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Abstract: The celebrated Blahut–Arimoto algorithm computes the capacity of a discrete memoryless
point-to-point channel by alternately maximizing the objective function of a maximization problem.
This algorithm has been applied to degraded broadcast channels, in which the supporting hyperplanes
of the capacity region are again cast as maximization problems. In this work, we consider general
broadcast channels and extend this algorithm to compute inner and outer bounds on the capacity
regions. Our main contributions are as follows: first, we show that the optimization problems are
max–min problems and that the exchange of minimum and maximum holds; second, we design
Blahut–Arimoto algorithms for the maximization part and gradient descent algorithms for the
minimization part; third, we provide convergence analysis for both parts. Numerical experiments
validate the effectiveness of our algorithms.

Keywords: Blahut–Arimoto algorithm; broadcast channel; capacity region; superposition coding
inner bound; Marton’s inner bound; UV outer bound

1. Introduction

In 1972, Cover [1] introduced the two-receiver discrete memoryless broadcast channel
p(y, z|x) to model a system of downlink communication in which X is the sender and
(Y, Z) are the receivers. In the same paper, he proposed a coding scheme which resulted
in the superposition coding inner bound (SCIB). It turns out that the SCIB is indeed the
capacity region for two-receiver broadcast channels in which the receivers are comparable
in the following partial orders: degraded [2], less noisy [3], and more capable [3]. However,
for a general broadcast channel the single-letter capacity region remains open.

To characterize the capacity region of a broadcast channel, a standard approach is
to show that one inner bound matches another outer bound. Currently, the best inner
bound for general broadcast channels is Marton’s inner bound (MIB) [4], while the UV
outer bound (UVOB) [5] was the best outer bound until recently, when a better one called J
version outer bound was proposed in [6].

The evaluation of inner and outer bounds is critical in the following aspects: (1) the
evaluation of an inner bound usually results in an optimal input distribution which can
help in the design of practical coding schemes; (2) the identification of the capacity region
of a particular broadcast channel through the comparison of one inner bound and one outer
bound relies on the evaluation of these two bounds; and (3) when claiming to establish
a new bound, it is necessary to show that the new bound strictly improves on old ones
through the evaluation of bounds on a particular channel.

Remark 1. This is the full version of conference papers accepted by ISIT 2022 and 2023 [7,8].
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However, this evaluation is usually difficult due to its non-convexity [9]. To alleviate this
issue, there exist a number of generic optimization algorithms, such as interior point [10], active
set [10], and sequential quadratic programming [11]. However, efficient algorithms should use
the domain knowledge of information theory as well; from this viewpoint, we consider the
Blahut–Arimoto (BA) algorithm, which is specially customized for information theory.

The original BA algorithm was independently developed by Blahut [12] and Ari-
moto [13] to calculate the channel capacity C = maxq(x) I(X; Y) for a general point-to-point
channel p(y|x). The algorithm transforms the original maximization problem into an
alternating maximization problem:

max
q(x)

∑
x,y

q(x)p(y|x) ln
q(x|y)
q(x)

, → max
q(x),Q(x|y)

∑
x,y

q(x)p(y|x) ln
Q(x|y)

q(x)

where the updating formulae are explicit within each iteration.
There have been numerous extensions of the BA algorithm to various scenarios in

information theory. For example, [14] applied the BA algorithm to compute the sum rate of
the multiple-access channel. Later, using the idea from the BA algorithm, the whole capacity
region of the multiple-access channel was formulated in [15] as a rank-one constrained
problem and solved by relaxation methods. It is beyond the scope of this paper to list all of
these references. Instead, we discuss those papers closely related to computing the bounds
on capacity regions of broadcast channels.

In [16], the authors considered the capacity region of a degraded broadcast channel
p(y, z|x), where receiver Z is a degraded version of Y.

In this scenario, the capacity region of the rate pairs (RY, RZ) is known, and can be
achieved by the simplified version of superposition coding. The supporting hyperplanes
can be characterized as

θRY + (1− θ)RZ = max
q(u,x)

θ I(X; Y|U) + (1− θ)I(U; Z).

Using a similar idea to that of the BA algorithm, the authors designed an algorithm to
alternatively maximize the objective function.

The method in [16] is directly applicable to less noisy broadcast channels, as the
characterization of the capacity region is the same as that of the degraded case. However,
this equivalence no longer holds for the more capable case, as this time the value of
the supporting hyperplane θRY + (1− θ)RZ is characterized as a max–min optimization
problem (e.g., see Equation (14)). As a mater of fact, the supporting hyperplanes of the
above-mentioned bounds, that is, SCIB, MIB, and UVOB, are all of the max–min form. The
main issue is that the minimization part is inside the maximization part, which prevents
the application of the BA algorithm to the whole problem.

The algorithms for calculating inner bounds and outer bounds for general broadcast
channels are very limited. The authors of [17] considered MIB (see Section 3.2) and designed
a BA algorithm to compute the sum rate RY + RZ of the simplified version, where the
auxiliary random variable W = ∅. The objective function,

∑
u,v,x,y,z

q(u, v)q(x|u, v)p(y, z|x) ln
Q(u|y)Q(v|z)

q(u, v)

is convex in q(x|u, v), which means that the maximum input X is a function of (U, V).
Noticing this, the authors performed optimization over all fixed mappings q(x|u, v). How-
ever, discarding W can result in a strictly smaller sum rate [18], making it is necessary to
consider the complete version of MIB.

In this paper, we seek to design BA algorithms for general broadcast channels in
order to compute the following inner and outer bounds: SCIB, MIB, and UVOB. The key
difference here is that the optimization problems are max–min problems, rather than only
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containing a maximization part. In Table 1, we provide an intuitive comparison of related
references.

Table 1. Comparison of typical scenarios related to the BA algorithm.

Channel Reference Objective Form Algorithm

point-to-point [12,13] capacity max BA

multiple access [14] sum-rate max BA

multiple access [15] inner/outer bounds max relaxation

degraded broadcast [16] capacity region max BA

general broadcast this paper inner/outer bounds max–min BA + gradient

The notation we use is as follows. p denotes a fixed (conditional) probability distri-
bution such as p(y, z|x), while q and Q are used for (conditional) probabilities that are
changeable. Calligraphic letters such as S are used to denote sets. The use of square
brackets in the function f [g] means that f is specified by the variable g; θ̄ denotes θ̄ := 1− θ;
and unless otherwise specified, we use the natural logarithm. To make the mathematical
expressions more concise, we use the following abbreviations of the Kullback–Leibler
divergences:

DY(p||q) :=∑
y

p(y) ln
p(y)
q(y)

,

DY|x(p||q) :=∑
y

p(y|x) ln
p(y|x)
q(y|x) ,

DY|X(p||q) :=∑
x

p(x) · DY|x(p||q).

The organization is as follows. First, in Section 2 we introduce the necessary back-
ground on the BA algorithm and its extension in [16]. Then, in Section 3 we extend the BA
algorithm to the evaluation of SCIB, MIB, and UVOB. Convergence analyses of these algo-
rithms are presented in Section 4. Finally, in Section 5 we perform numerical experiments
to validate the effectiveness and efficiency of our algorithms.

2. Mathematical Background of Blahut–Arimoto Algorithms

We first introduce the standard BA algorithm in Section 2.1, as we will rely on several
of its properties later. Then, in Section 2.2 we discuss why the method in [16] cannot be
applied to general broadcast channels.

2.1. Blahut–Arimoto Algorithm for Point-to-Point Channel

For a point-to-point channel p(y|x), the capacity C is the maximum of the mutual
information C = maxq(x) I(X; Y) = maxq(x) C(q), where

C(q) = H(X)− H(X|Y) = ∑
x,y

q(x)p(y|x) ln
q(x|y)
q(x)

. (1)

By replacing q(x|y) with a free variable Q(x|y), the BA algorithm performs alternating
maximization maxq,Q C(q, Q), where

C(q, Q) = ∑
x,y

q(x)p(y|x) ln
Q(x|y)

q(x)
. (2)

Notice here that we abuse the notation of C(·), which should not cause confusion in general.



Entropy 2024, 26, 178 4 of 27

The above objective function can be reformulated as follows:

C(q, Q) = ∑
x

q(x)(d[Q](x)− ln q(x)), (3)

where d[Q](x) = ∑
y

p(y|x) ln Q(x|y). (4)

We call this the basic form. For different scenarios, BA algorithms mainly differ in the
distribution q(·) and function d[Q](·).

The following theorem (see proof in Appendix A) provides the explicit formulae for
the maximum Q given q (denoted as Q[q]) and maximum q given Q (denoted as q[Q]).

Theorem 1. The following properties hold for the problem maxq,Q C(q, Q).

1. Given a fixed q, C(q, Q) is concave in Q, and the maximum point Q[q] is induced by the input
and the channel,

Q[q](x|y) = q(x|y) = q(x)p(y|x)
∑x′ q(x′)p(y|x′) . (5)

Further, the function values satisfy

C(q) = C(q, Q[q]) ≥ C(q, Q). (6)

2. Given a fixed Q, C(q, Q) is concave in q, and the maximum point q[Q] is obtained by the
Lagrangian,

q[Q] =
exp{d[Q](x)}

∑x′ exp{d[Q](x′)} . (7)

Further, evaluation of the function value results in

C(q[Q], Q) = ln ∑
x′

exp{d[Q](x′)} = d[Q](x)− ln q[Q](x), ∀x. (8)

Starting from an initial q0(x) > 0, the BA algorithm performs alternating maximization
and produces a sequence of points

q0 → Q1 → q1 → Q2 → . . .→ qn → Qn+1 → . . .

where
Qn = Q[qn−1],

qn = q[Qn]

according to Equations (5) and (7), respectively.
The criterion for stopping the iterations is based on the following result [12,13].

Proposition 1 (Proposition 1 in [13], Theorem 2 in [12]). It is the case that q∗ maximizes C(q)
if and only if the following holds for Q[q∗] and some scalar D:

d[Q[q∗]](x)− ln q∗(x)

{
= D, q∗(x) > 0,
≤ D, q∗(x) = 0.

Remark 2. It should be mentioned that in order to avoid infinity minus infinity for those q∗(x) = 0
in the above proposition, the following equivalent formulae can be used:

d[Q[q]](x)− ln q(x) = ∑
y

p(y|x) ln
q(x|y)
q(x)

= ∑
y

p(y|x) ln
p(y|x)
q(y)

. (9)
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This is not be an issue in the BA algorithm, as qn(x) > 0 according to Equation (7).

Thus, at the end of the n-th step, if the difference

max
x
{d[Q[qn−1]](x)− ln qn−1(x)} − C(qn, Qn)

= max
x
{d[Qn](x)− ln qn−1(x)} − ln ∑

x′
exp{d[Qn](x′)}

is small enough then the iteration is stopped.
Summarizing the above details, we arrive at the BA algorithm depicted in Algorithm 1.

The convergence of the resulted sequence of C(qn, Qn) is characterized in the following
theorem (see proof in Appendix A).

Theorem 2 (Theorem 1 in [13], Theorem 3 in [12]). If p0 > 0, then the value C(qn, Qn)
converges monotonically from below to the capacity C.

Algorithm 1: Computing channel capacity

Input: p(y|x), maximum iterations N, threshold ϵ > 0;
Initialization: q0(x) > 0, ϵ0 > ϵ, n = 0;
while n < N and ϵn > ϵ do

n← n + 1;
Qn = Q[qn−1] using Equation (5);
qn = q[Qn] using Equation (7);
C(qn, Qn) = ln ∑x exp{d[Qn](x)} using Equations (8) and (4);
ϵn = maxx{d[Qn](x)− ln qn−1(x)} − C(qn, Qn) using Equation (4);

end
Output: qn(x), Qn(x|y), C(qn, Qn)

2.2. Blahut–Arimoto Algorithm for Degraded Broadcast Channel

In [16], the authors considered the capacity region of the degraded broadcast channel.
The original objective function for the value of the supporting hyperplane θRY + θ̄RZ
(where θ < 1

2 ) is:

F(q(u, x))

= θ I(X; Y|U) + θ̄ I(U; Z)

= θ̄(I(X; Y|U) + I(U; Z))− (θ̄ − θ)I(X; Y|U) (10)

= θ̄(H(U, X)− H(X|Y, U)− H(U|Z))− (θ̄ − θ)(H(Y|U)− H(Y|X)). (11)

Similar to the BA algorithm, the new objective function is

F(q, Q) = θ̄ ·∑
u,x

q(u, x)(d[Q](u, x)− ln q(u, x)), (12)

where

d[Q](u, x) = ∑
y,z

p(y, z|x)
(

ln Q(x|y, u)Q(u|z) + θ̄ − θ

θ̄
ln

Q(y|u)
p(y|x)

)
. (13)

Then, the authors designed an extended BA algorithm that alternately maximizes F(q, Q)
and analysed the convergence.

However, the above method does not generalize to allow for evaluating the capacity
bounds of general broadcast channels. The main reason can be summarized in just one
sentence: the minimum of the expectation is, in general, greater than the expectation of the
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minimum. Taking SCIB as an example, using the representation A(U, X) in Lemma 1, the
supporting hyperplane is

θRY + θ̄RZ = max
q(u,x)

θ I(X; Y|U) + θ̄ ·min{I(U; Z), I(U; Y)}

= max
q(u,x)

(
θ̄(H(U, X)− H(X|Y, U) + min{−H(U|Z),−H(U|Y)})

− (θ̄ − θ)(H(Y|U)− H(Y|X))
)

.

A direct extension might try to reformulate the last expression in the form of Equation (12)
by letting

d[Q](u, x) = ∑
y,z

p(y, z|x)
(

ln Q(x|y, u) + min{ln Q(u|z), ln Q(u|y)}+ θ̄ − θ

θ̄
ln

Q(y|u)
p(y|x)

)
,

however, this is not an equivalent reformulation, as

min{−H(U|Z),−H(U|Y)} ≥∑
u,x

q(u, x) ·∑
y,z

p(y, z|x) ·min{ln Q(u|z), ln Q(u|y)}.

In the following section, we first use the fact that min{ f , g} = minα∈[0,1]{α f + ᾱg} to
parameterize the minimum, then show the max–min exchanges so that we can apply the
BA algorithm in the maximization part.

3. Blahut–Arimoto Algorithms for Capacity Bounds of Broadcast Channels

In this section, we first introduce two inner bounds and one outer bound on the
capacity region of the broadcast channel. We characterize their supporting hyperplanes as
max–min problems and show that the maximum and minimum can be exchanged. Then,
we design BA algorithms for the maximization parts and gradient descent algorithms for
the minimization parts.

3.1. Superposition Coding Inner Bound

The superposition coding inner bound was proposed by Cover in [1], which corre-
sponds to region B in the following lemma (see proof in Appendix B). This region actually
has three equivalent characterizations.

Lemma 1 (folklore). The following regions A, B, and C are equivalent characterizations of the
superposition coding inner bound:

A :=
⋃

q(u,x)

A(U, X) :=

{
RY ≤ I(X; Y|U),

RZ ≤ min{I(U; Z), I(U; Y)},

B :=
⋃

q(u,x)

B(U, X) :=


RY ≤ I(X; Y|U),

RZ ≤ I(U; Z),

RY + RZ ≤ I(X; Y),

C :=
⋃

q(u,x)

C(U, X) :=

{
RZ ≤ I(U; Z),

RY + RZ ≤ min{I(X; Y|U) + I(U; Z), I(X; Y)}.
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To characterize the supporting hyperplane θRY + θ̄RZ = F, we choose to use the
representation A(U, X). It is clear that

F = max
q(u,x)

θ I(X; Y|U) + θ̄ ·min{I(U; Z), I(U; Y)}

= max
q(u,x)

θ I(X; Y|U) + θ̄ · min
α∈[0,1]

(
αI(U; Z) + ᾱI(U; Y)

)
= max

q(u,x)
min

α∈[0,1]
θ I(X; Y|U) + θ̄αI(U; Z) + θ̄ᾱI(U; Y). (14)

Notice here that we cannot use the BA algorithm directly, as there is a minimum inside the
maximum. If we are able to swap the orders of the maximum and minimum, then we can
adopt the BA algorithm in the maximization part.

To show this kind of exchange, we first introduce a Terkelsen-type min–max result in
the following lemma.

Lemma 2 (Corollary 2 in Appendix A of [19]). Let Λd be the d-dimensional simplex, i.e., λi ≥ 0
and ∑d

i=1 λi = 1, let P be a set of probability distributions p(u), and let Ti(p(u)), i = 1, .., d be a
set of functions such that the set T defined by

T = {(a1, ..., ad) ∈ Rd : ai ≤ Ti(p(u)) for some p(u) ∈ P}

is a convex set; then,

sup
p(u)∈P

min
λ∈Λd

∑
i

λiTi(p(u)) = min
λ∈Λd

sup
p(u)∈P

∑
i

λiTi(p(u)).

With this lemma, we are to establish the following theorem (proof in Appendix B).

Theorem 3. The supporting hyperplane θRY + θ̄RZ = F of the superposition coding inner bound
is as follows: if θ ∈ [ 1

2 , 1], then F = maxq(x) θ I(X; Y); otherwise, if θ ∈ [0, 1
2 ) then

F = min
{

min
α≤ 1−2θ

1−θ

max
q(x)

θ̄ᾱI(X; Y) + θ̄αI(X; Z),

min
α> 1−2θ

1−θ

max
q(u,x)

θ I(X; Y|U) + θ̄ᾱI(U; Y) + θ̄αI(U; Z)
}

.

Further, it suffices to consider the cardinality size: |U | ≤ |X |.

For the maximization part and the nontrivial case where θ ∈ (0, 1
2 ), following the

above theorem, two types of BA algorithms can be designed according to the value of α.
When α ∈ ( 1−2θ

1−θ , 1], the original objective function is

F(α, q) = θ I(X; Y|U) + θ̄ᾱI(U; Y) + θ̄αI(U; Z) (15)

= θ̄(I(X; Y|U) + ᾱI(U; Y) + αI(U; Z))− (θ̄ − θ)I(X; Y|U)

= θ̄(H(U, X)− H(X|Y, U)− ᾱH(U|Y)− αH(U|Z))
+ (θ̄ − θ)(H(Y|X)− H(Y|U)) (16)

= θ̄ · ∑
u,x,y,z

q(u, x)p(y, z|x)
(

ln
q(x|y, u)
q(u, x)

q(u|y)ᾱq(u|z)α +
θ̄ − θ

θ̄
ln

q(y|u)
p(y|x)

)
.

By replacing the conditional qs with free variables Qs, we have the new objective function

F(α, q, Q) = θ̄ ·∑
u,x

q(u, x)(d[Q](u, x)− ln q(u, x)), (17)
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where

d[Q](u, x) = ∑
y,z

p(y, z|x)
(

ln Q(x|y, u)Q(u|y)ᾱQ(u|z)α +
θ̄ − θ

θ̄
ln

Q(y|u)
p(y|x)

)
. (18)

When α ∈ [0, 1−2θ
1−θ ], similar to Equation (4), the new objective function is

F(α, q, Q) = θ̄ ·∑
x

q(x)(d[Q](x)− ln q(x)), (19)

where

d[Q](x) = ∑
y,z

p(y, z|x)(ᾱ ln Q(x|y) + α ln Q(x|z)). (20)

For the minimization part, it is possible to use the optimal q and Qs obtained in the
maximization part to update α. Because the values of the optimal q and Qs may vary
greatly when α changes, we propose changing α locally in the neighbourhood. A candidate
approach is to use the gradient descent method, as follows:

αk+1 = αk − τk ·
∂

∂α
F(αk, q), (21)

where

∂F(α, q)
∂α

=

{
θ̄ · (I(X; Z)− I(X; Y)), if 0 ≤ α ≤ 1−2θ

1−θ ,
θ̄ · (I(U; Z)− I(U; Y)), if 1−2θ

1−θ < α ≤ 1.
(22)

If the change in α is sufficiently small, it can be assumed that the optimization with respect
to α converges and then stop the iteration.

We summarize the above procedures in Algorithm 2. Note that the updating rules for
the q and Qs depend on the interval in which the value of α falls.

Algorithm 2: Computing the superposition coding inner bound for θ ∈ (0, 1
2 )

Input: p(y, z|x), maximum iterations K, N, thresholds η, ϵ > 0, step size τ > 0;
Initialization: α0 ∈ (0, 1), q0(u, x) > 0, ηα > η, k = 0;
while k < K and ηα > η do

initialize ϵq > ϵ, n = 0;
while n < N and ϵq > ϵ do

n← n + 1;
Qn = Q[qn−1] using Equation (5) similarly;
qn = q[Qn] using Equation (7) similarly;
F(αk, qn, Qn) = θ̄ · ln ∑u,x exp{d[Qn]} using Equation (20) or (18);
ϵq = θ̄ ·max{d[Qn]− ln qn−1} − F(αk, qn, Qn);

end
k← k + 1;
calculate αk using Equations (21) and (22);
αk ← min{1, max{0, αk}};
ηα = |αk − αk−1|;
q0 ← qn;

end
Output: αk, qn(u, x), Qn, F(αk−1, qn, Qn)

Remark 3. Given αk, according to Equation (8),
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F(αk, qn, Qn) = θ̄ · ln ∑
u,x

exp{d[Qn](u, x)},

=⇒ exp{1
θ̄

F(αk, qn, Qn)} = ∑
u,x

exp{d[Qn](u, x)}.

According to Equation (18) or (20), ∑u,x exp{d[Qn]} equals a sum of exponents, as it is a function
of αk. This is a simple function; thus, we might wonder whether we can minimize F(αk, qn, Qn) to
update αk. It turns out that this kind of global updating rule can result in an oscillating effect, as
can be observed from Figure 1 in [7]. The main reason for this is that q[Q] depends locally on α;
therefore, it is not suitable to update α globally.

3.2. Marton’s Inner Bound

Marton’s inner bound [4] refers to the union over q(u, v, w, x) (such that (U, V, W)→
X → (Y, Z) is Markov) of the non-negative rate pairs (RY, RZ) satisfying

RY ≤ I(U, W; Y),

RZ ≤ I(V, W; Z),

RY + RZ ≤ min{I(W; Y), I(W; Z)}+ I(U; Y|W) + I(V; Z|W)− I(U; V|W).

For general broadcast channels, this is the most well known inner bound.
In the following, we characterize the supporting hyperplane θRY + θ̄RZ = M of MIB.

Because the expressions in MIB have symmetry in Y and Z, without loss of generality we can
assume that θ ≤ θ̄, i.e., θ ∈ [0, 1

2 ]. According to [20], the supporting hyperplane is stated in the
following lemma.

Lemma 3 (Equations (2) and (5) in [20]). The supporting hyperplane θRY + θ̄RZ = M of
Marton’s inner bound, where θ ∈ [0, 1

2 ], is

M = max
q(u,v,w,x)

min
α∈[0,1]

M(α, q(u, v, w, x))

= min
α∈[0,1]

max
q(u,v,w,x)

M(α, q(u, v, w, x)),

where

M(α, q) = (θ̄ − αθ)I(W; Z) + αθ I(W; Y) + θ̄ I(V; Z|W) + θ I(U; Y|W)− θ I(U; V|W). (23)

Further, it suffices to consider the following cardinalities: |U |, |V| ≤ |X |, and |W| ≤ |X |+ 4.

To compute the value of this supporting hyperplane, we can reformulate M(α, q)
as follows:

M(α, q) = θ̄H(U, V, W, X)− (θ̄ − αθ)H(W|Z)− αθH(W|Y)− θ̄H(V|W, Z)

− θH(U|W, Y)− (θ̄ − θ)H(U|V, W)− θ̄H(X|U, V, W). (24)

Then, the objective function M(α, q, Q) can be expressed as

M(α, q, Q) = θ̄ ∑
u,v,w,x

q(u, v, w, x)(d[Q](u, v, w, x)− ln q(u, v, w, x)), (25)
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where

d[Q] = ∑
y,z

p(y, z|x)
( θ̄ − αθ

θ̄
ln Q(w|z) + αθ

θ̄
ln Q(w|y) + ln Q(v|w, z)

+
θ

θ̄
ln Q(u|w, y) +

θ̄ − θ

θ̄
ln Q(u|v, w) + ln Q(x|u, v, w)

)
. (26)

For minimization over α, similar to Section 3.1, we update α along the gradient

αk+1 = αk − τk ·
∂

∂α
M(αk, q) = αk − τk · θ · (I(W; Y)− I(W; Z)). (27)

Similar to Algorithm 2, we summarize the algorithm for MIB in Algorithm 3.

Algorithm 3: Computing Marton’s inner bound for θ ∈ (0, 1
2 ]

Input: p(y, z|x), maximum iterations K, N, thresholds η, ϵ > 0, step size τ > 0;
Initialization: α0 ∈ (0, 1), q0(u, v, w, x) > 0, ηα > η, k = 0;
while k < K and ηα > η do

initialize ϵq > ϵ, n = 0;
while n < N and ϵq > ϵ do

n← n + 1;
Qn = Q[qn−1] using Equation (5) similarly;
qn = q[Qn] using Equation (7) similarly;
M(αk, qn, Qn) = θ̄ · ln ∑u,v,w,x exp{d[Qn]} using Equation (26);
ϵq = θ̄ ·max{d[Qn]− ln qn−1} −M(αk, qn, Qn);

end
k← k + 1;
calculate αk using Equation (27);
αk ← min{1, max{0, αk}};
ηα = |αk − αk−1|;
q0 ← qn;

end
Output: αk, qn(u, v, w, x), Qn, M(αk−1, qn, Qn)

3.3. UV Outer Bound

The UV outer bound [5] refers to the union over q(u, v, x) of non-negative rate pairs
(RY, RZ) satisfying

RY ≤ I(U; Y),

RZ ≤ I(V; Z),

RY + RZ ≤ I(U; Y) + I(X; Z|U),

RY + RZ ≤ I(V; Z) + I(X; Y|V).

For general broadcast channels, this was the best outer bound until [6] strictly improved
upon it over an erasure Blackwell channel. The following theorem (proof in Appendix B)
characterizes the supporting hyperplanes.

Theorem 4 (Claim 2 and Remark 1 in [21]). The supporting hyperplane of the UV outer bound is

θRY + θ̄RZ = min
α,β

max
q(u,v,x)

θ̄αI(V; Z) + θ̄ᾱI(X; Z|U) + θβI(U; Y) + θβ̄I(X; Y|V), (28)

where α, β ∈ [0, 1] satisfy θ̄α + θβ ≥ max{θ, θ̄}. Further, it suffices to consider the cardinality
sizes |U |, |V| ≤ |X |.
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The original objective function can be reformulated as

G(α, β, q) = θ̄α(I(X; Y|V) + I(V; Z))− (θ̄α− θβ̄)I(X; Y|V)

+ θβ(I(X; Z|U) + I(U; Y))− (θβ− θ̄ᾱ)I(X; Z|U).

The right-hand side contains two parts, both of which are similar to Equation (10), i.e., the
objective function of the degraded broadcast channel. It seems workable to apply the BA
algorithm twice, however, it should be noted that these two parts are coupled by the same q(x).

Observe that the first part depends only on q(v, x), while the other depends on q(u, x).
It suffices to consider the subset of distributions such that q(u, v, x) = q(x)q(v|x)q(u|x).
Thus, it is natural to decouple these two parts by fixing q(x) and applying the BA algorithm
separately to q(v|x) and q(u|x). After some manipulations, we have

G(α, β, q, Q)

= (θ̄α + θβ)H(X)

+ θ̄α(H(V|X)− H(X|Y, V)− H(V|Z))− (θ̄α− θβ̄)(H(Y|V)− H(Y|X))

+ θβ(H(U|X)− H(X|Z, U)− H(U|Y))− (θβ− θ̄ᾱ)(H(Z|U)− H(Z|X)) (29)

= −(θ̄α + θβ)∑
x

q(x) ln q(x)

+ θ̄α ∑
x,v

q(x)q(v|x)(d1[Q](v, x)− ln q(v|x))

+ θβ ∑
x,u

q(x)q(u|x)(d2[Q](u, x)− ln q(u|x)). (30)

The functions d1 and d2 in the above are

d1[Q](v, x) = ∑
y,z

p(y, z|x)
(

ln Q(x|y, v)Q(v|z) + θ̄α− θβ̄

θ̄α
ln

Q(y|v)
p(y|x)

)
, (31)

d2[Q](u, x) = ∑
y,z

p(y, z|x)
(

ln Q(x|z, u)Q(u|y) + θβ− θ̄ᾱ

θβ
ln

Q(z|u)
p(z|x)

)
. (32)

For fixed q(x)q(v|x)q(u|x), according to Equation (5), the optimal Qs are induced Q[q]s.
For fixed Qs, according to Equation (7), for each x we have

q[Q](v|x) = exp{d1[Q](v, x)}
∑v′ exp{d1[Q](v′, x)} , (33)

q[Q](u|x) = exp{d2[Q](u, x)}
∑u′ exp{d2[Q](u′, x)} . (34)

The value of the objective function is

G(α, β, q(x), q[Q](v|x), q[Q](u|x), Q) = (θ̄α + θβ)∑
x

q(x)(d[Q](x)− ln q(x)), (35)

where

d[Q](x) =
θ̄α

θ̄α + θβ
ln ∑

v
exp{d1[Q](v, x)}+ θβ

θ̄α + θβ
ln ∑

u
exp{d2[Q](u, x)}. (36)

Again, according to Equation (7) the optimal q[Q](x) and corresponding function value are

q[Q](x) =
exp{d[Q](x)}

∑x′ exp{d[Q](x′)} , (37)

G(α, β, q[Q], Q) = (θ̄α + θβ) ln ∑
x

exp{d[Q](x)}. (38)

For minimization over (α, β), similar to Section 3.1, we update (α, β) along the gradient:
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αk+1 = αk − τk ·
∂

∂α
G(αk, βk, q) = αk − τk · θ̄ · (I(V; Z)− I(X; Z|U)), (39)

βk+1 = βk − τk ·
∂

∂β
G(αk, βk, q) = βk − τk · θ · (I(U; Y)− I(X; Y|V)). (40)

Here, it should be mentioned that (α, β) must satisfy the constraint θ̄α + θβ ≥ max{θ, θ̄}.
Thus, if the resulting (αk+1, βk+1) violate this constraint, then we need to scale θ̄αk+1 +
θβk+1 up to be (at least) equal to max{θ, θ̄}. One way to accomplish this is to use the
equality to make β dependent on α, in which case the gradient descent update becomes
αk+1 = αk − τk · dk, βk+1 = βk − τk · (−θ̄dk/θ), where

dk =
∂

∂α
G(αk, βk, q)− θ̄

θ
· ∂

∂β
G(αk, βk, q).

Similar to Algorithm 2, we summarize the algorithm for UVOB in Algorithm 4.

Algorithm 4: Computing the UV outer bound

Input: p(y, z|x), maximum iterations K, N, thresholds η, ϵ > 0, step size τ > 0;
Initialization: α0, β0 ∈ (0, 1), q0(u, v, x) > 0, θ̄α0 + θβ0 ≥ max{θ, θ̄}, ηα, ηβ > η,

k = 0;
while k < K and max{ηα, ηβ} > η do

initialize ϵq > ϵ, n = 0;
while n < N and ϵq > ϵ do

n← n + 1;
Qn = Q[qn−1] using Equation (5) similarly;
qn = q[Qn] using Equations (33), (34) and (37);
G(αk, βk, qn, Qn) = (θ̄α + θβ) · ln ∑x exp{d[Qn]} using Equation (36);
ϵq = (θ̄α + θβ) ·max{d[Qn](x)− ln qn−1(x)} − G(αk, βk, qn, Qn);

end
k← k + 1;
calculate αk and βk using Equations (39) and (40);
αk ← min{1, max{0, αk}};
βk ← min{1, max{0, βk}};
if θ̄αk + θβk < max{θ, θ̄}, scale up to equality;
ηα = |αk − αk−1|;
ηβ = |βk − βk−1|;
q0 ← qn;

end
Output: αk, βk, qn(u, v, x), Qn, G(αk−1, βk−1, qn, Qn)

4. Convergence Analysis

Here, we aim to show that certain convergence results hold if qn lies in a proper
convex set which contains the global maximizer q∗. For this purpose, we first introduce the
first-order characterization of a concave function.

Lemma 4 (Lemma 3 in [22]). Given a convex set S , a differentiable function f is concave in S if
and only if, for all x, y ∈ S ,

f (y)− f (x)− (y− x)T∇ f |x ≤ 0. (41)

Similar to [22], we use the superlevel set to construct the convex set S . Let SF(α, k) be
the superlevel set of the objective function F(α, q) of SCIB:

SF(α, k) := {q|F(α, q) ≥ k}. (42)
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For a fixed k, it is possible for SF(α, k) to contain more than one connected set. For
q ∈ SF(α, k), we denote the connected set that contains q as TF(α, k, q).

Similarly, for MIB and UVOB we define the corresponding (connected) superlevel sets:
SM(α, k), TM(α, k, q), SG(α, β, k), TG(α, β, k, q). Note that k here should not be confused
with the notation indicating the number of iterations in the algorithms.

4.1. Superposition Coding Inner Bound

According to Theorem 3, the expression of the objective function F(α, q) of SCIB
depends on the value of α. Without loss of generality, we can consider the objective
function depicted in Equation (16). An equivalent condition for F(α, q) to be concave is
provided in the following lemma.

Lemma 5. Given a convex set S with a distribution q(u, x), then F(α, q) as depicted in Equation (16)
is concave in S if and only if, for all q1, q2 ∈ S , we have

θ̄(−DUX + DX|YU + ᾱDU|Y + αDU|Z) + (θ̄ − θ)DY|U ≤ 0,

where DA|B denotes DA|B(q2||q1).

The following lemma shows that qn+1 lies in the same connected superlevel set as that
of qn. The proof (see Appendix C) is similar to that for Lemma 4 in [16].

Lemma 6. In Algorithm 2, if qn(u, x) ∈ SF(α, k), then qn+1 ∈ TF(α, k, qn).

Fixing α and letting q∗(u, x) be the maximizer, the following theorem states that the
function values F(α, qn, Qn) converge. The proof (see Appendix C) is similar to that of
Theorem 2.

Theorem 5. If q∗, q0 ∈ TF(α, k, q̃) for some k and q̃, and if F(α, q) is concave in TF(α, k, q̃),
then the sequence F(α, qn, Qn) generated by Algorithm 2 converges monotonically from below to
F(α, q∗).

The following corollary is implied by the proof of Theorem 5.

Corollary 1. If q∗, q0 ∈ TF(α, k, q̃) for some k and q̃, and if F(α, q) is concave in TF(α, k, q̃), then

F(α, q∗)− F(α, qN , QN) ≤
θ̄

N
· DUX(q∗||q0).

The above analyses deal with F(α, qn, Qn) for a fixed α. When αm changes to αm+1,
the estimation for the one-step change in the function value is presented in the following
proposition (see proof in Appendix C).

Proposition 2. Given αm, suppose that Algorithm 2 converges to the optimal variables q̃∗ and Q̃∗
such that q̃∗ = q[Q̃∗] and Q̃∗ = Q[q̃∗]. Letting αm+1 be updated using Equation (22) and letting
q0 = q̃∗ be the initial point for the next round, we have

F(αm+1, q1, Q1) ≈ F(αm, q̃∗)−
(αm+1 − αm)2

τm
.

4.2. Marton’s Inner Bound

Next, we present the convergence results of the BA algorithm for MIB. The proofs are
omitted, as they are similar to those for SCIB.
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Lemma 7. Given a convex set S with a distribution q(u, v, w, x), M(α, q) as depicted in Equation (24)
is concave in S if and only if, for all q1, q2 ∈ S , we have

− θ̄DUVWX + (θ̄ − αθ)DW|Z + αθDW|Y + θ̄DV|WZ

+ θDU|WY + (θ̄ − θ)DU|VW + θ̄DX|UVW ≤ 0,

where DA|B denotes DA|B(q2||q1).

Lemma 8. In Algorithm 3, if qn(u, v, w, x) ∈ SM(α, k), then qn+1 ∈ TM(α, k, qn).

Fixing α and letting q∗(u, v, w, x) be the maximizer, the following theorem states that
the function values M(α, qn, Qn) converge.

Theorem 6. If q∗, q0 ∈ TM(α, k, q̃) for some k and q̃ and if M(α, q) is concave in TM(α, k, q̃),
then the sequence M(α, qn, Qn) generated by Algorithm 3 converges monotonically from below to
M(α, q∗).

The following corollary is implied by the proof of Theorem 6.

Corollary 2. If q∗, q0 ∈ TM(α, k, q̃) for some k and q̃, and if M(α, q) is concave in TM(α, k, q̃),
then

M(α, q∗)−M(α, qN , QN) ≤
θ̄

N
· DUVWX(q∗||q0).

The estimation for the one-step change in the function value for MIB is presented in
the following proposition.

Proposition 3. Given αm, suppose that Algorithm 3 converges to the optimal variables q̃∗ and Q̃∗
such that q̃∗ = q[Q̃∗] and Q̃∗ = Q[q̃∗]. Letting αm+1 be updated using Equation (27) and letting
q0 = q̃∗ be the initial point for the next round, we have

M(αm+1, q1, Q1) ≈ M(αm, q̃∗)−
(αm+1 − αm)2

τm
.

4.3. UV Outer Bound

Now, we present the convergence results of of the BA algorithm for UVOB. The proofs
are again omitted, as they are similar to those of SCIB.

Lemma 9. Given a convex set S of distribution q(u, v, x), G(α, β, q) as depicted in Equation (29)
is concave in S if and only if, for all q1, q2 ∈ S , we have

−(θ̄α + θβ)DX + θ̄α(−DV|X + DX|YV + DV|Z) + (θ̄α− θβ̄)DY|V

+ θβ(−DU|X + DX|ZU + DU|Y) + (θβ− θ̄ᾱ)DZ|U ≤ 0,

where DA|B denotes DA|B(q2||q1).

Lemma 10. In Algorithm 4, if qn(u, v, x) ∈ SG(α, β, k), then qn+1 ∈ TG(α, β, k, qn).

Fixing (α, β) and letting q∗(u, v, x) be the maximizer, the following theorem states that
the function values G(α, β, qn, Qn) converge.

Theorem 7. If q∗, q0 ∈ TG(α, β, k, q̃) for some k and q̃, and if G(α, β, q) is concave in TG(α, β, k, q̃),
then the sequence G(α, β, qn, Qn) generated by Algorithm 4 converges monotonically from below
to G(α, β, q∗).
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The following corollary is implied by the proof of Theorem 7.

Corollary 3. If q∗, q0 ∈ TG(α, β, k, q̃) for some k and q̃, and if G(α, β, q) is concave in TG(α, β, k, q̃),
then

G(α, β, q∗)− G(α, β, qN , QN) ≤
θ̄α + θβ

N
· DUVX(q∗||q0).

The estimation for the one-step change in the function value for UVOB is presented in
the following proposition.

Proposition 4. Given (αm, βm), suppose that Algorithm 4 converges to the optimal variables
q̃∗ and Q̃∗ such that q̃∗ = q[Q̃∗] and Q̃∗ = Q[q̃∗]. Letting (αm+1, βm+1) be updated using
Equations (39) and (40) and letting q0 = q̃∗ be the initial point for the next round, we have

G(αm+1, βm+1, q1, Q1) ≈ G(αm, βm, q̃∗)−
(αm+1 − αm)2

τm
− (βm+1 − βm)2

τm
. (43)

5. Numerical Results

We take the binary skew-symmetric broadcast channel p(y, z|x) as the test channel.
The conditional probability matrices are

PY|X =

[
1 0

0.5 0.5

]
, PZ|X =

[
0.5 0.5
0 1

]
.

This is perhaps the simplest broadcast channel for which the capacity region is still unknown.
This broadcast channel plays a very important role in research on capacity bounds.

It was first studied in [23] to show that the time-sharing random variable is useful for the
Cover–van der Meulen inner bound [24,25]. Later, [26–28] demonstrated that the sum rate
of the UVOB for this broadcast channel is strictly larger than that of the MIB, showing for
the first time that at least one of these two bounds are suboptimal.

Our algorithms are important in at least the following sense: supposing that it is not
known whether the MIB matches the UVOB (or the other two bounds for a new scenario)
and we want to check this; we can perform an exhaustive search on channel matrices of
size 2× 2 (or of higher dimensions) to check whether they match. According to the results
shown below in Section 5.5, this does not take very much time compared with generic
algorithms.

In the following, we apply the algorithms to compute the value of the supporting
hyperplane θRY + θ̄RZ, where θ = 0.4. The initial values of α and β are α0 = β0 = 0.7. This
set of parameters is feasible for UVOB, as θ̄α + θβ = 0.7 > max{θ, θ̄}.

We demonstrate the algorithms in the following aspects: (1) the maximization part;
(2) the minimization part; (3) the change from the maximum part to the minimization part;
(4) the superlevel set; and (5) comparison with generic non-convex algorithms.

5.1. Maximization Part

In this part, we fix α and β to the initial values and let the BA algorithms iterate for
N = 200 times. The results are presented in Figure 1. Because this is the maximization part,
the function values increase as the iterations proceed. It is clear that the function values
behave properly for fixed α and β.
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Figure 1. The maximization parts in the algorithms for BSSC with fixed values α0 = β0 = 0.7:
(a) the objective function values and (b) P(X = 0).

5.2. Minimization Part

In this part, we start with the initial α0 and β0, then let the algorithms iterate for
K = 200 times. The results for (αk, βk) are presented in Figure 2. Because this is the
minimization part, the function values decrease as the iterations proceed. It is clear that αk
in SCIB and MIB gradually changes as k grows. For UVOB, it is necessary to ensure that
θ̄α + θβ ≥ max{θ, θ̄}. When the updated (αk+1, βk+1) makes θ̄α + θβ fall below this value,
it becomes necessary to scale it back. This happens approximately starting from k = 5.
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Figure 2. The minimization parts in the algorithms for BSSC with initial values α0 = β0 = 0.7:
(a) the objective function values and (b) (αk, βk).

5.3. Change from Maximization to Minimization

In this part, we consider UVOB and let K in the algorithm be K = 100. Figure 3 plots
the following three values in Equation (43):

G(αk, βk, q̃∗),

LHS := G(αk+1, βk+1, q1, Q1),

RHS := G(αk, βk, q̃∗)−
(αk+1 − αk)

2

τk
− (βk+1 − βk)

2

τk
.

As the algorithm iterates, the estimate in Equation (43) becomes more and more accurate,
as exp{x} ≈ 1 + x and ln(1 + x) ≈ x for small x.
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Figure 3. Function values of UVOB for BSSC with initial values α0 = β0 = 0.7.



Entropy 2024, 26, 178 17 of 27

5.4. Superlevel Set

To visualize the convergence of qn and its relation with the superlevel set, we take
SCIB as an example and fix q(u) such that q(x|u) has two free variables. We reformulate
the objective function of SCIB depicted in Equation (16) as follows:

F̃(α, q(x|u), Q) = θ̄H(U) + θ̄(H(X|U)− H(X|Y, U)− ᾱH(U|Y)− αH(U|Z))
− (θ̄ − θ)(H(Y|U)− H(Y|X))

= θ̄H(U) + θ̄ ∑
x,u

q(u)q(x|u)(d[Q](u, x)− ln q(x|u)),

where

d[Q](u, x) = ∑
y,z

p(y, z|x)
(

ln Q(x|y, u)Q(u|y)ᾱQ(u|z)α +
θ̄ − θ

θ̄
ln

Q(y|u)
p(y|x)

)
.

In particular, we fix α0 = 0.7 and PU = (0.3, 0.7), then use the algorithm to find the
values of P(X = 0|U = 0) and P(X = 0|U = 1). The results are shown in Figure 4. In this
case, qn for large enough n lies in the concave part of the superlevel set, meaning that the
algorithm converges. Here, it should be mentioned that it is possible that the algorithm may
not converge to the optimal point for some initial q0s that do not lie in the concave part.

Figure 4. Function values of SCIB for BSSC with the initial value α0 = 0.7 and fixed probability vector
PU = (0.3, 0.7): (a) 3D view and (b) contour view.

5.5. Comparison With Generic Non-Convex Algorithms

Here, we compare our algorithms with the following generic algorithms implemented
using the “fmincon” MATLAB function: interior-point, active-set, and sequential quadratic
programming (sqp). For simplicity, we only compare the sum rate of MIB, for which
the optimal value is 0.2506717. . . nats (0.3616428. . . bits). The optimization problem for
computing the sum rate is

max
q(u,v,w,x)

min{I(W; Y), I(W; Z)}+ I(U; Y|W) + I(V; Z|W)− I(U; V|W).

According to Lemma 3, the cardinality size is |U | · |V| · |W| · |X | = |X |3(|X |+ 4) = 48.
Notice that we do not carry out a comparison with the method in [16], as it cannot be

applied to cases where there is a minimum. For scenarios in which [16] can be used, our
algorithms degenerate to the method in [16].

The initial point of q(u, v, w, x) is randomly generated for all the algorithms. Table 2
lists the experimental results. For the first three algorithms, a randomly picked starting
point usually does not provide a good enough result. Thus, we ran the first three algorithms
multiple times until the best function value hit 0.2506 in order to test their effectiveness. It
is clear from the table that only sqp can be considered comparable to our algorithms.
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Table 2. Comparison with generic non-convex algorithms on BSSC.

Method Time (Seconds) Sum-Rate of MIB (Nats)

interior-point 513.82 0.25060. . .

active-set 2438.57 0.25061. . .

sqp 1.7621 0.25067. . .

this paper 0.0629 0.25067. . .

For further comparison with sqp, we randomly generated broadcast channels with
cardinalities of |X | = 3, 4, 5, 6, and |Y| = |Z| = |X |. The corresponding dimensions
are |X |3(|X |+ 4) = 189, 512, 1125, 2160. Because the optimal sum rate is not yet known,
we ran sqp once to record the running time. The results in Table 3 suggest that our
algorithms are highly scalable. This meets our expectation, as the updating formulae in
Equations (5) and (7) are all explicit and can be computed rapidly.

Table 3. Comparison with sqp on random channels with alphabet sizes |X | = 3, 4, 5, 6.

Method
Time (Seconds) Sum-Rate of MIB (Nats)

|X | = 3 |X | = 4 |X| = 5 |X | = 6 |X | = 3 |X | = 4 |X | = 5 |X | = 6

sqp 2.6342 22.44 168.12 1065.51 0.1840 0.2348 0.1983 0.2351

this
paper 0.0771 0.1031 0.1450 0.2086 0.1863 0.2375 0.2019 0.2423

6. Discussion and Conclusions
6.1. Initial Points of Algorithms

Taking MIB as an example, we next discuss how to choose the initial points. When
there is no prior knowledge on the optimization problem, the initial point is usually
generated randomly. In this paper, Theorem 6 and Lemma 7 provide some guidance on
the choice of the initial point p0(u, v, w, x). A possibly workable method is to randomly
generate an initial point and slightly perturb it to check whether these two points satisfy
the inequality in Lemma 7. If the answer is no, then it is possible that the objective function
is not concave in the neighbourhood of this point, and we continue to generate new
initial points.

For the initial point α0, because it lies in [0, 1] it is affordable to perform a grid search,
especially when |X | is small. For example, we can take 0.1 as the equal space and try each
α0 ∈ {0, 0.1, 0.2, . . . , 1}. This approach can to some extent help us avoid becoming stuck
in local extreme points.

6.2. J Version Outer Bound

As mentioned earlier, the best general outer bound is the J version outer bound
proposed in [6]. However, the evaluation of this outer bound turns out to be even harder,
as there are additional constraints on the free variables and the auxiliary channel with the
joint distribution

q(x)q(u, v, w|x)q(ũ, ṽ, w̃|x)q(û, v̂, ŵ|x)p(y, z|x)T(j|x, y, z).

These constraints are presented in Equations (18a)–(18c) and (19a)–(19c) in [6]. Taking
Equations (18a) and (19a) as an example,

(18a) : I(W̃; Z)− I(W̃; J) + I(Ŵ; J)− I(Ŵ; Y) = I(W; Z)− I(W; Y),

(19a) : 0 ≤ I(X; Z|Ũ, W̃)− I(X; J|Ũ, W̃) ≤ I(Ṽ; Z|W̃)− I(Ṽ; J|W̃).
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Direct application of Equation (7) does not yield an updated q[Q] guaranteed to satisfy
these constraints; thus, the design of BA algorithms for the J version outer bound should
carefully address this kind of problem. We leave this for future research.

Finally, to conclude our paper, the extension of the BA algorithm to inner and outer
bounds for general broadcast channels encounters max–min problems. We have shown
that the max–min order can be changed to min–max. Based on this observation, we have
designed BA algorithms for the maximization parts and gradient descent algorithms for
the minimization parts, then performed convergence analysis and numerical experiments
to support our analysis. We have compared our algorithms to the following generic non-
convex algorithms: interior-point, active-set, and sequential quadratic programming. The
results show that our algorithms are both effective and efficient.
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Appendix A. Proofs of Results in Section 1

Proof of Theorem 1. For the first property, Fox fixed q, the concavity is clear, as ln Q is
concave in Q. The equality in Equation (6) is easy to show, as if we take Q[q](x|y) to be
q(x|y) then the function C(q, Q[q]) in Equation (2) reduces to C(q) in Equation (1). The
maximum can be proved using the Kullback–Leibler divergence:

C(q, Q[q])− C(q, Q) = C(q)− C(q, Q)

= ∑
x,y

q(x)p(y|x) ln
q(x|y)
Q(x|y)

= ∑
x,y

q(y)q(x|y) ln
q(x|y)
Q(x|y)

= DX|Y(q||Q)

≥ 0.

For the second property, we can reformulate C(q, Q) as

C(q, Q) = H(X)−∑
x

q(x)(∑
y

p(y|x) ln Q(x|y)).

The concavity holds, as the first term H(X) is concave and the second term is linear. To find
the maximum q[Q], because there is a constraint ∑x q(x) = 1, we consider the derivative of
the Lagrangian:
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0 =
∂

∂q(x)
L(λ, q, Q)

=
∂

∂q(x) ∑
x′

q(x′)(d[Q](x′)− ln q(x′))− λ(1−∑
x′

q(x′))

= d[Q](x)− ln q(x)− 1− λ.

This implies that q(x) = exp{d[Q](x)− 1− λ} for all x. The common term 1 + λ can be
eliminated by normalization, as depicted in Equation (7). We can then verify the function
value as follows:

C(q[Q], Q) = ∑
x

q[Q](x)(d[Q](x)− ln q[Q](x))

(a)
= ∑

x
q[Q](x)(ln q[Q](x) + ln ∑

x′
exp{d[Q](x′)} − ln q[Q](x))

= ln ∑
x′

exp{d[Q](x′)},

where (a) is due to Equation (7). The second equality is again per Equation (7).

Proof of Theorem 2. The basic idea is to show that the sum is bounded for decreasing and
positive numbers C− C(qn, Qn).

The monotonicity C(qn+1, Qn+1) ≥ C(qn, Qn) is clear, as we are performing alternating
maximization; thus,

C(qn+1, Qn+1) = C(q[Qn+1], Qn+1) ≥ C(qn, Qn+1) = C(qn, Q[qn]) ≥ C(qn, Qn).

The positiveness of C− C(qn, Qn) is because C ≥ C(qn) ≥ C(qn, Qn).
Let q∗ achieve the maximum of C(q); then,

C− C(qn, Qn)−∑
x

q∗(x) ln
qn(x)

qn−1(x)

= C(q∗, Q[q∗])− C(qn, Qn)−∑
x

q∗(x) ln
qn(x)

qn−1(x)

(a)
= ∑

x
q∗(x)(d[Q[q∗]](x)− ln q∗(x)− d[Qn](x) + ln qn(x)− ln

qn(x)
qn−1(x)

)

= ∑
x

q∗(x)(d[Q[q∗]](x)− ln q∗(x)− d[Q[qn−1]](x) + ln qn−1(x))

(b)
= ∑

x
p∗(x)∑

y
p(y|x)(ln p(y|x)

q∗(y)
− ln

p(y|x)
qn−1(y)

).

= ∑
x,y

q∗(x)p(y|x) ln
qn−1(y)

q∗(y)

= −DY(q∗||qn−1)

≤ 0,

where (a) is due to Equation (8) and (b) holds according to Equation (9). Now, we can
bound the sum as follows:
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N

∑
n=1

(C− C(qn, Qn)) ≤
N

∑
n=1

∑
x

q∗(x) ln
qn(x)

qn−1(x)

= ∑
x

q∗(x) ln
qN(x)
q0(x)

= ∑
x

q∗(x) ln
qN(x)q∗(x)
q0(x)q∗(x)

= DX(q∗||q0)− DX(q∗||qN)

≤ DX(q∗||q0).

The last term is finite, as q0 > 0. This implies C(qn, Qn)→ C.

Appendix B. Proofs of Results in Section 3

Proof of Lemma 1. The equivalence B = C is already stated without proof in Chapter 5.3
and Chapter 5.6 of [29]. We present the proof here for completeness.

It is clear thatA ⊆ B ⊆ C. Thus, we only need to prove C ⊆ A. It suffices to show that
the corner points of C(U, X) lie inside A.

Because C(U, X) is a trapezoid with one corner point (0, 0), there are at most three nontrivial
corner points, as follows:

1. Lower right (r1, 0), where r1 = min{I(X; Y), I(X; Y|U) + I(U; Z)}. Because
r1 ≤ I(X; Y), we have (r1, 0) ∈ A(∅, X).

2. Upper left (0, r2), where r2 = min{I(U; Z), I(X; Y)}. Clearly, (0, r2) ∈ A(X, X).
3. Upper right (min{I(X; Y|U), I(X; Y) − I(U; Z)}, I(U; Z)); this corner point exists

when I(U; Z) ≤ I(X; Y). We can consider two cases:

(a) I(U; Y) ≥ I(U; Z): the corner point (I(X; Y|U), I(U; Z)) is inside A(U, X).
(b) I(U; Y) ≤ I(U; Z): the corner point is (I(X; Y) − I(U; Z), I(U; Z)). It suffices

to consider I(U; Y) ≤ I(U; Z) ≤ I(X; Y), as otherwise this point does not exist.
Now, let α be such that (1− α)I(X; Y) + αI(U; Y) = I(U; Z). We can construct a
pair (Û, X̂) such that this corner point is insideA(Û, X̂). Considering the random
variables Q ∼ Bernoulli(α), Ũ = X when Q = 0 and Ũ = U when Q = 1, we can
let Û = (Ũ, Q), X̂ = X; then, I(X̂; Y|Û) = 0 + αI(X; Y|U) = I(X; Y)− I(U; Z).
Now, we have I(Û; Z) ≥ I(Ũ; Z|Q) ≥ I(U; Z) and I(Û; Y) ≥ I(Ũ; Y|Q) =
I(U; Z); hence, min{I(Û; Z), I(Û; Y)} ≥ I(U; Z).

The proof is finished.

Proof of Theorem 3. We can useA(U, X) in Lemma 1 to compute the supporting hyperplanes.
When θ ∈ [ 1

2 , 1], then θRY + θ̄RZ is bounded from above by

max
q(u,x)

θ I(X; Y|U) + θ̄ I(U; Y) = max
q(u,x)

θ(I(X; Y)− I(U; Y)) + θ̄ I(U; Y)

= max
q(u,x)

θ I(X; Y) + (1− 2θ)I(U; Y)

≤ max
q(x)

θ I(X; Y).

On the other hand, this upper bound is achieved by setting U = ∅ in A(U, X).
When θ ∈ [0, 1

2 ), we first have

F = max
p(u,x)

min
α∈[0,1]

θ I(X; Y|U) + θ̄αI(U; Z) + θ̄ᾱI(U; Y).

To show that the maximum and minimum can be exchanged, we use Lemma 2; in particular,
letting d = 2, λ1 = α, and λ2 = ᾱ, we have



Entropy 2024, 26, 178 22 of 27

T1(q(u, x)) = θ I(X; Y|U) + θ̄ I(U; Z),

T2(q(u, x)) = θ I(X; Y|U) + θ̄ I(U; Y).

Then, the objective function F(α, q) equals λ1T1 + λ2T2. It remains to prove that T is
convex. Assuming that (a1, a2) ∈ T for some qa(u, x) and that (b1, b2) ∈ T for some
qb(u, x) while letting Ũ = (U, Q), where Q ∼ Bernoulli(β) and (U, X) ∼ qa(u, x) if Q = 1
and (U, X) ∼ qb(u, x) if Q = 0, we then have

T1(βqa + β̄qb) = T1(q(ũ, x))

= θ I(X; Y|U, Q) + θ̄ I(U, Q; Z)

≥ θ I(X; Y|U, Q) + θ̄ I(U; Z|Q)

= βT1(qa) + β̄T1(qb).

Similar inequalities hold for T2. This proves the convexity, and hence the exchange.
Now, we can show that the expression of F can be simplified for θ ∈ [0, 1

2 ) and
α ≤ 1−2θ

1−θ . Noting that I(U; Y) = I(X; Y)− I(X; Y|U) and I(U; Z) = I(X; Z)− I(X; Z|U),
we have

θ I(X; Y|U) + θ̄ᾱI(U; Y) + θ̄αI(U; Z)

= θ̄ᾱI(X; Y) + θ̄αI(X; Z) + (θ − θ̄ᾱ)I(X; Y|U)− θ̄αI(X; Z|U).

When α ≤ 1−2θ
1−θ , i.e., θ − θ̄ᾱ ≤ 0, the last two terms above have a non-positive sum. The

maximum value equals zero, and can be achieved by taking U = X. This finishes the proof
of the expression.

The cardinality can be proved as follows:

θ I(X; Y|U) + θ̄ᾱI(U; Y) + θ̄αI(U; Z)

= θ̄ᾱI(X; Y) + θ̄αI(X; Z) + (θ − θ̄ᾱ)I(X; Y|U)− θ̄αI(X; Z|U)

= f (q(x)) + ∑
u

q(u)g(q(x|u)),

where f and g are some continuous functions corresponding to the mutual information.
Subject to fixed marginal q(x), the maximum of ∑u q(u)g(q(x|u)) over all feasible q(u)
and q(x|u) is the upper concave envelope of the function g evaluated at q(x). Notice
that as the degree of freedom of the distribution q(x) is |X | − 1, it suffices to consider
|U | ≤ X | − 1 + 1 = |X | for evaluating the envelope.

Proof of Theorem 4. For fixed q(u, v, x), in the pentagon of the UVOB there are at most
two corner points in the first quadrant, namely, the upper left and lower right ones. The
line connecting these two points has slope −1. We need to compute the the supporting
hyperplane value G = max(RY ,RZ)∈UVOB θRY + θ̄RZ, where θ ∈ (0, 1).

For the case θ ∈ (0, 1
2 ], note that the slope of the line θRY + θ̄RZ = G is −θ/θ̄ ≥ −1;

thus, it suffices to consider the upper left corner point. The expression of this point is
different when q(u, v, x) falls into one of the following two sets:

S1 = {q(u, v, x) : I(V; Z) ≤ I(U; Y) + I(X; Z|U)},
S2 = {q(u, v, x) : I(V; Z) ≥ I(U; Y) + I(X; Z|U)}.

When q ∈ S1, this corner point and the corresponding expression of l1(q) := θRY +
θ̄RZ are (

min{I(U; Y), I(U; Y) + I(X; Z|U)− I(V; Z), I(X; Y|V)}, I(V; Z)
)
,

l1(q) = θ ·min{I(U; Y), I(U; Y) + I(X; Z|U)− I(V; Z), I(X; Y|V)}+ θ̄ I(V; Z).

Otherwise, when q ∈ S2, this corner point and corresponding expression of
l2(q) := θRY + θ̄RZ are
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(
0, I(U; Y) + I(X; Z|U)

)
,

l2(q) = θ̄
(

I(U; Y) + I(X; Z|U)
)
.

Now, the supporting hyperplane value is

G = max{max
q∈S1

l1(q), max
q∈S2

l2(q)}.

We want to show that

max
q∈S2

l2(q) = max
q∈S2

l1(q).

For the left hand-side term, we have

max
q∈S2

l2(q) = max
q∈S2

θ̄
(

I(U; Y) + I(X; Z|U)
)

≤ max
q∈S2

θ̄ I(V; Z)

≤ max
q∈S2

θ̄ I(X; Z),

where the equalities hold with U = ∅, V = X and this choice is in S2. For the other term,

max
q∈S2

l1(q) = max
q∈S2

θ(I(U; Y) + I(X; Z|U)− I(V; Z)) + θ̄ I(V; Z)

≤ max
q∈S2

θ̄ I(V; Z)

≤ max
q∈S2

θ̄ I(X; Z),

where the equalities hold using the same settings as above. Hence, we have the supporting
hyperplane value

G = max{max
q∈S1

l1(q), max
q∈S2

l1(q)} = max
q

l1(q).

We can simplify this expression as follows:

max
q

l1(q) = max
q

min
a,b∈[0,1]

θ(1− a)I(U; Y) + θa(1− b)
(

I(U; Y) + I(X; Z|U)− I(V; Z)
)

+ θabI(X; Y|V) + θ̄ I(V; Z)

= max
q

min
a,b∈[0,1]

θ(1− ab)I(U; Y) + θa(1− b)I(X; Z|U)

+ (θ̄ − θa(1− b))I(V; Z) + θabI(X; Y|V).

Letting α = 1− θa(1− b)/θ̄, β = 1− ab, we have α, β ∈ [0, 1], θ̄α+ θβ = θ̄ + θ(1− a), and the
supporting hyperplane value is

θRY + θ̄RZ = max
q

min
α,β∈[0,1]

θ̄αI(V; Z) + θ̄ᾱI(X; Z|U) + θβI(U; Y) + θβ̄I(X; Y|V).

Notice that the range of θ̄α + θβ is [max{θ, θ̄}, 1]. Within this range, the reverse mapping
from (α, β) to (a, b) is

a =
1− (θ̄α + θβ)

θ
, b =

θβ̄

θβ̄ + θ̄ᾱ
.

Notice that when θ ∈ [ 1
2 , 1), we have θ̄ ∈ (0, 1

2 ]; we can use similar reasoning as above
(by swapping Y and Z, RY and RZ, U and V, θ and θ̄, and finally α and β) to obtain

θ̄RZ + θRY = max
q

min
α,β∈[0,1]

θβI(U; Y) + θβ̄I(X; Y|V) + θ̄αI(V; Z) + θ̄ᾱI(X; Z|U).
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The constraint then becomes θβ+ θ̄α = θ + θ̄(1− a), for which the range is again [max{θ̄, θ}, 1].
Thus, the expression and the constraints are the same as for the case where θ ∈ (0, 1

2 ]. Putting
these two cases together, we have the characterization of the supporting hyperplanes.

To exchange the max–min, we again use Lemma 2. The proof is similar to that of
Theorem 3, and as such we omit the details, providing only the setting for θ ∈ (0, 1

2 ], where
G = maxq l1(q): d = 3 and the functions are

T1(q) = θ I(U; Y) + θ̄ I(V; Z),

T2(q) = θ(I(U; Y) + I(X; Z|U)− I(V; Z)) + θ̄ I(V; Z),

T3(q) = θ I(X; Y|V) + θ̄ I(V; Z).

The proof of the cardinality bounds is similar to that of Theorem 3.

Appendix C. Proofs of Results in Section 4

Proof of Lemma 5. Let A represent a generic random variable. The gradient of H(A) can
be calculated as follows:

∂H(A)

∂q(u, x)
=

∂

∂q(u, x)
(
−∑

a
q(a) ln q(a)

)
= −∑

a

∂q(a)
∂q(u, x)

ln q(a)−∑
a

q(a)
1

q(a)
∂q(a)

∂q(u, x)

= −∑
a

∂q(a)
∂q(u, x)

(1 + ln q(a)).

For the particular term H(U|Y) in F(α, q), the gradient is

∂
(

H(U, Y)− H(Y)
)

∂q(u, x)
= −∑

u′ ,y

∂q(u′, y)
∂q(u, x)

(1 + ln q(u′, y)) + ∑
y

∂q(y)
∂q(u, x)

(1 + ln q(y))

= −∑
y

p(y|x)(1 + ln q(u, y)) + ∑
y

p(y|x)(1 + ln q(y))

= −∑
y

p(y|x) ln q(u|y).

Now, we can calculate the first-order term in Equation (41):

−(q2 − q1)
T∇Hq1(U|Y) = ∑

u,x,y
(q2(u, x)− q1(u, x))p(y|x) ln q1(u|y)

= ∑
u,y

q2(u, y) ln q1(u|y) + Hq1(U|Y).

Finally, the left-hand side of Equation (41) equals

Hq2(U|Y)− Hq1(U|Y)− (q2 − q1)
T∇Hq1(U|Y) = Hq2(U|Y) + ∑

u,y
q2(u, y) ln q1(u|y)

= −DU|Y(q2||q1).

For the other terms in Equation (16), we can perform similar calculations to obtain the
desired inequality.

Proof of Lemma 6. Consider the superlevel set S̃F(α, k) of the function F(α, q, Q[qn]). Ac-
cording to Equation (6), F(α, q, Q[qn]) ≤ F(α, q) for all q; thus, S̃F(α, k) ⊆ SF(α, k). From
Equation (6), F(α, qn, Q[qn]) = F(α, qn), we have qn ∈ S̃F(α, k); further, because F(α, q, Q[qn])
is concave in q, S̃F(α, k) is a convex set, and as such is connected. This implies that
S̃F(α, k) ⊆ TF(α, k, qn). Because qn+1 makes the function value F(α, q, Q[qn]) larger than
that of qn, it must lie in S̃F(α, k), and as such in TF(α, k, qn).
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Proof of Theorem 5. The proof is similar to that of Theorem 2. We perform the
following manipulations:

F(α, q∗)− F(α, qn, Qn)− θ̄ ∑
u,x

q∗(u, x) ln
qn(u, x)

qn−1(u, x)

= F(α, q∗, Q[q∗])− F(α, qn, Qn)− θ̄ ∑
u,x

q∗(u, x) ln
qn(u, x)

qn−1(u, x)

(a)
= θ̄ ∑

u,x
q∗(u, x)

(
d[Q[q∗]]− ln q∗ − d[Qn] + ln qn − ln

qn

qn−1

)

= θ̄ ∑
u,x

q∗(u, x)
(

d[Q[q∗]]− ln q∗ − d[Q[qn−1]] + ln qn−1

)
(b)
= θ̄(−DUX(q∗||qn−1) + DX|YU + ᾱDU|Y + αDU|Z) + (θ̄ − θ)DY|U
(c)
≤ 0,

where (a) holds from Equation (8), (b) is due to

∑
u,x

q∗(d[Q[q∗]]− d[Q[qn−1]])

= ∑
u,x,y,z

q∗(u, x)p(y, z|x)
(

ln
q∗(x|y, u)

qn−1(x|y, u)
(

q∗(u|y)
qn−1(u|y)

)ᾱ(
q∗(u|z)

qn−1(u|z)
)α

+
θ̄ − θ

θ̄
ln

q∗(y|u)
qn−1(y|u)

)
= DX|YU(q∗||qn−1) + ᾱDU|Y + αDU|Z +

θ̄ − θ

θ̄
DY|U ,

and (c) is from Lemma 5. This implies that

N

∑
n=1

(
F(α, q∗)− F(α, qn, Qn)

)
≤ θ̄ ∑

u,x
q∗(u, x) ln

qN(u, x)
q0(u, x)

= θ̄ ∑
u,x

q∗(u, x) ln
qN(u, x)q∗(u, x)
q0(u, x)q∗(u, x)

= θ̄(DUX(q∗||q0)− DUX(q∗||qN))

≤ θ̄DUX(q∗||q0).

The last term is finite and positive, as q0 > 0. Finally, a sequence of positive terms has a
finite sum, which implies that the terms converge to zero, i.e., F(α, qn, Qn)→ F(α, q∗).

Proof of Proposition 2. Let Cm and ∆d(u, x) be

Cm = ∑
u,x

exp{dm[Q̃∗](u, x)},

∆d(u, x) = dm+1[Q̃∗]− dm[Q̃∗],

where dk[Q] is as in Equation (18) with α = αk. According to Equations (7) and (8),

q0 = q̃∗ =
exp{dm[Q̃∗]}

∑ exp{dm[Q̃∗]}
=

exp{dm[Q̃∗]}
Cm

,

F(αm, q̃∗) = θ̄ ln Cm.
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Noting that Q1 = Q[q0] = Q[q̃∗] = Q̃∗, we estimate the difference as follows:

F(αm+1, q1, Q1)− F(αm, q̃∗)
(a)
= θ̄ ln ∑ exp{dm+1[Q̃∗]} − θ̄ ln Cm

= θ̄ ln ∑ exp{dm[Q̃∗]} exp{∆d} − θ̄ ln Cm

= θ̄ ln ∑ Cm q̃∗ exp{∆d} − θ̄ ln Cm

= θ̄ ln ∑ q̃∗ exp{∆d}
≈ θ̄ ln ∑ q̃∗(1 + ∆d)

= θ̄ ln(1 + ∑ q̃∗∆d)

≈ θ̄ ∑ q̃∗∆d,

where (a) holds from Equation (8) and from the fact that Q1 = Q̃∗.
According to the definition of d[Q] in Equation (18),

∆d = (αm+1 − αm)∑
y,z

p(y, z|x) ln
Q̃∗(u|z)
Q̃∗(u|y)

.

The expectation of this difference is

∑
u,x

q̃∗∆d = (αm+1 − αm)(I(U; Z)− I(U; Y))

(b)
= (αm+1 − αm)(αm+1 − αm)

1
−τm θ̄

= − (αm+1 − αm)2

τm θ̄
,

where (b) is due to Equation (22). The proof is finished.
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