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Abstract: The ideas of self-observation and self-representation, and the concomitant idea of self-
control, pervade both the cognitive and life sciences, arising in domains as diverse as immunology
and robotics. Here, we ask in a very general way whether, and to what extent, these ideas make
sense. Using a generic model of physical interactions, we prove a theorem and several corollaries
that severely restrict applicable notions of self-observation, self-representation, and self-control. We
show, in particular, that adding observational, representational, or control capabilities to a meta-level
component of a system cannot, even in principle, lead to a complete meta-level representation of the
system as a whole. We conclude that self-representation can at best be heuristic, and that self models
cannot, in general, be empirically tested by the systems that implement them.

Keywords: free energy principle; Gödel’s theorem; Moore’s theorem; quantum reference frame;
Rice’s theorem; separability

1. Introduction

To what extent can human beings be said to represent themselves? To what extent can
other organisms, or more generally, other living systems, be said to represent themselves?
While the definition of “representation” is philosophically controversial (Chapter 4 in
Ref. [1]), here, we use this term just to mean “a description encoded as classical data”,
where the relevant sense of “description” is the one employed in physics or computer
science [2]. With this definition, we can ask the above questions even more generally:
to what extent can a generic physical system S observe, represent, and control its own
internal processes? To what extent can a metaprocessor S1 observe, represent, and control
the internal processes of an object-level processor S2 with which it is associated by the
architecture of some overall system S? These questions obviously bear on the question
of the extent to which autonomous agents can be considered “self-aware” when acting.
As work in basal cognition, synthetic biology, artificial intelligence (AI), and various
hybrid technologies [3,4] steadily expands the scope of agentive systems, such questions
increasingly have technological as well as psychological relevance. The theory of active
inference driven by the Free Energy Principle (FEP) provides a fully general account of such
systems within either classical [5–7] or quantum [8] formalisms; see Ref. [9] for a detailed
comparison of the two. Hence, these questions about self-observation, representation, and
control are fundamental to the theory of active inference.

We approach these questions in full generality, using a minimal-assumption represen-
tation of a finite physical system S that interacts with a finite environment E. We employ the
quantum formalism outlined in Refs. [8,9]; see Refs. [10–12] for additional details on this
formalism. This quantum formalism is more general than the classical formalism, which
is obtained in the classical limit as described in Refs. [8,9]. Using this general approach,
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we prove four “no-go” results that severely limit the extent to which a system can be said
to observe, represent, or control its own internal processes. These results can be seen as
analogs of previous results that limit the extent to which a system can observe, represent, or
control its environment [13]; from a historical perspective, they are in the lineage of Ashby’s
Law of Requisite Variety [14] as well as the more specific results of Refs. [15,16]. Together
with their corollaries, these results effectively limit systems to untestable, heuristic models
of their own internal processes that cannot, even in principle, be extended to completeness.
We conclude that “self knowledge” is fundamentally confabulatory, whether in humans or
in any other systems.

2. Representation of Generic Physical Interactions

We begin by providing a description of physical interaction that makes no assumptions
about the structures or properties of the interacting systems. A “system” in this description
is just a collection of degrees of freedom that can have various values; a “state” of a system
is an assignment of particular values to each of its degrees of freedom. Systems interact
by acting on each other to change each other’s states. The idea of interaction requires the
interacting systems—here we call them S and E for “system” and “environment”—to be
distinguishable; hence, we can talk about a boundary—which we label B—that separates
them. Quantum theory provides a way to express these intuitive ideas in a way that is
precise enough to derive significant consequences. It provides, in particular, a criterion
for deciding whether S and E can be considered separate systems, and therefore mutually
conditionally independent, that will play a central role in the sections that follow.

Let U be a finite physical system, the states of which can be described as vectors in
a Hilbert space HU , and consider a bipartite decomposition U = SE, or more explicitly,
HU = HS ⊗HE. We can then write the internal or self-interaction of U, represented by
a Hamiltonian operator HU , as HU = HS + HE + HSE, where HS and HE are the internal
interactions of S and E, respectively, and HSE is the interaction between them. We are
interested in the case in which HSE is weak enough that most degrees of freedom of S,
and most degrees of freedom of E, are not involved directly in the interaction. In this
case, both S and E have well-defined “internal states” which we will designate (using the
Dirac notation) |S〉 and |E〉, respectively, with ρS and ρE, the corresponding state densities.
A necessary and sufficient condition for this case is that the joint state |U〉 = |SE〉 is
separable, i.e., factors as |SE〉 = |S〉|E〉; this condition corresponds, by definition, to |SE〉
being unentangled. Entanglement or non-separability is not an “objective” or observer-
independent condition of a system but rather depends on how the joint state |SE〉 of the
system is described [17–20]. The availability of a description under which |S〉 and |E〉, or
ρS and ρE, are separable guarantees that they are, under that description, conditionally
independent as required by the classical FEP [8].

Given a description under which |SE〉 is separable, we can choose basis vectors |ik〉,
k = S or E, and write the interaction as:

HSE = NβkkBTk

N

∑
i

αk
i Mk

i , (1)

where kB is Boltzmann’s constant, Tk is the temperature, the αk
i ∈ [0, 1] are such that

∑N
i αk

i = 1, the Mk
i are N Hermitian operators with eigenvalues in {−1, 1}, and βk ≥ ln 2 is

an inverse measure of k’s thermodynamic efficiency that depends on the internal dynamics
Hk. The operators Mk

i can be interpreted as measurement, or dually, [21] state-preparation
operators, each acting on a single quantum bit (qubit) qi. This allows a straightforward
topological interpretation of Equation (1). Let B denote the decompositional boundary
between S and E, i.e., the boundary given implicitly by the Hilbert space factorization
HU = HS ⊗HE. Given separability, i.e., |SE〉 = |S〉|E〉, the entanglement entropy S(|SE〉)
across B is zero. The holographic principle (HP) constrains information exchange between
separable systems to the information that can be encoded on their mutual boundary [22–24];
see Ref. [12] for details of how the HP applies in this setting. We can, therefore, regard B as
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a holographic screen, i.e., an ancillary N-qubit array, separating S from E, and depict HSE
as in Figure 1.

Figure 1. A holographic screen B separating systems S and E with an interaction HSE given by
Equation (1) can be realized by an ancillary array of noninteracting qubits that are alternately
prepared by S (E) and then measured by E (S). Qubits are depicted as Bloch spheres [25]. There is no
requirement that S and E share preparation and measurement bases, i.e., quantum reference frames
as discussed below. Adapted from Ref. [10], CC-BY license.

Provided S and E are separable (classically, provided they are conditionally inde-
pendent), i.e., provided B functions as a holographic screen separating S from E, we
can represent B by a Hilbert space HB and hence assign it an N-qubit state |B〉. The
dimension dim(HB) = 2N = dim(HSE). The separability condition can then be re-
stated as dim(HB)� dim(HS), dim(HE). As B is, by definition, just a decompositional
boundary—an abstract mathematical construct, not a physical surface—its Hilbert space
HB is completely ancillary to S and E, i.e.,HB ∩HU = ∅. Thus, while B has the function
of a classical Markov blanket (MB) [26,27], limiting information exchange between S and E
to N bits, its states are not within the physical S-E state space. A classical MB is obtained
in the current setting by embedding B, S, and E in a geometric “physical” (e.g., 3d) space
and considering the qubits qi to be “transducer” or “input/output” (I/O) states causally
separating S from E. If we consider each of these transducer states to be a photon state,
B becomes a light sheet causally separating S from E, as in the covariant definition of a
holographic screen [24]. Note that this is the classical limit of the boundary B itself, not
the classical limit of any state encoded on the boundary. If S and E are separable, they
are mutually decoherent by definition. From the perspective of either S or E, B encodes
classical information—observational outcomes—as Equation (1) makes clear; see Ref. [12]
for further discussion.

As each of the operators Mk
i on B has eigenvalues +1 and −1, we can consider each of

them to be an instance σk,i
z of the z-spin operator σz. Choosing the basis {|ik〉} is, effectively,

choosing the local z axis that renders σk,i
z well defined. We showed in Ref. [12] that the “free

choice” of basis for each of S and E is a necessary condition for separability; if the choice of
basis for S determines the choice of basis for E or vice versa, the two are entangled. As the
FEP requires separability, all active inference agents are “free agents” in this fundamental,
physical sense; see Ref. [28] for an alternative derivation of this result.
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3. Quantum Reference Frames and Noncommutativity

Having described interaction in terms of elementary operations of preparation and
measurement defined at the boundary B separating a system S from its environment E,
we now turn to the question of how meaningful information—“differences that make a
difference” [29]—is extracted from this process. Meaningful measurements are always
“with respect to” something, a standard of comparison or, more technically, a reference
frame that has a pre-established significance. For example, measurements of length require
a standard, such as a meter stick, that has a fixed length that gives a standardized, ac-
tionable meaning to a measurement outcome of so many meters. Such standards must
be physically implemented to be useful; any implemented reference frame is a quantum
system and hence, a quantum reference frame (QRF) [30,31]. The formalism of QRFs gives,
therefore, a principled way of talking about the extraction of meaningful information from
measurements. A key question about this process is whether measurements can be made
simultaneously, i.e., whether the QRFs being employed commute. The noncommutativity
of QRFs induces context effects that can render the interpretation of measurement outcomes
problematic [32–34].

Consider now a subset {MX
j } of the MS

i that act on some m-qubit subset {qj} of the
N qubits composing B. The relationship between the m local z axes—the local reference
frames for each of the m qubits—defines an overall reference frame for the sector X of
B on which the MX

j act. Provided the internal Hamiltonian HS has sufficient degrees of
freedom to implement this relationship, it constitutes a QRF [30,31]; in this case, we can
write X = dom(Q), where Q is the implemented QRF. We have shown previously [11] that
any QRF can be represented by a hierarchical structure, a cone–co-cone diagram (CCCD),
of distributed information flow [35], the components of which are Barwise–Seligman [36]
classifiers linked by maps (infomorphisms) that enforce logical consistency. A typical
CCCD consists of a cone diagram (CD) and an attached complementary (i.e., all arrows are
reversed) co-cone diagram (CCD) as illustrated in Figure 2 below. We note that any CCCD
must be a commutative diagram, with the consequence that the local logic—and hence, the
criterion of logical consistency—implemented by any subdiagram of a CCCD must also be
commutative.

Figure 2. A co-cone diagram (CCD) is a commuting diagram depicting maps (infomorphisms) fij

between classifiers Ai and Aj, maps gkl from the Ak to one or more channels Cl over a subset of
the Ai, and maps hl from channels Cl to the colimit C (cf. Equation 6.7 of Ref. [35]). Adapted from
Ref. [10] Figure 3, CC-BY license.

Just as any QRF—any subset of the MS
i —alternately measures and prepares the states

of some subset of qubits on B, any CCCD can be viewed as reading from and writing to an
external system that effectively serves as a memory [8,35,37]. A CCCD is, therefore, a scale-
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free architectural blueprint for a massively parallel, distributed information-processing
system, e.g., a variational autoencoder or a hierarchical Bayesian inference system as
described in Refs. [8,37]. Each layer of a CCCD can, moreover, be viewed as both a
metaprocessor over and an “internal” memory for the layers below it in the hierarchy. From
this perspective, CCCDs provide a natural model of Global Workspace (GW) systems [37].
The colimit C in Figure 2, in particular, abstractly specifies such GW concepts as the
connective core of Ref. [38], the giant component of Ref. [39], or other implementations of the
original GW concept of a system that provides access to consciousness [40,41]; see Ref. [42]
for further discussion in a biological context.

In the simplest case of a weighted, binary decision tree, the number of bits required
to specify such a QRF, and hence the number of binary degrees of freedom required to
implement it, scales as m2log2(m). In general, we can define the dimension dim(Q) of a
QRF Q as 2M, where M is the number of binary degrees of freedom required to implement
Q. Clearly, dim(Q)� dim(X) = 2m whenever m is appreciably greater than one.

Just as S and E have free choice of local z axes for each of the qi, they have free choice
of QRFs, and hence free choice of how B is divided into sectors, with the limiting case of
S’s QRF and sector choices determining E’s, or vice versa, again being entanglement [8].
Either S or E is free, moreover, to choose pairs Q1 and Q2 of QRFs that do not commute, i.e.,
such that [Q1, Q2] = Q1Q2 −Q2Q1 6= 0. Implementing noncommuting QRFs (equivalently,
noncommuting diagrams having the form of CCCDs but for which the limit/colimit C is
undefined) induces noncausal or “intrinsic” context dependence of both observations and
actions implemented by an affected QRF [11,13]; see Refs. [13,37] for a comparison of this
with other formalisms for describing contextuality, including contextuality-by-default [43]
and the sheaf-theoretic formalism [44]. In particular, noncommutativity at the diagram
level implies noncommutativity of the local logic of at least one subdiagram; see Ref. [45]
for discussion of contextuality from this perspective. From an operational perspective,
the I/O behavior of a QRF Q that is noncausally context-dependent appears to depend
on a nonlocal (to Q) “hidden variable” that specifies a context [46–48]; from a theoretical
perspective, noncommutative QRFs induce compartmentalization of S into bounded, sep-
arable components that can only communicate classically [49]. Noncommutativity, and,
hence, the noncausal context dependence of QRFs can be induced by thermodynamic free
energy limitations that force observations or actions using different QRFs to be performed
sequentially [13]; hence, these effects can be expected to be ubiquitous in living systems.

4. No-Go Results for Generic Physical Interactions

We are now in a position to answer the question posed in the Introduction—to what
extent can a generic physical system S observe, represent, and control its own internal
processes?—by proving several “no-go” results that severely limit any physical system’s
ability to represent its own internal states or processes. Employing the formal notion of a
QRF allows us to state these limitations precisely. Because we are assuming only generic
characteristics of physical systems and interactions, these limits apply very broadly, and
can be challenged only by challenging fundamental—indeed axiomatic—assumptions of
current physical theory. They are, therefore, comparable in both generality and strength
to fundamental results from the theory of computation, such as the undecidability of the
Halting Problem [50,51].

With the formalism defined in Sections 2 and 3, we can state and prove the following.

Theorem 1. Let S be a finite system and Q be a QRF implemented by HS. The following
statements hold:

1. S cannot determine, by means of Q, either Q’s dimension dim(Q), Q’s associated sector
dimension dim(dom(Q)), or Q’s complete I/O function.

2. S cannot determine, by means of Q, the dimension, associated sector dimension, or I/O
function of any other QRF Q′ implemented by S.
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3. S cannot determine, by means of Q, the I/O function or dimension of any QRF Q′ implemented
by any other system S′, regardless of the relation of S to S′, from S′ = S to S′ = E, inclusive.

4. Let S = SiSj, in which case Ei = ESj. Then, Si cannot determine, by means of a QRF Qi, the
I/O function or dimension of any QRF Qj implemented by Sj.

Proof. We address each clause separately:

1. Any QRF Q accesses, by definition, log2(dim(dom(Q))) bits. As shown above,
dim(Q) > dim(dom(Q)) for any Q of interest. No such QRF, therefore, has ac-
cess to sufficient bits to count its own degrees of freedom, which it must do to specify
dim(Q). Specifying dim(dom(Q)) requires specifying Q’s computational architecture,
which requires specifying dim(Q). Specifying Q’s I/O behavior requires specifying
dim(dom(Q)).

2. Unless Q′ = Q, in which case, see above, Q cannot access all of the bits composing
dom(Q′) and hence cannot measure their states. Therefore, Q cannot determine the
I/O function of Q′. With no ability to count the bits in dom(Q′), Q cannot specify
dim(dom(Q′)). Specifying dim(Q′) requires specifying dim(dom(Q′)).

3. Unless S′ = S, in which case, see above, S cannot measure the internal state |S′〉, at
least some components of which lie on the other side of the holographic boundary B,
or determine the internal dynamics HS′ . Hence, S can determine nothing about any
Q′ implemented by S′.

4. As in this case Si ∩ Sj = ∅, the above case applies.

Intuitively, Theorem 1 says that no physical system can determine its own observa-
tional capabilities (Clauses 1 and 2) or the observational capabilities of any other system
(Clause 3). It also says explicitly that no component of a system S can determine the
observational capabilities of any other component of S (Clause 4). Because Theorem 1 is
stated in terms of QRFs, “observational capabilities” include the extraction of meaning
from observational data. Theorem 1 therefore generalizes Quine’s classic result [52] that
observers cannot deduce each other’s semantics by making it self-referential: it is also the
case that no observer can deduce their own semantics. The opaqueness of their own minds
to human observers has been emphasized by Chater [53] on psychological grounds; here,
we obtain this same result via fundamental physics, in a form that applies to all physical
systems.

For any classical system, Theorem 1 can be obtained from Theorem 2 of Moore [16],
which shows that no finite sequence of finite-resolution I/O measurements can determine
the function implemented by a classical Black Box. Crucially, the environment of any
system surrounded by an MB is a Black Box for that system, with the MB serving as the I/O
interface. Clauses # 1 and 2 above apply Moore’s theorem to I/O experiments performed
by an observer on herself; clauses # 3 and 4 apply it in its originally intended setting of
an observer interacting with an (at least partially) external system. The above proof can,
therefore, be seen as simply extending Moore’s result to quantum systems.

Another classic result, Rice’s theorem [15], shows that the I/O function computed
by an arbitrary system is undecidable by a Turing machine even if given the program
implemented by the system. Hence, even providing S with a program for some Q will not,
in general, allow S to determine the I/O behavior of Q.

Three corollaries follow immediately from Theorem 1:

Corollary 1. Let S = SiSj. Si cannot act on Sj to specifically induce a map Qj 7→ Q′j from a QRF
Qj implemented by Sj to a Q′j determined by Si.

Proof. From Theorem 1, Si cannot determine that Sj implements either Qj or Q′j, so it
cannot act specifically to induce a map from one to the other.
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Corollary 2. Si cannot detect context shifts that induce maps Qj 7→ Q′j in Sj.

Proof. From Theorem 1, Si cannot determine that Sj implements either Qj or Q′j, so it
cannot detect context shifts that induce a map from one to the other.

Corollary 1 shows that a component Si of a system—e.g., a metaprocessor or “execu-
tive” component—cannot act specifically to control the behavior of another component Sj.
Components of a system can act on each other but cannot deterministically control each
other’s behavior. Corollary 2 shows that a component Si cannot determine what causes
changes in the behavior of another component Sj. Corollary 2 allows Si to detect contextu-
ality in the statistics of Sj’s behavior but restricts Si from determining what a detectably
different context is for Sj. A system Si can, in other words, determine by observation that
another system Sj is acting with non-codeployable QRFs, but because it cannot determine
what those QRFs are, it is unable to determine how Sj distinguishes different contexts. It
cannot, in particular, determine at what level in Sj’s processor hierarchy—at what level in
Sj’s GW—operators become non-codeployable. Hence, Si cannot fully reverse engineer
Sj’s attention system “from the outside”, though it can determine that Sj is employing
attentional shifts.

Corollary 3. The models implemented by physical systems are incomplete in the sense that there
are inputs that can be received but not predicted, and adding more or different QRFs or hierarchical
(i.e., meta) layers cannot make them complete.

Proof. Clause 2 of Theorem 1 restricts any system S from determining the QRFs imple-
mented by its environment E, and therefore from modeling them with complete accuracy
from its observations. It similarly prevents E specifically acting on S to adjust S’s QRFs
toward a model of E. The FEP acting on the S-E system will drive them asymptotically
toward zero prediction error and hence shared QRFs; however, this asymptotic state is
entangled [8,54], rendering the S-E distinction physically meaningless.

Reading “received” as “true” and ”predicted” as “provable”, Corollary 3 can be seen
as an analog, in the current setting, of Gödel’s celebrated first incompleteness theorem [55].
Gödel showed that any finite system of axioms is insufficient to prove every result in
mathematics, or otherwise said that in any logically consistent axiomatic system with
sufficient richness to express arithmetic, there will always be both truths and untruths
that can neither be proved nor disproved within the axioms of that system. Like Gödel’s
theorem, Corollary 3 turns on the notion of finite construction (of proofs or predictions) and
on the contradictory (physically meaningless) nature of perfectly self-referential statements.

Theorem 1 and these three corollaries do not imply that systems cannot have models of
themselves, or that metaprocessors within larger systems cannot use models of object-level
components when acting on such components to influence their behavior. Theorem 1 and
its corollaries rule out both the inductive construction of such models from observational
data and empirical testing of such models using observational data. We are left with the
conclusion that “self-models” at either the object- or the meta-level can only be heuristic, can
only be learned under environmental supervision, and cannot converge to completeness,
and hence perfect predictive accuracy, without destroying the identity—the distinctness
from its environment—of the system that implements them.

5. Examples

The above results show that “self” models are subject to the same restrictions as “other”
models, specifically, models of the environment [13]. Indeed, they show that “self” models
are “other” models—they are models of an object component Sj that are implemented
by a meta component Si of some composite system S. To distinguish between a system’s
self-model and a model constructed by an external observer, and to examine the heuristics
used in either kind of model, it is useful to consider some specific examples.
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5.1. Example: Hawking’s Speculation

Hawking in his Dirac Centennial lecture [56], on reviewing possible amalgamations
of string theory, quantum gravity, and M-theory, lends doubt to the possibility of ever
achieving a complete theory of the universe in terms of a finite number of statements. This
is likened to Gödel’s theorem [55] mentioned above, in that it associates completeness
with self-contradiction. Hawking’s speculation can be based on the observation that any
physical theory is self-referencing, and can be expected to be inconsistent or incomplete,
with present-day physical theories deemed by Hawking to be both (supporting evidence
is discussed in [57–59]). Such speculation can in part be traced back to Wheeler’s earlier
contention [60] that any quantum state is self-observable, thus leading some to suggest that
the paradoxical nature of quantum theory is due to one of self-reference, and to determine
whatever is the underlying cause for incompleteness/undecidability (e.g., [45]). Inspired
by the original work of von Neumann [61], these questions have been approached from the
theories of noncommutative logic and algebras (e.g., Refs. [45,62,63]). In this respect, we
note that a noncommuting diagram with the form of a CCCD exhibits a noncommutative
system of logic infomorphisms as based on the (local) logics of Ref. [36] as recalled and
reviewed in Ref. [37]. In particular, the general nature of Corollary 3 here provides strong
evidence for Hawking’s claim, while also posing startling consequences for Wheeler’s
contention [64] that physics is fundamentally about information exchange, as well as the
claim that physics is about language, professed by Grinbaum [65].

5.2. Example: Heisenberg Uncertainty

In Ref. [66], it is shown that Heisenberg’s Uncertainty Principle (HUP) implies al-
gorithmic randomness [67,68], which in turn implies Chaitin’s notion of informational
incompleteness [69], the latter being a form of incompleteness due to Gödel [55,70]. Rele-
vant here is how the steps leading to the “no-go” results of Section 4 implicitly involve an
algorithmic complexity as generated by qubit strings along B. Such complexity is already
implicit in the Frame and Halting problems [71,72] demonstrated to be undecidable as,
indeed, is the Quantum Frame Problem [13]. The HUP, as a principle of indeterminacy,
has also been shown to be a form of quantum contextuality in Ref. [73]. These results
entice further exploration of the prospectively deep connections between indeterminacy,
incompleteness/undecidability and contextuality, and indeed between quantum theory
and metamathematics, to be pursued in view of Theorem 1 and its corollaries at a later
date.

5.3. Example: Supervised Learning

In an artificial neural network (ANN) undergoing supervised learning via an algo-
rithm such as error back-propagation, inputs arrive at alternate times from one of two
sources, the task environment or the supervisor. These inputs are processed by two, non-
codeployable QRFs: inputs from the task environment are processed by the ANN units,
with the interprocessor connection weights fixed, while supervisory inputs are processed
by the connections, to update their assigned weights, without affecting the states of the
units. Switching between these input regimes is controlled by a metaprocessor imple-
mented either in hardware or, in simulated ANNs, in software. Following training, both
the metaprocessor and the weight-updating QRF are turned off so that the ANN processes
inputs from the task environment only. This being the case, a well-programmed ANN
nevertheless strives to mimic some “optimal” computational task in attaining to the “Good
Regulator” Theorem of Ref. [74].

Let us call the metaprocessor S2 and the “object-level” ANN S1. The environment of
S1 comprises the task environment, the supervisor, and S2; the input from S2 is, without
loss of generality, the value of a control bit that selects one of the two object-level QRFs. The
activation states of any one of S1’s units encodes, and therefore represents, the input from
the task environment as processed by all upstream units; this representation is available
only to the downstream units, and only for further processing. The connection weights



Entropy 2024, 26, 194 9 of 16

encode, and therefore represent, the training inputs; each connection’s representation is
available to it alone, and only for execution. The value of the control bit encodes an input
from S2, and is available to the QRF switch only for execution. As required by Theorem 1,
no component of S1 has access to either of the QRFs that S1 implements, to S1’s overall
architecture (i.e., the number of units or their connection weights), or to the function that
S1 computes at any stage of training.

The restrictions imposed by Theorem 1 apply equally to S2, which has no access to
any of the above information about S1, and no access to its own state-switching algorithm.
Indeed, S2 could be implemented simply by a flip/flop, or by an external switch operated
by a user. While it would be straightforward to add a reporting component to S2 that
announced when the ANN was being switched from processing to training mode and vice
versa, this would not affect the representations available to the S2. Routing this information
to S1 would similarly have no effect on S1, as it would always have a constant value in
either S1’s processing or its training mode.

Theorem 1 restricts any ANN from representing to itself whether it is in training or pro-
cessing mode, though its outputs can make this difference evident to an external observer.
Replacing the notion of representation with a first-person notion of a phenomenological
“in the world—lived experience” [75] does not change this conclusion; S1 experiences input
streams, not its own processing, while S2 only experiences a one-bit state change. Making
the “supervisor” a component of the system, as in a Generative Adversarial Network
(GAN), also does not change the conclusion; neither the supervisor component nor the
combined system has access to either the overall architecture or any of the computed
functions. These restrictions have clear relevance for the explanation problem [76,77] that
besets ANN designers and users, particularly designers and users of multi-layer deep
learning systems. Such systems may report explanations of their computational behavior,
but cannot, by Theorem 1, have full access to either the computations being explained or
the computations being used to explain them. In this respect, self-explaining ANNs are
similar to humans, who employ heuristics and confabulation to explain their behavior [53]
as discussed further below.

5.4. Example: Reinforcement Learning

Gene regulatory networks (GRNs) can be trained toward novel attractors, and hence
exhibit memory capabilities [78,79]. More generally, stochastic networks, including liquid-
state physical systems, can be trained toward novel attractors, and hence exhibit memory
capabilities [80]. In any such system, we can draw a boundary around some set S1 of
nodes or elements, and ask what S1 can represent about both itself and its environment,
i.e., the external environment plus the remaining system component S2. Theorem 1 places
restrictions on what S1 can represent analogous to those above. In this case, as in the above,
S1 “experiences” information flow across its boundary, but does not experience either its
own internal processes or those of E⊕ S2.

5.5. Example: Self-Editing Systems

The introduction of LISP as a programming language in the early 1960s [81] made
self-editing systems feasible targets for implementation in software. Self-editing, gener-
ally realized as the editing of an object-level component S1 by a meta-level component
S2, is foundational for autonomous learning. Architectures as diverse as CLARION [82],
LIDA [83], and MACSi [84] that support autonomous learning provide examples; see
Ref. [85] for a comparison of multiple such architectures. Each module in such an archi-
tecture represents only what its interface—effectively, its MB—with the rest of the system
allows it to represent. In accord with Theorem 1, meta-level modules cannot fully deter-
mine, either in advance or post hoc, the effects of a software change on the behavior of a
targeted object-level module in its own environment. Such systems face, effectively, the
same explanation problem as that faced by human engineers supervising training of an
ANN.
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All organisms are self-editing systems that engage in autonomous learning. Gene
expression, for example, can be seen as self-modification of cellular biochemical state, as
can developmental bioelectrical signaling that alters the state of an electrical circuit and
hence what activity/computations can be performed next [86,87]. The GRNs that control
gene expression have access only to highly coarse-grained representations of the cellular
states they are modifying—those encoded by the second messenger systems with which
they directly interact—and cannot, in particular, distinguish state changes due to external
inputs from internally generated state changes. Hence, GRNs, like human engineers or
evolution itself [88], are tinkerers, not fully informed planners that can determine a desired
outcome in advance.

5.6. Example: Intrusion Detection

Immune systems, from microbial restriction enzymes to mammalian B, T, and NK
cells, are often described informally as distinguishing “self” from “other” and eliminating
the latter. At the component level of description, however, such systems are only engaging
in molecular recognition; the source of the recognized ligand is irrelevant, as auto-immune
diseases reveal. Intrusion-detection software works in a similar way, flagging or deleting
anything meeting some specification, regardless of its source. Such systems are, therefore,
representations of “self” only in a negative sense: anything not recognized as “other” is
treated as “self”. A representation of this kind does not bound the self, and supports no
inferences about the self’s behavior; hence it presents no conflict with Theorem 1.

5.7. Example: the Human Narrative Self

Evidence from functional neuroscience increasingly supports the hypothesis that the
human narrative self—what people typically describe when asked to describe themselves—
is a post hoc construct implemented largely by the theory-of-mind (ToM) components of
the default mode network [89–93]. This representation integrates current interoceptive,
affective, and perceptual data with autobiographical memories that are now widely ac-
knowledged to be at least partially confabulatory [94,95] as further discussed in Section 5.8
below. It depends on brainstem inputs not only for sufficient arousal but also for the
non-representational “feeling of being alive” [96]. It is not maintained continuously but is
severely attenuated if not absent during activities that require externally focused attention,
particularly in flow states [97] but more generally during activities with some degree of au-
tomaticity, including everyday activities such as social interaction and language use [98,99].
Attenuation of the narrative self representation is a typical goal of meditation practices [100–
102], and a typical effect of psychedelics [103,104]; it contributes to the therapeutic effect in
both [105].

In the context of the FEP, the construction of the narrative self is an object-level process
that can be activated or attenuated by a meta-level process that allocates attention, or
in Bayesian terms, modulates precision assignments to priors [106,107]. Reducing the
narrative self to a representation constructed by an object-level process removes it from
the “driver’s seat” of cognition that it describes itself as occupying—a position it has
enjoyed in theories of cognition at least since Descartes, despite challenges from Freud
and others—and makes it merely one of several passengers [53]. The primary target of
active inference as “self-evidencing” [5] is, therefore, not the narrative self, which needs no
evidence, but rather the environment, which observes the self-evidencing system as a whole.
This demotion of the narrative self to a post hoc, coarse-grained representation of whole-
system behavior, including some attended-to sample of cognition, is clearly consistent
with the restrictions placed on self-representation by Theorem 1 and its corollaries. It
does not, however, alter the utility of the narrative self as an apparent locus of overall
behavioral control, particularly its utility to external observers equipped with their own
ToM systems. As external observers, we can marvel at the “self-control” exhibited by, for
example, athletes or musicians, even when they are operating in pure flow states and have
no post hoc reportable experiences of their narrative selves. We can, indeed, marvel via our
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narrative selves at our own performance while in such states, provided we engage in such
self-reflection only after such a performance has been completed. Attempting to do so in
real time disrupts the flow, rendering the performance clunky and amateurish [97,106], and
in critical situations, possibly fatal.

5.8. Example: Cognitive Biases and Confabulation

The outline of the example in Section 5.7 suggests that psychological “effects” that re-
veal incomplete or faulty self-knowledge are to be expected. These include cognitive biases
that typically over-estimate knowledge or the reliability of memory, as well as various forms
of motivated self-deception [108–112], a likely cause of how introspection/contemplation
can disrupt cognitive processes. An original approach to this question was taken up by Nis-
bett and Wilson in Ref. [113], who studied individual self-knowledge by noting that when
subjects were asked to explain their behavior in certain situations, they revealed a depen-
dence on shared theories concerning the causes of their behavior, rather than the actual causes
of the latter. Further studies in this direction proposed that thinking can undermine the
relationship between an individual’s attitudes and behavior (reviewed in Ref. [114]), and to
a broadly accepted suggestion that when explaining some attitude, responses are often, to
some degree, confabulated. In recent years, confabulation in relationship to self-knowledge
has received growing attention in psychological, philosophical and neuroscience studies,
for instance, in distinguishing confabulation types [115], e.g., as a memory distortion (re-
viewed in Ref. [116]), and various nuances of the meaning of the term (e.g., Ref. [117]:
a motivation by the desire to have fulfilled a rational obligation to explain attitudes by
reference to motivating reasons; Ref. [116]: a distortion of a specific form of consciousness
allowing individuals to locate objects and events according to their subjective temporality).
From a clinical perspective, frequent confabulation was observed in young autistic subjects
in Ref. [118], who suggested the cause as due to memory impairment and an executive
control condition, more so than the subjects’ actual milieu.

6. Discussion

One fundamental aspect highlighted by these results is the boundary of the apparent
self—called the “Self” in Ref. [119]—what the narrative self describes in the case of humans.
It is the Self that systems use to distinguish themselves from the outside world. This
is especially critical for biological beings—including both conventional cognition (brain-
based operation in the 3D world) and the kinds of unconventional diverse intelligence
exhibited by non-neural cells, tissues, and organs operating in physiological, transcriptional,
and anatomical problem spaces [120]. Establishing models of the Self and its boundary
is important for the efficiency of life (e.g., estimating what effectors one has, and which
aspects of the world can be “directly” controlled and which cannot), and for causal intrusion
detection needed for resistance to parasites and cheaters (e.g., “did I do that, or is some
other agent hacking me?”). It is also essential for the powerful ability to coarse-grain events
in the world to tell (whether consciously or implicitly) agential stories about oneself and
others, which allow a very compressed and effective interface for control and cooperation.
As noted above, these are uses to which the narrative self is put by humans.

Recent work formalized some of these ideas, developing the concept of the Cognitive
Light Cone (CLC), which represents the spatial and temporal limits on the size of goals
that a given agent can represent and pursue [119]. The Technological Approach to Mind
Everywhere (TAME) framework [3] focuses on how individual competent subunits, such
as cells, can join into collectives (networks), which can pursue much larger goals in novel
problem spaces, thus increasing their CLCs. According to this framework, Selves are some
observer’s (including the system’s own) model of a triad consisting of a space within which
the system operates, a specific CLC, and a set of competencies that the system is able to
deploy to navigate that space. This fundamentally emphasizes the fact that the extent
of Selves is not obvious (e.g., at the skin of an organism or a cell’s plasma membrane)
but is the subject of an active construction and modeling task that it or some external
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observer must perform. This naturally raises the issue of the limits on the efficacy of that
self- and other-identifying process, some of which have been made explicit here. Another
consequence of the TAME substrate-independent account of agency [42] is that Theorem 1
implies that the environment is a better judge of a system’s CLC than the system itself is
Ref. [121]. This impacts both biological applications of the autopoietic construction of the
Self–world boundary (for evolutionary developmental biology, regenerative medicine, and
psychiatry [122–124]), and the social/personal impact of increasing understanding of what
we really are [125,126].

7. Conclusions

We have shown here that there are principled limitations on self-representation that
derive from fundamental physical considerations and therefore apply to all physical sys-
tems. These limitations follow from the fact that the boundaries separating—and thereby
distinguishing—systems from their environments function as MBs. They therefore apply,
in particular, to all systems characterized by the FEP, even to systems that do not have
obvious or time-stable boundaries in ordinary 3D space.

Our results show that while metaprocessors that generate self explanations may con-
tribute to resolving the explanation problem for ANNs, they cannot solve it. Indeed,
we can expect ANNs—and multi-layer systems in particular—to confabulate or “halluci-
nate” self-explanations just as humans do. Our results also both confirm and provide a
fundamental physics grounding for Brook’s claim that fully centralized control systems
cannot work [127], though we note that this grounding has nothing to do with an absence
of representations. More broadly, they show that cognition—in particular, observation,
representation, and control—must be considered to be both embodied (i.e., physically
implemented) and enactive (i.e., include action on the environment as an information acqui-
sition strategy). These are, therefore, fundamental physical requirements for cognition, not
philosophical options; indeed, they are requirements for any active inference system [9].

The role of fundamental no-go results in science is to show that blind alleys really are
blind. In physics, the fundamental no-go theorems of Bell [46,128] and Kochen-Specker [47]
gave birth to quantum information theory. Gödel’s theorem substantially motivated the
founding of computer science. Our results, effectively, bring neuroscience closer to physics,
suggesting that in the long term, one has to square up to the possibility of incomplete-
ness/undecidability arising in a field that has been traditionally deterministic, or at least
classically stochastic. From the cognitive perspective, a general explanation can be given
in terms of the “no-go” results (particularly Corollary 2) that suggest individuals to be
Black Boxes to themselves, at least partially dissolving introspective self-knowledge and
replacing it with self-model heuristics and confabulation. This can be expected to have
consequences for recent models including the “inner screen” [107], “interface” [129], and
“beast machine” [93] approaches, among others. Moreover, it is a matter that applies to all
cognitive systems, from the basal level upwards [42], whose cellular/nervous systems are
in constant contention with an environment that is all-too-uncertain, if not patently hostile.

We recognize that results such as ours have implications for ethical and legal theo-
ries of responsibility and intent [112,130], for political neuroscience [131], and even for
fundamental questions of personal identity and the “meaning of life” [132]; however, con-
sideration of these issues is beyond the present scope. We do hope that our current results
will help to motivate a final rejection of the homuncular idea of centralized controllers in
favor of a fuller understanding of the distributed nature of observation, representation,
and control in both natural and artificial systems. From a more humanist perspective, we
hope that it encourages a greater appreciation of uncertainty and embodiment as essential
components of intelligence and awareness, and a fuller understanding of what it means to
be an active embodied mind.

Author Contributions: Conceptualization, C.F., J.F.G. and M.L.; formal analysis, C.F. and J.F.G.;
writing—original draft preparation, C.F., J.F.G. and M.L.; writing—review and editing, C.F., J.F.G.
and M.L. All authors have read and agreed to the published version of the manuscript.



Entropy 2024, 26, 194 13 of 16

Funding: M.L. and C.F. gratefully acknowledge support via Grant 62212 from the John Templeton
Foundation. The opinions expressed in this publication are those of the authors and do not necessarily
reflect the views of the John Templeton Foundation. M.L. also gratefully acknowledges support of the
Air Force Office of Scientific Research (AFOSR) under award number FA9550-22-1-0465, Cognitive &
Computational Neuroscience program.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors are most pleased to acknowledge the celebrated achievements in
neuroscience—the FEP in particular—of Karl J. Friston on his 65th birthday. Friston’s work has clearly
been influential in this and other works. We sincerely wish him to continue his masterly development
of ideas for many years to come.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CCCD Cone–Co-Cone Diagram
CLARION Connectivist Learning with Adaptive Rule Induction On-line
CLC Cognitive Light Cone
DL Deep Learning
FEP Free Energy Principle
GAN Generative Adversarial Network
GRN Gene Regulatory Network
GW Global Workspace
HP Holographic Principle
HUP Heisenberg’s Uncertainty Principle
I/O Input/Output
LIDA Learning Intelligent Distribution Agent
LISP List Processing
MACSi Motor Adaptive and Cognitive Scaffolding for iCub
MB Markov Blanket
QRF Quantum Reference Frame
TAME Technological Approach to Mind Everywhere
ToM Theory of Mind

References
1. Dietrich, E.; Fields, C.; Sullins, J.P.; von Heuveln, B.; Zebrowski, R. Great Philosophical Objections to Artificial Intelligence: The History

and Legacy of the AI Wars; Bloomsbury Academic: London, UK, 2021.
2. Horsman, C.; Stepney, S.; Wagner, R.C.; Kendon, V. When does a physical system compute? Proc. R. Soc. A 2014, 470, 20140182.
3. Levin, M. Technological approach to mind everywhere: An experimentally-grounded framework for understanding diverse

bodies and minds. Front. Syst. Neurosci. 2022, 16, 768201.
4. Clawson, W.; Levin, M. Endless forms most beautiful 2.0: Teleonomy and the bioengineering of chimaeric and synthetic organisms.

Biol. J. Linn. Soc. 2023, 139, 457–486.
5. Friston, K.J. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184.
6. Ramstead, M.J.; Sakthivadivel, D.A.R.; Heins, C.; Koudahl, M.; Millidge, B.; Da Costa, L; Klein, B.; Friston, K.J. On Bayesian

mechanics: A physics of and by beliefs. Interface Focus 2022, 13, 2923.
7. Friston, K.J.; Da Costa, L.; Sakthivadivel, D.A.R.; Heins, C.; Pavliotis, G.A.; Ramstead, M.J.; Parr, T. Path integrals, particular

kinds, and strange things. Phys. Life Rev. 2023, 47, 35–62.
8. Fields, C.; Friston, K.J.; Glazebrook, J.F.; Levin, M. A free energy principle for generic quantum systems. Prog. Biophys. Mol. Biol.

2022, 173, 36–59.
9. Fields, C.; Fabrocini, F.; Friston, K.J.; Glazebrook, J.F.; Hazan, H.; Levin, M.; Marcianò, A. Control flow in active inference systems,

Part I: Classical and quantum formulations of active inference. IEEE Trans. Mol. Biol. Multi-Scale Comm. 2023, 9, 235–245.
10. Fields, C.; Glazebrook, J.F. Representing measurement as a thermodynamic symmetry breaking. Symmetry 2020, 12, 810.
11. Fields, C.; Glazebrook, J.F.; Marcianò, A. Sequential measurements, topological quantum field theories, and topological quantum

neural networks. Fortschr. Phys. 2022, 70, 2200104.
12. Fields, C.; Glazebrook, J.F.; Marcianò, A. The physical meaning of the Holographic Principle. Quanta 2022, 11, 72–96.
13. Fields, C.; Glazebrook, J.F. Separability, contextuality, and the quantum Frame Problem. Int. J. Theor. Phys. 2023, 62, 159.



Entropy 2024, 26, 194 14 of 16

14. Ashby, W.R. Introduction to Cybernetics; Chapman and Hall: London, UK, 1956.
15. Rice, H.G. Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 1953, 74, 358–366.
16. Moore, E.F. Gedankenexperiments on sequential machines. In Autonoma Studies; Shannon, C.W., McCarthy, J., Eds.; Princeton

University Press: Princeton, NJ, USA, 1956; pp. 129–155.
17. Zanardi, P. Virtual quantum subsystems. Phys. Rev. Lett. 2001, 87, 077901.
18. Zanardi, P.; Lidar, D.A.; Lloyd, S. Quantum tensor product structures are observable-induced. Phys. Rev. Lett. 2004, 92, 060402.
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