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Abstract: Today, safeguarding sensitive content through encryption is crucial. This work presents
a hybrid cryptosystem for images that employs both asymmetric and symmetric encryption. The
asymmetric component involves applying the Diffie–Hellman protocol and the ElGamal cryptosystem
to securely transmit two constants. These constants are necessary for the symmetrical aspect to
generate dynamic permutations, substitution boxes, and round keys. Following an encryption
process with fourteen rounds, the encrypted images are processed by an algorithm proposed to
enhance entropy, a critical metric for assessing encryption quality. It increases the frequencies of
the basic colors to achieve a histogram closely resembling a uniform distribution, but it increases
the image size by approximately 8%. This improves the entropy values achieved by the hybrid
cryptosystem, bringing them remarkably close to the ideal value of 8.0. In specific instances, the
entropy values were elevated from 7.99926 to 8.0. The proposed method exhibits resilience against
various attacks, including differential, linear, brute force, and algebraic attacks, as evaluated through
the entropy, correlation, goodness of fit, Discrete Fourier Transform (DFT), Number of Pixels Change
Rate (NPCR), Unified Average Changing Intensity (UACI), Avalanche Criteria (AC), contrast, energy,
and homogeneity. Further, encrypted images are subjected to noise attacks ranging from 20% to 50%
noise, including additive, multiplicative, occlusion noise, as well as the newly introduced χ2 noise.
The noise damage is quantified using the proposed Similarity Parameter (SP), and a 3 × 3 median
filter is employed to enhance the visual quality.

Keywords: blockchain; Diffie–Hellman protocol; dynamic permutation; dynamic S-box; ElGamal
system; entropy; Pi number

1. Introduction

In this research paper, a hybrid cryptosystem is proposed to encrypt color images and
facilitate key distribution. It includes an additional algorithm to enhance entropy, achieving
values remarkably close to the ideal 8.0 and, in some instances, values of precisely 8.0. The
described proposal involves augmenting the resulting encrypted image’s frequencies to
achieve a histogram closely resembling a uniform distribution. This modification increases
the image size by 8%. A detailed explanation of the algorithm is provided in Section 3.1.
The cryptosystem features a symmetrical design of fourteen rounds, with the application
of a distinct 8 × 8 S-box in each one. The process starts with a permutation and setting the
key size to match the image dimensions. Additionally, the cryptosystem is dynamic; two
constants multiplied by π generate permutations, S-boxes, and round keys that change
in each encryption cycle. We named the proposal HAICDHBC, which stands for Hybrid
Information Encryption Algorithm using the Diffie–Hellman Protocol and Blockchain.
It enables information encryption, as any message can be represented by an image and
subsequently encrypted. The distribution of constants is facilitated by the Diffie–Hellman
protocol and the ElGamal asymmetric cryptosystem [1], establishing a robust key space.
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Various hybrid cryptosystems have been developed to encrypt information [2–6].
However, none of them demonstrate an encryption quality that achieves entropy values
remarkably close to eight. In contrast, our proposed system attains a value of eight for
some images. Additionally, this study addresses the resistance of encrypted images against
noise attacks. To assess the security of HAICDHBC, three types of attacks are studied
in this paper: attacks applicable to the ElGamal cryptosystem, symmetric cryptosystems,
and those designed to damage encrypted images. Attacks on the ElGamal asymmetric
cryptosystem involve solving the discrete logarithm problem, which requires finding the
value a in the equation αa mod p ≡ β given the values of β, α, and p [7,8]. Meanwhile,
attacks on the symmetric cryptosystem include linear, differential, algebraic, and brute
force methods [9–11].

Finally, the attacks on encrypted images involve the application of noise, including
additive, multiplicative, and occlusion noise and noise with a χ2 distribution. Subsequently,
HAICDHBC’s resistance to attacks is demonstrated. Additionally, images entirely in
black and white are encrypted for evaluation, which is necessary as we use a symmetric
cryptosystem. The randomness measurements of the encrypted images are reported in the
results section.

The review of related works and their main differences to HAICDHBC commences
with the entropy parameter. Although some cryptosystems report high entropies [12–14],
the results achieved with HAICDHBC are superior. Similarly, the goodness-of-fit test values
in other works on image encryption typically hover around 200 [15–17], whereas the ideal
value is 0. This proposed method attains values ranging between zero and one. Another
significant difference is that two types of noise are typically applied to encrypted images,
including occlusion [18–20]. In contrast, the HAICDHBC proposal incorporates four types
of noise. Additionally, in conventional papers, the loss of sharpness in decrypted images
is not measured after noise application [21–23]. However, in this work, the Similarity
Parameter (SP) is introduced to evaluate the loss of sharpness due to damage to encrypted
information. Evaluating the quality of encrypted images involves critical assessments
through randomness measurements. Two widely used parameters for this purpose are
entropy and correlation.

Additionally, the consideration of real-world applications plays a crucial role in cryp-
tosystem design. For example, Song et al. proposed an arbitrary-size encryption scheme to
efficiently protect a batch of images with varying sizes [24]. Additionally, to enhance the
encryption efficiency, Song et al. incorporated a parallel image encryption algorithm using
intra-bitplane scrambling [25]. On the other hand, in certain countries such as Mexico,
regulations prohibit data loss in images [26]. While our proposal increases the encrypted
image size by 8% and increases the entropy, during the decryption stage, it is restored to its
original dimensions without any loss of data. On the contrary, when employed in formats
such as JPEG in lossy compression mode, suboptimal results are frequently observed,
characterized by entropy values around 7.90 [27].

This paper is organized as follows: It commences with an introduction, which presents
some related works and provides a brief overview of the state of the art. Section 2 introduces
the theoretical elements used in this research. Section 3 outlines the construction of the
new theoretical tools incorporated into the cipher algorithm. In Section 4, the encryption
procedure and the test images are detailed. Section 5 presents the various noise types and
how they are applied to the ciphered images, along with a high-level description of the
median filter 3 × 3 and the SP parameter. The results are presented in Section 6, and an
analysis and discussion are provided in Section 7. Finally, Section 8 contains the conclusions
and outlines future work.

2. Mathematical Background of HAICDHBC
2.1. Pi Number

As mentioned earlier, an S-box of size 8 × 8 and dynamic permutations are employed
in this work, both of which are random. The bits to the right of the decimal point of π
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exhibit important properties, such as the random appearance of zeros or ones. Table 1
provides evidence that P(xi = 0) = P(xi = 1) = 0.5 for every bit position i ≥ 0.

Table 1. Probability estimation P(xi) of a bit xi with different samples.

Chain Length Percent of Zeros (%) Percent of Ones (%)

23 75.000000 25.000000
210 51.074219 48.925781
215 49.935913 50.064087
220 50.023270 49.976730
225 49.990329 50.009671
230 49.999331 50.000669
235 50.000190 49.999810
240 50.000034 49.999966

The results in Table 1 demonstrate a trend toward 50% as larger values of n are
considered. The percentage of zeros may be greater than or less than 50%. Therefore,
there is no preference for zeros or ones. In other words, the percentages of zeros and ones
consistently fluctuate around the 50% mark. Additionally, another crucial property of the
number π is that it is a transcendental number [28].

2.2. Blockchain and Hash Functions

In this research, the SHA-512 algorithm is used in the blockchain technique. This
procedure is used to send two constants of approximately 2512 bits. Additionally, the pro-
posed cryptosystem HAICDHBC uses a seed generated by the Diffie–Hellman protocol
and the ElGamal cryptosystem [29]. Applying the SHA-512 algorithm to plaintext results
in a 512-bit string defines a function that is not one-to-one. The latter property makes it
nearly impossible to retrieve plaintext given the 512-bit string [30].

The solution to this problem is referred to as a preimage [31]. In this context, the proba-
bility that another distinct plaintext produces the same 512-bit output string is at most 50%.
This scenario is termed a collision. The percentage of attacks on the SHA-512 algorithm
is calculated over a set of 2256 plaintexts [31]. This property is utilized in the process of
sending two constants, given that the 512-bit strings are public.

2.3. ElGamal Cryptosystem and the Diffie–Hellman Protocol

As previously mentioned, the HAICDHBC system incorporates the Diffie–Hellman
protocol based on the ElGamal cryptosystem [29]. The following provides a detailed expla-
nation of these methods.

The process commences with the ElGamal asymmetric cryptosystem, which is grounded
in the set of residues denoted as Z∗

p = {1, · · · , p − 1}. In this study, the construction of p is
proposed as p = 2k × q1q2 + 1, where q1, q2 are two primes of approximately 2512 each,
and c = 1, 2, · · · [32]. This approach is chosen because it facilitates the retrieval of the
generating element α by identifying the prime factors of p − 1 and ensures the simplicity of
the process [32]. Moreover, the even integer 2k does not exceed four decimal digits when
the prime p is on the order of 21024. Additionally, the verification of high primality for a
positive integer ending in 1, 3, 7, or 9 is achieved through the Miller–Rabin algorithm [33].

The expression 0 < α < p − 1 is utilized to compute the generator element with the
objective of satisfying Equation (1), where the qs are the prime factors of (p − 1).

α(p−1)/q ̸= 1 mod p (1)

Once the prime p and the generator element α are determined, the Diffie–Hellman
protocol can be implemented. Both the sender A and the receiver B randomly generate
positive integers aA, aB such that 1 < aA, aB < p − 1. Subsequently, the sender performs
the following calculation: βA = αaA mod. p. Similarly, the receiver carries out the operation
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βB = αaB mod. p. The sender then sends βA to the receiver, and the receiver sends βB to
the sender. Subsequently, the sender computes β = β

aA
B mod. p. It is important to note that

the receiver can also obtain β = βaB
A mod. p. In this way, the value β serves as the seed for

sending two constants.
The authors think it pertinent to provide an illustrative example with values that are not

suitable for real-world implementation but serve to elucidate the procedure. For example,
assume the two primes are q1 = 113 and q2 = 127. Thus, p = 2(1)× (q1q2) + 1 = 28,703.
Hence, the prime factors, q, of p − 1 are 2, 113, and 127. With these considerations in mind
and utilizing the generator α = 14,807, the computations for αp−1/q all result in values
different from 1. Additionally, it is worth noting that the private keys of the sender and
receiver are aA = 623 and aB = 421. Consequently, βA = 14,009, βB = 23,442, and the seed
is β = 14, 438.

2.4. Entropy

As this paper’s title suggests, the encrypted images exhibit a high entropy, a parameter
used to measure the their quality. Therefore, a brief overview of this parameter is presented.
This method of measuring randomness, attributed to Shannon [34], is calculated according
to Equation (2). Indeed, many works in the field of information encryption employ this
measure [35].

E(x) = − ∑
xεX

Pr(x)log2Pr(x) (2)

An encrypted image is deemed to have a good encryption quality if its entropy is
close to 8, considering that each basic color has 256 intensity levels. To verify this assertion,
in this work, ten additional measurements are used to confirm this characteristic.

2.5. Correlation Coefficient

The second parameter to discuss is the correlation coefficient. The correlation analysis
of an encrypted image is conducted as follows: m pixels are randomly selected from the
encrypted image. It is important to note that each pixel has three basic colors: red, green,
and blue. Subsequently, the correlation is computed over the previously selected adjacent
pixels. These pixels are considered in the horizontal, vertical, and diagonal directions [36].
With this information, Equation (3) is employed to calculate the correlation. It is worth
mentioning that the subscript c indicates the color, and the subscript d signifies the direction.
In this context, for a given direction, the variable xi,c in Equation (3) represents an intensity
value such that 0 ≤ xi,c ≤ 255.

The expressions of the variables x and z are defined in Equations (4) and (5). Also, it is
important to note that an image is considered well encrypted if the correlation is a number
close to zero [36].

rd =
1
n (∑

n
i=1(xi,c − xc)(zi,c − zc))√

1
n2 (∑

n
i=1(xi,c − xc)2)(∑n

i=1(zi,c − zc)2)
(3)

xc =
1
n

n

∑
i=1

xi,c (4)

zc =
1
n

n

∑
i=1

zi,c (5)

2.6. Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a statistical hypothesis test. It is commonly
employed to quantify the degree of randomness in encrypted information [37]. This tool
specifically scrutinizes the presence of repetitive bit strings. Additionally, it is worth
highlighting that this parameter is incorporated into the NIST 800-22 standard [38]. In
the computation of this parameter, the variables defined in Equations (6)–(8) are utilized,
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where m represents the length of the analyzed string, M0 in Equation (6) is a constant value,
and l in Equation (7) is a boundary.

M0 =
(0.95)× m

0.05
(6)

l =

√
Ln

1
0.05

(m) (7)

In this context, to compute the values of the functions f j appearing in Equation (8), it
is important to consider that yk takes values of −1 and 1, while the complex unit is denoted
as i =

√
−1. Additionally, j = 1, 2, . . . , m

2 − 1, taking into account that m is even, as it is
the number of pixels expressed in bytes. Regarding the variable N1 in Equation (9), its
initial value is zero, i.e., N1 = 0. Subsequently, ∥ f j ∥ is computed for each j, and the
result is compared with l. If it is less than l, 1 is added to N1; otherwise, the value of N1
remains unchanged.

f j =
m

∑
k=1

yke
2π(i)(k−1)j

n (8)

After computing ∥ f j ∥ for all j and obtaining the final value of N1, the variable d can
be calculated using Equation (9). Like in all statistical hypothesis tests, there is a rejection
region and an acceptance region. In this context, the variable p-value, as expressed in
Equation (10), is taken as the decision parameter. If the p-value is less than 0.01, the hypoth-
esis of randomness is rejected; otherwise, it is accepted. For this research, a significance
level of 0.01 is considered [39].

d =
N1 − N0√
m(0.95)(0.05)

4

(9)

p-value = erfc
| d |√

2
(10)

Additionally, the erfc function is evaluated as Equation (11).

erfc
| d |√

2
= 2(1 − Φ(| d |)) (11)

2.7. Goodness-of-Fit Test

Similar to the previous parameter, the procedure to measure the goodness of fit is a
statistical hypothesis test. It assesses if the information conforms to a uniform distribution
for each of the basic colors.

In this context, the null hypothesis posits that the string of bits is random, while the
alternative hypothesis asserts the opposite. It is essential to note that in every hypothesis
test, a statistic is formulated, and a rejection region is defined based on the chosen level of
significance [40].

The goodness of fit is defined in Equation (12). Furthermore, it follows a χ2 distribu-
tion with n − 1 degrees of freedom.

χ2 =
n

∑
i=1

(oi − exp)2

exp
(12)

Additionally, based on the central limit theorem, the variable χ2 converges to a normal
distribution with a mean of µ = 255 and a variance of σ = 22.5 [41]. For a significance level
of α = 0.01, the decision rule is as follows: if χ2 ≤ 308, the null hypothesis is accepted;
otherwise, it is rejected. On the other hand, note that this type of instrument is not included
in the NIST 800-22 standard when testing the randomness of a bit string.
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2.8. NPCR, UACI, and AC Parameters

The resistance of HAICDHBC against a differential attack is measured using the
Number of Pixels Change Rate (NPCR), Unified Average Changing Intensity (UACI),
and Avalanche Criteria (AC) parameters. Each of them is briefly described below.

The NPCR parameter is defined according to Equation (13), where the subscript c
indicates the analyzed color, and W and H are the width and height of the encrypted
image, respectively. Additionally, the function D(i, j) evaluates the differences between
two encrypted images denoted as 1 and 2, both with the same width and height. Given
a position (i, j), the pixels of images 1 and 2 are compared at this position. If both pixels
are equal, D(i, j) = 0; otherwise, D(i, j) = 1. When this parameter approaches a value of
99.6%, the encryption is considered to be resistant to a differential attack [42].

NPCRc =
Σi,jD(i, j)c

W × H
× 100% (13)

The UACI parameter also assesses the difference between two images. In this case,
it considers the variations in intensities of each pixel, which are integers ranging from
0 to 255. The UACI is determined using Equation (14). It is important to note that the
subscripts 1, c and 2, c indicate the image number and the specific basic color being utilized.
Additionally, the variables W and H represent the width and height of the analyzed images.
Furthermore, the value considered desirable for this parameter to mitigate the impact of a
differential attack is 33.4% [43].

UACIc =
1

W × H ∑
i,j

[
| I1,c(i, j)− I2,c(i, j) |

255

]
× 100% (14)

The third parameter, AC, is determined according to Equation (15). In this expression,
T represents the size of all image pixels in bits. Additionally, the subscript c designates
the color. Thus, this parameter assesses the differences, bit by bit, between images 1 and 2.
The function d(i, j) in Equation (16) takes the value 0 when the bits at position (i, j) in both
images are the same and 1 otherwise. A desirable value for AC is considered to be 50%.

ACc =
Σi,jd(i, j)c

T
× 100% (15)

d(i, j)c =

{
0
1

(16)

2.9. Homogeneity, Contrast, and Energy

In this part, a high-level description of the homogeneity, contrast, and energy param-
eters is given. Homogeneity is calculated using Equation (17), where the function g(i, j)
indicates the value it takes at the point (i, j). On the other hand, an encrypted image is
considered to be of high quality if the homogeneity is low [44].

Homogeneity = ∑
i,j

g(i, j)
1+ | i − j | (17)

The contrast parameter is assessed using Equation (18). In this context, contrast
quantifies the variations between adjacent points (i, j). Similarly to before, f (i, j) represents
the value of f at the point (i, j). It is worth noting that an image is considered to be well
encrypted when the contrast values are large [45].

Contrast = ∑
i,j

| i − j |2 g(i, j) (18)
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To conclude this section, we will discuss the energy parameter, measured using
Equation (19). This parameter assesses the level of information disorder in an encrypted
image. An image is considered well encrypted when the energy is close to zero [46].

Energy = ∑
i,j

g(i, j)2 (19)

2.10. The Median Filter

Following noise damage to encrypted images, a 3 × 3 filter tool is employed after
decryption. Subsequently, the sharpness enhancement in the impaired images is quantified
using the SP parameter.

This filter application is a non-linear procedure [47]. It involves constructing a nine-
point mask around a pixel (x1, y1) in the decrypted image affected by noise, as illustrated
in Figure 1. The pixels in the mask are arranged based on intensity, and the median value
is selected. This median value, denoted as Mc,(x1,y1)

, with c indicating the basic color, must
be greater than or equal to the first ⌈ 9

2⌉ − 1 pixels and less than the remaining ones.
After obtaining the median value, it is substituted for each pixel in the nine-point mask.

Figure 1. A 3 × 3 median filter.

3. Development of New Elements

In this section, we will use the proposed algorithm on an encrypted image to enhance
the entropy. Additionally, the algorithm for generating permutations and the Similarity
Parameter (SP) will be introduced. To commence, we will outline the algorithm designed
to augment entropy.

3.1. Algorithm to Enhance Entropy

The entropy-enhancement algorithm begins by denoting an encrypted image as A.
Its dimensions are 512 × 512 pixels and it has a discrete area | A | equal to 262,144 pixels.
We will detail the algorithm used to encrypt images in Section 4. With this in mind, it is
important to highlight that it is possible to obtain three color histograms from the encrypted
image. Each one comprises 256 intensities i in the range of 0 ≤ i ≤ 255. The frequency
of each intensity is denoted as follows: fr,i, fg,i, and fb,i, where r, g, and b represent
the basic colors c, and i is the intensity. Additionally, it holds true for each color that
255

∑
i=0

fr,i =
255

∑
i=0

fg,i =
255

∑
i=0

fb,i = 262,144. As part of the proposed method, the size of the

encrypted image is increased by approximately 8% to improve the encryption quality.
The advantages of this enhancement will be presented in Section 6. To achieve this, rows
of 512 pixels are added to the encrypted image A after row 511. Image enlargement A

′

finishes when the number of pixels is greater than or equal to | A | × 1.08. Let us denote
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the increased discrete area with n new rows as | A
′ |. The value of each frequency in the

enlarged image is around the value h defined in Equation (20).

h =
| A

′ |
256

(20)

Subsequently, the difference dc,i between the values h and the frequency fc,i of the
encrypted image A is defined. Specifically, dr,i = h − fr,i, dg,i = h − fg,i, and db,i = h − fb,i,
where 0 ≤ i ≤ 255. The variable d can be greater than, equal to, or less than zero. Given
these variables, the steps of the algorithm developed in this paper to obtain the increased
part of A are as follows, and this process is replicated for each basic color.

1. First iteration. The frequency fc,0 has an associated difference dc0 . When this difference
is greater than zero, one is added to the frequency fc,0; otherwise, the frequency
remains unchanged. This strategy continues for fc,2 until fc,255.

2. Consecutive iterations. The process restarts with the first frequency, which might have
been modified in the previous iteration. Therefore, the difference d is recalculated,
and fc,0 is modified according to the result. The process is executed in the same manner
as before for all frequencies, while updating dc,i. This iterative process continues until
the sum of the added pixels equals n × 512, which is equivalent to the number of
pixels in the added rows.

To conclude the algorithm, three permutations are applied, one for each basic color of
the pixels that were increased. This is executed to ensure that the enlarged part is an image
color. Once this is completed, another permutation P is applied to the entire enlarged
image A′.

3.2. Algorithm for Constructing Permutations

As indicated in the previous section, the method proposed in this work involves
permutations. Furthermore, it is asserted that any non-negative integer can be expressed
on a factorial basis. In this context, the set of non-negative integers is defined as Zm =
{n ∈ N | 0 ≤ n ≤ m! − 1} for a given m ≥ 2.

Hence, any element n0 of the set Zm can be expressed in the factorial base
(m − 1)!, (m − 2)! · · · 1!, 0! This is illustrated in Equation (21):

n0 = D0(m − 1)! + D1(m − 2)! + . . . Dm−2(1)! + Dm−1(0)! (21)

Also, according to Euclid’s division algorithm, the Di coefficients in Equation (21)
are unique [48]. It will be shown later that Dm−1 = 0. Furthermore, the coefficients of
Equation (21) satisfy the inequality in Equation (22).

0 ≤ Di < (m − i) with 0 ≤ i ≤ (m − 2) (22)

Taking into account Equations (21) and (22), an algorithm is constructed to obtain
permutations on arrays of m positions [49]. Also, note that the (m − i)! values appear
as factors in Equation (21) because, in a 512 × 512 image, there are 262,144 placements,
making it impractical to write at 250,000!, at least for now.

To conclude this section, it is noted that the algorithm to construct the permutations
defines a one-to-one function [49].

3.3. Similarity Parameter

Encrypted images are susceptible to noise, and thus they may appear distorted when
decrypted. Therefore, it is advantageous to devise a parameter that quantifies the loss
in sharpness [50]. For this, in this paper, the parameter SPc is introduced to assess the
degradation of decrypted images. Specifically, Equation (23) defines SPc, with the subscript
indicating the basic color under analysis.

SPc = |[100% − UACIc(2.994011)]| (23)
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It is based on the UACI parameter, previously defined in Equation (14), which assesses
the distinction between two images. In this context, two extreme cases are presented below
to describe the SP performance.

In the first case, a plain image is compared with an encrypted one to simulate the
total noise damage. If a figure is well encrypted, UACI ∼= 33.4% [43], and consequently,
SPc = |[100% − 33.4%(2.994011)]| = 0.036% ∼= 0%. This would indicate a total loss of
sharpness, signifying complete information loss.

In the second case, if both images being compared are the same, it is implied that
UACI = 0%. Consequently, SPc = |[100%− 0%(2.994011)]| = 100%. However, this scenario
signifies that both images are equal, and there is no information loss. In conclusion, SPc
measures the sharpness from 0% to 100%.

To summarize this section, this tool will be employed in the present work to assess the
improvement in sharpness after applying the 3 × 3 filter to the damaged images.

4. Encryption Procedure

The hybrid encryption cryptosystem comprises two cryptosystems: one asymmetric
cryptosystem and another symmetric cryptosystem. We will now present a description of
the asymmetric cryptosystem.

4.1. Asymmetric Cryptosystem

Two integer constants, denoted as C1 and C2, are initially proposed with the condition
0 < C1, C2 ≤ 2512. Subsequently, the asymmetric ElGamal cryptosystem and the SHA-512
algorithm are employed to transmit these constants [51]. The process begins with the
ElGamal cryptosystem, where the sender possesses knowledge of the receiver’s public key
βB and the receiver is aware of the sender’s public key, βA.

It is essential to consider that βB = αaB mod.p and βA = αaA mod.p, where aA and aB
are private while α and p are public parameters. Both the sender and the receiver possess
the knowledge of β = (βB)

aA mod.p and β = (βA)
aB mod.p.

With this information, the following steps are executed:

1. The sender generates two constants, denoted as C1 and C2, each being a 512-bit string
0 < C1, C2 ≤ 2512. If the representation of the constants is shorter than 512 bits,
the sender pads zeros to the left to ensure that the length remains at 512 bits.

2. βi is computed using the formula βi = αi × β, mod., p for i = 1, 2, · · · , 128. It is
important to note that the initial 64 βi values are designated for transmitting C1, while
the subsequent 64 βi values are intended for sending C2.

3. The constants are transmitted via the following process: The 512-bit string correspond-
ing to C1 is segmented into one-byte blocks, resulting in 64 blocks. Each block is
associated with an integer bi ranging from 0 to 255. If the i-th byte has a value of zero,
the SHA-512 algorithm is applied once to βi, SHA-512(βi). Conversely, if the value of
bi falls within the range of 1 ≤ bi ≤ 255, the SHA-512 algorithm is iteratively applied
bi + 1 times to the string βi, yielding a 512-bit string, which is public.

4. The receiver computes βi and sequentially applies the SHA-512 algorithm to each βi,
given that they possess knowledge of β. Consequently, the receiver can determine the
values of bi and retrieve the constants C1 and C2.

4.2. Symmetric Cryptosystem

The symmetric encryption procedure comprises two stages. Initially, the plain image
undergoes encryption through fourteen rounds. Subsequently, the encrypted image is
expanded following the algorithm detailed in Section III. Here, a high-level description
outlines the processes in the symmetric cryptosystem during the initial stage. Additionally,
the construction of the involved elements is illustrated as follows:

1. First Round. The process commences with an XOR operation between the original
image pixels and the first round key. The resulting chain is then segmented into
one-byte blocks. Subsequently, substitution is implemented following the procedure
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established by the Advanced Encryption Standard (AES). This process utilizes the
first of the fourteen dynamic substitution boxes.

2. Rounds two to fourteen. The same process is replicated, involving the byte chain
from the previous round and the corresponding round key. The resulting string is
then processed through the appropriate box, following the protocol established in
the previous step. During round fourteen, three operations are performed: the XOR
operation using the fourteen round-key, passing the result through the fourteenth
box. In the third step, an XOR operation is executed between the chain emerging from
the boxes and the fifteen round-key. This final result is considered the initial stage of
image encryption.

The generation of boxes, permutations, and rounds keys is detailed below.

• Substitution box. Each substitution box is a permutation of 256 values ranging from
00 to ff in a hexadecimal system. The sender constructs the fifteen boxes used in the
encryption process through the following steps. First, compute C1 × π by considering
the bits to the right of the decimal point. This bit string is then divided into one-
byte blocks. Taking the first byte, representing an integer c0, calculate D0 = c0 mod.
256. For Di, where the i − th byte to the right of the decimal point is ci, compute
Di = ci mod. 256− i. Once Di values are available for 0 ≤ i ≤ 255, apply the procedure
in Section 3.2, which results in the first substitution box. For the j − th box, where
2 ≤ j ≤ 14, shifts of (j − 1)× 256 bytes are made to the right of the decimal point,
and then the same process is applied as before.

• Permutation. The permutation P, applied at the end of the process, is constructed
in the following way. The sender computes the product C2 × π, and the bits to the
right of the decimal point are then divided into bytes. Here, the calculation of the
constant D0 involves pixels 0, 1, and 2. This string of three pixels has an associated
integer of 24 bits denoted as d0, and let l be the number of pixels in the enlarged image.
Therefore, D0 = d0 mod. l. To obtain the other constants, shifts of one pixel to the
right are made. For instance, in the case of D1, pixels 1, 2, and 3 are considered. Then,
for the i-th coefficient, pixels i, i + 1, and i + 2 are considered, resulting in the integer
di. Hence, Di = di mod. l − i, where 1 ≤ i ≤ l − 2.

• Round keys. Round keys are 512 × 512 byte-size pixels. The first round key is
calculated as follows: from the product C2 × π, the first (512 × 512) × 24 bits to the
right of the decimal point are taken. The reason for multiplying by 24 is the color
images, where pixel representation is 24 bits (three bytes). Note that in the case of
a 256-grayscale image, it is only multiplied by eight. This string is then divided
into bytes and subsequently passed through the first substitution box, similarly to
the AES procedure [52]. The chain that results from this process is denoted as k1.
In general, to generate the i-th round key ki, we proceed as follows: a shift of i − 1 bits
is made to the right of the decimal point from C2 × π, with 1 ≤ i ≤ 15. Afterward,
the corresponding substitution box is applied, following the same rule as before. Note
that for the round key k15, box fourteen is used.

In addition, the receiver can reproduce this procedure once it knows C1, C2, and there-
fore they can decrypt the image. Constants are generated randomly for every image
encryption; this implies that boxes, permutations, and round keys are dynamic. This is
possible as the function f (C) = C × π is a one-to-one function. In other words, if C1 ̸= C2,
it is implied that f (C1) ̸= f (C2). This ensures that the bit strings on the right side of the
decimal point are different when the constants change.

4.3. Second Stage

Three permutations are applied only to the incremented image part, one for each basic
color. However, these permutations are not executed in the decryption process because this
is just noise without information. On the other hand, it is noted that the three permutations
are constructed in the same way as P, but the number of pixels, in this case, is l = n × 512,
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where n represents the number of incremented rows. After applying the three permutations,
the permutation P is executed across the entire image, encompassing |A| × 1.08 pixels. This
step concludes the encryption process.

We present the values utilized in this study—q1, q2, k, p∗, α—and the private keys βA
and βB of both the sender and receiver in Table 2.

Table 2. Values employed in this work.

Variable Hexadecimal Value

q1

C74A52C90C7095EC92B727D85CE31218
C3863BF9000DFDA1C3E0A284F3E7A700
4E793365586ACFAA79DC99FB627BF8CD
1E49A56863EBDAAD5701E025363D607

q2

B0C1B9F894F6AC59082D91B8697E0689
6CD0C921161B445703B67B0F1AD3C5B1
858DDB6903723FB20FFA6608D8B3E656
AA003767762E010D1C769C876FB603A9

k FF0

p∗

89104ED0230E59E3F4BB9575AFD05227B51EA7
EA635698ED6CFFE8A67E1BF72D96E128354BD
A521E302B128C29B4E41B7381CDA8EC89E0BD
AC049FFD8EA7865A7E5697E496EBC4DDCBE1
28ECD23A817BDCDE53684B479ACF1FCFABC
C0416496FF978E82610BA253B11483D612D032E
E24F44D6C3E1D70944E2F3CECD77C3AFEA411

α

2B62FB6FDE4EF4204BA91E06AA5B4E076BCC9
4A382C5B926F5DBC89F5E432DBC34A5565E15
D88E8956CF414B3DBBECC9DA928E3F92BD99
9DA7864B87ED884A5B309635DA0D6F00503B2
69192BE1FB84C504A067228E65B67E1C2C491
43C68F179BDC50DDCB4E7C378C43C0482501
FE6AFE00C8A91320D2963639A09D335796DD

βA

9FECC2EC3057B87D5902733EDDC02F9A0687
525015F0EDFA99BABB65DFC8BBECB8E2B150
0767A267048E5CA01EB0EC87C14825BCBB3C2
01A67CFB616580308B09D5EF8FDBFF25397CA
0013BCBB3959DEEC18710531B26DAB9DE7468
DBD04DB76A213D8C39E8B18346B130D2A28C
44A2BB31A8C4CE7CE7A75E51A06F2A2F45239

βB

37550E7CBF9338DAE5484461E73B56DC95F21
F4D43E9B3120B04C6F6450B345E73A63F597B3
922CD2D1F271B6B4773F6EB684FE938D8EF8E
6F3F39A7CE95D2DBAFCB104F1A1F2779B1F6
F34B5331AC7BD6B61902AED70C6C475AB79A
0412A36D13ADB900A6A7299B7B31D176E070F
670E7804754D5114459AAED3BF6765C5E5F426

4.4. Images for Testing

The performance of HAICDHBC was assessed with a range of images, presented
in Figure 2. They consist of color and grayscale images and a message. The widely
utilized Lena image is included, given its common use in image encryption studies [53].
Furthermore, two additional images, one entirely black and the other in white, will be
considered in subsequent analyses.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Images utilized for evaluating HAICDHBC. (a) Sor Juana. (b) Barbara. (c) Lena. (d) Baboon.
(e) Peppers. (f) Donkey.

Throughout this research, most plain images have dimensions of 512 × 512 pixels. It
is worth mentioning that while this particular size was used in the proposed encryption
algorithm, it can be used with images of varying dimensions. For instance, the Sor Juana
image, which contains one of her poems, has a size of 423 × 544 pixels. Another noteworthy
observation is that all images encrypted using HAICDHBC, whether in color or grayscale,
yield a color figure as a result.

The performance of HAICDHBC is compared with AES-CBC for images affected by
noise [54]. This comparison will be detailed in the following section.

5. Damaged Encrypted Images with Noise

In this study, the encrypted images are subjected to four types of noise attacks to test
the HAICDHBC cryptosystem: additive, multiplicative, occlusion, and χ2 noise attacks.
To elaborate on this, we will start by discussing additive and multiplicative noises.
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5.1. Additive and Multiplicative Noises

A high-level description of both types of noises is provided. Initially, n random pixels
are selected from the encrypted image, and each of these points is associated with a color
level denoted as gc(x, y), where 0 ≤ gc(x, y) ≤ 255. Here, the subscript c indicates the
basic color.

To generate additive noise, a non-zero integer ϕc(x, y) is randomly chosen, depending
on the point and basic color. Subsequently, the operations outlined in Equation (24) are
executed, resulting in an integer g′c(x, y) within the range of 0 to 255. To introduce damage
to an image encrypted with additive noise, the value of gc(x, y) is replaced with g′c(x, y).

g′c(x, y) = [gc(x, y) + ϕc(x, y)] mod 256 (24)

In the case of multiplicative noise, much like additive noise, a non-zero integer ϕc(x, y)
is randomly determined. Following this, Equation (25) is solved. To introduce damage
using multiplicative noise, the color level gc(x, y) is then substituted with g′c(x, y).

g′c(x, y) = [gc(x, y)× ϕc(x, y)] mod 256 (25)

5.2. Occlusion Noise

Occlusion noise involves damaging a confined area of an encrypted image. In this
study, this noise is applied over a concentric parallelogram, as illustrated in Figure 3.
Specifically, the color cherry is utilized, although another color could be used. The process
involves substituting the pixel color at a point inside the parallelogram with cherry. Similar
approaches have been employed in other research, although the shape may not necessarily
be a parallelogram [55].

Figure 3. Encrypted Lena image affected by occlusion noise at 50%.

5.3. Chi-Square Noise

As previously mentioned, the proposed noise is referred to as χ2 noise based on the χ2

distribution. χ2 noise can be described by Equation (26). Additionally, the variable defined
in Equation (12) follows a χ2 distribution with n − 1 degrees of freedom [56]. However,
this distribution approximates to a normal distribution N(µ, σ) because there are 256 color
levels. Considering that n = 256, it follows that mean µ = 255 and standard deviation
σ = 22.58.

Subsequently, to apply χ2 noise, m pixels (x, y) from the encrypted image are randomly
selected. Each of these pixels possesses a color level within the range of 0 ≤ gc(x, y) ≤ 255,
where the subscript c designates the basic color.

For each pixel and basic color, a randomly chosen value denoted as zc(x, y) is deter-
mined, following a standard normal distribution, expressed as zc(x, y) ∼ N(0, 1). The range
of these values extends from −∞ to ∞. However, in this study, we limit the values to the
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interval −3 < zc(x, y) < 3 and use the following criterion: if zc < −3, the value is assigned
as −3; if zc > 3, it is set to 3.

With this information, the value of g′c is calculated using Equation (26). The result is
not necessarily an integer, and the symbols ⌊ ⌋ and ⌈ ⌉ are used to discretize it as g′dc. If the
decimal part of g′c(x, y) is less than or equal to 0.5, ⌊ ⌋ is applied, meaning that g′dc takes
only the integer part of g′c(x, y). On the other hand, if the decimal part of g′c(x, y) is greater
than 0.5, then ⌈ ⌉ is used, indicating that the integer part of g′c(x, y) plus one is taken by g′dc.

g′c(x, y) = 255 + zc(x, y)22.58 (26)

Now, to apply χ2 noise, the color level gc(x, y) is replaced by g′dc(x, y) for all randomly
chosen points.

To conclude this section, it is worth noting that when using this type of noise in the
encrypted image, the majority of the randomly chosen pixels undergo a substitution with
extreme values within the interval of 0–255, that is, values ranging from 0 to 64 or from
191 to 255.

6. Results

This section commences with the presentation of the Lena image in a flat state, as de-
picted in Figure 4a. In Figure 4b, the corresponding encrypted outcome is showcased. It is
discernible that the encrypted figure is expanded in comparison to the original. Addition-
ally, the histograms of the basic colors red and green appear almost horizontal, while that
of the color blue is completely horizontal. The histograms are presented in Figure 4c–e.

(a) (b)

(c) (d) (e)

Figure 4. Lena encryption results. (a) Lena plain image. (b) Lena encrypted image. (c) Red histogram
of (b). (d) Green histogram of (b). (e) Blue histogram of (b).

In terms of evaluations, we will initially show the results of the encrypted images
without noise. The evaluations to be presented include entropy, correlation, NPCR, UACI,
AC, contrast, homogeneity, and energy. Following that, we will present evaluations utilizing
statistical hypothesis tests such as the Discrete Fourier Transform and the goodness-of-
fit test.
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With this in mind, the subsequent subsection presents the results of entropy and
correlation.

6.1. Entropy and Correlation

It should be noted that the assessed images correspond to those shown in Figure 2.
The purpose of presenting these results is to gauge the randomness of the encrypted images.
Tables 3 and 4 display the evaluations of entropy and correlation, respectively.

Table 3. Entropy results per color of encrypted images.

Image Red Green Blue

Sor Juana 7.9999999 7.9999981 7.9999982
Barbara 7.9999997 7.9999946 8.0

Lena 7.9999997 7.9999990 7.9999970
Baboon 7.9999998 7.9999991 7.9999996
Peppers 7.9999999 8.0 8.0
Donkey 8.0 7.9999997 7.9999997

Table 4. Correlation coefficient per color and direction of encrypted images.

Direction Image Red Green Blue

Horizontal

Sor Juana 0.00205 0.00700 0.00169
Barbara 0.00219 −0.00311 0.00600

Lena −0.00768 0.00460 0.00370
Baboon −0.00216 −0.00419 −0.00804
Peppers 0.00286 0.00025 0.00214
Donkey 0.00102 0.00481 −0.00031

Vertical

Sor Juana −0.00072 0.00126 0.00548
Barbara −0.00177 −0.00149 0.00275

Lena −0.00640 −0.00325 −0.00220
Baboon 0.00046 −0.00011 −0.00131
Peppers 0.00131 −0.00308 −0.00054
Donkey 0.00267 0.00418 −0.00568

Diagonal

Sor Juana −0.00549 −0.00340 −0.00191
Barbara 0.00058 −0.00321 −0.00909

Lena 0.00590 0.00520 0.00388
Baboon −0.00366 0.00543 0.00136
Peppers 0.00655 −0.00379 −0.00315
Donkey 0.00158 0.00658 −0.00678

6.2. Differential Attack

The NPCR, UACI, and AC values are presented in Tables 5, 6 and 7, respectively.

Table 5. Number of Pixels Change Rate (NPCR) results per color of encrypted images.

Image Red Green Blue

Sor Juana 99.63 99.59 99.61
Barbara 99.62 99.62 99.60

Lena 99.59 99.62 99.60
Baboon 99.60 99.61 99.61
Peppers 99.60 99.62 99.58
Donkey 99.61 99.63 99.62
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Table 6. Unified Average Changing Intensity (UACI) results per color of encrypted images.

Image Red Green Blue

Sor Juana 33.47 33.38 33.46
Barbara 33.44 33.54 33.47

Lena 33.49 33.48 33.49
Baboon 33.38 33.52 33.46
Peppers 33.44 33.52 33.48
Donkey 33.34 33.50 33.51

Table 7. Avalanche Criteria (AC) results per color of encrypted images.

Image Red Green Blue

Sor Juana 50.03 49.97 49.98
Barbara 50.00 49.98 49.96

Lena 49.96 49.99 50.01
Baboon 49.95 50.00 50.02
Peppers 49.97 50.00 49.97
Donkey 49.96 50.00 50.01

6.3. Energy, Contrast, and Homogeneity

Continuing with the presentation of results, we now focus on the following parameters:
energy, contrast, and homogeneity. These are displayed in Tables 8, 9 and 10, respectively.

Table 8. Energy results per color of encrypted images.

Image Red Green Blue

Sor Juana 0.01563 0.01563 0.01563
Barbara 0.01563 0.01563 0.01563

Lena 0.01563 0.01563 0.01563
Baboon 0.01563 0.01563 0.01563
Peppers 0.01563 0.01563 0.01563
Donkey 0.01563 0.01563 0.01563

Table 9. Contrast results per color of encrypted images.

Image Red Green Blue

Sor Juana 10.43 10.47 10.48
Barbara 10.49 10.52 10.53

Lena 10.47 10.50 10.53
Baboon 10.53 10.46 10.49
Peppers 10.50 10.51 10.49
Donkey 10.50 10.51 10.49

Table 10. Homogeneity results per color of encrypted images.

Image Red Green Blue

Sor Juana 0.390 0.391 0.390
Barbara 0.389 0.389 0.389

Lena 0.389 0.389 0.388
Baboon 0.388 0.389 0.389
Peppers 0.389 0.389 0.389
Donkey 0.389 0.389 0.388
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6.4. The Goodness-of-Fit Test and Discrete Fourier Transform

This section presents the results of the hypothesis tests, specifically the goodness of fit
based on the χ2 value and the Discrete Fourier Transform (DFT). The evaluations of both
are displayed in Tables 11 and 12.

Table 11. Goodness-of-fit test (✓ Accept) with a rejection threshold of 308.

Image Red Green Blue

Sor Juana 0.3/✓ 1.2/✓ 0.1/✓
Barbara 0.3/✓ 0.2/✓ 0.9/✓

Lena 1.6/✓ 0.0/✓ 0.0/✓
Baboon 0.0/✓ 0.5/✓ 0.1/✓
Peppers 0.0/✓ 0.0/✓ 0.2/✓
Donkey 0.0/✓ 0.0/✓ 0.0/✓

Table 12. Discrete Fourier Transform (DFT) evaluation (✓ Accept) with α = 0.01.

Image Red Green Blue

Sor Juana 0.470/✓ 0.287/✓ 0.392/✓
Barbara 0.148/✓ 0.933/✓ 0.571/✓

Lena 0.306/✓ 0.423/✓ 0.465/✓
Baboon 0.284/✓ 0.815/✓ 0.704/✓
Peppers 0.945/✓ 0.988/✓ 0.418/✓
Donkey 0.153/✓ 0.883/✓ 0.331/✓

6.5. Black and White Images

As the hybrid cryptosystem, HAICDHBC, includes a symmetric algorithm, it is ben-
eficial to assess the encryption of two images: one entirely black image and another
entirely white image. It should be noted that the size of both images is 512 × 512 pixels.
The encrypted figures were evaluated using entropy and correlation; the results of these
measurements are presented in Table 13.

Table 13. Entropy and correlation values for encrypted, completely black and white images.

Parameter Image Red Green Blue

Entropy Black 7.9999993 7.9999997 7.9999994
White 7.9999995 8.0 7.9999992

Horizontal Correlation Black 0.00279 −0.00160 0.00703
White 0.00663 −0.00243 0.00041

Vertical Correlation Black −0.00357 0.00699 −0.00295
White 0.00069 0.00361 0.00032

Diagonal Correlation Black −0.00242 0.00087 −0.00511
White 0.00583 0.00066 0.00644

6.6. Attack on Encrypted Images with Noise

We will now present images subjected to noise after encryption. The procedure is illus-
trated with the Baboon image and implemented as follows. The original image is displayed
in Figure 5a. Subsequently, the image undergoes encryption using HAICDHBC and is then
subjected to χ2 noise with a magnitude of 50%. To finalize the process, the damaged image
is decrypted, and the outcome is exhibited in Figure 5b.
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(a) (b)

Figure 5. HAICDHBC resistance to χ2 noise. (a) Plain Baboon image. (b) Baboon decryption after the
application of χ2 noise of 50 % in the encryption stage.

Another experiment involving noise was conducted as follows: the Baboon image
was encrypted, but this time using the standard AES-CBC. Subsequently, additive noise
with a magnitude of 50% was applied to the encrypted figure. The damaged image was
then decrypted using AES-CBC. The outcome of this procedure is illustrated in Figure 6. A
discussion related to Figures 5 and 6 is provided in the results analysis section.

(a) (b)

Figure 6. Advanced Encryption Standard (AES)-CBC resistance to additive noise. (a) Plain Ba-
boon image. (b) Baboon image decryption after the application of additive noise of 50 % in the
encryption stage.

Another crucial aspect studied in this section is the application of the median filter,
which is employed to enhance the visual quality of images affected by noise. As described
in Section 2.10, a 3 × 3 median filter was utilized. Figure 7a displays the Baboon image
damaged by 50% χ2 noise, while Figure 7b exhibits the resulting image after applying the
3 × 3 median filter.
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(a) (b)

Figure 7. Baboon image enhancement visual quality. (a) Baboon image decryption with chi-square
noise of 50%. (b) Decrypted Baboon image after a 3×3 filter application to (a).

Following the presentation of the image results, evaluations using the SP parameter
are now showcased. Table 14 displays the SP results for various sizes of χ2 noise applied to
the images depicted in Figure 2.

Table 14. Similarity Parameter (SP) results for different size of χ2 noise applied.

Color Image 20% 30% 40% 50%

Red

Sor Juana 72.69 58.16 43.53 29.27
Barbara 82.70 73.86 64.14 55.96

Lena 79.70 70.80 60.24 50.69
Baboon 82.81 74.09 64.42 55.70
Peppers 83.19 74.79 65.89 57.41
Donkey 72.47 58.63 46.16 31.72

Green

Sor Juana 72.70 58.08 43.57 29.30
Barbara 82.81 73.82 64.14 55.80

Lena 81.16 72.86 63.24 54.37
Baboon 83.56 75.26 66.10 57.84
Peppers 80.26 70.29 59.69 49.71
Donkey 72.13 58.16 45.83 31.00

Blue

Sor Juana 72.54 58.16 43.53 28.97
Barbara 82.72 73.83 64.17 55.83

Lena 83.07 75.58 66.78 58.57
Baboon 82.14 73.13 63.07 54.09
Peppers 79.77 69.51 58.74 48.86
Donkey 72.58 58.64 46.04 31.84

To conclude this section, sharpness evaluations using the SP parameter are presented
in Table 15. In this analysis, four types of noise were explored, with a fixed damage size
of 50%. The images in Figure 2 were utilized in this process, with the application a 3 × 3
median filter after decryption.
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Table 15. SP results after application of a 3 × 3 median filter after noise attacks of 50%.

Color Image Occlusion Additive Multiplicative Chi-Square

Red

Sor Juana 58.65 57.62 58.26 57.10
Barbara 81.12 81.43 81.66 81.24

Lena 82.63 82.35 83.52 82.91
Baboon 76.45 76.61 76.80 76.33
Peppers 88.39 88.28 88.69 88.26
Donkey 61.76 61.53 63.16 60.85

Green

Sor Juana 58.32 57.52 58.08 57.29
Barbara 81.17 81.48 81.71 81.28

Lena 84.24 84.20 84.99 84.39
Baboon 76.90 76.99 77.23 76.81
Peppers 81.72 81.61 82.28 81.53
Donkey 61.09 61.00 62.66 59.85

Blue

Sor Juana 58.45 57.44 58.19 57.10
Barbara 81.18 81.48 81.63 81.39

Lena 87.76 87.82 88.30 87.90
Baboon 73.99 74.21 74.43 73.96
Peppers 80.98 80.57 81.47 80.76
Donkey 61.72 61.51 63.23 60.64

7. Results Analysis and Discussion

In the security analysis of the proposed hybrid cryptosystem, the key-space in the
asymmetric cryptosystem is first analyzed, followed by the symmetric key-space. In the
asymmetric cryptosystem, the sender’s and receiver’s public keys, denoted as βA and βB,
respectively, satisfy the condition 1 ≤ βA, βB ≤ p − 1. Given that p is approximately 21024,
the key space for the asymmetric cryptosystem is on the order of 21024 possible elements.
For key construction in the symmetric cryptosystem, two random constants, C1 and C2, are
chosen, such that 0 ≤ C1, C2 ≤ 2512. Consequently, the number of keys in the symmetric
cryptosystem is on the order of 2512 × 2512, which is equal to 21024. Therefore, the key space
of the hybrid cryptosystem is estimated to be around 21024.

The cryptosystem’s security is also analyzed for potential attacks on HAICDHBC due
to its asymmetric and symmetric composition. First, attacks on the ElGamal asymmetric
cryptosystem are considered. The objective of such attacks is to unveil the sender’s private
key aA when the public key βA is known. Various generic algorithms, such as the Pohlig–
Hellman attack, have been developed for this purpose, with a complexity of O(

√
p) [57].

Given that the prime used in this work is approximately 21024, the complexity of such
attacks would be on the order of O(2512). Consequently, they are unfeasible, at least with
existing technology.

For the symmetric system, the dynamic generation of the fourteen 8 × 8 substitution
boxes in every encryption process ensures that they remain undisclosed. The latter avoids
potential attacks, such as linear and algebraic attacks, at least as they are currently un-
derstood [9,58]. Regarding a differential attack, the results of NPCR, UACI, and AC in
Tables 5–7 indicate that this type of attack ca be avoided.

Concerning noise attacks on encrypted images, a visual comparison is performed
between the HAICDHBC algorithm and AES-CBC. As can be seen in Figures 5 and 6,
both exhibit damage caused by the same noise of the same size. However, in the case of
AES-CBC, the decrypted image fails to provide meaningful information about the original
image. Furthermore, the assessment of image sharpness using the SP under the influence
of the four mentioned noises is detailed in Table 14. The image containing Sor Juana’s
message is the most affected by noise. When the noise size is 50%, the sharpness value
drops to 29%, while in other cases, it hovers around 55%. On the other hand, a 3 × 3 median
filter was applied to the damaged images, and the results were reevaluated using the SP
parameter. These results can be observed in Table 15. The most significant improvement
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was observed in Sor Juana’s message, with SP increasing from 29% to 57%, almost doubling
in sharpness. Additionally, the Lena image exhibited an marked improvement, with the
sharpness reaching up to 87%.

Another noteworthy aspect is the encryption quality. Table 16 presents a comparison
of the entropy in this and other works for grayscale images. Notably, use of the HAICDHBC
algorithm leads to an entropy very close to 8, surpassing other methods. However, it is
essential to acknowledge that this improvement comes at a cost. The image size increases
by approximately 8%, making the transmission of encrypted images difficult due to the
larger size. Nevertheless, this trade-off results in an enhanced level of security.

Table 16. Entropy comparison with other works.

Image Algorithm Entropy

Lena

HAICDHBC 7.9999
Ref. [59] 7.9992
Ref. [60] 7.9993
Ref. [61] 7.9994

Baboon

HAICDHBC 7.999999
Ref. [62] 7.999800
Ref. [17] 7.999800
Ref. [63] 7.999900

Finally, it is highlighted that the values of the goodness-of-fit test in Table 11 are close
to zero, and in some cases, they are precisely zero. These results indicate the random distri-
bution of the encrypted information. This observation is consistent with the evaluations of
correlation, energy, contrast, homogeneity, and the DFT shown in Tables 4, 8, 9, 10 and 12,
respectively. Therefore, the encryption is of a high quality.

8. Conclusions

In this paper, the hybrid cryptosystem HAICDHBC is introduced for image encryption,
using ElGamal, the Diffie–Hellman protocol, the blockchain procedure with the Hash Sha-
512 algorithm, and the number pi. The symmetrical system comprises fourteen rounds,
incorporating dynamic substitution boxes, round keys, and permutations. An algorithm
is also included to improve the entropy. The results demonstrate high-quality image
encryption, evidenced by notably excellent results in entropy and goodness-of-fit tests.
Comparative analyses with other works reveal a significant improvement in the entropy
results. The algorithm’s resilience to noise attacks was assessed by damaging encrypted
images with four types of noise at various intensities, and it demonstrated a superior
resistance compared to AES–CBC. A novel parameter, SP, was introduced to evaluate
damage and assess sharpness improvements with the application of a median 3 × 3 filter to
damaged images. A security analysis affirms the algorithm’s resistance to known attacks,
establishing its security. Future work will focus on developing a digital signature algorithm
for images utilizing the number pi and the Diffie–Hellman protocol [64].
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The following abbreviations are used in this manuscript:

AC Avalanche Criteria
AES Advanced Encryption Standard
DFT Discrete Fourier Transform

HAICDHBC
Hybrid Information Encryption Algorithm using
the Diffie–Hellman Protocol and Blockchain

NPCR Number of Pixels Change Rate
SP Similarity Parameter
UACI Unified Average Changing Intensity
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