, we
hope to offer fact-based insights for investors making investment decisions and assist
regulatory authorities in identifying industries that may become centers of risk contagion,
and implementing effective regulatory measures to prevent and mitigate potential market
turmoil [8–11].

In financial risk management research, Value at Risk (VaR) provides an important tool
for assessing and quantifying the level of systemic risk generated by tail events, and these
tools have been widely applied in financial risk management [12,13]. VaR primarily focuses
on the risk of individual institutions but shows limitations in measuring the risk of the entire
financial system. On one hand, it concentrates on a single institution and fails to measure
systemic financial risk; on the other hand, it is also inadequate in effectively measuring
the directionality of the risk contagion. To address these limitations of VaR, researchers
have further proposed Conditional Value at Risk (CoVaR) [14,15], which addresses these
shortcomings by considering the impact of financial institutions on the stability of the
entire financial system under specific conditions, especially how risk propagates through
different levels of the market in specific systemic risk events [16,17].

Scholars’ quantitative methods for systemic risk spillover using VaR and CoVaR
mainly fall into two categories. The first category starts from volatility, focusing primarily
on volatility measurement and volatility correlation based on GARCH models. For exam-
ple, Ganguly [18] explored the risk spillover CoVaR among BRICS economies using the
GARCH model. Chen [19] confirmed its effectiveness in predicting tail risks in financial
markets. With the increasing complexity of financial market structures, more sophisticated
GARCH models have been employed by scholars to research risk contagion among mul-
tiple market entities. Canh [20] used a multivariate DCC-GARCH model to research the
risk spillover among cryptocurrencies, while Tumala [21] utilized the GARCH-MIDAS
model to avoid information loss caused by concatenating or aggregating one variable with
another, thus providing new perspectives for research in this field. The second category is
based on correlation, encompassing linear models based on regression, such as quantile
regression [22,23] models and Single Index Models (SIMs) [24], as well as nonlinear models
based on Copula functions [25,26]. Regression models enable researchers to quantify the
linear risk spillover relationships between financial entities at different probability lev-
els, while Copula functions allow for the combination of marginal distribution models of
different financial entities to capture the nonlinear correlation structure of risk spillovers
between them.

As the capital market environment becomes increasingly complex and continues to
evolve, its large scale and complex topological structure necessitate the use of network
models for quantitative analysis [27]. Complex network models have become key tools for
analyzing market risk contagion and inter-industry dependencies. By employing traditional
Bayesian networks [28,29] and social network theories [9,30] to analyze the relationships
and connection between network nodes, an effective analytical framework is provided for
understanding and predicting market risks. These network theories not only assist analysts
in identifying key influencing factors within the market but also allow for an in-depth
analysis of the interactions and dependencies among market participants through the
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network’s topological structure. Additionally, network entropy, as a quantitative indicator
of network complexity and uncertainty, reflects the randomness and unpredictability
of the network state, attracting increasing attention from scholars, especially in using
network models to identify the laws of entropy transmission and the risk contagion effect
between markets [31,32]. However, current research has limitations in exploring the
complex structures of network models under systemic risk shocks, particularly in terms of
considering the network structure of tail risks.

To address this issue, this research introduces the Tail Event-Driven Network (TENET)
framework to deeply analyze the interconnectedness of tail risks within the ESG industries.
It identifies industries of significance within the systemic risk network. This framework,
proposed by Härdle [33] and Fan [24], has three distinct advantages. Firstly, it extends the
analysis of the bidirectional tail dependencies of CoVaR to a very high-dimensional setting,
facilitating the exploration of tail risk spillovers among multiple entities. Secondly, this
method combines the Single Index Model (SIM) with variable selection techniques based on
the Least Absolute Shrinkage and Selection Operator (LASSO), making it more suitable for
describing the complexity among financial market entities. Lastly, the TENET framework
constructs a dynamic, directed, and weighted risk contagion network, revealing the dynam-
ics of risk contagion throughout the entire network. For example, Foglia and Angelini [34]
analyzed the spillover effects and interconnectivity dynamics among Eurozone financial
institutions during a crisis and found that the banking sector contributes significantly to
systemic risk. Hernandez [35] explored the risk spillover effects between banks in devel-
oped and emerging countries in the Americas through network models, revealing that risk
spillover and interconnections among banks in emerging countries are significantly lower
than those in developed countries. Xu [36] examined the tail risk dependencies among
23 cryptocurrencies and identified systemically important cryptocurrencies, discovering
that Bitcoin is the primary systemic risk recipient, while Ethereum is the largest source of
risk output. Zhao [37] researched the financial market risk contagion among the Belt and
Road countries and found that countries more affected by the European debt crisis, such as
Greece and Cyprus, have relatively higher levels of stock market risk spillover.

Information entropy is an effective tool for measuring system uncertainty or the com-
plexity of information flow. In financial risk contagion research, information entropy can
help quantify the efficiency and strength of network risk contagion [38]. For instance,
transfer entropy [32,39–42], which has been used to establish a network model, revealed
the network structure and potential paths of systemic risk contagion. Ji [43] employed an
entropy-based network method, investigated the risk spillover effects among international
real estate markets. Kumar [44] analyzed the interrelations among stocks and the topologi-
cal characteristics of the Indian stock market from multiple entropy perspectives, offering
a new angle to understand market dynamics and intrinsic connections. Entropy not only
plays a role in analyzing the internal structure of a single market or financial institution
but can also serve as an indicator for measuring network topological properties [45], con-
structing early warning indicators for systemic risk. Furthermore, Zhao [46] demonstrated
that the magnitude of information entropy could reflect the relative importance of financial
institutions within the entire financial network, identifying their contribution to systemic
risk. However, the limited inter-market risk information that can be collected and the
high heterogeneity in the actual network’s connection distribution have been proven to
potentially lead to an underestimation of systemic risk [47,48]. Combining the TENET
analysis method and the application of information entropy can more accurately predict
and assess risks in the market, while also quantifying the efficiency and stability of the
entire network structure, providing an effective tool for preventing and responding to
potential financial crises.

In terms of contributions, this paper provides two key advancements. Firstly, from a
theoretical perspective, this study for the first time applies the method of information
entropy to measure the topological characteristics of the TENET network model. This novel
approach offers a new perspective for understanding the complexity and dynamics of
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financial networks. Secondly, in practical terms, by focusing on the risk contagion network
within the ESG industries, this research adds a new dimension to the field of financial
network studies. Through detailed analysis of the risk transmission pathways between
ESG industries, it reveals the mechanisms of risk contagion in ESG industries, providing a
crucial foundation for developing effective risk management strategies and promoting the
sustainable development of financial markets.

The remainder of this study is organized as follows: Section 2 explores the methods
for measuring information entropy within the framework of network models. Section 3
includes some empirical findings, statistical analyses, and the results of related tests.
In Section 4, we will discuss and summarize the findings and propose several directions
for further research.

2. Materials and Methods
2.1. Network Model

In the research of financial risk networks, VaR is a key measurement tool. The VaR
indicates the potential maximum loss that could occur due to changes in market risk factors
at a given confidence level. As financial risk networks involve complex interrelations among
multiple financial institutions, assets, and markets, VaR can provide a comprehensive and
systematic method for estimating the risk of the entire network. Therefore, VaR is widely
used to assess the level of risk within the financial system. The VaR for financial institution
i at time t, given a confidence level α, is defined as:

P(Ri,t ≤ VaRi,t,α) = α (1)

Given the confidence level α, Ri,t is the return level of asset i at time t. CoVaR is used
to measure the systemic risk contribution of an institution under the condition that another
institution is in distress at the same confidence level α, which is a further development
based on VaR. CoVaR measures the change in the VaR of the financial system when one
institution is in distress. If the distress of an institution increases the VaR of the system, it
indicates that this institution has systemic importance. Similarly, the smaller the increase in
VaR caused by the distress of an institution, the less systemic importance it has. Therefore,
CoVaR can effectively measure the systemic risk contribution of individual institutions
within the financial system, and CoVaR is defined as follows:

P(Rj,t ≤ CoVaRj|i,t,α| Īi,t) = α (2)

where Īi,t represents the information set, which includes events Ri,t = VaRi,t,α, Mt−1,
and Bi,t−1; Mt−1 represents the vector set of macroeconomic variables that may affect the
risk of the financial system; Bi,t−1 represents the vector set of microeconomic variables that
may affect the financial institution i.

This research adopts a Single Index Model to estimate VaR and CoVaR [24]. This
method is widely used in the field of financial risk management, especially in the assessment
and management of market risks of investment portfolios. In this model, the returns of
assets are considered to have a linear relationship with other market factors [49]:

Ri,t = ci + γi Mt−1 + εi,t (3)

Rj,t = cj|i + γj|i Mt−1 + β j|iRi,t + ε j|i,t (4)

where ci and cj|i represent the constant terms affecting the returns of financial institutions,
εi,t and ε j|i,t are independent and satisfy the normal distribution of residual terms, and γi,
γj|i, and β j|i are the risk exposure coefficients representing macroeconomic variables and
microeconomic variables, respectively.

Before making these estimates, we must establish some key assumptions. These as-
sumptions provide the necessary theoretical basis for our model and help define its scope of
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application and potential limitations. (A)F−1
εi,t

(α|Mt−1) = 0 and (B)F−1
ε j|i,t

(α|Mt−1, Ri,t) = 0
are assumed [33].

Where F(·) is the distribution function of the residuals, after accepting the above two
assumptions, we can estimate VaR and CoVaR using a Single Index Model [34,35]:

ˆVaRi,t,α = ĉi + γ̂i Mt−1 (5)

ˆCoVaRj|i,t,α = ĉj|i + γ̂j|i Mt−1 + β̂ j|i ˆVaRi,t,α (6)

In the Single Index Model, the VaR estimation focuses on the risk level of a single
asset, while the CoVaR estimation considers the conditional risk level of one asset when
another asset is in distress. CoVaR can be used to assess interconnectedness and systemic
risk within the financial system. The Single Index Model, by incorporating macroeconomic
variables and microeconomic variables that affect the returns of financial institutions, can
accurately capture the impact of market dynamics and interdependencies between assets
on risk estimation.

After estimating the VaR and the CoVaR, in order to accurately understand and fore-
cast the correlations between the returns of financial institutions, they are included in
the information set. VaR and CoVaR are powerful tools for assessing and managing risk;
however, they often rely on linear relationships between market variables and returns.
In the real world, there are numerous factors that affect the returns of financial institutions,
and the relationships between these factors are typically much more complex than what lin-
ear models can depict. For instance, extreme market behaviors, changes in macroeconomic
policies, and a variety of microeconomic factors could influence returns in a nonlinear
manner. Therefore, to more accurately capture these dynamic relationships, it is necessary
to construct a new nonlinear model [50]:

Rj,t = g(βT
j|Ij

Ij,t) + εi,t (7)

ˆCoVaRTENET
j| Ĩj ,t,α = ĝ(β̂T

j| Ĩj
Ĩj,t) (8)

where g(·) is a link function, Ij,t = {R−j,t, Mt−1, Bj,t−1} represents the information set,
R−j,t = {R1,t, . . . , Rj−1,t, Rj+1,t, . . . , Rk,t} is a set of returns that does not include Rj,t, and the
risk exposure coefficient is defined as βT

j|Ij
= {β j|−j, β j|M, β j|Bj

}T. We can use a rolling win-

dow estimation method to estimate all parameters within different windows, where Ĩj,t =

{ ˆVaR−j,t,α, Mt−1, Bj,t−1}, and ˆVaR−j,t,α = { ˆVaR1,t,α, . . . , ˆVaRj−1,t,α, ˆVaRj+1,t,α, . . . , ˆVaRk,t,α}
is a set of returns that does not include ˆVaRj,t,α.

β̂, ĝ(·) def
= arg min

β,g(·)

1
n

k

∑
j=1

T

∑
t=1

ρτ(Rj,t − g(βT
j|Ij

Ij,t)

− g′(βT
j|Ij

Ij,t)IT
j,tβ j|Ij

)ωj,t(β j|Ij
) + λ

k

∑
j=1

|β j|Ij
|

(9)

ωj,t(β)
def
=

Kh(βT
j|Ij

Ij,t)

∑T
t=1 Kh(βT

j|Ij
Ij,t)

, Kh(·) = h−1K(·/h) (10)

where ρτ(·) is a loss function for quantile regression. K(·) is a kernel Gaussian kernel, and h
is a bandwidth. λ represents a tuning parameter. Given all the information sets, using
non-parametric estimation, we can estimate ˆCoVaRTENET

j| Ĩj ,t,α , which includes the impact of
financial institutions other than j and also incorporates the nonlinear relationship reflected
by the link function g(·).

This research takes the partial derivatives as the elements of the connectivity matrix
for the network. It is worth noting that in the network analysis of this research, only the
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partial derivatives of institution j with respect to other financial institutions are included,
and not those with respect to macroeconomic and microeconomic variables. This is because,
in the risk network analysis of this research, the focus is solely on the risk spillover effects
among institutions:

D̂j| Ĩj

def
=

∂ĝ(β̂T
j|Ij

Ij,t)

∂Ij,t

∣∣∣∣
Ij,t= Ĩj,t

= ĝ′(β̂T
j| Ĩj

Ĩj,t)β̂ j| Ĩj
(11)

This approach is based on three key reasons: (1) Sensitivity to marginal changes:
D̂j| Ĩj

captures marginal changes in market value loss, reflecting the sensitivity of systemic
risk levels to minor fluctuations in market conditions. This reveals the significant impact
that even slight market movements can have on the entire system, underscoring the
importance of understanding the nuances of systemic risk sensitivity. (2) Accuracy in
assessing risk spillover: D̂j| Ĩj

is directly related to the effects of market condition changes
on the interdependencies between financial institutions. This allows researchers and
policymakers to more accurately identify and quantify the paths through which risk spreads
within the network, leading to a more precise evaluation of the strength of the risk contagion.
(3) Effectiveness in systemic risk management: By analyzing the intensity and direction of
risk spillover among financial institutions, it becomes possible to better identify institutions
of systemic importance and potential points of risk concentration. This information is
crucial for developing effective risk mitigation strategies and regulatory policies, thereby
enhancing the overall management of systemic risk. Its adjacency matrix is as follows:

Ât =



0 |D̂t
1|2| |D̂t

1|3| · · · |D̂t
1|k|

|D̂t
2|1| 0 |D̂t

2|3| · · · |D̂t
2|k|

|D̂t
3|1| |D̂t

3|2| 0 · · · |D̂t
3|k|

...
...

...
. . .

...
|D̂t

k|1| |D̂t
k|2| |D̂t

k|3| · · · 0


(12)

where |D̂t
i|j| represents the absolute value of the local gradient of the CoVaR of the insti-

tution i with respect to the institution j in period t, and |D̂t
j|i| signifies the influence of the

institution j on the institution i under extreme risk conditions at time t, that is, the intensity
of conditional risk spillover. In essence, D̂t

i|j captures how institution i affects the tail risk of
another institution j within the risk diffusion network at time t.

2.2. Transformation of Adjacency Matrices into Stochastic Matrices

Before applying the concept of Shannon entropy, it is necessary to transform adjacency
matrices into stochastic matrices [51].

In the field of network theory research, researchers have proposed various methods
for measuring the centrality of nodes. Among these methods, eigenvector centrality [52]
particularly takes into account the characteristics of a node’s neighbors. The core idea of
eigenvector centrality is that the centrality of a node is determined not only by itself but
also by the centrality of its neighboring nodes. More specifically, this research assumes that
the centrality of nodes is proportional to the weighted sum of their edge scores, where the
weights are determined by the centrality scores of neighboring nodes. Given an adjacency
matrix A, this assumption leads to a set of homogeneous linear equations for the unknown
variable of centrality scores v = {v1, v2, . . . , vk}:

∑
j

aijvj = λvi, 1 ≤ i, j ≤ k (13)

where λ is a proportionality constant. The centrality scores should be non-negative. Equa-
tion (14) elucidates why the proposed centrality is termed eigenvector centrality. For the pair
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(λ, v), it corresponds to an eigenvalue–eigenvector pair of the adjacency matrix A. Imagine
that the adjacency matrix A is a non-negative matrix. In such a case, the extension Perron–
Frobenius theorem [53] reveals to us that there exists a dominant eigenvalue–eigenvector
pair (λmax, vmax) that satisfies the following condition:

Avmax = λmaxvmax (14)

where λmax and vmax are positive values. Normalize vmax so that ∑j vmax(j) = 1. vmax(j)
can be regarded as a relative measure of node j’s contribution to the entire network.
In the context of global financial networks, the right eigenvector vmax(j) reflects the relative
contribution of node j in terms of risk contagion. For a given adjacency matrix A, ‘Method 2’
constructs the following stochastic matrix P∗ = (p∗ij):

p∗ij =
aijvmax(j)

λmaxvmax(i)
, 1 ≤ i, j ≤ k (15)

The components of row i of A are weighted by (vmax(j))1≤j≤k and normalized by
multiplying them by 1

λmaxvmax(i)
.

2.3. Network Entropy

Information entropy is a measure of the uncertainty or complexity of a system, while
tail risk focuses on the losses that financial assets or portfolios may suffer in extreme market
conditions. By combining these two concepts, we are able to quantify and analyze risk
and interdependencies in the financial markets from a novel perspective. We employ
the Shannon entropy. For a given discrete probability distribution D = {p1, p2, . . . , pk},
the formula is defined as follows:

H(D) = −
k

∑
i=1

pi log pi (16)

It is noteworthy that H(D) can be interpreted as the expected value of the random
variable log( 1

pi
). Specifically, in the context of financial network analysis, entropy serves as

an indicator of diversification, given that the formula assigns higher entropy to random
variables with more uniform distributions.

Given a stochastic matrix P that is constructed from a network’s adjacency matrix,
the entropy Hi for a node i is determined by applying the entropy formula to the transition
probability distribution represented by the ith row of the stochastic matrix P:

Hi(P) = −
k

∑
j=1

pij log pij, 1 ≤ i ≤ k (17)

Hi(P) measures the diversity of choices of the node i. Then, the network entropy
Hnetwork is defined as the weighted sum of the entropies of nodes:

Hnetwork(P) =
k

∑
i=1

πi Hi (18)

where the weighting vector π = {π1, π2, . . . , πk} is the unique invariant distribution of the
corresponding stochastic matrix P.

2.4. Network Measurement Indicator

TENET indicator [54] measures the interdependence between different institutions
and potential risk transmission paths, which helps us to depict the overall health of the
financial markets. By monitoring changes in risk-sensitive indicators, regulatory agencies
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and market participants can promptly identify and respond to potential risk concentration
areas, thereby taking preventive measures to reduce the likelihood of systemic collapse.

1. Total in degree. The total in degree represents the extent to which a node is susceptible
to the influence of other nodes [55]. A higher total in-degree means that more nodes
have a direct impact on it, indicating that this node is more influenced within the
network. For a node j, its total in-degree at time t is defined as follows:

TCin
j,t =

k

∑
i=1

|D̂t
j|i| (19)

2. Total out degree. The total out degree represents the extent of its influence on other
nodes [55]. A higher total out-degree means that the node has a direct impact on
a larger number of other nodes within the network, indicating that it has greater
influence or contagion capability in the network. For a node j, its total out-degree at
time t is defined as follows:

TCout
j,t =

k

∑
i=1

|D̂t
i|j| (20)

3. Relative influence. We calculate the relative influence (RI) as the ratio between the dif-
ference and the sum of out-tail interconnectedness and in-tail interconnectedness [34].
This indicator enables capturing the sector’s relative impact and magnitude of risk
spillover onto other sectors. A positive value signifies that the sector generates more
systemic risk than it receives, while a negative value indicates that the sector receives
more systemic risk than it generates:

RIsector
j,t =

TCout
j,t − TCin

j,t

TCout
j,t + TCin

j,t
(21)

4. Centrality of contagion. The degree to which a node is central in the network indicates
the distance of the node from other parts of the network in terms of contagion distance.
More central nodes have higher centrality values and are good propagators of shocks.
Referring to Abduraimova [56], the centrality of contagion for node j at a given time t
is defined as follows:

CONCt
j =

1√
(ut

j)
2 + (σt

j )
2

(22)

ut
j =

∑k
i=1(|D̂t

j|i|+ |D̂t
i|j|)

k − 1
, σt

j =

√
∑k

i=1(|D̂t
j|i|+ |D̂t

i|j| − ut
j)

2

k − 2
(23)

2.5. Mantel Test

The Mantel test [57] has been widely used to assess the null hypothesis of no spatial
autocorrelation. Unlike traditional methods of correlation testing that only examine the
relationship between two variables, the Mantel test has the unique advantage of assessing
the correlation between two matrices B and C. Its null hypothesis posits that there is
no association between the distances among points in one distance matrix and those in a
second distance matrix. The essence of the test is to compare whether the correlation among
variables within the same group is stronger than between variables of different groups:

B =


0 b12 · · · b1k

b21 0 · · · b2k
...

...
. . .

...
bk1 bk2 · · · 0

, C =


0 c12 · · · c1k

c21 0 · · · c2k
...

...
. . .

...
ck1 ck2 · · · 0

 (24)
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The calculation formula for the Mantel test is as follows:

M =
∑k

i=1 ∑k
j=1(bij − b̄)(cij − c̄)√

∑k
i=1 ∑k

j=1(bij − b̄)2
√

∑k
i=1 ∑k

j=1(cij − c̄)2
(25)

b̄ =
2

k(k − 1)

k

∑
i=1

k

∑
j=1

bij, c̄ =
2

k(k − 1)

k

∑
i=1

k

∑
j=1

cij (26)

where b̄ and c̄ represents the average Euclidean distance. The null hypothesis of this statistic
asserts that there is no correlation between the two distance matrices; that is, the degree of
similarity of the samples in variable b is unrelated to their degree of similarity in variable
c. When the data exhibit a certain degree of autocorrelation, implying that there is a
correlation between matrix B and matrix C, the null hypothesis is rejected. The significance
is evaluated through permutation testing, which involves permuting the corresponding
rows and columns of matrix B 999 times while keeping matrix C constant. The statistic and
its significance are calculated for each permutation.

3. Results
3.1. Data

In this research, 292 outstanding constituent stocks of the China ESG 300 Index are
selected as the research subjects. These stocks not only represent companies with excellent
Environmental, Social, and Governance (ESG) performance in the Chinese market but
also cover a diversified range of industries, demonstrating the profound potential of the
Chinese market in sustainable investment. According to the Shenwan first-level industry
classification, these 300 constituent stocks are further divided into three major sectors,
Consumption, Cycles, and Technology, and subdivided into 28 industries. The specific
results are shown in Table 1.

We have selected a range of macroeconomic and microeconomic variables [58] to gain
insights into their respective impacts on economic and financial analysis. For macroeco-
nomic variables, we focus on the Consumer Price Index (CPI), which serves as a primary
measure of inflation. We also consider the growth rate of the money supply (M0), which
is the most liquid measure of the money supply, including coins and notes in circulation
and other assets that are easily convertible into cash. Interest rates (R) are another key
macroeconomic variable we analyze, as they significantly influence borrowing costs, con-
sumer spending, and overall economic activity. Lastly, we examine the business index of
macro-economic (MEI), which provides a holistic view of the economic climate and overall
economic health.

On the microeconomic side, this research includes several crucial financial metrics that
reflect the health and performance of individual industries. The Price-to-Earnings (P/E)
ratio provides insight into the market’s valuation of a company’s earnings. The Price-to-
Book (P/B) ratio is also considered, offering an understanding of the market’s valuation
relative to a company’s book value. Lastly, the return rates of the Shenwan first-level
industry indices are considered, which play an important role in capturing the performance
of various sectors within the Chinese economy. These microeconomic variables are critical
for investors and analysts to assess the attractiveness of different industries and play a
substantial role in portfolio management and strategic investment planning.
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Table 1. Industry classification table.

Sector Industry Short Name Stock Number

Consumption

Pharmaceuticals and Biotechnology PB 47
Food and Beverage FB 14
Home Appliances HA 7

Animal husbandry and fishery AHF 5
Retail and Trade RT 2
Social Services SS 2

Textiles and Apparel TA 1

Cycles

Power Equipment PE 27
Transportation and Logistics TL 17

Machinery Equipment ME 15
Basic Chemicals BC 13

Nonferrous Metals NM 11
Banking BNK 11

Non-banking Financial Institutions NBFI 11
Automobile ATB 11

Building Materials BM 10
Utilities ULT 9

Real Estate RE 7
Environmental Protection EP 6

Coal COAL 5
Petroleum and Petrochemical PP 5

Steel STE 5
Architectural Decoration AD 4

Technology

Electronics ELC 17
Computers CMP 10

Defense and Military Industry DMI 10
Media MED 5

Communication COM 4

Each industry index is calculated using a market capitalization weighting method,
which calculates the index according to the proportion of each constituent stock’s market
value to the total market value of the industry. The specific calculation formula is as follows:

Indexj,t = Indexj,1 ×
N

∑
i=1

wj
i

Pj
i,t

Pj
i,1

(27)

where Indexj,t represents the index of industry j at time t, Indexj,1 is the base point num-

ber of industry j at time 1, which is assumed to be 100. wj
i represents the market value

proportion of the i-th stock belonging to industry j, and Pj
i,t represents the closing price

of the i-th stock in industry j at time t. The selected research period is from 4 January
2011, to 28 February 2023, with 4 January 2011 being the base period for the index. Stock
data are sourced from the Wind database, and logarithmic returns are used when calcu-
lating returns. Figure 1 displays the time series data of index returns for the three major
ESG sectors, with red representing Consumption, blue representing Cycles, and green
representing Technology.
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Figure 1. Time series graph of log returns, arranged from top to bottom, corresponds to the Con-
sumption, Cycles, and Technology.

From Figure 1, it is apparent that there was a significant increase in return volatility
during certain key periods, such as the stock market crash (2015–2016), Sino–US trade
frictions (2018–2019), and the COVID-19 pandemic (2020–2021). These periods may have
been marked by severe market fluctuations due to increased market uncertainty, investor
panic, liquidity tightening, or changes in macroeconomic policy.

Specifically, during the stock market crash of 2015–2016, concerns over a slowing
economy might have eroded market confidence, leading to heightened volatility in industry
returns. During the Sino–US trade frictions of 2018–2019, policy uncertainty and tariff
threats could have led to shifts in global trade flows and increased market volatility.
In the period of the COVID-19 pandemic outbreak from 2020 to 2021, the global impact
of the pandemic and widespread restrictions on economic activity further exacerbated
market fluctuations.

Overall, market volatility during these times has revealed the significant influence
of external macroeconomic events and geopolitical risks on the return rates of ESG sec-
tors. This impact is reflected not only in short-term market fluctuations but also has
important implications for investors’ long-term risk preferences and asset allocation de-
cisions. Therefore, for risk managers, identifying the dynamics of interactions between
ESG industries, understanding the connections within the entire financial system, and the
potential pathways of risk transmission, and early identification of which industries may
become ‘super-spreaders’ of risk, are crucial for protecting the stability of the entire finan-
cial system and contribute to achieving carbon neutrality goals and implementing new
development concepts.

Table 2 provides descriptive statistics for various ESG industries and tests on time
series data, revealing the past comprehensive performance of ESG industries. From Table 2,
it can be seen that all ESG industries have shown positive average returns over the past
decade, indicating that, despite experiencing the impacts of the global financial crisis or
other macroeconomic fluctuations, the ESG industries have overall maintained a growth
momentum. Particularly, the RT industry has exhibited the highest average returns, reflect-
ing the stable growth in consumer spending and the continuous expansion of global trade.
The PE and MED industries have also displayed higher returns, which are associated with
the increasing global demand for energy efficiency and digital media content.
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Table 2. Summary statistics of daily log returns.

Industry Mean Std Skew Kurtosis JB ADF ESG Score

Consumption
PB 0.010086 0.08859 −0.13665 0.624106 633.64 *** −15.01 *** 7.54
FB 0.015326 0.087025 −0.70071 1.733604 1797.25 *** −42.47 *** 7.40
HA 0.006595 0.096462 −0.07841 2.431205 39,699.63 *** −22.19 *** 6.50

AHF 0.004386 0.099432 0.096996 0.842138 17,880.20 *** −24.10 *** 6.97
RT 0.020707 0.123142 0.574276 2.661631 173,612.12 *** −18.97 *** 8.46
SS 0.011169 0.107611 −0.13489 2.627302 1772.35 *** −55.93 *** 7.17
TA 0.001209 0.095757 −0.09315 4.630471 169,177.80 *** −55.07 *** 5.95

Cycles
PE 0.017288 0.11205 0.159149 0.624394 6589.24 *** −54.89 *** 7.98
TL 0.005048 0.088548 0.08035 2.066187 42,861.11 *** −26.2 *** 7.14
ME 0.003389 0.093523 −0.42513 1.83023 3414.01 *** −42.62 *** 6.98
BC 0.012457 0.10663 −0.28994 0.30381 33,553.87 *** −21.66 *** 7.99
NM 0.008695 0.144318 0.582843 4.77747 5153.30 *** −55.56 *** 7.47
BNK 0.003329 0.056745 0.780311 3.665301 6805.73 *** −10.95 *** 7.48
NBFI 0.005618 0.092892 0.022439 3.287873 37,753.71 *** −9.45 *** 6.94
ATB 0.009188 0.080367 −0.12778 0.276506 19,123.80 *** −13.35 *** 7.25
BM 0.003713 0.095118 −0.05981 −0.03298 4999.93 *** −40.43 *** 7.47
ULT 0.007641 0.068062 1.004595 5.509093 55,050.59 *** −11.69 *** 7.11
RE 0.00782 0.100706 0.251563 1.69491 1269.81 *** −41.57 *** 6.17
EP 0.002075 0.099464 −0.2805 0.747501 23,204.43 *** −41.23 *** 7.64

COAL 0.009856 0.082512 0.051158 0.3185 2046.22 *** −57.39 *** 6.68
PP 0.00498 0.081159 1.39561 4.322518 10,576.62 *** −10.46 *** 7.91

STE 0.007925 0.092402 0.408978 9.32103 44,160.83 *** −41.55 *** 7.45
AD 0.006064 0.104453 2.088332 9.514282 6635.51 *** −10.28 *** 7.63

Technology
ELC 0.013052 0.125885 −0.08578 0.895578 1232.19 *** −54.48 *** 7.65
CMP 0.009701 0.116605 0.044559 −0.12171 3907.88 *** −17.41 *** 7.76
DMI 0.011402 0.107171 0.46677 1.22349 1766.90 *** −54.80 *** 6.68
MED 0.017207 0.180063 1.141347 6.081793 6,117,181.22 *** −14.34 *** 7.84
COM 0.006243 0.113371 0.419617 2.474634 19,219.10 *** −12.60 *** 6.72

Note: (***) 1% level of significance.

The RT industry not only demonstrates the highest average returns but also holds
the highest ESG score. Moreover, other high-return industries like PE and MED also have
very high ESG scores, which aligns with the research of Becchetti [5] and Cerqueti [6].
This indicates that these industries excel not only in financial performance but also make
significant contributions to environmental protection, social responsibility, and good gover-
nance. This trend reflects a broader market phenomenon, where companies and industries
that perform well in ESG aspects tend to achieve better economic performance and higher
investment returns. This may be because these companies are better equipped to address
global challenges, such as climate change and social inequality, making them more favored
by investors.

However, despite considerable returns, the MED industry also faces the greatest risk,
due to its susceptibility to technological changes and shifts in consumer habits, leading to
high volatility in its returns. The NM and ELC industries also carry relatively high risks,
which is related to the significant impact of global economic cycles and market supply and
demand changes on the prices of their products.

3.2. Statistical Analysis of VaR and CoVaR

Using a Single Index Model combined with macroeconomic and microeconomic
variables, VaR and CoVaR for different ESG industries were estimated and subjected to
descriptive statistical analysis as shown in Table 3. These statistical results not only provide
a quantitative assessment of the risk levels of ESG industries but also reveal their sensitivity
to risk at both macro and micro levels.
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Table 3. Summary statistics of VaR and CoVaR. The tail risk is calculated by a Single Index Model,
where α = 0.05 and window size n = 48.

Industry VaR Mean VaR Std CoVaR Mean CoVaR Std

Consumption
PB −0.1313 0.0686 −0.1393 0.0371
FB −0.1166 0.0883 −0.1191 0.0471
HA −0.1398 0.0917 −0.1489 0.0568

AHF −0.1491 0.0797 −0.1513 0.0456
RT −0.1575 0.0971 −0.1766 0.0573
SS −0.1776 0.0876 −0.1974 0.0619
TA −0.1859 0.0982 −0.1891 0.0741

Cycles
PE −0.1353 0.0774 −0.1422 0.0507
TL −0.1382 0.0807 −0.1552 0.0428
ME −0.1528 0.0893 −0.1524 0.0679
BC −0.1696 0.0888 −0.1777 0.0447
NM −0.2158 0.1144 −0.2212 0.0633
BNK −0.0881 0.0352 −0.0833 0.0222
NBFI −0.134 0.0958 −0.1362 0.0692
ATB −0.1042 0.0633 −0.1196 0.0297
BM −0.1448 0.0732 −0.1458 0.0472
ULT −0.098 0.0616 −0.0951 0.0393
RE −0.1515 0.0852 −0.1556 0.0463
EP −0.1617 0.0791 −0.1638 0.0409

COAL −0.1129 0.0533 −0.1206 0.0345
PP −0.1041 0.0467 −0.1153 0.032

STE −0.1206 0.0653 −0.143 0.0362
AD −0.1312 0.0673 −0.1374 0.0418

Technology
ELC −0.157 0.1019 −0.1853 0.0541
CMP −0.1616 0.0775 −0.1803 0.0435
DMI −0.1562 0.0784 −0.1624 0.0413
MED −0.2543 0.1524 −0.2738 0.0733
COM −0.1731 0.1108 −0.1834 0.0666

From Table 3, it can be found that the risk value of the MED industry is significantly
higher than other industries, which may be related to factors such as the media industry’s
high volatility of returns, intense market competition, rapid technological changes, and con-
stantly changing consumer preferences. The high risk value of the MED industry might
reflect the instability of its business model and the uncertainty of the market environment.
The risk value of the NM industry closely follows, which is related to the fluctuations of the
global economic cycle, the volatility of commodity prices, and the uncertainty surrounding
the demand for raw materials. Since non-ferrous metal products are widely used across
various industries, their prices and demand are directly affected by the level of economic
development and industrial activities, leading to increased risk volatility. The risk value of
the TA industry is also relatively high, due to the industry being affected by international
trade policies, changes in consumer spending, and fluctuations in the global supply chain.

From Figure 2, it can be seen that the risk value for the ESG industries in 2016 and
2020 were at relative highs within the observed time range, indicating a significant increase
in market risk during these two years. This was due to the Chinese stock market crash,
which led to a surge in stock market volatility, causing widespread market panic and a
sharp decline in investor confidence [2]. The unwinding of high-leverage trades and a
drastic shift in market sentiment exacerbated the risk contagion, not only affecting the stock
market and ESG industries but also posing a threat to the stability of the entire financial
system. The global pandemic of COVID-19 in 2020 caused extensive shocks to all industries.
Increased uncertainty and restrictions on economic activity led to panic among market
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participants. Disruptions in the global supply chain and a decline in consumer demand
further exacerbated market instability, thereby increasing the likelihood of risk contagion.

Figure 2. Annual average VaR and CoVaR bar chart. On the left is VaR, and on the right is CoVaR.
Red represents the Consumption, blue represents the Cycles, and green represents the Technology.

3.3. TENET Network Model Visualization Analysis

This researcher shifts the focus to the interconnectedness between ESG industries.
Directional connections between industries are explored by calculating the elements D̂t

j|i of
the connectivity matrix. Directional connections reveal the potential influence or suscepti-
bility of one industry on another. To more intuitively demonstrate this interconnectedness,
a weighted adjacency matrix Â is used to present the results in the form of an elliptical
network diagram as shown in Figure 3.

Figure 3. Full sample network. Red represents the Consumption, blue represents the Cycles,
and green represents the Technology: α = 0.05, window size n = 48.
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In Figure 3, the red represents the Consumption, encompassing seven different ESG
industries that deal directly with consumer goods, such as FB, HA, and SS. The blue stands
for Cycles, which typically have a higher correlation with the fluctuations of the economic
cycle. This sector includes sixteen ESG industries, such as NM, BNK, and RE. The green
signifies Technology, comprising five ESG industries covering tech giants and innovative
companies, including CMP, ELC, MED, and other high-tech industries.

To more intuitively reflect the core composition of the systemic risk network and
the trajectory of risk diffusion, this research considers values less than the average of the
top 100 largest partial derivatives as ineffective connections and sets them to zero. This
approach highlights more significant risk contagion paths and ensures that the analysis
focuses on those nodes that act as key bridges within the network. The specific results are
shown in Figure 4.

Figure 4. Significant sample network. Red represents the Consumption, blue represents the Cycles,
and green represents the Technology: α = 0.05, window size n = 48.

In Figure 4, it is clear that the impact of the Consumption and Technology sectors on
the cyclical industry is the most significant. This is due to the growth of the Consumption
and Technology sectors being closely linked to economic cycles, and these two sectors are
also the main drivers of innovation and consumption trends. Their impact on the Cycles
sector reflects the leading position of these industries in the market and their role as leading
indicators in economic fluctuations.

Particularly noteworthy is the strong influence of the utilities industry on the CMP
industry’s risk contagion within the entire network. This could be related to the stability of
the ULT industry and the growth potential of the CMP industry, along with its sensitivity
to economic fluctuations. Additionally, the risk contagion from the COAL industry to the
ELC industry also shows a high impact, which is due to common risk factors in the supply
chain and production processes of these two industries.
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As a significant source of risk contagion, the COM industry has the most influence
on the pathways of other industries, which might be because it is the infrastructure of
the modern economy, and its stability is crucial to other industries. Fluctuations in the
COM industry could affect the entire market through various channels, including investor
confidence, production efficiency, and the adoption and application of new technologies.

Figure 5 depicts the risk contagion pathways within the Consumption, Cycles, and Tech-
nology sectors, intuitively revealing the complex structure of mutual influences between
industries. This can help identify key nodes in the risk network.

Figure 5. Three sectors of internal industry network, from left to right, are Consumption, Cycles,
and Technology: α = 0.05, window size n = 48.

Within the Consumption sector, the risk contagion connections between the TA indus-
try and FB industry are the most numerous. This is because these industries are closely
related to everyday life, and even minor shifts in consumer preferences or slight market
trends can trigger rapid risk spread among them. Additionally, as a fundamental compo-
nent of daily consumption, the FB industry is highly sensitive to economic fluctuations,
which may lead to increased risk sensitivity.

In the Cycles sector, the COAL industry is almost at the center of the risk contagion
network, reflecting its core position in the energy and raw materials supply chain. Since
COAL is a basic input for many industrial processes, any fluctuations in global economic
activity can transmit through the COAL industry to other industries. The RE and BM
industries follow closely, which is related to their importance in the economic cycle and
their close connections with other industries.

In the Technology sector, the central position of the computer industry highlights its
importance in the modern economy. As a hub of technological innovation and information
dissemination, the CMP industry responds quickly to market changes and has a strong risk
contagion capability. Any major breakthroughs or market fluctuations in the technology
sector may first impact the CMP industry and then rapidly spread to other industries such
as ELC and COM.

3.4. Network Entropy

Figure 6 illustrates the fluctuation of network information entropy over time. By track-
ing the trajectory of information entropy changes, it is possible to observe the evolution
of network structural complexity, as well as the dynamics of information flow within the
network and interactions between nodes [59].

In 2015, influenced by the stock market crash, the significant decline in the network’s
information entropy indicated an increase in the market’s predictability and a reduction
in information uncertainty [2]. This might be due to market participants tending to adopt
more uniform investment strategies during the stock market crash, which reduced the
diversity of market behaviors. However, the increase in information entropy within the
Cycles sector is because there still exists a certain degree of heterogeneity within the sector.
For instance, some industries exhibit trends different from others due to specific market
conditions or policy changes.
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Figure 6. Figure 6 shows the change in information entropy over time, with four separate plots for
the full Network, Consumption, Cycles, and Technology.

Influenced by the Sino–US trade frictions, the network’s information entropy experi-
enced a sharp decline during this period. This decrease reflects a reduction in uncertainty
and complexity within the network, as market participants reacted to the uncertainty
surrounding trade policies by adopting more conservative or homogenized strategies to
mitigate risk.

During the COVID-19 pandemic, the volatility of information entropy significantly
increased, as countries implemented loose monetary policies, including lowering interest
rates, quantitative easing, and injecting liquidity into the financial system. These measures
were aimed at alleviating economic pressure, stabilizing financial markets, and promoting
economic recovery. However, market participants reacted differently to the future economic
conditions and policy environment, with investors and decision-makers adopting a variety
of strategies to adapt to this uncertainty. Some may have become more conservative,
attempting to protect their assets from potential market fluctuations, while others may
have sought to seize opportunities brought about by policy-induced market changes. This
diversity of strategies increased the complexity of market behavior, which was reflected
in the volatility of information entropy. Therefore, the loose monetary policies during
the pandemic not only had a direct impact on the economy but also exacerbated market
uncertainty and complexity, thereby affecting the volatility of information entropy.

3.5. Time-Varying Network Structure Analysis

Figure 7 depicts the systemic risk network in-degree and out-degree for the three
major sectors of industries, where red represents Consumption, blue represents Cycles,
and green represents Technology. The diagram shows that within the entire system, differ-
ent categorized industries exhibit synchronous fluctuations in their risk networks.

During the period from 2015 to 2016, the entire market’s volatility increased, making
all ESG industries more sensitive to external risk transmission. In this period, market partic-
ipants were filled with uncertainty about the future, leading to increased risk contagion and
intensified risk transmission between industries. In 2018, the outbreak of the Sino–US trade
frictions further exacerbated global market uncertainty. This affected not only the directly
involved industries but also a broader range of sectors through supply chains and market
confidence, leading to intensified risk contagion and a clear upward trend in inter-industry
risk transmission. By 2020, the global pandemic of COVID-19 further escalated market
uncertainty and risk levels, impacting nearly all industries. This unprecedented health
crisis led to a significant slowdown in global economic activities, thereby continuously
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increasing risk contagion among industries [23]. By the end of 2022, as China began to lift
lockdown measures, various industries started to gradually recover, market confidence
was partially restored, and the risk contagion correspondingly weakened.

Figure 7. Measurement of network, where the left side represents the in-degree and the right side
represents the out-degree. Red represents Consumption, blue represents Cycles, and green represents
Technology: α = 0.05, window size n = 48.

From Tables 4 and 5, through in-depth analysis of the top ten ESG industries by
in-degree and out-degree rankings in the systemic risk network, it can be observed that
certain key industries such as COAL, CMP, COM, RT, and RE [60] play key roles in the
risk contagion network. These ESG industries are not only susceptible to changes in other
industries but also act as significant sources of risk contagion within the network, exerting
a considerable impact on other industries. A common characteristic of these industry
is their central position within their respective fields and their interactivity with a wide
range of industries. Their role in the risk contagion network is akin to that of ‘hubs,’
playing a critical role in transmitting both positive and negative influences. Monitoring and
analyzing these industries are crucial for understanding the overall market risk situation,
predicting economic trends, and developing effective risk management strategies.

Table 4. Top ten ESG industries by in-degree; the received links from other industries and transmitted
links to other industries are shown correspondingly. Note that only the first three most influential
industries are listed.

Rank Industry Received Link from Transmitted Link to In-Degree

1 COAL ME, CMP, BM DMI, PE, TA 31.369
2 PE AHF, TA, STE COAL, RT, MED 23.160
3 DMI RE, NM, MED CMP, COAL, COM 22.458
4 COM CMP, RE, TA PE, FB, TA 22.115
5 RT STE, BC, ATB PE, DMI, BM 21.948
6 CMP MED, NM, AHF COM, PE, FB 20.745
7 BM AHF, SS, TA COAL, COM, PE 18.842
8 RE AHF, NBFI, DMI PE, DMI, BM 18.581
9 FB COM, TA, AD COAL, PE, RT 18.454
10 MED ME, RT, BC CMP, DMI, COAL 18.157

Figure 8 illustrates the trends in the relative influence (RI) of various sectors. Dur-
ing stock market crash, the RI of the Consumption and Technology sectors consistently
remain positive, indicating that these sectors transmit more risk to the system during
downturns, thus acting as net exporters of systemic risk. In contrast, the RI values for the
Cycles sector is negative, suggesting that the Cycles sector is more affected by systemic
risks rather than being propagators of it during economic slumps. During the COVID-19
pandemic, there was a significant shift. The RI values for the Consumption and Cycles
sectors turned positive, implying that in the economic turmoil triggered by the pandemic,
these sectors became net senders of systemic risk. The Consumption sector was impacted
by lockdown measures and a decline in consumer confidence, while the Cycles sector was
affected by disruptions in the global supply chain and a downturn in demand. Meanwhile,
the RI for the Technology sector turned negative, indicating that, during the pandemic,
with the surge in demand for remote work and digital services, the Technology sector
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became a net recipient of risk, relative to other sectors. Therefore, policymakers should
adjust their strategies and decision-making accordingly to better manage potential risks
and uncertainties.

Table 5. Top ten ESG industries by out-degree; the received links from other industries and transmit-
ted links to other industries are shown correspondingly. Note that only the first three most influential
industries are listed.

Rank Industry Received Link from Transmitted Link to Out-Degree

1 TA COM, PE, COAL COAL, PE, COM 18.881
2 AD AD, COM, STE COAL, DMI, CMP 17.844
3 RT STE, BC, ATB PE, DMI, BM 17.130
4 RE AHF, NBFI, DMI DMI, COAL, COM 17.022
5 AHF STE, BC, ATB PE, CMP, RT 16.972
6 COAL ME, CMP, BM DMI, PE, TA 16.921
7 CMP MED, NM, AHF COM, PE, FB 16.608
8 NM ULT, ME, TA DMI, CMP, MED 16.273
9 COM CMP, RE, TA PE, FB, TA 16.120
10 STE TA, MED, CMP RT, PE, MED 15.859

Figure 8. Dynamic relative influence of each sector, from left to right, is in the order of Consumption,
Cycles, and Technology.

Characterizing the centrality of risk contagion over time, Table 6 lists the top five ESG
industries with the highest risk contagion centrality. Figure 7 depicts a time-varying heat
map of the risk contagion across different industries.

Table 6. Top five table of risk contagion centers. The risk contagion centrality is listed based on the
calculation using Equation (23).

Time First Second Third Fourth Fifth

2015–2016 BNK STE PP ATB ELC
2016–2017 FB BM NM EP ELC
2017–2018 FB NM ME BNK PB
2018–2019 ELC MED PB BM HA
2019–2020 DMI RE EP BC PE
2020–2021 TL EP PB BNK PP
2021–2022 PB BNK NBFI MED AD
2022–2023 BM RT ELC ATB COM

The results in Table 6 show that different macroeconomic and geopolitical events can
lead to various industries becoming the centers of risk contagion.

During stock market crash periods: The BNK industry is almost at the center of the
entire risk contagion network. This reflects the central role of the BNK industry in the
financial markets and its significant impact on market liquidity and credit risk [55]. In times
of stock market crash, with increased market volatility and rising credit risks, the stability
of the BNK industry is particularly crucial for the overall market.

In relatively stable periods: The FB industry occupies a central position in the entire
risk contagion network. This is because during periods of economic stability, the demand
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for basic consumer goods is relatively stable, making the FB industry a stabilizing factor in
the market.

After the Sino–US trade frictions: Technology sectors such as ELC and DMI industries
become the core of the entire risk contagion network. This is due to the trade war directly
affecting the market prospects of these industries, increasing the uncertainty and risk
exposure between industries.

Following the outbreak of the COVID-19 pandemic: The TL and PB industries take
center stage in the entire risk network. The pandemic has had profound impacts on global
transportation and logistics, while also increasing the demand for pharmaceutical and
biotechnology products, making these industries key nodes in the risk network.

Figure 9 displays a heat map illustrating the intensity of risk contagion between
different industries and years. Between 2015 and 2016, influenced by the stock market
crash, many ESG industries showed varying levels of risk contagion [61], yet not all
ESG industries exhibited significant risk contagion. During 2018 to 2019, the Sino–US
trade frictions had a significant impact on the Cycles sector, and during the COVID-19
pandemic, risk contagion within ESG industries was primarily concentrated in the PB
and BNK industries. Throughout the entire sample period, the level of risk contagion in
ESG industries remained consistent with previous analyses, demonstrating the model’s
good stability.

Figure 9. The risk contagion heat map, from left to right, is in the order of CONC, TCin, TCout.

This stability suggests that, due to the ESG industries’ focus on environmental, social,
and governance factors, they may possess inherent mechanisms that help mitigate risk
contagion. These mechanisms could be associated with their sustainable business practices,
which might contribute to a more robust and resilient economic performance even under
market pressures. Additionally, a strategic emphasis on governance may enable these
industries to respond more effectively to crises, thereby limiting the spread of risks within
the financial system.

3.6. Correlation Analysis of ESG Industry and Traditional Industry Based on the Mantel Test

To deepen our understanding of the relationship between industries that actively
perform environmental, social, and corporate governance responsibilities and those that
operate according to traditional practices, we will conduct Mantel tests of correlation on
domestic ESG industry indices versus traditional industry indices. This testing method
allows us to detect if there is a risk linkage effect between ESG industries and traditional
industries. It enables us to more thoroughly understand whether the ESG indices truly
reflect the sustainable development practices of businesses. Furthermore, it offers a new
perspective on the actual role of sustainable development in modern corporate operations.

Figure 10 indicates that significant risk linkage effects between ESG industries and
traditional industries are primarily concentrated in the RE, BNK, and CMP industries. This
suggests that companies within these industries, whether ESG industries or traditional
industries, may experience similar risk impacts when the market faces volatility or un-
certainty. In contrast, other ESG industries appear to have stronger risk adaptation and
resistance capabilities. This resilience is attributed to the proactive measures these sectors
take in environmental protection, social responsibility, and governance, which help miti-
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gate potential risks [62]. Furthermore, the risk resistance of ESG industries may also stem
from sustainable resource management, deep commitment to social responsibilities, and a
sensitive response to the needs of internal and external stakeholders. The performance of
these sectors reinforces the value of sustainable development strategies in contemporary
businesses, especially highlighting the growing importance of ESG principles when facing
increasingly severe environmental challenges and social responsibility demands.

Figure 10. Mantel test chart for ESG and traditional industries.

4. Conclusions

The TENET network model uses VaR and CoVaR to quantify tail risk, capturing not
only the magnitude of tail risk but also revealing the paths and directions of risk contagion
in the ESG industry. Through the TENET model, this research identifies the industries with
risk concentration in the ESG industry’s risk contagion network and elucidates the mecha-
nism of risk contagion. Moreover, it delves into the time-varying topological characteristics
of the TENET network model from the perspective of information entropy.

Empirical results show the following: (1) Industries such as COAL, CMP, COM, RT,
and RE play key roles in the risk contagion network. These industries are not only suscepti-
ble to changes in other industries but also act as significant sources of risk contagion within
the network, exerting a considerable impact on other industries. (2) There is a dynamic
interaction between the ESG industry and external economic forces, with different macroe-
conomic and geopolitical events causing different ESG industries to become centers of risk
contagion. However, not all ESG industries exhibit significant risk contagion, and there is
no apparent risk linkage effect between ESG industries and traditional industries. (3) This
resilience stems from the unique business philosophies and risk management strategies of
the ESG industries, which often invest more resources in environmental protection, social
responsibility, and corporate governance, thus showing greater resilience in the face of
market volatility and uncertainty. The robustness of these industries can positively impact
investor confidence and even attract more capital inflows during market turmoil.

Due to the lack of significant volatility clustering in the ESG industries and its high-
dimensional characteristics that necessitate considering all other interaction effects by
incorporating more variables, this research utilizes the Single Index Model to estimate
VaR and CoVaR. Furthermore, information entropy is introduced as a tool for assessing
the dynamic properties of network models because it can measure the complexity and
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uncertainty of interactions among elements within financial networks, effectively capturing
the network’s elasticity. Given the complexity and diversity of financial markets, one
potential future research direction could involve selecting and applying various nonlinear
models based on the specific characteristics of different markets. For example, the GARCH
model can accurately capture the volatility clustering in financial markets, while the Copula
model can simulate the tail dependency among assets under extreme market conditions.
By integrating these models with the concept of information entropy, it is possible not only
to assess the elasticity of the network at a macro level but also to more precisely quantify
the risk contagion among financial institutions across different markets at a micro level.
Moreover, as concepts related to information entropy, belief entropy and transfer entropy
can also quantify the certainty and predictability within a system. Therefore, conducting
a theoretical analysis of entropy-based network model indicators from the perspective of
other entropy properties is also a worthwhile direction for exploration.

Overall, analyzing the time-varying topological characteristics of the TENET network
model from the perspective of information entropy provides a novel viewpoint for un-
derstanding the mechanisms of risk contagion in financial markets. Through the entropy
measurement characteristics of the TENET model, regulatory authorities can assess and
monitor tail risks in financial markets more precisely, enabling them to evaluate financial
stability, optimize risk management practices, and develop effective regulatory policies.
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