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Abstract: The epistemic arrow of time is the fact that our knowledge of the past seems to be both
of a different kind and more detailed than our knowledge of the future. Just like with the other
arrows of time, it has often been speculated that the epistemic arrow arises due to the second law
of thermodynamics. In this paper, we investigate the epistemic arrow of time using a fully formal
framework. We begin by defining a memory system as any physical system whose present state can
provide information about the state of the external world at some time other than the present. We
then identify two types of memory systems in our universe, along with an important special case of
the first type, which we distinguish as a third type of memory system. We show that two of these
types of memory systems are time-symmetric, able to provide knowledge about both the past and the
future. However, the third type of memory systems exploits the second law of thermodynamics, at
least in all of its instances in our universe that we are aware of. The result is that in our universe, this
type of memory system only ever provides information about the past. We also argue that human
memory is of this third type, completing the argument. We end by scrutinizing the basis of the second
law itself. This uncovers a previously unappreciated formal problem for common arguments that try
to derive the second law from the “Past Hypothesis”, i.e., from the claim that the very early universe
was in a state of extremely low entropy. Our analysis is indebted to prior work by one of us but
expands and improves upon this work in several respects.

Keywords: second law of thermodynamics; psychological arrow of time; Brownian bridge; memory
systems; records

1. Introduction

It seems obvious that our knowledge of the past is of a different kind and more
detailed than our knowledge of the future. It is far less obvious what explains this so-called
‘epistemic arrow’ of time. As with the other arrows of time, the fact that the fundamental
physical laws are time-symmetric presents a major obstacle to finding such an explanation.
Many philosophers and scientists have suggested explanations that appeal to the (time-
asymmetric) second law of thermodynamics, or to some more fundamental facts underlying
the second law [1–10]. David Albert [11–14] and Barry Loewer [15–17] have developed one
such account that has been particularly influential in recent years. We are sympathetic to
their account, but we believe that it has a crucial gap.

Our own account is based on a formal distinction between three types of memory
systems that occur in the physical universe. By ‘memory system’, we here mean any kind
of physical system whose present state can provide information about the state of the
external world at some time other than the present. This use of the word ‘memory’ is
undoubtedly broader than the ordinary use of the term. It should thus be understood as
a purely stipulative definition for the purposes of our present discussion. On the basis of
our formalism, we show that physical systems exemplifying either of the first two types
of memory systems can be sources of knowledge about both the past and the future. The
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epistemic arrow must therefore be grounded in the third type of memory systems. We argue
that, plausibly, all memory systems of this type exploit a reduction in state space, which
implies that the information they provide can only be of the past. Finally, we argue that
human memory is of this third type. Our paper is indebted to the analysis in Wolpert [18],
but expands and improves upon it in several respects.

The paper is structured as follows. In Section 2, we discuss Albert and Loewer’s
account. As we argue, their explanation of the epistemic arrow does not get off the ground
without the doubtful assumption that typically, the systems we have knowledge from or
those we have knowledge about had a lower entropy in the past. We suggest that such an
explanation should instead be based on the idea that the process of creating information
involves an increase in entropy.

In Section 3, we distinguish the three different types of memory systems we find
in the physical universe, and present high-level examples of each type. In Section 4,
we introduce our formalism that captures the three different types of memory systems.
We show that the third type is a special case of the first type of memory systems. Our
investigation of how these memory systems can function reveals that one of them, namely
Type-3 memory systems, can and perhaps must rely on the second law, which implies that
it is time-asymmetric. In Section 5, we first discuss whether our account can capture the
(putative) asymmetry of records. We then provide reasons for thinking that human memory
exemplifies Type-3 memory, which means that our account is suitable for explaining the
epistemic arrow of time in terms of the second law of thermodynamics. In Section 6, we
discuss whether the second law itself—and hence the epistemic arrow—can be reduced to
even more fundamental facts. While we remain open to this idea, we show that common
arguments for the claim that the second law follows from the assumption of a low-entropy
state in the very early universe are problematic. (Specifically, we describe a previously
unappreciated formal problem with that argument, grounded in Markov process theory.)
Finally, in Section 7, we spell out some remaining issues to be addressed by future research.

2. Albert and Loewer on the Asymmetry of Records

Albert and Loewer’s account is part of a highly ambitious project that aims to explain,
among other things, all arrows of time. It begins, in essence, with what in the physics
community has been called the argument for the ”cosmological origin of the arrow of
time” [19]. One of its key components is what Albert and Loewer call the “Past Hypoth-
esis”, which is the assumption that the entropy of the very early universe was very low.
They combine this assumption with the fact that the dynamical micro-physical laws are de-
terministic and time-symmetric, and with a “probability postulate”. The latter corresponds
to the standard microcanonical ensemble from statistical physics, which follows from the
maximum entropy principle of inference [20], and says that there is a uniform probability
distribution over the microstates compatible with the Past Hypothesis. Together, these
three components determine a probability assignment to all propositions about the history
of the universe. Albert [13] calls this probability assignment the “Mentaculus”.

Albert and Loewer claim that these three components also explain the “epistemic
arrow of time”, by which they mean the fact that all records are of the past. (It is worth
noting that many other philosophers have also appealed to an asymmetry of records, e.g.,
Reichenbach [6]).) Intuitive examples of records are impact craters, footsteps on a beach,
diary entries, and memory traces in the brain. Albert (Chapter 6 in [13]) calls inference
procedures that use dynamical laws to evolve macroscopic information about the present
forward or backward “predictions” and “retrodictions”, respectively. He states that records
are those inference procedures to other times that are not predictions or retrodictions. A
record is created when a recording device interacts with the external world—Albert calls
this interaction a “measurement”. In typical cases, the state of the recording device then
remains stable, which allows drawing inferences from its current state about the state of the
external world at the time of the interaction. Albert and Loewer claim that this inference
requires that the recording device is in a particular state—the “ready state”—before the
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interaction (see [18] for earlier work using the same terminology of “predictions” and
“retrodictions”, making the same point about the stability of the recording device, using the
same examples, and also highlighting the importance of what they call a ‘’ready state”).

It thus appears that to obtain information from a record, we need to know what the
ready state obtained. But knowing that, in turn, seems to require another measurement,
setting up a potential infinite regress. This regress is stopped, according to Albert and
Loewer, by the Past Hypothesis, which serves as the universe’s “ultimate ready state”. By
conditioning on it, they claim, we can acquire knowledge of the past from records.

However, obviously, people had knowledge from records long before anyone had
ever thought of the Past Hypothesis. Moreover, when we observe a record, our backward-
chain of remembered measurements terminates much more recently than 13 billion years
ago, the time of the initial state of the universe. Given this, how could the Past Hypoth-
esis help us infer that our recording device was in its ready state? As Albert explains
(pp. 355–357, [14]), the account is not meant to assume that knowledge from records relies
on explicit inferences from the Past Hypothesis. Rather, when we observe a record, the
initial low-entropy state of the universe just makes it much more likely that the recording
device was in its ready state before the time of the interaction, and that fact is “hard-wired”
into how we make inferences. The crucial question is thus how the Past Hypothesis li-
censes the inference, with high probability, that a given recording device was in its ready
state before the relevant interaction took place. Albert and Loewer say surprisingly little
about this issue. But they do provide some hints. For instance, Albert illustrates their
account with the example of a half-melted block of ice sitting on the floor of a warm room.
According to Albert, conditioned on the Past Hypothesis, it is likely that the block of ice
was less melted several minutes in the past, and our inferences concerning it implicitly
rely on this fact. Sean Carroll (p. 40, [1]) uses the example of a half-rotten egg to offer
a very similar account of the role of the Past Hypothesis in inferences from records. He
adds that, due to the thermodynamic arrow, that entropy increases in time and the egg’s
current state offers us much less information about its future states than about its past
states. (Notice that the block of ice and the rotting egg are examples of systems whose
current state provides information about its own state at a different time, rather than about
the external world. If one does consider such systems as records, then many records can
present information about the future. For example, a gas cloud with sufficient density,
mass, etc., can be predicted to form a planet. Further examples of this type are provided
by other nonlinear dynamical systems with a point attractor and an associated basin of
attraction. As described below, in this paper, we instead consider systems that provide
information about the state of the world external to such a system at a different moment of time.
We claim that that is one of the key features of the epistemic arrow.)

Loewer [15,16] generalizes this idea. He argues that, given the initial low-entropy
state of the universe and the resulting thermodynamic arrow, information about a system’s
present state constrains its past states much more than it constrains its future states. The
Past Hypothesis effectively imposes a tree structure on the history of the universe, with
many more branches leading to the future than to the past. According to him, this implies
that, typically, observations about the present state of a system offer us more information
about its past than about its future. The following quote spells out this idea:

The SM [i.e., statistical–mechanical] probability distribution embodies a way in
which “the future” (i.e., the temporal direction away from the time at which PH
[i.e., the Past Hypothesis] obtains) is “open” at least insofar as macro states are
being considered. Since all histories must satisfy the PH, they are very constrained
at one boundary condition, but there is no similar constraint at other times. It is
true that (almost) all histories eventually end up in an equilibrium state (there
is a time at which almost all histories are in an equilibrium state), but this is not
a constraint, it is a consequence of the dynamics and the PH, and it is not very
constraining (almost all states are equilibrium states). Another feature of the
SM distribution when applied to the macro state of the kind of world we find
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ourselves in is that the macro state of the world at any time is compatible with
micro states that lead to rather different macro futures. For example, conditional
on the present macro state of the world, the SM probability distribution may
assign substantial chances both to it raining and not raining tomorrow. On the
other hand, there is typically much less branching towards the past. The reason is
that the macro states that arise in our world typically contain many macroscopic
signatures (i.e., macro states/events that record other macro states/events) of past
events but fewer macroscopic signatures of future states/events. Newspapers
are much more accurate in recording past weather than in predicting future
weather. Of course, these two features of the SM distribution—that histories
are very constrained at one boundary condition but not at other times and that
they branch much more to the future (direction away from the PH)—are related.
(pp. 302–303, [15]).

As this quote indicates, the basic idea behind Albert and Loewer’s explanation is that
because there are many more high-entropy than low-entropy states, the Past Hypothesis
creates an asymmetry of information: given the Past Hypothesis, there are many more
“branches” from the present towards the future than towards the past. Loewer relates this
asymmetry directly to the asymmetry of records, which Albert and Loewer consider to
constitute the epistemic arrow of time. The examples of the half-melted ice block and the
half-rotten egg illustrate this idea.

Albert and Loewer’s explanation of the epistemic arrow is suggestive, and it has been
highly influential, even though it has also been much criticized (see, e.g., Earman [21],
Frisch [22–24], Huggett [25] and Winsberg [26], pp. 420–422). Here, we highlight a lacuna
in their account that, to our knowledge, has not yet been identified. This helps us formulate
a general adequacy condition for an explanation of the epistemic arrow.

Albert and Loewer’s explanation is only applicable to systems that mirror the entropy
gradient of the universe. This is because in their account, the temporal asymmetry of
“branching”, which is supposed to explain the epistemic arrow, relies on the idea that the
entropy of the systems in question is increasing. This idea is reflected in the examples of
the melting ice block and the rotting egg, in which the entropy of both the objects of our
knowledge, i.e., of the systems we have knowledge about, and of the recording systems is
increasing. However, the epistemic arrow applies to many systems whose entropy is not
increasing. For instance, we can have much more knowledge about what state a weather
system was in five weeks ago than about what state it will be in five weeks from now. (We
can know its past by looking at records that we made in the past of what its past state
was, whereas we have no such records of what its future will be.) Of course, a weather
system is an open system that takes in energy from the sun, and thus it does not violate the
second law. Nevertheless, the local system itself is typically entropy-neutral. Since this is
the system we observe, it is thus unclear how its present state would constrain its past state
more than its future state. One might try to argue that such systems are not typical. But as
the following considerations show, this position is untenable.

Since the appearance of the first cognitive systems on our planet, both the sources
and the objects of their information have almost exclusively been physical systems on
Earth. Despite our recent efforts to learn more about the solar system and the universe
outside of it, this is still very much the case. The Earth system itself has remained far
from thermodynamic equilibrium for a very long time. Roughly speaking, this is possible
because Earth is an open system that takes in free (relatively low-entropy) energy from the
sun and radiates away high-entropy waste heat. The entirety of the Earth system appears
to be entropy-neutral—it has even been argued that its entropy has steadily decreased over
the last hundreds of millions of years [27,28]. This strongly suggests that typical systems
that we have information from as well as knowledge about do not exhibit an increase in
entropy—there should be at least as many such systems whose entropy remains constant
or is even decreasing.
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At various points, Loewer adds the qualification that the relevant systems must be
at least approximately thermally isolated (e.g., Loewer [15,29]). It is, of course, likely that
most thermally isolated systems that we have knowledge from or about evolve towards
equilibrium. But it is not apparent how this could be of help to their explanation of the
epistemic arrow, since most of the systems that we have knowledge from and knowledge
about are not even approximately thermally isolated. As we just saw, the Earth system as a
whole falls into this category. Therefore, the Earth system does not exhibit the tree structure
postulated by Loewer.

We conclude that Albert and Loewer’s explanation of the epistemic arrow is at least
incomplete. As we saw, a fully adequate explanation must be compatible with the fact that
the entropy of many, if not most, of the systems we have knowledge from or knowledge
about is not increasing. (In fact, as we elaborate below, initializing memory systems into a
ready state often involves reducing their entropy, sometimes even into a state of minimal
entropy). Therefore, such an explanation should not appeal to the entropy gradient of the
objects of our knowledge or of the recording systems. (It is, of course, open to Albert and
Loewer to explain their interpretation of the epistemic arrow of time in some other way. In
fact, as we discuss in Section 5, our own account, which does not rely on the assumption
that the systems that we have knowledge from or about are increasing in entropy, could
potentially be used to explain the asymmetry of records. But our point here is that Albert
and Loewer do not provide such an explanation.)

This condition is violated in other accounts of the epistemic arrow besides that of
Albert and Loewer. For example, ref. [30] presents four conditions for a system to be a
memory. Unfortunately, the fourth condition states that by definition, memory systems
cannot work unless they rely on the second law. (Specifically, it is said there that Condition 4
“is a reflection of our assumption that there exists a thermodynamic arrow of time. The
question of whether a memory can record the future makes no sense otherwise, since it
is the thermodynamic arrow that we use to define past and future.” But it is hard to be
sure, because [30] is informal in its discussion of the implications of those four conditions,
not presenting any mathematical proofs.) It is not surprising then that [30] overlooks the
possibility of time-symmetric memories like those that work in computers. In contrast, our
definitions of memory systems rely exclusively on statistical coupling between the state of
the memory system now and the state of the external world (the variable that the memory
system actually “remembers”) at a different time. The question of whether and what laws
of physics can enable such memory systems is then derived rather than assumed a priori.

Summarizing, in contrast to these earlier approaches, our investigation of the epistemic
arrow of time, i.e., of the asymmetry in our knowledge of the past and of the future, does
not assume that this arrow is constituted by an a priori asymmetry in the objects of
our knowledge or of recording systems. Instead, our investigation starts by introducing
a distinction between three types of memory systems. We then provide fully formal
definitions of these three types in terms of statistical relationships between different random
variables, showing that they reflect three ways for information about the state of one system
at one time to be conveyed to the state of another system at another time.

Importantly, two of these three types do not yield a temporal asymmetry, and thus
these memory systems do not result in an epistemic arrow. In contrast, another type of
memory system we analyze involves a special initialized state (i.e., the “ready state”).
This state allows information to be conveyed from one moment to another, created by a
process that increases global entropy. This kind of system thus relies on the second law
of thermodynamics, just like those considered by Albert and Loewer. However, in this
type of system, no assumption is made about the entropy gradient of the system it carries
information about. Furthermore, the initialized state, too, need not have lower entropy than
the current state. Indeed, we demonstrate that in common examples of the epistemic arrow,
the initialized state has higher entropy than the current state. (See example of memory
systems involving stones on the bottom of a cave in Section 4.)
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3. Three Types of Memory Systems

A “memory system”, as we understand the term here, is any physical system whose
state at the present time, t0, carries information about the state of the world at time t1 ̸= t0,
where t1 can be either in the future or in the past. By “carry information”, we mean that
due to the joint probability distribution of the state of the memory at t0 and the state of
the world at t1, knowing the state of the memory at t0 provides us with extra information
concerning the state of the world at t1, beyond our prior information about the state of the
world at that time t1. We are interested in the forms of such joint distributions that seem to
occur in the real world.

3.1. Intuitive Examples of Memory Systems

To formulate this idea more carefully, we let M and W be the state spaces of a memory
system and of the external world, respectively. Axiomatically, our probability distributions
involve the states of M and W and the two times t0 and t1. In addition, below, we show that
in real-world examples of memory systems, the states of M and/or W at another time t2
may play a role, where either t0 < t1 < t2 or t0 > t1 > t2. Associated with the two systems
M, W and the three times t0, t1 and t2, we have six jointly distributed random variables, W0,
W1, W2, M0, M1, and M2. Our formalizations of different types of memory system specifies
different properties of that joint distribution.

In this paper, we often do not discuss how we have come to know (!) that the joint
probability P(w0, m0, w1, m1, w2, m2) over the six random variables has those properties, or
where this distribution comes from, i.e., what physical process may have been involved
in its creation. Similarly, we are often very loose with the terminology and say that we
“observe” the state of a variable at a particular time, as shorthand for saying that we acquire
some possibly noisy information about its state. Formally, such an observation involves
yet more random variables, statistically coupled with the ones described above. We ignore
such variables here. (We do not mean to imply anything more than this shorthand when
we use the term “observe”. In particular, we do not imply anything involving the nature of
observation in quantum mechanics.)

For simplicity, we speak as though this information we acquire concerns the memory’s
present state exactly, to infinite precision. Some might object that in the real world, infinite
precision requires an infinite number of digits, to perfect accuracy, and real systems simply
do not have that capability. Accordingly, typically, we implicitly assume that M and W are
elements in coarse-grainings of states in some associated phase spaces. It is straightforward
to extend our reasoning to accommodate noisy, imprecise information about those states
rather than such coarse-graining. (See also our discussion below concerning measure-
theoretic integrals.)

In some cases, the memory works by combining information about the present state of
memory system M with information about the present state of external world W. We thus
allow for the possibility that in addition to observing value m0, the user of that memory
system knows that w0 falls within some particular set. We are careful not to stipulate
that the user of the memory system “observes” whether that is the case; they may simply
assume it. From this information about m0 and possibly w0, we want to draw a probabilistic
inference about the state of the external world at another time, w1.

Since the memory system’s present state should be relevant to the inference we draw,
we require that its information about w1 varies depending on the value of M0. Physically,
when this condition is satisfied, we can infer from the observed m0 (perhaps in conjunction
with some information about w0) that M and W interacted sometime between t0 and t1,
such that, in the course of this interaction, M acquired information about w1 and then
stored it until t0.

Broadly put, our taxonomy categorizes memory systems according to the kind of
information they rely on. Type-1 memory systems involve information only concerning the
current state of the memory system, m0. Type-2 memory systems also involve information
concerning the state of m0, but are only guaranteed to work when some additional condi-
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tions concerning w0 are also met. As described below, in the real world, Type-2 memory
systems are time-symmetric (like in digital computers).

Finally, Type-3 memory systems involve information based on information concerning
both m0 and m1. (As described below, that information concerning m1 actually follows
from information concerning m0). They are a special case of a Type-1 memory system. In
fact, they are the only examples of Type-1 memory systems we know of that in the real
world can accurately provide a lot of information about w1, which is why we assign them
their own type. (Below, we do not discuss any examples of Type-1 memory systems other
than those that are actually Type-3.) As described below, in the real world, Type-3 memory
systems are time-asymmetric (like footprints on a beach). These types of memory systems
seem to capture many of the instances of memory considered in the literature, sometimes
under the name of “records”. In particular, all instances of memory we know of that involve
the second law of thermodynamics are Type-3 memory systems.

These three types of memory systems are closely related to three types of memory
considered in [18]. Before we formally define them, in the next subsection, we present some
intuitive examples of Type-2 and Type-3 memory systems to compare time-symmetric
memory systems with time-asymmetric ones.

3.2. How Memory Systems Work

An example of a Type-2 memory system is memory in a computer. To keep our discus-
sion independent of specific hardware implementations, we focus on abstract memory in
abstract computers. We let M be the contents of a specific piece of Random Access Memory
(RAM) that is used in a program of such a computer. The rest of the abstract computer is W.
In particular, W includes the rest of the computer’s RAM outside of M, and the program it
is running (which for argument’s sake we can imagine is implemented in a special “code
segment” part of the RAM, distinct from W). In such a setup, only observing the value of
m0 does not offer us any information about w1, i.e., the state of the rest of the computer
at time t1. The reason why a piece of RAM can nevertheless serve as a memory is that
the entire system M × W consisting of the memory and the rest of the computer evolves
deterministically in time. This means that we can infer something about the value of w1
from an observation of m0, if we also assume (or know, via prior knowledge) a salient
feature of w0. Specifically, if we know that a particular program is running on the computer
at t0 (which is information concerning w0), then the current value of RAM, m0, can tell us
the contents of some of the rest of the computer’s RAM at t1 ̸= t0 (which is information
concerning w1).

Typically, we think of such computer memory as providing information about the
computer’s past states. However, it is possible to evolve the system M × W forward in
time as well as backwards, which means that Type-2 memory can be of the future as well
as the past. (After all, knowing the program that is running and the current value of the
precise part of the RAM in m can tell us something about the future value of some other
part of the RAM, depending on the precise program.)

Notice as well that our observation of the current state of the memory, m0, can vary
arbitrarily—varying that state varies what we infer concerning w1, and every value of m0
provides such an inference. On the other hand, we do not consider effects on w1 of varying
the state of the world external to the memory at time t0, e.g., of varying the program
running on the computer. Instead, our inference concerning the effects of varying m0 is
preconditioned on w0 containing a particular program, i.e., on w0 falling within a particular
subset of W (see pp. 749–762 of [18] for a much more detailed discussion of this kind of
memory system).

If W is large and not fully observable, as is typical in real-life situations, then it is
often impossible to determine the precise value w1 by deterministic evolution of M × W.
This might suggest that outside of the special case or digital computers, Type-2 memory
systems are neither very common nor very useful. However, it is compatible with our
understanding of Type-2 memory systems that the inference about w1 is stochastic and
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based on a partial observation of w0—just like with Type-1 and Type-3 memory systems
(see our formal definition below for the details). If one considers these kinds of cases
as well, it becomes plausible that Type-2 memory systems are a very common source of
knowledge of the future. For instance, predictions of the climate on Earth based on current
observations fall into this category.

Examples of Type-3 memory are footprints on a beach, impact craters, photographic
film, etc. We consider the case of photographic film. Before exposure, photographic film is
in a predetermined stable state, which we call its “initialized state”. Since this state can be
distinguished from any state that the film can be in after exposure, we can infer from the
latter, exposed state that the film interacted in a particular way with the external world. The
exposed film can thus provide us with detailed information about a past state of W. Since
the film’s state remains stable after exposure, this state of W can lie quite far in the past.

Knowledge from a (non-digital) photograph thus relies on an inference from both
the present exposed state of the film, m0, and its initialized state, m1. This explains why
photographic films are Type-3 memory systems. Since m1 cannot be directly observed at
time t0, the question arises of how we can come to have knowledge of it. Below, we argue
that this knowledge has to be based on the occurrence of a process that takes M to a known
state. Crucially, as we argue, this process of initialization must increase global entropy,
which implies that m1 is a past state. Since our argument applies to all Type-3 memory
systems, this means that systems of this type can only provide information about the past.

In what follows, we develop formal definitions of the three types of memory systems
just sketched, and investigate them in more detail. Our definitions of Type-1, Type-2, and
Type-3 memory systems provide formal elaborations of Wolpert’s [18] “b-type”, “c-type”,
and “p-type” systems, respectively.

4. Formal Definitions of Memory Systems

As described above, we have six jointly distributed random variables indexed by
time, W0, W1, W2, m0, m1, m2, where the three associated times are index-ordered, i.e., either
t0 < t1 < t2 or t0 > t1 > t2. (We do not actually make use of W2 in what follows, except
for providing some intuition.) We are interested in forming a statistical inference about w1
based on value m0, perhaps in combination with a constraint on the possible value of w0.
We require that the inference we draw varies depending on that value of m0. Intuitively,
whenever this is the case, we can conclude from the observed value of m0 (perhaps in
conjunction with an assumed constraint on w0) that M and W interacted sometime between
t0 and t1, with the interaction transferring some information about state w1 to the memory
system, M, where it resides until time t0.

We can formalize the foregoing with what we call memory systems. We consider
three types of memory systems, which differ from one another depending on whether the
memory is based on value m0, on value w0, or on value m0 combined with some knowledge
about how the laws of physics arise in the joint dynamics of M × W.

In the rest of this paper, for simplicity, we consider the case where all state spaces
are countable, e.g., due to coarse-graining. This allows for us to cast the proofs in terms
of sums, using Kronecker delta functions (see also the discussion above concerning the
problematic nature of assuming infinite precision information). The extension to classical
uncountable spaces is straightforward. (Loosely speaking, for Euclidean spaces, the sums
in our proofs become Lebesgue integrals and the delta functions become Dirac deltas. For
more general kinds of classical spaces, the sums become measure-theoretic integrals, and
the delta functions need to be modified accordingly. The case of quantum mechanical spaces
requires more care.) In addition, overloading notation, we write the indicator function as
δ(.). So for any event A in the implicit underlying probability measure space, δ(A) equals
1/0 depending on whether A is true/false.

In Section 4.1, we begin by introducing a variant of some standard information-
theoretic definitions. These play a central role in our fully formal definitions of those three
types of memory systems, which we present in Section 4.2.
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4.1. Restricted Mutual Information

In general, whether state m0 provides a memory about state w1 depends on certain
conditions concerning the joint value of (m0, w0) being met. Accordingly, our definitions
involve statements of the form “If condition C concerning (m0, w0) is met, then the following
mutual information will be high”. We do not model how the user of the memory system
does (or does not) come to know whether condition C is met. Often, it is background
knowledge, over and beyond the background knowledge that determines joint distribution
P(m0, w0, m1, w1, m2, w2).

To illustrate this, we consider again the example of a computer memory described
above. In that example, M is (the state of) part of a computer’s RAM, and W is (the state of)
the rest of the computer, including, in particular, the rest of the RAM, and so the program
that is running on the computer. P(.) depends on the dynamics of the entire computer, as
usual. In this example, condition C is the knowledge that some specific program is currently
executing in W, the rest of the computer outside of the part of the RAM constituting M. It
is the precise form of that program which, combined with the current state of the part of
the RAM constituting M, provides information concerning the state of the rest of the RAM
at some other time. We note that in this example the constraint does not specify w0 in toto;
many degrees of freedom of the computer are free to vary.

Intuitively, knowledge that C holds is a second, different kind of “observation”, in
addition to the observation of the precise current state of M, the computer memory in
question. The difference between the two types of observation is that we are considering
the effect on what we can infer about w1 by varying over the states m0, while we do not
consider varying over whether C holds. Again, returning to the example of a computer, we
distinguish the observation of the part of the RAM that comprises M from the “observation”
of what program is running on the rest of the computer. We are interested in how varying
the former leads to different conclusions concerning the state of the external RAM at some
other time. In contrast, we are not concerned with the effects of varying the program.

To formalize this distinction, for any jointly distributed pair of random variables A, B
taking values a, b, respectively, we let C be some set of joint values (a, b). We define C to be
the indicator function specifying whether (a, b) ∈ C. So C is a 0/1-valued random variable,
jointly distributed with our other random variables. We indicate the joint distribution as
P(a, b, c), where c is the value of C. Then, we can define the random variable,

Ic(A; B) := −∑
a,b

P(a, b|c)[ln P(a|c)− ln P(a|b, c)] (1)

Intuitively, Ic(A; B) is the value of the mutual information between A and B, evaluated
only over those (a, b) pairs where condition C does/does not hold, as specified by the value
of c. We note that Ic(A; B) is not the same as the mutual information between A and B
conditioned on c,

I(A; B|C) = − ∑
a,b,c

P(c)P(a, b|c)[ln P(a|c)− ln P(a|b, c)] (2)

Indeed, I(A; B|C) is the expectation under P(c) of Ic(A; B).
We can illustrate this definition by returning to the example where M is a part of the

RAM in a digital computer, while the program running in the computer is stored in some
other part of the RAM which is (part of) W. In this example, c = 1 if the joint state of the
RAM W and the program stored in the rest of the RAM fulfills some special condition (see
discussion below).

We refer to Ic(A; B) for c = 1 as the (C-)restricted mutual information between A and
B. We write it as IC(A; B), with value c = 1 being implicit.

Memory systems are defined in terms of sufficient conditions for information concern-
ing the external world at one time to be conveyed to the memory system at another time,
and we make no claims about necessary and jointly sufficient conditions. For this reason,
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in this paper, we are interested in restricted mutual information rather than conditional
mutual information, with C = 1 for different choices of C being sufficient conditions.

As an aside, we note that we can define variants of entropy and conditional entropy
that are analogous to Ic(A; B):

Hc(A) := −∑
a

P(a|c) ln P(a|c) (3)

Hc(A|B) := −∑
a.b

P(a, b|c) ln P(a|b, c) (4)

where, as before, c ∈ C is a 0-1 valued random variable specifying whether condition C
holds. For any such random variable C and either value c of that random variable,

Ic(A; B) = Hc(A)− Hc(A|B) (5)

Paralleling our convention for restricted mutual information, we sometimes write the
two types of restricted entropy evaluated for c = 1 as HC(A) and HC(A|B), respectively.
So, in particular,

IC(A; B) = HC(A)− HC(A|B) (6)

in direct analogy to the relation among (non-restricted) entropy, conditional entropy, and
mutual information.

As a point of notation, we often write something like “a ∈ C ” inside a probability
distribution as shorthand for the event that the value of the associated random variable
C = 1. Similarly, we write Ia∈C(. . .) as shorthand for C-restricted mutual information
where variable a lies in set C. Furthermore, we let d ∈ D be some random variable. Rather
than write “for all (a, b) ∈ C, P(d | a, b) obeys . . .”, it is convenient to write “P(a,b)∈C(d | a, b)
obeys . . .”.

4.2. The Three Types of Memory Systems

Definition 1. A Type-1 memory is any stochastic process over space M × W where there is some
set M∗ such that Im0∈M∗(W1; M0) is large.

Definition 2. A Type-2 memory is any stochastic process over space M × W where there is some
set W∗ such that Iw0∈W∗(W1; M0) is large.

Definition 3. A Type-3 memory is any stochastic process over space M × W where:

1. There is an m† ∈ M and a set M∗ such that Im1=m† ,m0∈M∗(W1; M0) is large.
2. There is a set M′ ⊆ M such that for all m0 ∈ M∗,

(a) P(m2 ∈ M′ |m0) is close to 1.
(b) P(m1 |m2, m0) is a highly peaked distribution about m1 = m†, for all m2 ∈ M′.
(c) w1 is conditionally independent from m2, given m0 and given that m1 = m†. In

other words,

P(w1 |m0, m1 = m†, m2) = P(w1 |m0, m1 = m†)

Item 1 of the definition of Type-3 memory systems says that if we believe for some
reason that the memory is in initialized state m† at t1, and if m0 ∈ M∗, then knowing precise
value m0 provides a lot of information about w1. Intuitively, knowing both that the system
was in m† at t1 and that m0 ∈ M∗, we can conclude that W must have interacted with M
between t1 and t0, with the precise relationship between m† and m0 providing information
about the state of W before that interaction started, at t1. Item 1 says that we have reason to
believe that m1 does in fact equal m†, and so we can use m0 to make an inference about m1
this way.
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As established in Lemma 1 below, Lists 2a and 2b of Definition 3 then provide a set
of properties of the joint probability distribution that justify that belief concerning m1, the
state of the memory at t1, given only the fact that the present state of the memory system is
in M∗. (Item 2c is a simplifying assumption, made for expository convenience).

Theorem 1 below then uses Lemma 1 to show that when the conditions for a Type-3
memory system hold, Im0∈M∗(W1; M0) is large. So only knowing something about the
current, t0 value of m is sufficient to conclude that it is statistically correlated with the value
of w at the different time, t1. This proves that Type-3 memory systems are a special case of
Type-1 memory systems. In fact, as also discussed below, Type-3 memory systems are an
especially important special case of a Type-1 memory system, since they can be considered
as a formalization of the primary type of memory system that is considered to be a “record
of the past” in the previous literature on the epistemic arrow of time. The second law of
thermodynamics seems to play a crucial role in allowing the properties defining Type-3
memory systems (in particular, Item 2b) to occur in the real world. In contrast, the second
law does not arise at all in Type-2 memory systems.

Lemma 1. For a Type-3 memory,

1. For any m0 ∈ M∗ and any w1,

P(w1 |m0) ≃ P(w1 |m0, m1 = m†) (7)

and since this holds for all m0 ∈ M∗,

P(w1 |m0, m0 ∈ M∗) ≃ P(w1 |m0, m1 = m†, m0 ∈ M∗) (8)

2. For any m1,
P(m1|m0 ∈ M∗) ≃ δ(m1, m†) (9)

3. For any m0,
P(m0|m0 ∈ M∗) ≃ P(m0|m1 = m†, m0 ∈ M∗) (10)

4. For any w1,
P(w1 |m0 ∈ M∗) ≃ P(w1 |m1 = m†, m0 ∈ M∗) (11)

Proof. For any m0 ∈ M∗ in a Type-3 memory, we can expand

P(w1 |m0) = ∑
m1,m2

P(m2 |m0)P(m1 |m2, m0)P(w1 |m0, m1, m2) (12)

≃ ∑
m1,m2

P(m2 |m0)δ(m2 ∈ M′)

∑m̂2∈M P(m̂2 |m0)δ(m̂2 ∈ M′)
P(m1 |m2, m0)P(w1 |m0, m1, m2) (13)

= ∑
m1,m2

P(m2 |m0)

∑m̂2∈M P(m̂2 |m0)δ(m̂2 ∈ M′)
δ(m2 ∈ M′)P(m1 |m2, m0)P(w1 |m0, m1, m2) (14)

≃ ∑
m1,m2

P(m2 |m0)

∑m̂2∈M′ P(m̂2 |m0)δ(m̂2 ∈ M′)
δ(m2 ∈ M′)δ(m1, m†)P(w1 |m0, m1, m2) (15)

= ∑
m2

P(m2 |m0)P(w1 |m0, m1 = m†, m2) (16)

= ∑
m2

P(m2 |m0)P(w1 |m0, m1 = m†) (17)

= P(w1 |m0, m1 = m†) (18)

where the second line expands the first conditional distribution in the summand and uses
Item 2a of the definition of Type-3 memory systems, the fourth line uses Item 2b, the fifth
line collapses the conditional distribution that was expanded in the second line, and then
the sixth line uses Item 2c. This establishes Lemma 1(1).
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Next, we expand

P(m1|m0 ∈ M∗) = ∑
m2

P(m1|m0 ∈ M∗, m2)P(m2|m0 ∈ M∗) (19)

≃ ∑
m2

P(m1|m0 ∈ M∗, m2)P(m2|m0 ∈ M∗)δ(m2 ∈ M′) (20)

≃ ∑
m2

δ(m1, m†)P(m2|m0 ∈ M∗)δ(m2 ∈ M′) (21)

= δ(m1, m†) (22)

where the second line uses Item 2a of the definition of Type-3 memory systems, and the
third line uses Item 2c. This establishes Lemma 1(2).

Next, we use Lemma 1(2) to expand

P(m0|m0 ∈ M∗) = ∑
m1

P(m0|m0 ∈ M∗, m1)P(m1|m0 ∈ M∗) (23)

≃ ∑
m1

P(m0|m0 ∈ M∗, m1)δ(m1, m†) (24)

= P(m0|m0 ∈ M∗, m1 = m†) (25)

This establishes Lemma 1(3).
Finally, we apply ∑m0

P(m0|m0 ∈ M∗) to both sides of Equation (8), and then use
Equation (10) to replace P(m0|m0 ∈ M∗) in the right-hand sum. This establishes Lemma 1(4).

We can use Lemma 1 to derive the following result, and thereby prove that systems
obeying the four properties of Type-3 memory systems are in fact a special case of Type-1
memory systems, as claimed above.

Theorem 1. Im0∈M∗(W1; M0) is large in any Type-3 memory system.

Proof. Using Lemma 1(1) twice allows us expansion

Im0∈M∗ (W1; M0) = − ∑
m0 ,w1

P(m0, w1|m0 ∈ M∗)

[
ln P(w1|m0 ∈ M∗)− ln P(w1|m0, m0 ∈ M∗)

]
(26)

≃ − ∑
m0 ,w1

P(m0, w1|m0 ∈ M∗)

[
ln P(w1|m0 ∈ M∗)− ln P(w1|m0, m1 = m†, m0 ∈ M∗)

]
(27)

≃ − ∑
m0 ,w1

P(m0|m0 ∈ M∗)P(w1|m0, m1 = m†, m0 ∈ M∗)

×
[

ln P(w1|m0 ∈ M∗)− ln P(w1|m0, m1 = m†, m0 ∈ M∗)

]
(28)

Next, we can use Lemma 1(3) and then Lemma 1(4) to approximate Equation (28) as

Im0∈M∗ (W1; m0) ≃ ∑
m0 ,w1

P(m0|m1 = m†, m0 ∈ M∗)P(w1|m0, m1 = m†, m0 ∈ M∗)

×
[

ln P(w1|m0 ∈ M∗)− ln P(w1|m0, m1 = m†, m0 ∈ M∗)

]
(29)

≃ ∑
m0 ,w1

P(m0|m0 ∈ M∗, m1 = m†)P(w1|m0, m1 = m†, m0 ∈ M∗)

×
[

ln P(w1|m1 = m†, m0 ∈ M∗)− ln P(w1|m0, m1 = m†, m0 ∈ M∗)

]
(30)

= ∑
m0 ,w1

P(m0, w1|m1 = m†, m0 ∈ M∗)

×
[

ln P(w1|m1 = m†, m0 ∈ M∗)− ln P(w1|m0, m1 = m†, m0 ∈ M∗)

]
(31)

= Im1=m† ,m0∈M∗ (W1; M0) (32)

Finally, plugging in 1 of the definition of memory systems, we conclude that Im0∈M∗(W1; m0)
is large.
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Theorem 1 establishes that in a Type-3 memory system, so long as m0 ∈ M∗, the
precise state, m0, is informative about state w1. So whenever that condition is met, the
current state of memory system M is a memory of w1, the state of the external world at t1, in
the sense described in preceding sections.

4.3. Illustrations of Our Formal Definitions

In this subsection, we illustrate real-world examples of Type-2 and Type-3 mem-
ory systems to compare the formal definitions of time-symmetric and time-asymmetric
memory systems.

We can illustrate the definition of Type-2 memory systems using the above example
of computer memory. We recall that in that example, M is one part of the RAM of the
computer, while W is the rest of the RAM, including, in particular, the part of the RAM that
contains the program currently running on the computer. More precisely, we write the state
space of the computer as Z = (M, Z2, Z3), where z2 ∈ Z2 specifies the particular program
currently running (i.e., a particular interval of the coding segment of the computer), and
m ∈ M is a separate part of the RAM, offering the value of one of the variables potentially
modified by the running of that program. Z3 is then the rest of the RAM and other variables
in the computer whose value is not involved in specifying the program.

So in this computer memory example, W is (Z2, Z3). However, it is convenient to
parameterize elements of W by their value of Z2, coarse-graining over possible values of
Z3. In particular, W∗ is all states of (Z2, Z3) where z2 contains particular program z2, a
program that allows inference from the current state of the memory, m0, about the past
and/or future of variable m. This is particularly clear in cases where the typical values of
z3 have no effect on the dynamics of (m, z2), while the joint values of (m, z2) can affect the
dynamics of z3. Concretely, in such a case, the state of the RAM m is specified in some time
outside of interval [t0, t1], and during that interval it can affect the value of some other part
of the RAM, z3, but the value of z3 cannot affect the value of m during that interval. So
knowing m0 and z2

0, the current value of z2, suffices to draw inferences about z3
1, the state

of z3 at time t1.
More generally, in many Type-2 memory systems, M × W is a semi-closed system,

not able to be affected by the state of the rest of the physical universe during interval
[t0, t1]. In such a case, since the laws of physics are deterministic and invertible in any semi-
closed system, the joint dynamics of M × W is deterministic during [t0, t1]. Type-2 memory
systems with this feature can result in almost perfect memory, as described in Section 3.2. It
is important to note, though, that we do not require that there be a decomposition of W into
two such variables z2, z3; we assume that decomposition here for illustrative purposes only.

It might be helpful to illustrate these points using the example of the joint state of
the planets in the solar system. First, we note that the planets are not a memory at all of
their own future state; that would mean using their state now to derive information about
their own state at a different time, whereas we generally assume that the memory and
the system that it “remembers” are different from each other. One might suppose instead
though that the behavior of some of the planets can provide some information about the
others at both past and future times.

We note, though, that memory systems are systems whose state at a single moment
of time, t0, provides information about some other system at a different time. So for the
supposition to hold, we need to interpret “behavior” to mean some characteristic of some
of the planets at a single moment. However, the phase space positions of the planets at a
single moment do not provide such a characteristic; we need to also know the acceleration
vectors of those planets, not just their positions and velocities. If those acceleration vectors
were included in the state space of M, then (and only then) M could serve as a Type-2
memory system of the future state of the other planets (see also Point 3 in the discussion of
Type-3 memory systems below).

We can illustrate the different parts of the definition of Type-3 memory systems
with the example of a line of footprints across a beach. In this example, M is the set of
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all versions of the pattern on the surface of the beach—smoothed, with a single line of
footprints, churned by many people walking across it, etc. M′ is all versions of the patterns
on the surface of the beach that are not in some unusual state that would prevent the beach
from being swept smooth. In particular, M′ does not contain any versions of the (pattern
on the surface of a) beach that are so badly churned that it would not be possible for them
to be swept smooth by ocean waves during a high tide. (So, in particular, patterns in which
there is huge hole, many tens of meters deep, do not lie in M′.) M∗ is the set of all versions
of the beach that are completely smooth, having been swept by ocean waves, during a
high tide—with the possible (!) exception that there is some very clearly defined line of
footprints across the surface of the beach. Finally, m†, the “initialized state”, is the beach
right after it has been smoothed by ocean waves. (N.b., strictly speaking, m† is not a single
state, but a set of very similar states. To simplify the exposition, we often treat a set of very
similar states as though they were a single state, as was also performed in the example
above of a computer memory.) In contrast, W is the set of all other systems on the surface
of the Earth that could conceivably interact with the surface of the beach some time in the
interval between t0 and t2.

Item 1 reflects the fact that if we know both that the beach surface was smooth at t1
and that it currently is smooth except for a single line of footprints, then we can conclude
that a person must have walked across the beach some time between t1 and t0, with the
precise pattern of those footprints providing information about that walk.

Item 2a of the definition of Type-3 memory systems then tells us that so long as the
current pattern on the beach is a single line of footprints, we have no reason to suppose
that the surface of the beach was in some unusual state that could not be wiped smooth
just before the most recent high tide.

Item 2b of the definition of Type-3 memory is enforced by the second law of ther-
modynamics. More precisely, the collapsing of the state space of M described in Item 2b
involves coupling M with some third system, K. The second law drives an irreversible
process that increases total entropy in M × K while at the same time collapsing M from
subset m2 ∈ M′ down to the precise value of m1 = m†. (This is related to what was called
“external initialization” in [18]).

Concretely, a beach is initialized as m† when it is smoothed by the ocean waves driven
by the tide. K is those ocean waves, lapping the beach during this re-initialization of the
state of the beach. Projected down to the states of the beach, that smoothing of the beach
by ocean waves is a non-invertible process, driven by the second law. This reliance on
the second law, of course, is precisely why this example of a Type-3 memory system is
time-asymmetric (as noted above, Item 2c is assumed simply for expository convenience,
and clearly holds for this example of a beach).

We note that just like with Type-2 memory systems, with Type-3 memory systems
there is an implicit assumption that W is a minuscule portion of the full physical universe
(more precisely, we assume that the probability that variables in the physical universe that
lie outside of W are in a state that would cause them to interfere with our inference is
effectively zero). Furthermore, it is implicitly assumed that the dynamics of those degrees
of freedom of W we are concerned with are effectively isolated from that rest of the universe
(aside from the possible interaction with system K). This can be formalized in terms of
a prior distribution over the state of the full universe, including W as a subsystem. For
example, this assumption implies that the prior probability that the sand on the beach was
manipulated by powerful aliens to make it appear as though people had walked over a
smooth beach is small.

We note also that the fact that the distribution over m at t1, the end of the initialization
process, is (almost) a delta function about m† means that the distribution over M at that
time, when it is in its initialized state, has low entropy. It is the distribution over the joint
state, M × K, whose entropy increases in the initialization of M.

This is a crucial point. When the beach has been swept smooth, the precise three-
dimensional configuration of all the sand grains inside of a beach is close to thermal equilib-
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rium (for the Hamiltonian function given by the gravitational field of the Earth). That does
not change the fact that the pattern on the surface of a smooth beach has a very low entropy,
when considered as a distribution over the space of all possible patterns on the surface of the
beach. The inference underlying memory systems—Theorem 1 above—concerns that space
of all possible patterns on the surface on the beach. It does not concern the thermodynamic
entropy of the underlying three-dimensional configuration in the Earth’s gravitational field.

A flash drive is another example of Type-3 memory that provides an even more
graphic illustration of how the initialized, ready state of M can have low entropy. Here,
M = (Z1, Z2), where Z1 is the contents of the flash drive’s binary memory, and Z2 is other
attributes of the physical flash drive, in particular whether it has physical damage (e.g.,
puncture holes in the flash drive’s casing). M∗ = M′ is all joint states in (Z1, Z2) where (Z2
has a value indicating that) the flash drive is undamaged. m† is the “wiped clean”, all-zeros
joint state of the flash drive’s entire memory, i.e., of Z1.

The important thing to note is that this wiped-clean state where the bits are all zeros
with probability one is minimal entropy. It is produced by coupling the flash drive with an
external, electronic initializing system, K, in a “wiping clean” process of the contents of
the flash drive. That initialization process relies on the second law of thermodynamics to
increase the joint entropy of the flash drive and the electronic initializing system. So just like
the beach was wiped smooth by the action of waves during a high tide, which increased
the joint entropy of the waves and the beach while reducing the marginal entropy of just
the beach, the flash drive was wiped clean by action of the electronic initializing system,
which increased the joint entropy of the initializing system and the flash drive’s bits while
reducing the marginal entropy of just the flash drive’s bits.

As an alternative, we could reformulate these examples of Type-3 memory systems
not to involve an external system, K. We can do this by “folding K in” to the definition
of M. In the example of a beach surface memory system, this means redefining M to be
the joint state of pattern on the surface of the beach and the precise physical state of the ocean
lapping that beach.

We end by noting that it is straightforward to formalize many other examples of
memory systems considered in the literature (in particular, those considered in [18]) as
Type-3 memory systems. For pedagogical reasons, we sketch some of them here, omitting
detailed discussion. We note that while it would in principle be possible to provide a
precise quantitative characterization of these and other systems, it may not be easy to do so
in practice.

1. Consider an image on a chemical photographic film in an instant camera. M is the
possible patterns on the surface of the film; M∗ is all such patterns aside from those
that indicate the camera holding the film was incorrectly exposed to the outside world,
e.g., resulting in a fogged image on the surface of the film. m† is the initialized state
of the film, with no image, before exposure of any sort. It has low entropy, and is
formed in an entropy-increasing chemical initialization process that involves some
external set of chemicals, K. W is an external photon field, which results in an image
being made some time between t1 and t0 if the camera exposes the film correctly, i.e.,
if m0 ∈ M∗.

2. Suppose we come across a cave and find that inside of it, some of the stones scattered
about the floor (which evidently had originally been part of the roof) are arranged in
letters, spelling “Help!”. In this case, M is (a coarse-graining of) the possible patterns
of stones on the floor of the cave. m† is the pattern where the stones are scattered
uniformly randomly. We rely on the second law to presume that the joint state of the
cave (including, in particular, its roof and the pattern of stones on its floor) was in
m† some time in the past. This allows inferring that some subsystem of W (in this
case, some English-speaking human) interfered with M at some time between when
in the past it was initialized to m†, and the present, when the stones spell out “Help!”.
Intuitively, this example is just like footprints on the beach, where the analog of the
smoothed beach surface is the initially random positions of stones on the cave floor
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(notice that this is a high-entropy state!), and the analog of the trail of footprints is
some of the stones being arranged to spell “Help!”.

3. Suppose we took some photographs through a telescope of the positions of the
planets of the solar system which (together with other recorded information gathered
from different positions on the surface of the Earth) allow us inferring their current
positions and velocities. Those photographs and recordings are jointly a Type-3
memory system (see discussion just above of the Type-3 memory system of an image
on a photographic film). Note that we can evolve what we infer from the current state
of this memory system—the current phase space position of the planets in the solar
system—into the future, after time t0. In this, the current value, m0, of the memory
system provides information about the future, not just the past. However, the key is
that the recordings are a Type-3 memory system, and they provide information about
the (recent) past. The fact that that information provides predictions concerning the
future is a red herring.

4.4. Discussion of Our Formal Definitions

In this subsection, we briefly discuss some aspects of the formal definitions of the
various types of memory systems.

First, we note that while there is no need to do so here, we could replace phrases like
“Im0∈M∗(W1; M0) is large” with more formal expressions. For example, we suppose that
both |M∗| and |W|, the number of states in M∗ and in W, respectively, are finite. Then, we
could replace that phrase by saying that Im0∈M∗(W1; M0) is close to min(ln |M∗|, ln |W|),
its maximum possible value.

We note also that in Type-1 and Type-3 memory systems, we allow the possibility that
we can know the value of m0 even if it is outside of M∗. We even allow for the possibility
that there would be nonzero mutual information between the value of m0 and that of w1
for m0 ̸∈ M∗. However, our analysis concerns what happens when m0 ∈ M∗. (Mutatis
mutandis for values of w0 outside of W∗ in the case of Type-2 memory systems.)

In real-world Type-3 memory systems, often, m does not change in [t2, t0] except at the
time of its interaction with W. While we do not require this, it has the practical advantage
that it simplifies the calculation by the memory’s user of the relationship between the value
of w1 and m0. It also means that we do not need to be precise about when times t1 and
t2 are.

It is important to realize that system K in Type-3 memory systems, which couples
with M in an entropy-increasing process to send M′ to m†, does not explicitly occur in the
definition of Type-3 memory systems. Rather, it arises in practice, as part of the underlying
process that enforces the requirement in 2a that conditional distribution P(m1 |m2, m0) is
peaked about m1 = m†. In turn, that requirement is only relevant under the supposition
that m0 ∈ M∗ and m2 ∈ M′.

There are many important ways that the analysis in this paper extends beyond/modifies
the analysis in [18], which was written before the revolutionary advances of the last two
decades of stochastic thermodynamics. Like all considerations of the thermodynamics of
computation at the time, it was based on semi-formal reasoning, grounded in equilibrium
statistical physics. However, computers are actually very far from thermal equilibrium,
with the result that the understanding of the relationship between logical and thermo-
dynamic irreversibility at the end of the twentieth century and its implications for the
thermodynamics of computation was mistaken. Our paper does not rely on that mistaken
earlier understanding, and is fully consistent with our modern understanding of statistical
physics (see [31,32] and references therein for an introduction to the modern understanding
of the relationship between logical and thermodynamic irreversibility).

Another important feature of [18] is its repeated invocation of the Maxent principle of
Jaynesian inference. In this paper, we do not use Maxent. Indeed, we are careful to make no
arguments about how it is that the user of a memory system may arrive at the probability
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distributions they are using. In particular, it is worth noting that in this paper, we make no
a priori assumption that P(m0, m1, w0, w1) has full support (fn. 9, see [18]).

5. Memory Systems, Records, and the Epistemic Arrow

Of the three types of memory systems we considered, Type-3 systems are the only
ones that, at least in all of their instances we know of in our physical universe, are time-
asymmetric, in that they can only provide information about the past. As we explained,
Type-3 memory systems rely on the second law, in that they exploit the fact that an increase
in global entropy reliably takes the (local) memory system to its initialized state, which is a
known state at t1.

While we did not prove it, we note that in practice, the only way the need for the
second law can be circumvented without major sacrifice in the accuracy of the memory
is if we have detailed knowledge of those “dynamically relevant” degrees of freedom in
the present state of W that (perhaps together with the precise state of M) determine the
dynamics of M. In practice, as in the computer example of Type-2 memory systems, we in
fact have a way to (almost) deterministically calculate the joint dynamics of M × W.

We note that these requirements do not preclude the possibility that W is extraordinar-
ily large. (For example, a modern cloud computer system has tens of thousands of servers,
each with ∼1015 (?) dynamically relevant degrees of freedom. So setting M to be part of the
memory of just one of those servers, |W| is on the order of Avogadro’s number. Yet, such
computer systems are examples of Type-2 memory systems.) However, running a Type-2
memory system with a large W seems to require a huge number of energy barriers keeping
trajectories of M × Z2 well separated during the evolution of the joint system, with high
probability, i.e., such systems use a huge amount of error correction; this is certainly true in
cloud computers. Systems with this property seem to only arise with careful engineering
by humans. In contrast, memory systems like footprints on a beach do not rely on anything
close to that number of energy barriers, allowing the stochastic process governing the
dynamics of microstate trajectories spreading out more readily. This may be why they can
occur in systems that are not artificially constructed; see discussion of the Past Hypothesis
in Section 6.

In what follows, we discuss whether Type-3 memory systems might correspond to
records. After this, we argue that human memory is plausibly Type-3, which means that
our analysis is suitable for explaining the epistemic arrow of time.

Common examples of records, such as impact craters, footsteps on the beach, and
photographic film, are Type-3. Furthermore, Albert and Loewer claim that records require a
ready state, and the initialized state formalized in our definition of Type-3 memory systems
as m† is such a ready state. Does this mean that Type-3 memory systems can be interpreted
as a formalization of records? In the absence of a precise definition of records, this question
is difficult to answer. We believe that for this interpretation to work, one needs to assume
that it is true by definition that records rely on an initialized state—otherwise, we do not
see a clear way to distinguish records from Type-2 memory systems. If this assumption
is made, then our analysis (which in turn builds on the work in [18], as described above)
might provide a new basis for understanding Albert and Loewer’s claim that the epistemic
arrow is constituted by the temporal asymmetry of records which avoids the problematic
aspects of their argument (see Section 2).

At present, the physical details of how the human brain stores information are largely
unknown. This makes it difficult to determine the type of memory system the human brain
represents. Nevertheless, there are reasons to think that human memory is Type-3. First,
there is the simple fact that human memory only provides information about the past. Since
Type-3 memory systems are the only memory systems that exhibit this kind of temporal
asymmetry, this suggests that human memory is Type-3. Second, human memory in the
primary sense resides in the brain—we might call this “internal memory”. But humans also
remember things indirectly by means of external devices, such as photographs, books, or
digital storage media—we might call this “external memory”. External memory, at least if it
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concerns information about events occurring outside of computers, is typically Type-3 (our
discussion in Section 4.3 demonstrates this for some such systems, namely photographs and
flash drives). This makes it possible for such memory to store very detailed information.
Internal memory, too, often provides us with highly detailed information about specific
events. An important aspect of the psychological arrow of time is that we experience the
future as “open” and the past as “fixed” ((see [18], pp. 776–778) for further discussion of
the relation between this aspect of the psychological arrow and the epistemic arrow). It is
plausible that the fact that we have such detailed memories of the past is at least part of the
cause of this apparent openness of the future and fixity of the past (see [33] for a deeply
contrarian view, arguing that time does indeed flow). The fact that internal memory can
provide such detailed information supports the idea that it is Type-3. If this is the case, then
our analysis is suitable for explaining how the epistemic arrow arises from the second law
of thermodynamics.

6. The Past Hypothesis and the Second Law

Another important issue arises from the discussion at the end of Section 4.4: how
exactly is it that the user of the memory comes to “know” the joint distribution in the first
place? Does acquiring that knowledge itself rely on memory of past observations of the
physical world? This is an extremely subtle issue, which ultimately requires engaging with
the formal impossibility of inductive inference [34–36]. If the joint probability distributions
of M × W at multiple moments in time has the structure of a Type-3 memory system
formally defined in Section 4.2, then the relevant mutual information can in principle be
exploited. Moreover, sidestepping the problem of inductive inference [36], speaking purely
as empirical scientists, it seems likely that natural selection has guided (the genes encoding)
our biological memories to assume those distributions in order to increase our biological
fitness. But in this paper, we do not grapple with these issues.

An important unresolved problem involves the asymmetry of the second law, which
appears to be fundamental to (the asymmetry of Type-3 memory and therefore) the asym-
metry of human memory. We are sympathetic to the idea, which is also present in Albert
and Loewer’s account, of grounding the second law in the “Past Hypothesis”. However,
all arguments in the literature for how that hypothesis results in the second law have
been informal. When we consider the issue more formally, we find that there are some
problematic aspects with these arguments.

To see this, first, we note that essentially by definition, all the data we can directly
access when performing any kind of scientific reasoning is in the form of observations of
the values of variables solely at a single moment, which we conventionally refer to as the
“present”, t0. However, similarly to all the other dynamical laws of physics, the second
law concerns the value of the entropy of the universe across a range of times, t, differing
from the present, t0. In addition (and in contrast to almost all other dynamical laws of
physics), the second law is stochastic. Combining these results, we see that when we are
investigating the formal basis of the second law, we are implicitly analyzing conditional
distribution P(St |datat0) where St is the entropy of the universe at time t, and data t0 is all
of our empirical data at present.

It is actually a subtle issue (especially from a philosophical perspective) to quantify
what the precise implications of our current observations are concerning St for multiple
times t. However, as a simplifying assumption/approximation, the Past Hypothesis
assumes we can distill our present data to (effectively) exact values of current entropy S(t0)
and also of the entropy at the time of the Big Bang, S(tBB). (Arguably, the value of SBB
cannot be estimated from our current observations with as high certainty as St0 , since all
of the theorizing of modern cosmology must itself be inferred from current observations
in order to make the estimate. It is (far) beyond the scope of this paper to try to quantify
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our relative certainty in those two estimates). These two approximations transform the
distribution we are interested in:

P(St |datat0) → P(St | St0 , SBB) (33)

The Past Hypothesis proceeds to stipulate that SBB ≪ St0 . The argument progressing
from this point to the second law has several successive parts. First, loosely following
Boltzmann’s derivation of the H theorem, the argument (implicitly) models the dynamics
of the entropy of the universe as a first-order Markov process, either a Focker0–Planck or a
jump process, depending on the state space under consideration [37,38]. (We note that this
assumption of a Markov process ignores complications arising from quantum mechanics
and general relativity. We are also ignoring the precise type of coarse-graining being used
(assuming we are not using string theory or the like to perform the analysis). Nonetheless,
these kinds of assumptions underlie the standard formulation of the Past Hypothesis, and
so we use them here.) To be consistent with the time-symmetry of the microscopic laws of
physics, this Markov process must itself be time-symmetric (this symmetry is the starting
point of Loschmidt’s paradox).

Now, formally speaking, a first-order Markov process only has a single conditioning
value of the random variable, not two. Yet the distribution we are interested in is condi-
tioned on the value of random variable St at two times, tBB and t0. The conventional form
of the argument uses informal reasoning to sidestep this issue. It tries to make the case that
since SBB ≪ St0 , the trend of the average value of P(St | St0 , SBB) must be monotonically
decreasing as t shrinks to smaller values than t0. This is then taken to further imply that for
all times t1, t2 such that tBB < t2 < t1 < t0, P(St1 | St0 , SBB, St2) is strongly biased to values
St1 > St2 (implicitly, this is the form of the second law used above in the analysis of Type-3
memory systems).

Let us suppose, as in the Past Hypothesis, that based on current data we can know
the values of SBB and St0 , that SBB ≪ St0 , and that the associated distribution of interest
is P(St | St0 , SBB). What happens if we try to use fully formal reasoning at this point,
investigating the form of such a distribution conditioned on two separate events when the
underlying Markov process is time-symmetric?

To calculate the marginal distributions of a random variable evolving under a time-
symmetric Markov process given its values at two times, we must use a “Brownian bridge” [37].
In general, because the underlying stochastic process is symmetric, the Brownian bridge
calculation leads to the conclusion that in the very recent past, just before the present, the
entropy of the universe was not likely to be lower than it is today, but is actually more likely
to have been slightly higher than it is today. Then, as we look further into the past from the
present, the trend line “turns over”; the expected entropy starts decreasing, and then falls
precipitously, to reach the conditioning, extremely low value in the distant past, in broad
accord with the Past Hypothesis.

How can this be reconciled with the second law? In mesoscopic systems, with a
relatively small number of degrees of freedom, the Markov process is diffusive enough
for this “turnover” effect to be readily observable. The result is that the second law of
thermodynamics in fact violated if one moves a very small amount into the past towards a
point in time with a known, very low value of entropy if there are few degrees of freedom in
the universe.

In the macroscopic system of our actual, cosmological universe, though, we would
expect the diffusion term in the Markov process to be much smaller than the drift term,
i.e., for the variance of the dynamics to be far smaller than the trend. If there were enough
degrees of freedom, there might not even by an increase in expected entropy as we move
into the past from the present. The only effect of the Brownian bridge might be to elevate
the entropy in the recent past higher than it would be if we did only know the entropy at
the Big Bang, rather than also knowing the current entropy. Presumably, it would require
extremely careful and precise experiments to discern this effect at the macroscopic scale of
our universe.
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These phenomena concerning time-symmetric Markov processes are illustrated in the
following example. For pedagogical reasons, this example replaces entropy with another
quantity that undergoes a time-symmetric Markov process:

Example 1. Suppose we have an N-dimensional grid where each of the N coordinates has 2L + 1
possible values, −L, . . . ,−1, 0, 1, . . . , L. Impose periodic boundary conditions, so the grid lies on an
N-dimensional torus. Consider a discrete time simple random walker over that grid who moves in an
unbiased manner. Write the position of the random walker at timestep t as x(t) := (x1, . . . , xN)(t)
(so in the step from time t to t + 1, the walker has equal probability of moving to any one of the
neighbors of x(t), all of which have Hamming distance 1 to x(t)).

Since the dynamics follows a random walk, it is a Markov process. Moreover, that process is
ergodic, so the long-term probabilities are uniform over the entire grid. Suppose that the distribution
over possible locations of the random walk reached this stationary point at some point in the infinite
past. Therefore, the unconditioned probability distribution of the position of the walker at any time
t we are considering, i.e., marginal distributions P(x(t)), is also at that stationary point, and the
marginal distribution is uniform over the entire grid at all times t.

Consider the set of all cubes defined by the grid that are centered on the origin. Each of those
cubes has a different radius, d, and therefore a different number of grid points in its surface. So any
point x with coordinates xi lies on the surface of the cube with radius d = maxi |xi|. The area of
that surface (i.e., the number of grid points contained in that surface) is the difference between the
volume of that cube and the volume of the cube lying just inside of it,

A(d) = [d]N − [d − 2]N (34)

= 2N[d]N−1 − 2N(N − 1)[d]N−2 + . . . (35)

= 2N[d]N−1
(

1 − (N − 1)
d

+ . . .
)

(36)

∼ 2N[d]N−1 in the limit that d/N → ∞ (37)

Note that this is not the same as the surface area of cube in RN with radius d.
There is no “energy” in this scenario, so we cannot define the Boltzmann entropy of a micro-

canonical ensemble as the log of the area of a shell of fixed energy, as in conventional statistical
physics. However, we can instead consider the Boltzmann entropy for shells given by the sets of
points lying on the cube surfaces with successive values of d (so d plays the role that energy plays in
the conventional microcanonical ensemble).

For this choice, the Boltzmann entropy for point x lying on an N dimensional grid is

S(x) = ln A[max
i

xi] (38)

Given any (stochastic) trajectory of the random walker, x(t), write d(t) for the radius of the cube
whose surface contains x(t), and write the associated Boltzmann entropy as S(t). As an example,
for N = 2, S(t) = ln

(
4 max(|x1(t)|, |x2(t)|)

)
.

Since the random walk is unbiased and (by time-translation invariance) at any time t the
marginal distribution is the stationary point of that walk, it follows from symmetry that the Markov
kernel is symmetric in time, i.e.,

P(x(t + 1) = a | x(t) = b) = P(x(t + 1) = b | x(t) = a) (39)

In fact, there is an iff, in that if Equation (39) holds, then P(x(t)) = P(x(t + 1)), i.e., the
marginal distribution is a stationary point of the dynamics at t. (To prove this well-known result,
consider any two random variables A and B, with the same space of possible values. Write PA
and PB for the respective marginal distributions, and write K(b, a) for conditional distribution
P(B = b|A = a) and the Bayesian inverse as K̂(a, b) = P(A = a|B = b). Using conventional
shorthand, PB = KPA and PA = K̂PB. Combining the results, PA = K̂KPA. If K = K̂, it follows



Entropy 2024, 26, 170 21 of 23

that PA is a stationary point of K. Note that this has nothing to do with Markovian dynamics; in
this case, A = x(t) and B = x(t + 1), but the argument here is more general.)

Given Equation (39) and the fact that the random walk is time-homogeneous, we conclude that
for any value k′, diameter d(t) (and therefore value S(t) = k), and positive integer q,

P
(
S(t − q) = k′ | S(t) = k

)
= P

(
S(t + q) = k′ | S(t) = k

)
(40)

This confirms that the Markov process over entropy values is indeed time-symmetric.
Measuring units of t in years, define tBB = −1.3 × 1014 and t0 = 0. Suppose as well that

the entropy, then, S(tBB), is quite small (much smaller than the maximal value of S, (2L + 1)N −
(2L − 2)N). Then,

EP(S(t0) | S(tBB)) > S(tBB) (41)

This is the essence of the traditional argument that the Past Hypothesis results in the second law.
On the other hand, suppose that S(tBB) were still quite small, but that S(t0) were only slightly

larger than S(tBB) (in comparison with how much bigger the maximal value of S is). Under these
conditions, it is easy to confirm that if the universe had only two degrees of freedom, i.e., N = 2,
then the expected value of the entropy only a single year ago, conditioned on both the values of the
entropy at the time of the big bang and its value at t0, would be greater than its current value:

EP
(
S(tt0−1) | S(tBB), S(t0)

)
> S(t0) (42)

It is not clear how strong this “bump up” of the expected value of the actual thermodynamic
entropy in the recent past of the actual physical universe is, where the analogs of both N and L
are astronomically larger than two (literally). Presumably, the bump up is not strong enough to
overcome the strong “pull” towards lower past entropy values due to the enormous drop between
the values of the entropy at the time of the Big Bang and its current (t0) value. After all, increase L,
causing value d(t0) to be vastly larger than d(tBB) while still far less then the maximal value. Then,
since the entropy scales with d as O(dN−1), and since by the Past Hypothesis, S(tBB) ≪ S(t0), the
difference between the expected entropy in the recent past and the current entropy starts to shrink as
a move further into the past is realized, presumably ultimately turning over and starting to decrease
very sharply, in order to decrease by S(tBB)− S(t0) by the time the move t0 − tBB years into the
past is complete.

However, the calculation confirming this has not been conducted, nor has the associated
calculation of how far into the past the time is where the expected entropy turns over and starts to
decrease the further into the past the move is.

These arguments imply that the physical phenomenon that Type-3 memory systems
rely on would no longer occur in mesoscopic systems, since they do not obey the second
law. On the other hand, these arguments also imply that those phenomena underlying
Type-3 memory systems will indeed hold if we restrict our attention to macroscopic systems.
However, it would be interesting to calculate the precise magnitude of the turnover effect
in our physical universe to confirm this supposition.

7. Future Work and Open Issues

Finally, we mention two avenues for investigation that the analysis in this paper
highlights but does not address.

First, in this paper, we consider three types of memory systems, which are the three
types of memory system we can find examples of in the real, physical world. We provide
no proof that no other type of memory system is possible. One obvious avenue for future
work is to investigate this issue further.

Second, we show how, due to the second law, there can be Type-3 memory systems
of the past. We also argue (semi-formally) that the human brain involves such types of
memory. Based on our discussion, we consider it plausible that Type-3 memories cannot be
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of the future. In essence, this is because we do not see a potential mechanism that could
play the role the second law of thermodynamics plays in such putative Type-3 memories of
the future. But we provide no formal proof that Type-3 memory systems can only be of the
past. This issue is thus left for future research.
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