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Abstract: We explore formal similarities and mathematical transformation formulas between general
trace-form entropies and the Gini index, originally used in quantifying income and wealth inequalities.
We utilize the notion of gintropy introduced in our earlier works as a certain property of the Lorenz
curve drawn in the map of the tail-integrated cumulative population and wealth fractions. In
particular, we rediscover Tsallis’ q-entropy formula related to the Pareto distribution. As a novel
result, we express the traditional entropy in terms of gintropy and reconstruct further non-additive
formulas. A dynamical model calculation of the evolution of Gini index is also presented.
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1. Motivation

This paper responds to a call by the journal Entropy to accompany various contribu-
tions in honor of Constantino Tsallis’ 80th birthday. Professor Tsallis initiated the field
of non-extensive statistical mechanics with his seminal paper in 1988 [1] and kept this
field flourishing with his continuous activity since then. One of his recent books on Non-
Extensive Statistical Mechanics [2], has the subtitle “Approaching a Complex World”. It
characterizes the range of research fields, beyond physics, where non-additive entropy
formulas can be applied [3–7]. Adding a physicist’s approach to the mathematical prede-
cessor formulas, such as Rényi entropy [8], and further generalizations of the Boltzmannian
log-formula proliferating in the field of informatics and mathematics [9–12], his work is
acknowledged to date in a wide and strengthening community of researchers dealing with
complexity [13–20].

Over the years, newcomers and opponents of non-extensive thermodynamics have
often argued that using any formula between entropy and probability besides the classical
Boltzmann–Gibbs–Shannon version can only then be generally applied, and it is advised to
use it if it moves beyond merely being an alternative formal possibility—when it must be
applied. Therefore, there is an ongoing challenge to find real-world data and applications
that can only be described by a non-Boltzmannian entropy formula. Such cases are found
with increasing frequency in complex systems. An interesting approach is presented in [21]:
it shows how to analyze nuclear production data to reveal non-extensive thermodynamics.
(Our earlier calculations of fluctuations and deviations from an exponential kinetic energy
distribution due to the finiteness of a heat bath, presented in several publications, should
not be cited here, because the Editors at MDPI consider self-citations, even one sixth of the
total, to be biased and unnecessary.)
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The Tsallis and Rényi entropy formulas are monotonic functions of one another; there-
fore, their respective canonical equilibrium distribution functions coincide, not accounting
for constant factors related to the partition sum. Since the Rényi entropy is defined as

SR =
1

1 − q
ln ∑

i
pq

i , (1)

and the Tsallis entropy as

ST =
∑i(pq

i − pi)

1 − q
=

eSR(1−q) − 1
1 − q

, (2)

one obtains, in the canonical approach to the physical energy distribution,

∂ST
∂pi

= eSR(1−q) ∂SR
∂pi

= βEi + α. (3)

The actual energy level is denoted by Ei in this formula, while α and β are Lagrange
multipliers. The former is related to the partition function and the latter to the absolute
temperature (via the average value of the energy). The prefactor Equation (3) is independent
of pi; therefore, the functional forms of the canonical PDFs coincide, reconstructing the
Pareto or Lomax distribution [22–25].

In a microcanonical approach, all trace-form entropies are maximal at the distribution
uniform in x, provided that the non-trivial function in the formula satisfies the general
properties of non-negativity and convexity. Constraining the expectation value of the base
variable, ⟨x⟩, of which we intend to study the probability density function, P(x), leads to
an entropy depending on the constrained value, say α + β⟨E⟩ for an energy (E) distribution.
These functions, of course, vary. The properties of entropy formulas also differ: while the
Rényi entropy is additive for the factorization of probabilities and the Tsallis q-entropy is
not, the q-entropy is formally an expectation value and the Rényi entropy is not.

In this paper, we first briefly review the Gini index and the Lorenz curve, spanning
a map of the tail-cumulative fractions of a population and the wealth owned by this
population. We furthermore review the definition and basic properties of gintropy, defined
as the difference between the above two cumulatives. Following this, we introduce some
gintropy formulas being formal doubles of well-known and used entropies. Finally, we
explore the transformations from one (entropic) view to the other (gintropic view) and
present a dynamical model calculation of the evolution of the Gini index based on a
master equation.

2. About Gintropy

In our search for additional motivation for the use of non-Boltzmannian entropy
formulas, we encounter the Gini index [26–28], classically used in income and wealth data
analyses. It measures the expectation value of the absolute difference, ⟨|x − y|⟩, normalized
by that of the sum, ⟨x + y⟩ = 2⟨x⟩, when taking both variables from the same distribution.
It delivers values between zero and one (100%):

G =
⟨|x − y|⟩
⟨x + y⟩ =

1
2⟨x⟩

∞∫
0

dx
∞∫

x

dy|y − x|P(x)P(y). (4)

Here, P(x) is the underlying PDF. This formula can be transformed into several alternate
forms, as has been shown in Ref. [29] in detail. We have also found that a function defined
by tail-cumulative functions, gintropy, has properties very similar to those of an entropy–
probability trace formula function.
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Two basic tail-cumulative functions constitute the definition and usefulness of gintropy.
The first is the cumulative population,

C(x) ≡
∞∫

x

dy P(y), (5)

and the second is the cumulative wealth normalized by its average value (also called the
scaled and (from below) truncated expectation value),

F(x) ≡
∞∫

x

dy
y
⟨x⟩P(y). (6)

We note here that the notions “population” and “wealth” are used in a general sense:
any type of real random variable x associated with a well-defined PDF, P(x), has a tail-
cumulative fraction (cf. Equation (5)) and a scaled fraction of the occurrence of the basic
variable defined in Equation (6). For example, x may denote the number of citations that
an individual author receives and P(x) the distribution of this number in the analyzed
population. Then, C(x) is the fraction of papers cited x times or more, and F(x) is the
fraction of citations received for these relative to all citations [30]. The above definitions
and the following analysis of gintropy can be used for any PDF defined on non-negative
variables x ≥ 0 and having a finite expectation value.

The Lorenz map [31] plots the essence of a PDF on a C − F plane. Since always F ≥ C,
following from the positivity of the PDF, P(x), the Lorenz curve always runs on this map
above or on the diagonal. At x = ∞, both quantities are vanishing, F(∞) = C(∞) = 0,
because the integration range shrinks to zero, and they also coincide at x = 0, following
from their normalized definitions: F(0) = C(0) = 1. The Gini index can be described as
the area fraction between the Lorenz curve and the diagonal to the whole upper triangle
(with an area of 1/2). The quantity of gintropy, introduced by us in an earlier work [29], is
the difference

σ ≡ F − C. (7)

This is a function of the fiducial variable x, and it vanishes as a function only for those
PDFs that allow only a single value for x. The gintropy is non-negative and it shows
a definite sign of curvature. On the Lorenz map, it is best viewed and expressed as a
function of C. The connection between these two variables, derived from Equation (5), is
given by dC/dx = −P(x). Likewise, dF/dx = −xP(x)/⟨x⟩ follows from the definition in
Equation (6). Then, it is easy to establish that it has a maximum exactly at the average case,
x = ⟨x⟩:

dσ

dC
=

dF
dC

− 1 =
x
⟨x⟩ − 1. (8)

The second derivative of gintropy in the Lorenz map is always negative:

d2σ

dC2 =
1
⟨x⟩

dx
dC

= − 1
⟨x⟩P(x)

< 0. (9)

As a consequence, the gintropy, σ(C), has a single maximum (between two maxima, there
would be a region with an opposite-sign second derivative for a continuous function). This
maximum can be expressed as a function of the average value:

σmax = F(⟨x⟩)− C(⟨x⟩). (10)
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Finally, the Gini index itself is twice the area under the gintropy:

G = 2
1∫

0

dC σ(C). (11)

3. Entropy from Gintropy

It is important to consider a few simple cases for gintropy. First of all, a PDF allowing
only a singular value, such as P(x) = δ(x − a), leads to vanishing gintropy. Then, σ = 0
for all C ∈ [0, 1]. This case is degenerate; the second derivative is also zero across the
whole interval and there is no definite maximum. A few examples have been discussed in
Ref. [29]. Here, we use the Tsallis–Pareto distribution, as a limiting case, as it includes the
Boltzmann–Gibbs exponential too. The tail-cumulative function is given as a two-parameter
set with a power-law tail and the proper C(0) = 1 normalization:

C(x) = (1 + ax)−b. (12)

Here, a and b are positive. It follows a PDF,

P(x) = ab(1 + ax)−b−1, (13)

an expectation value of ⟨x⟩ = 1/a(b − 1), and finally a gintropy formula:

σ = abx(1 + ax)−b = b
(

C1−1/b − C
)

. (14)

Related to the more popular form, one uses q = 1 − 1/b as a parameter and arrives at the
q-gintropy formula:

σq(C) =
C q − C
1 − q

. (15)

The q → 1 limit of this formula is the Boltzmann–Gibbs–Shannon relation:

σ1(C) = −C ln C. (16)

The Gini index in the Tsallis–Pareto case is easily obtained as being

G =
2

1 − q

1∫
0

(C q − C)dC =
1

q + 1
. (17)

The formal analogy between the expressions of gintropy in terms of the tail-cumulative
data population on the one hand and the entropy density in terms of the PDF on the other
hand is obvious (cf. Equation (15)). Moreover, the general form of trace entropy is given as

S =

∞∫
0

dx P(x) s(1/P(x)), (18)

while the Gini index is obtained according to our previous discussion above as

G =

∞∫
0

dx P(x) 2σ(C(x)). (19)

Here, we utilize the fact that
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1∫
0

dC f (C) =

∞∫
0

dx P(x) f (C(x)) (20)

for an arbitrary integrand, f (C(x)).
Despite the intriguing analogies, we do not have a quantity that would be equivalent to

the total entropy in social and econophysics. On the other hand, the nontrivial identification,
2σ(C(x)) = s(P(x)), would make the Gini index equal to the entropy, G = S. Since P(x) is
a negative derivative of the cumulative function C(x), the above G = S correspondence is
a complex differential equation for C. It may therefore be valid only for a single PDF, P(X),
for the solution of the above implicit differential equation. In conclusion, gintropy cannot
be replaced by entropy for a general PDF.

Let us review, briefly, how to obtain the general trace-form entropy once the gintropy,
σ(C), is known. To begin with, one uses a general function, s(1/P), in the definition of
entropy with the required non-negativity and convexity properties. Due to its relation to
the fiducial PDF, P(x), and using Equation (18), we obtain

S =

∞∫
0

dx P(x) s(1/P(x)) =

1∫
0

dC s
(
−⟨x⟩σ′′) (21)

with the short-hand notation

σ′′ ≡ d2σ

dC2 . (22)

In particular, the Boltzmann entropy becomes

SBG = ln⟨x⟩ +

1∫
0

dC ln(−σ′′(C)). (23)

4. Dynamics of the Gini Index

After the introduction of gintropy, the authors of [32] provided several examples for
different socioeconomic systems and compared the inequality measure G for their wealth
distribution. Here, we supplement this steady picture with a dynamic one. We demonstrate,
based on the example of the linear growth with reset (LGGR) model [33,34], that the Gini
index mostly (i.e., not accounting for a short overshoot period, probably of numerical
origin) increases monotonically, as the wealth distribution tends towards the stationary
Tsallis–Pareto distribution. This behavior of the Gini index is not yet proven for the general
case, in contrast to the entropy, cf. [32].

As in [32], the society members may have k ≥ 0 discrete units of wealth. We assume
that these members of the society acquire another unit of wealth with a rate that is linear to
their actual wealth value (the rich get richer effect). We also incorporate a constant reset
rate as in [32].

The evolution equation for the probability density function of the wealth distribution
in the LGGR model is applied here to a binned wealth representation. In this case, the
evolution equation, denoting ∂P

∂t with an overdot, reads

Ṗ(k, t) = µ(k − 1)P(k − 1, t)− (µ(k) + γ(k))P(k, t), (24)

where P(k, t) is the actual fraction of people in the wealth slot around k. In other words,
one becomes richer with a state-dependent rate, µ(k), while there is a reset mechanism
to zero wealth with the rate γ(k). This means not only a ruin probability rate, but also
includes any type of exit of people, receiving the income k, from the studied population
(e.g., resorting to pensions or the decay of hadrons containing energy k). The boundary
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condition at P(0, t) ensures that
∞
∑

k=0
P(k, t) = 1 remains constant in time. This requirement

results in
Ṗ(0, t) = ⟨γ⟩(t) − (γ(0) + µ(0))P(0, t), (25)

with ⟨γ⟩(t) = ∑k kP(k, t).
We solve Equation (24) as a time recursion problem, with the linear µ(k) = ak + b and

the constant γ(k) = γ parameter functions. In the numerical simulation, we discretize the
possible values of k and use them as an integer index. Starting from a theoretical society
where everybody has zero wealth, P(k, 0) = δ(k) is represented by a Kronecker delta δk,0,
delivering a vanishing Gini index, G = 0. Moreover, the whole Lorenz curve shrinks in this
case to the diagonal and correspondingly the gintropy vanishes everywhere as a function
of either k or C(k).

The growth rate µ(k), which is linear in k, is a common choice when dealing with the
distribution of network hubs’ connection numbers and is called a preferential rate [35–38].
Obviously, the linear assumption is the mathematically simplest between all possible mod-
els. Nevertheless, further assumptions, such as a quadratic one, also can be made. The linear
preference in the growth rate, utilized in the present discussion, together with a constant
reset rate, has the Tsallis–Pareto distribution as the stationary PDF in the LGGR model.

We also observe in our numerical simulations that the Tsallis–Pareto power-law tailed
wealth distribution develops, as was already anticipated in Ref. [32], cf. Figure 1. Fur-
thermore, in Ref. [39], analytical expressions were given for the evolution of a general
distribution for the cases with constant rates and for the presently discussed case of a linear
growth rate with a constant reset rate.

100 101 102

x

10 14
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10 10
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10 6

10 4
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100

P(
t,

x) t= 0.00
t= 0.05
t= 0.25
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t= 2.00
t= 3.00
t= 4.79
t=20.00

Figure 1. The time evolution of the wealth distribution starting from a society in which everybody
has zero wealth.

We follow the time evolution of the Lorenz curve, F vs. C, as well as the time-
dependent Gini index. The results of the numerical calculation are shown in the upper and
lower panels of Figure 2, respectively.

As can be observed, the wealth inequality grows in this theoretical example until
it reaches its stationary position. The apparent slight overshoot at mid-time may be a
numerical consequence of the time discretization. Recent, yet unpublished, analytical
calculations of the time evolution of the Gini index in the very unique case studied numeri-
cally in the present paper indicate that G(t) would monotonically increase from zero to its
stationary value. These somewhat laborious calculations will be published in a separate
paper. On the other hand, since the Gini index is not an entropy underlying the second law
in thermodynamics, the issue of the monotonity of the Gini index’s evolution in the general
case calls for further investigations for a better understanding.
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Figure 2. Time evolution of the Lorenz curve (upper panel) and the Gini index (lower panel). The
steady dotted line in the lower panel corresponds to the final stationary Gini index.

5. Summary

In summary, the quantity of gintropy, the difference between two tail-cumulative
integrals of any PDF defined on non-negative values, features a formal dependence on the
cumulative data population fraction having the form of various entropy formulas in terms
of the original PDF [32]. In this paper, the particular form of Tsallis entropy was discussed
in some detail.

The Gini index, used in economic studies to describe income and wealth inequality
in societies, is an integral of the gintropy-cumulative data population fraction function.
However, the Gini index–total entropy correspondence cannot be generally held, but only
for a special PDF, given the trace entropy formula specification. Without this, the gintropic
view of known entropy formulas can be obtained by expressing the PDF with the help of
the gintropy’s second derivative with respect to the cumulative data population fraction
and the average value of the base variable.

Time evolution in the particular but widespread case of a linear growth rate paired
with a uniform reset rate was obtained numerically to demonstrate the evolution of the
Gini index in time. A slight overshoot beyond its stationary value has been observed, so the
Gini index does not appear to behave similarly to entropy in this particular case. However,
to obtain a final conclusion, the scaling with the finite index space size should be studied.
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