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Abstract: The Fried-Yennie gauge is a covariant gauge for which the mass-shell renormalization
procedure can be performed without introducing spurious infrared divergences to the theory. It is
usually applied in calculations in regular Quantum Electrodynamics (QED), but it is particularly
interesting when employed in the framework of pseudo-QED (PQED), where fermions are constrained
to 2 + 1 dimensions while the dynamical fields interacting with these fermions live in the bulk of a
3 + 1 space. In this context, the gauge parameter can be adjusted to match the power of the external
momentum in the denominator of the photon propagator, simplifying the infrared region without
the need for a photon mass. In this work, we apply this machinery, for the first time, to PQED,
generalizing the procedure to calculate the self energy in arbitrary dimensions, allowing, of course,
for different dimensionalities of fermions and gauge fields.

Keywords: pseudo-QED; Fried-Yennie gauge; infrared behavior

1. Introduction

For a few decades, the field of condensed matter has provided physical realization of
systems that can be associated with manifold others. more than the (topologically trivial)
3-space and 1-time dimensions ordinarily considered in high-energy physics. Single-layer
materials, quantum wires and nanotubes are some examples of a plethora of possible
arrangements that present alternative dimensionalities (see, for instance, [1]). Among these,
systems arranged in 2-space dimensions have been a hot topic for several years [2]. The
surface of liquid helium [3] or the interface of heterostructures are representatives of
systems that harbor interesting properties deriving from their space structure. Also, 2D
antiferromagnetic insulators [4] may give rise to a high Tc superconductor [5–9] and, on
the other hand, (2 + 1)D electron systems, when placed in a magnetic field, generate new
phenomena in the realm of the Quantum Hall effect [10], such as the fractionalization of
charge and statistics, statistical transmutation, and so on [11,12].

More recently, the discovery of graphene [13–15], along with a relatively simple
method for its synthesis in the laboratory, have triggered new interest in (2 + 1)D systems.
After the discovery, it was quickly shown that, among several remarkable mechanical and
electrical properties, the charge carriers in graphene differ from most condensed matter
systems [16], exhibiting a quasi-particle behavior that much resembles relativistic systems,
despite having a Fermi velocity around 300 times lower than the speed of light. This feature
is shared with a few of the aforementioned (2 + 1)D systems but theoretically demonstrated
in a clear and simple way in honeycomb lattices. Given this relativistic-like character, it is
not surprising that the continuous limit of the tight-binding approach usually applied to
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describe these systems yields the Dirac equation in (2 + 1)D. It was later shown that this
framework is suitable for describing a series of other materials (planar or not) [2] and also
the later discovered topological insulators [17–19]. Due to the common dispersion relation
presented by these, they are classified as a family of materials dubbed Dirac materials.

In general, interaction with fields may affect the electronic properties of any mate-
rial. It is therefore interesting to investigate the effects of interactions of this nature on
relativistic-like planar materials. However, this kind of study presents a challenge, since
the electrons are constrained to the plane while the dynamical fields are not. This was
the main motivation behind the elaboration of pseudo-QED (PQED) [20]. Specifically, this
framework, which is the focus of the present Special Issue, provides a mixed dimensional
theory capable of describing fermionic systems in (2 + 1)D interacting with dynamical
fields in (3 + 1)D, whether external or generated by the particles themselves. Although it is
a non-local theory, it has been shown that it respects unitarity [21] and causality [22].

In fact, mixed dimensions are intrinsically present in other fields of physics, appearing
in approaches like braneworld [23]. Inspired by this framework, a generalization of mixed
dimensional theories was later developed called reduced-QED (RQED). This procedure
proposes a treatment of systems of fermions living in generic dimensions different from the
gauge fields, as long as the dimension of the former is smaller than the dimension of the
latter [24]. RQED has also been widely applied for the particular case of planar materials
interacting with dynamical fields. A comprehensive review on this subject, including PQED
and RQED main results, can be found in [25].

The development of both approaches follows similar paths and consists of dimension-
ally reducing the gauge fields, defining an effective theory totally in (2 + 1)D that accounts
for the projection of the gauge field on the plane. This procedure has been widely used to
calculate chiral symmetry breaking in planar systems, mainly making use of Schwinger–
Dyson techniques [26–30]. Renormalization in RQED was investigated in [31–34], and its
scale invariance to all orders was proved in [35]. A renormalization group was also applied
to investigate the gap in materials like diselenide (WSe2) and molybdenumm disulfide
(MoS2) [36]. Aspects of the Chern–Simons theory, which is intimately related to PQED, were
explored in [37–40]. Other aspects of the theory, like anisotropy in strained graphene [41],
RQED in curved space [42], and supersymmetric PQED [43] were analyzed. The effects of
a parity anomaly associated with a chemical potential were explored in [44].

In the present contribution, we will explore the implementation in PQED of a technique
that makes the infrared sector of gauge theories more treatable and, although PQED is
better behaved in the infrared compared to ordinary QED, it is still very useful for the
regularization of this theory. It consists of performing dimensional regularization in the
so-called Fried-Yennie gauge [45] and manipulating the expressions in a way that the
mass-shell renormalization scheme can be implemented without introducing artificial
infrared divergences.

This work is organized as follows. In Section 2, we introduce the Fried-Yennie gauge
and calculate the self energy in arbritary dimensions, generalizing the formalism (initially
applied to ordinary QED4). In Section 3, we apply the machinery developed in Section 2 to
ordinary QED, checking that our approach reproduces the known results, and apply it to
PQED. In Section 4, we summarize. Appendices A–D are dedicated to scrutinizing some of
the calculations presented in the body of the manuscript.

2. The Fried-Yennie Gauge in D-Dimensions
2.1. Setting the Stage

The Fried-Yennie gauge has been explored in the context of quantum chromodynam-
ics [46] to explore the quark self-energy with a gauge boson propagator of the follow-
ing form:

Dµν
β (k) = −

(
λd
k2

)γd
(

gµν + β
kµkν

k2

)
, (1)
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where β is the gauge parameter introduced to ensure transversality in x-space. In the
context of mixed-dimensional theories, γd depends on the space-time dimensionality in
which fermions live. The quark propagator is expressed as usual,

S(p) = [γ · p − m − Σ(p)]−1 , (2)

but the self energy is expected to be cast as follows:

Σ(p) = A + B (γ · p − m) + C(p)(γ · p − m)2 . (3)

This representation requires A to vanish since the self energy must vanish in the mass-shell
(γ · p − m) = 0, where m is the physical electron mass; also, as discussed in [47], B is
connected to the electron wavefunction renormalization constant Z2, via Z2 = 1/(1 − B).
Furthermore, in order for the expansion of Equation (3) to be well defined,

lim
γ·p→m

[(γ · p − m)C(p)] = 0 . (4)

That said, the self-energy in Minkowsky space reads as follows:

−iΣ(p) = i δm +
∫ d f k

(2π)d [−ie(d)γµ]
i

γ · (p − k)− m

× [−ie(d)γν]
[
iDµν

β (k)
]

. (5)

Here, δm = m − m0 acts as a counterterm (m0 the bare quark mass) and e(d) = µϵe is the
electron charge (As usual, µ and ϵ are the regulators within a dimensional regularization
scheme for d-dimensions). Here, d is the space-time dimension where the fermions live.
For notation convenience, in the following, we shall employ Dirac notation γ · p → /p. Thus,
the self-energy reads as follows:

Σ(p) = −δm + I , (6)

I =
∫

k

γµ[(/p − /k) + m]γν

(k2 − 2k · p + p2 − m2)(k2)γd

(
gµν + β

kµkν

k2

)
.

where the integration symbol stands for∫
k

:= (λd)
γd
(αem

4π

)
(4πµ2)ϵ

∫ ddk
iπd/2 . (7)

Written in this way, the integral I in Equation (6) can be split as I = IF + βIβ, such that

IF =
∫

k

(2 − d)(/p − /k) + dm
(k2 − 2k · p + p2 − m2)(k2)γd

, (8)

Iβ =
∫

k

2k · p /k − k2(/p + /k + m)

(k2 − 2k · p + p2 − m2)(k2)γd+1 . (9)

Focusing on the former, we introduce a Feynman parametrization to combine the denomi-
nators, obtaining

IF =
∫

u

∫
k

(2 − d)(/p − /k) + dm
(k2 − 2uk · p + u(p2 − m2))γd+1 , (10)

= N (d)
γd+1

∫
u
[(2 − d)(1 − u)/p + d m]

1
(M2)γD

,
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where the second line is derived using the formulas from Appendix A. We have adopted
the following notation:∫

u
:= γd

∫ 1

0
du (1 − u)γd−1 (11)

M2 := u(m2 − (1 − u)p2) (12)

γD := γd + 1 − d/2 , (13)

N (d)
α := (λ)γd

(αem

4π

)Γ(α − d/2)
Γ(α)

(−1)α(4πµ2)ϵ (14)

A similar procedure is followed for the gauge term contribution, Equation (9), thus producing

Iβ =
γd + 1

γd

∫
u

∫
k

2(1 − u) k · p /k
(k2 − 2uk · p + u(p2 − m2))γd+2 ,

−
∫

u

∫
k

/p + /k + m
(k2 − 2uk · p + u(p2 − m2))γd+1 . (15)

The second line can be evaluated just as in the IF case, while the first, as discussed in
Appendix B, requires more attention. We thus have

Iβ =
1

γd
N (d)

γd+1

∫
u
[γdm − {(1 − u)(1 + γd − 2γD)}/p]

1
(M2)γD

. (16)

Notice that, if d = d0 − 2ϵ, where d0 is the integer space-time dimension, then (as we shall
see) γD = ϵ. This result shall be used in the subsequent procedure. Collecting all the terms,
one arrives at

Σ(p) = −δm +N (d)
γd+1

∫
u

[
f̂m m + f̂p /p

] 1
(M2)ϵ

, (17)

where we have defined

f̂m := d + β ,

f̂p := (1 − u)
(
(2 − d)− β

γd
(1 + γd − 2ϵ)

)
(18)

In the next subsection, we discuss how to match the above expression with the representa-
tion from Equation (3).

2.2. Identifying The Dressing Functions

First of all, the counterterm δm is fixed by the requirement that A = 0, arising from
the on-shell condition

A = lim
/p→m

Σ(p) , (19)

which implies

δm
m

= N (d)
γd+1

∫
u

[
f̂m + f̂p

] 1
(u2m2)ϵ

(20)

= N̄γd

(
4π

µ2

m2

)ϵ Γ(1 − 2ϵ)Γ(ϵ)
Γ(γd + 2 − 2ϵ)

(2γd + d(1 − 2ϵ)) ,

independent of β, and where

N̄γd = (−1)γd+1λ
γd
d

(αem

4π

)
. (21)
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Thus, Equation (17) can be rearranged as follows:

Σ(p) = N (d)
γd+1

∫
u

{
( f̂m + f̂p)m

[
1

(M2)ϵ
− 1

(u2m2)ϵ

]
+ f̂p(/p − m)

1
(M2)ϵ

}
. (22)

As can be noted, the second line already displays a (/p − m) factor, which will be useful to
us when identifying B. Furthermore, as discussed in Ref. [47], the bracketed term in the
first line can be recast so as to extract an overall (/p − m) factor as well.

Let M2 = um2G, with

G := u + κ(1 − u) , (23)

κ :=
m2 − p2

m2 = − 1
m2 (/p + m)(/p − m) . (24)

Then, we can appeal to the following identity:

1
Gϵ

− 1
uϵ

= −ϵκ(1 − u)
∫ 1

0
dv

1
Ḡ1+ϵ

, (25)

with Ḡ = u + κ(1 − u)v, such that, the combination of Equations (22) and (25) produces

Σ(p) = N (d)
γd+1(/p − m)

∫
u

1
(um2)ϵ

{
f̂p

1
Gϵ

(26)

+ ϵ( f̂m + f̂p)(1 − u)
[
(/p + m)

m

∫ 1

0
dv

1
Ḡ1+ϵ

]}
.

Given the representation from Equation (3), and the fact that A = 0, taking the limit /p → m
inside the integral yields the value of B:

B = N (d)
γd+1

∫
u

1
(um2)ϵ

{
f̂p

1
uϵ

+ 2ϵ( f̂m + f̂p)(1 − u)
∫ 1

0
dv

1
u1+ϵ

}
. (27)

Performing the evaluation of the integrals, one obtains

B = −N̄γd

(
4π

µ2

m2

)ϵ Γ(1 − 2ϵ)Γ(ϵ)
Γ(γd + 2 − 2ϵ)

γd(2γd + d(1 − 2ϵ))

= −γd
δm
m

, (28)

thus showing a direct relationship with the counterterm δm. Equations (20) and (28)
generalize the QED result, presented in [47], for arbitrary dimensions. The substraction of
the B contribution to Equation (26) enables us to identify

(/p − m)2C(p) = N (d)
γd+1(/p − m)

∫
u

1
(um2)ϵ

(29)

×
{

f̂p

[
1
Gϵ

− 1
uϵ

]
+ ϵ( f̂m + f̂p)(1 − u)

×
∫ 1

0
dv
[
(/p + m)

m
1

Ḡ1+ϵ
− 2

u1+ϵ

]}
.

Once again, one needs to perform integration tricks in order to extract a global (/p − m)2

factor. In the second line, the bracketed term can be expressed in a more useful way by
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employing the identity from Equation (25). The integrand of the last line, on the other hand,
is split as follows:[

(/p + m)

m
1

Ḡ1+ϵ
− 2

u1+ϵ

]
→
[

/p − m
m

1
Ḡ1+ϵ

+ 2
(

1
Ḡ1+ϵ

− 1
u1+ϵ

)]
, (30)

so that we have extracted (/p − m) for the first term and one can use the following integral
identity for the other piece:∫ 1

0
dv
(

1
Ḡ1+ϵ

− 1
u1+ϵ

)
= −(1 + ϵ)κ(1 − u)

∫ 1

0
dv

1 − v
Ḡ2+ϵ

. (31)

Therefore, one obtains

C(p) = N (d)
γd+1

1
m

∫
u

∫ 1

0
dv

ϵ

(um2)ϵ
(1 − u) (32)

×
{

1
Ḡ1+ϵ

(
f̂p

/p + m
m

+ ( f̂p + f̂m)

)
+

2(1 − v)
Ḡ2+ϵ

(
f̂p + f̂m

)
(1 + ϵ)(1 − u)/p + m

m

}
.

Before discussing the case of PQED, we shall comment on some issues about C(p), related
to the convergence of the integral, as well as the selection process of β and γd for a given
space-time dimensionality of the fermion.

2.3. Scrutinizing C(p): Convergence and Gauge Fixing

Before going to the particular case of PQED, let us further explore C(p). For analysis,
it turns out to be convenient to rewrite Equation (32) (here, f̂p := (1 − u) f̃p):

C(p) = N (d)
γd+1

1
m

∫
u

∫ 1

0
dv

ϵ

(um2)ϵ
(1 − u)

{
/p
m

u f̃p

Ḡ1+ϵ
(33)

+ /p + m
m

[
(1 − 2u)

1
Ḡ1+ϵ

− 2u(1 + ϵ)(1 − u)
1 − v
Ḡ2+ϵ

]
f̃p

+

[
1

Ḡ1+ϵ
+ 2 /p + m

m
(1 + ϵ)(1 − u)

1 − v
Ḡ2+ϵ

]
( f̂m + f̃p)

}
.

It is argued that the last line of the above expression is not well behaved at small values of
ϵ, Ref. [47]. For this reason, and for the simplicity it entails, it is convenient to fix the value
of β from the requirement that

f̂m + f̃p =
2γd − β(1 − 2ϵ)

γd
= 0 , (34)

This constraint leads to a link between β and γd,

β(γd) =
2γd

1 − 2ϵ
. (35)

which is a particular gauge-fixing for the arbitrary power-like behavior for the photon
propagator, in which the transversality condition dictates the following [46]:

β(γd) =
2γd

d − 1 − 2γd
; (36)
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in our case, assuming the photon lives in a 4-dimensional space-time [31] (and recalling
that d = d0 − 2ϵ),

γd =
d0 − 2

2
, (37)

also confirming Equation (13), namely γD = ϵ. For the above, in QED, we have γd, such
that we recover the well-known result β = 2/(1 − 2ϵ). Also in QED, the second line of
Equation (33) vanishes, such that C(p) is completely determined by the /p term from the
first line. This is not the general case where, given Equations (35) and (37), one is left with

C(p) = N (d)
γd+1

f̃p

m2

∫
u

∫ 1

0
dv

ϵ(1 − u)
(um2)ϵ

{
/pu

1
Ḡ1+ϵ

(38)

+ (/p + m)

[
(1 − 2u)

1
Ḡ1+ϵ

− 2u(1 + ϵ)(1 − u)
(1 − v)
Ḡ2+ϵ

]}
.

So, we have properly identified each part of the self-energy: the counterterm (Equation (20)),
the B constant (Equation (28)) and the C(p) dressing function (Equation (38)). We now turn our
attention to the PQED case.

3. The Fried-Yennie Gauge in PQED

Let us recall that, in PQED, d0 = 3 is implied and so γd = 1/2, λ = 1/4 and β = 1/(1− 2ϵ).
Therefore, one has

δm
m

= N̄1/2

(
4π

µ2

m2

)ϵ Γ(1 − 2ϵ)Γ(ϵ)
Γ(5/2 − 2ϵ)

4(1 − ϵ)2 (39)

ϵ→0≈ N̄1/2
16

3
√

π

(
1
ϵ
+

[
ln
(

4π
µ2

m2

)

+ 2
Γ′(5/2)
Γ(5/2)

− 2 + γE

])
+O(ϵ) ,

with γE being the Euler gamma function. According to Equation (28), B is merely obtained
by multiplying the above expression by −γd = −1/2.

Concerning C(p), it is convenient to separate the /p and m contributions in Equation (38)
as follows:

C(p) = Cp(p)/p + Cm(p)m = [Cp0(p) + Cm(p)]/p + Cm(p)m , (40)

where, again, Cm(p) vanishes in QED4. The corresponding integrals are convergent and
the limit ϵ → 0 can be taken safely (see Appendix D). The final result for the coefficient Cp0

in QED4 is

CQED4
p0 (p) =

3N̄1

m2(κ − 1)2 (−1 + κ(1 − log κ)). (41)

Now, focusing on the PQED case, where d = 3 − 2ϵ and γd = 1/2, we find

CPQED
p0 = − 16N̄1/2

3m2κ
√

π

(
5
3
+ Log

[κ

4

]
− 2F(0,1,0,0)

1

[
2, 0,

5
2

,
κ − 1

κ

])
. (42)
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and

Cm = − 16N̄
3m2κ

√
π

(
− 2 +

(
2 − κ

2
(H3/2 + Log[κ])

)
− 3

2
(2 + κ) 2F(0,1,0,0)

1

[
1, 0,

3
2

,
κ − 1

κ

]
2F(0,1,0,0)

1

[
1, 0,

5
2

,
κ − 1

κ

]
+ (2κ) 2F(0,1,0,0)

1

[
2, 0,

5
2

,
κ − 1

κ

])
(43)

The full self-energy for PQED in the Fried-Yennie gauge is given by Equation (3), where the
coefficients can be obtained from Equations (39), (42) and (43). Note that the coefficient B
depends on the mass through Log(µ2/m2). After mass renormalization, one can insert this
coefficient into the expression for the self-energy and check that the infrared limit yields to
a dependence of mLog(µ2/m2) for the second term in Equation (3). This clearly vanishes
in the limit m → 0. On the other hand, one can easily check that CPQED

p0 and Cm go with
1/m2. The integrals in Equation (38) are not m-dependent in the infrared and the only
dependence is on the overall 1/m2 factor in this equation. When inserted in Equation (3),
the dependence on the mass in the third term is lifted in the infrared regime and gives
a finite contribution for the self-energy. Under these considerations, it is clear that the
self-energy is well-defined in the infrared for any value of the mass, including the limit of
vanishing mass.

4. Summary

In this article, we have carried out an explicit one-loop calculation of the fermion self-
energy in the mixed dimensional theory of Reduced or Pseudo-QED with 4-dimensional
photons and 3-dimensional fermions. We have selected to work with the covariant Fried-
Yennie gauge and implemented an explicit mass-shell renormalization of Σ(p), which
acquires the form shown in Equation (3). The present calculation generalizes the previously
known case of QED4 carried out in [47], motivated by the Coulomb static interaction among
charge carriers in low-energy graphene. Although one usually considers graphene as a
gapless system, there are a number of proposals for mechanisms which can open the gap
and thus induce a mass for electrons in the material, including self interactions [24–30].
In this particular context, our approach is suitable for calculations.

The fermion self energy in arbitrary dimensions is defined by the functions in
Equations (28) and (38). For the particular case of PQED, these expressions simplify
to the ones shown in Equations (39), (42) and (43) once dimensionally regularized. It should
be noticed that these expressions do not introduce any spurious infrared divergences what-
soever. Of course, the limit m → 0 is straightforward to obtain and, as a result, the self
energy in Equation (3) is finite, as mB(p) and m2C(p) are finite as p → 0. This is a nice
feature of the Fried-Yenni gauge.

Finally, it is worth mentioning that the gauge adopted here is considered to calcu-
late the structure of the fermion–photon vertex correction to this theory and, hence, the
anomalous magnetic moment of charge carriers in graphene. On the other hand, the mas-
sive fermion propagator in an arbitrary gauge is also considered. The results will be
reported elsewhere.
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Appendix A. About the 4-Momentum Integrals

Recalling that ∫
k

:= (λ)γd
(αem

4π

)
(4πµ2)ϵ

∫ ddk
iπd/2 , (A1)

the following useful formulas have been employed throughout this work:

IS
α (d) :=

∫
k

1
(k2 + 2k · v − z)α

= N (d)
α

1
(v2 + z)α−d/2 , (A2)

IV
µ,α(d) :=

∫
k

kµ

(k2 + 2k · v − z)α
= −vµ IS(d) , (A3)

IT
µν,α(d) :=

∫
k

kµkν

(k2 + 2k · v − z)α

= IS
α (d)

(
vµvν −

1
2

gµν
v2 + z

α − d/2 − 1

)
. (A4)

Here,

N (d)
α := (λ)γd

(αem

4π

)Γ(α − d/2)
Γ(α)

(−1)α(4πµ2)ϵ (A5)

Appendix B. On the β Integral

Let us consider the gauge term contribution to the self energy, written down in
Equation (9):

Iβ =
γd + 1

γd

∫
u

∫
k

2(1 − u) k · p /k
(k2 − 2uk · p + u(p2 − m2))γd+2 ,

−
∫

u

∫
k

/p + /k + m
(k2 − 2uk · p + u(p2 − m2))γd+1 . (A6)

The evaluation of the second line is straightforward. For the first line, let us first consider
the momentum integration:∫

k

2k · p /k
(k2 − 2uk · p + u(p2 − m2))γd+2

= 2pµγν
∫

k

kµkν

(k2 − 2uk · p + u(p2 − m2))γd+2

= 2pµγν

(
u2 pµ pν −

1
2

M2

γd + 2 − 1 − d/2
gµν

)
IS
γd+2(d)

= −2/p
(

u2 p2 − 1
2
M2

γD

)
γD

γd + 1
1

M2 IS
γd+1(d)

= 2/p
(

1
2
− u2 p2

M2 γD

)
1

γd + 1
N (d)

γd+1
1

(M2)γD
,
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where we have employed the formula from Equation (A4). Therefore, we have

Iβ =
2

γd
N (d)

γd+1

∫
u
(1 − u)

(
1
2
− γD

u2 p2

M2

)
/p

1
(M2)γD

− N (d)
γd+1

∫
u
[(1 + u)/p + m]

1
(M2)γD

; (A7)

or, more conveniently,

Iβ =
1

γd
N (d)

γd+1

∫
u
[{(1 − u)− γd(1 + u)}/p − γdm]

1
(M2)γD

− 2
γd

N (d)
γd+1

∫
u
(1 − u)γDu2 p2

/p
1

(M2)γD+1 . (A8)

The second line above can be recast, using integration by parts, in order to have the same
power of M2, thus producing∫

u
(1 − u)γDu2 p2 1

(M2)γD+1 =
∫

u
[(1 − γD)− (1 + γd − γD)u]

1
(M2)γD

, (A9)

which holds for γD < 0 and γd > 0. Finally, we arrive at a rather compact expression for
Iβ:

Iβ =
1

γd
N (d)

γd+1

∫
u
[γdm − {(1 − u)(1 + γd − 2γD)}/p]

1
(M2)γD

. (A10)

Appendix C. More about C(p)

After performing the integral over dv, we can identify the coefficients accompanying
/p and m contributions to C(p):

C(p) = Cp(p)/p + Cm(p)m = [Cp0(p) + Cm(p)]/p + Cm(p)m , (A11)

where

Cp0(p) = −N̄γd

(
4π

µ2

m2

)ϵ Γ(ϵ)
Γ(γd)

f̃p

κ

∫
u

u
(um2)ϵ

(
1
Gϵ

− 1
uϵ

)
(A12)

and with the Cm(p) dressing function, which vanishes in regular QED, being

Cm(p) = N̄γd

(
4π

µ2

m2

)ϵ Γ(1 + ϵ)

Γ(γd)

f̃p

κ

∫
u

(1 − u)
(um2)ϵ

(A13)

×
(

2u

[
1

G1+ϵ
− 1

u1+ϵ

]
− (1 − 2u)

(1 − u)ϵ

[
1
Gϵ

− 1
uϵ

])
.

Appendix D. C(p) Integrals

The result of the first integral in Equation (38), that gives the coefficient of /p alone,
identified as Cp0 , is given by

∫
u

∫ 1

0
dv

(1 − u)γd

(um2)ϵ

u
Ḡ1+ϵ

=

(m2)−e

κ

(
Γ[2 − 2ϵ]Γ[ϵ]

Γ[2 + γd − 2ϵ]
+

κ−ϵπ Csc[πϵ] 2 F̃1[2 − ϵ, ϵ, 2 + γd − ϵ, κ−1
κ ]

Γ[ϵ − 1]

)
, (A14)
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where 2 F̃1[a, b, c, d] is the regularized Hypergeometric function and Γ[x] is the Gamma
function. The limit ϵ → 0 can be taken safely, yielding

J1 = Limitϵ→0

[
f̃p

(
4πµ2

m2

)ϵ ∫
u

∫ 1

0
dv

(1 − u)γd

(um2)ϵ

u
Ḡ1+ϵ

]

= − (d + 2γd)

κΓ[2 + γd]

(
− 1 + H1+γd + Log[κ] + 2F(0,0,1,0)

1

[
2, 0, 2 + γd,

κ − 1
κ

]

− 2F(0,1,0,0)
1

[
2, 0, 2 + γd,

κ − 1
κ

]
+ 2F(1,0,0,0)

1

[
2, 0, 2 + γd,

κ − 1
κ

])
.

Here, 2F(i,j,k,l)
1 [a, b, c, d] (without the tilde) gives the derivative of order i, j, k, l of the Hyper-

geometric function with respect to variables a, b, c, d. We have also used the gauge condition
β = 2γd/(1 − 2ϵ) to obtain the expression above. For real values of the arguments κ and
γd, the following derivatives of the Hypergeometric function vanish:

2F(0,0,1,0)
1

[
2, 0, 2 + γd,

κ − 1
κ

]
= 0

2F(1,0,0,0)
1

[
2, 0, 2 + γd,

κ − 1
κ

]
= 0 (A15)

such that the result can be simplified to

J1 = − (d + 2γd)

κΓ[2 + γd]

(
− 1 + H1+γd + Log[κ]− 2F(0,1,0,0)

1

[
2, 0, 2 + γd,

κ − 1
κ

])
.

In the case of QED, γd = 1 and d = 4 in the limit ϵ → 0. Also, the following identity holds:

2F(0,1,0,0)
1

[
2, 0, 3,

κ − 1
κ

]
=

1
2(κ − 1)2

(
1 − 4κ + 3κ2 + (2 − 4κ)Log[

κ − 1
κ

]

)
. (A16)

Considering this, the complete expression for CQED4
p0 , including all the coefficients from

Equation (38), becomes

CQED4
p0 =

N̄1

m2 J1 (A17)

=
3N̄1

m2κ(κ − 1)2

(
κ2 − κ − κ2Log[κ]

)
. (A18)

For PQED, γd = 1/2 and d = 3 − 2ϵ, and the final expression, following the same steps
used to obtain (A18), is

CPQED
p0 = − 16N̄1/2

3m2κ
√

π

(
5
3
+ Log

[κ

4

]
− 2F(0,1,0,0)

1

[
2, 0,

5
2

,
κ − 1

κ

])
. (A19)

In the equation above, we have benefited from the relation −1 + H3/2 = 5/3 − Log[4].
The sum of the other two integrals in Equation (38), which gives the coefficient of /p + m,
identified as Cm, is given by the following (considering that other derivatives of the Hyper-
geometric functions that appear in the results vanish for real values of the parameters):
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Limitϵ→0

[∫
u

∫ 1

0
dv(1 − 2u)

1
Ḡ1+ϵ

− 2u(1 + ϵ)(1 − u)
1

Ḡ2+ϵ

]
=

γd
κ2Γ[2 + γd]

(
− 2 + κ(1 − 2γd) + (2 + κ(γd − 1))(H1+γd + Log[κ])

−(2 + κ)(1 + γd) 2F(0,1,0,0)
1

[
1, 0, 1 + γd,

κ − 1
κ

]
+ (2γd) 2F(0,1,0,0)

1

[
1, 0, 2 + γd,

κ − 1
κ

]
+(2κ) 2F(0,1,0,0)

1

[
2, 0, 2 + γd,

κ − 1
κ

])
. (A20)

For QED4, the coefficient Cm associated with the integral above vanishes. This can be seen
when applying the conditions γd = 1/2, d = 3 − 2ϵ and using the relations

2F(0,1,0,0)
1

[
1, x, 2,

κ − 1
κ

]
=

κ − 1 − Log[κ]
κ − 1

(A21)

2F(0,1,0,0)
1

[
1, x, 3,

κ − 1
κ

]
=

3 + κ(κ − 4) + 2Log[κ]
2(κ − 1)2 (A22)

2F(0,1,0,0)
1

[
2, x, 3,

κ − 1
κ

]
=

1 + κ(3κ − 4) + 2Log[κ]− 4κLog[κ]
2(κ − 1)2 . (A23)

For PQED, the coefficient Cm becomes

Cm = − 16N̄
3m2κ

√
π

(
− 2 +

(
2 − κ

2

)
(H3/2 + Log[κ])

− 3
2
(2 + κ) 2F(0,1,0,0)

1

[
1, 0,

3
2

,
κ − 1

κ

]
2F(0,1,0,0)

1

[
1, 0,

5
2

,
κ − 1

κ

]
+ (2κ) 2F(0,1,0,0)

1

[
2, 0,

5
2

,
κ − 1

κ

])
. (A24)
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