
Citation: Chen, L.; Ghosh, S.K. Fast

Model Selection and Hyperparameter

Tuning for Generative Models.

Entropy 2024, 26, 150. https://

doi.org/10.3390/e26020150

Academic Editor: Donald J. Jacobs

Received: 8 January 2024

Revised: 1 February 2024

Accepted: 6 February 2024

Published: 9 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Fast Model Selection and Hyperparameter Tuning for
Generative Models
Luming Chen * and Sujit K. Ghosh

Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA; sujit.ghosh@ncsu.edu
* Correspondence: lchen21@ncsu.edu

Abstract: Generative models have gained significant attention in recent years. They are increasingly
used to estimate the underlying structure of high-dimensional data and artificially generate various
kinds of data similar to those from the real world. The performance of generative models depends
critically on a good set of hyperparameters. Yet, finding the right hyperparameter configuration can
be an extremely time-consuming task. In this paper, we focus on speeding up the hyperparameter
search through adaptive resource allocation, early stopping underperforming candidates quickly
and allocating more computational resources to promising ones by comparing their intermediate
performance. The hyperparameter search is formulated as a non-stochastic best-arm identification
problem where resources like iterations or training time constrained by some predetermined bud-
get are allocated to different hyperparameter configurations. A procedure which uses hypothesis
testing coupled with Successive Halving is proposed to make the resource allocation and early
stopping decisions and compares the intermediate performance of generative models by their expo-
nentially weighted Maximum Means Discrepancy (MMD). The experimental results show that the
proposed method selects hyperparameter configurations that lead to a significant improvement in
the model performance compared to Successive Halving for a wide range of budgets across several
real-world applications.

Keywords: integral probability metric; hypothesis testing; Maximum Mean Discrepancy; multi-armed
bandits; generative adversarial networks

1. Introduction

The performance of the generative models depends heavily on so-called hyperparam-
eters which include the model architecture, the choice of training objective, regularization
and training algorithms. However, the choice of these hyperparameters is often problem-
dependent, and it is unknown a priori which configuration would produce the best results
in terms of a specific distance or divergence measure. With the rich set of objective func-
tions and training algorithms proposed in recent years and the growing number of tuning
parameters associated with them, it is crucial to develop computationally efficient search
methods for hyperparameter configurations that yield models with a desired performance
within a fixed budget constraint.

The problem of efficient model search and hyperparameter optimization has recently
been dominated by Bayesian optimization approaches, e.g., [1–3], which speed up the
search for good configurations by modeling the underlying structure of the search space.
These approaches select and evaluate hyperparameter configurations in an adaptive man-
ner, trying to find good configurations faster than baselines such as random search or
grid search. While Bayesian optimization is efficient in tuning few hyperparameters, its
efficiency often degrades significantly when the search dimension becomes much higher.
Wang et al. [4] showed that for high-dimensional problems, standard Bayesian optimization
methods perform similarly to random search. Moreover, traditional Bayesian optimization
methods (that are often based on Gaussian processes) can only work on continuous hyper-
parameters, but not categorical ones (e.g., the choice of the training objective). The vast

Entropy 2024, 26, 150. https://doi.org/10.3390/e26020150 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26020150
https://doi.org/10.3390/e26020150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2196-8291
https://orcid.org/0000-0001-8351-408X
https://doi.org/10.3390/e26020150
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26020150?type=check_update&version=1

Entropy 2024, 26, 150 2 of 17

majority of these hyperparameter selection procedures consider the training of machine
learning models to be black-box procedures, and only evaluate models after they have
been trained to convergence. It thus seems natural to ask the following question: Can we
terminate some of these poor-performing hyperparameter settings early to speed up hyperparameter
optimization? This is one of the primary questions that we address in this work.

In fact, there is a line of research that perceives hyperparameter optimization as an
adaptive computational resource allocation problem, where the type of resources can be
iterations, execution time, data samples, or even total money to spend with a cloud comput-
ing provider. These approaches evaluate partially trained models and make decisions on
the fly, allocating more resources to promising hyperparameter configurations while early
stopping those that are not. They allow for the training of multiple models simultaneously.
And by quickly eliminating unpromising ones and paralleling the model training for differ-
ent hyperparameter configurations, more hyperparameter configurations can be examined.
Swersky et al. [5], Domhan et al. [6] and Klein et al. [7] made parametric assumptions
on the convergence behavior of learning curves to devise early stopping rules. However,
these assumptions are strong and restrictive for the kinds of learning curves that are typi-
cally found in training machine learning models. In contrast, Sparks et al. [8] cast it as a
multi-armed bandit problem, viewing each hyperparameter configuration as an ‘arm’, and
resources constrained by some predetermined budget are allocated among them by some
heuristic rule. Jamieson and Talwalkar [9] and Li et al. [10] studied a similar problem but in
the non-stochastic setting and based their resource allocation strategies on the Successive
Halving algorithm originally proposed in Karnin et al. [11] for stochastic settings.

However, most existing methodologies on fast model selection and hyperparame-
ter tuning, including all of those discussed above, mainly focus on supervised learning
tasks where the data are labeled and the performance of the partially trained models is
represented by their losses on a hold-out test set. However, for unsupervised learning
tasks, such as many generative modeling tasks that are performed to generate high-quality
samples, e.g., [12], fast model search approaches, though important, have been largely
scarce in the literature. In light of the rapidly growing literature on generative modeling, it
is important to be able to perform efficient model search and hyperparameter tuning based
on the quality of samples generated from the candidate models.

In this work, we focus on the best hyperparameter configuration identification problem
for generative models. We perceive it as an adaptive resource allocation problem with
a given budget (e.g., iteration and training time). We build our approach upon the non-
stochastic multi-armed bandit formulation proposed by Jamieson and Talwalkar [9], which
makes minimal assumptions on the convergence behavior of the model performance during
the training process. Note that, in this work, we restrict the term “Generative Models”
to represent models that learn the underlying probability distribution in input data to
generate similar samples. To evaluate the performance of generative models, we compute
a sample-based distance metric between the samples generated from partially trained
models and those from the reference distribution. Particularly, we base our evaluation
criterion on the Maximum Mean Discrepancy (MMD) [13] that measures the closeness of the
generated samples to the reference distribution. By incorporating statistical tests between
partially trained models into the evaluation process, our method effectively identifies
the poor-performing configurations early on and allocates more resources to promising
configurations.

The remainder of this paper is organized as follows. In Section 2.1, we review the
non-stochastic best-arm identification problem and the Successive Halving algorithm.
In Sections 2.2 and 2.3, we present the proposed Adaptive Successive Halving algorithm
(AdaptSH) and provide intuition for it through an example. In Section 3, we present
empirical results comparing AdaptSH with Successive Halving. We conclude with a
discussion in Section 4.

Entropy 2024, 26, 150 3 of 17

2. Methods

In this section, we present the AdaptSH algorithm. We start with a brief review of the
non-stochastic best-arm identification problem and Successive Halving. We subsequently
introduce our choice of the metric for comparing the intermediate performance of genera-
tive models to decide which models should be trained further, and we provide intuition for
our choice via a simple example. We then introduce our proposed statistical test and how
we incorporate it into Successive Halving to help us distinguish between candidate models
and make early stopping decisions.

2.1. Non-Stochastic Best-Arm Identification and Successive Halving

The non-stochastic best-arm identification problem, originally proposed in Jamieson
and Talwalkar [9], considers a very general setting that encompasses the hyperparameter
optimization problem of interest. It only assumes that the sequence of the losses of each arm
(hyperparameter configuration) eventually converges without making any assumptions
on the rate of the convergence, monotonicity, or smoothness of the sequence. Hence, it is
generally applicable to a wide variety of problems including minimizing a non-convex
objective using stochastic gradient descent or some other iterative algorithms. Let K denote
the total number of arms and let ℓk,j denote the validation error of the kth arm after training
for j units of resources (e.g., iterations). For all k ∈ {1, 2, . . . , K}, assume νk = limj→∞ ℓk,j
exists. The goal is to identify arg mink νk when the resources are constrained by some
predetermined budget. Successive Halving, shown in Algorithm 1, is proposed by Jamieson
and Talwalkar [9] to solve the above problem. The strategy of Successive Halving follows
its name: given a set of K arms and a budget B, it splits the given budget evenly across
log2(K) elimination rounds, uniformly allocates the resources to remaining arms at each
round, evaluates their intermediate performance, throws out the worst half until one arm
remains. By the design of the algorithm, it allocates exponentially more resources to more
promising configurations.

Algorithm 1 Successive Halving
Input: Budget B, K models M1, . . . , MK

1: S0 = {1, 2, . . . , K}
2: Initialize i = 0
3: n = K
4: while B > 0 and n >= 2 do
5: Allocate ri =

⌊
B

n⌈log2(n)⌉

⌋
units of resource to each model in Si

6: Ri = ∑i
j=0 rj

7: Sort the intermediate losses of the models in Si such that ℓσi(1),Ri
≤ ℓσi(2),Ri

≤ · · · ≤
ℓσi(n),Ri

, where σi(·) is a bijection from {1, 2, . . . , n} to Si
8: Si+1 = {σi(j) | 1 ≤ j ≤ ⌊ n

2 ⌋}
9: B = B − nri

10: n = ⌊ n
2 ⌋

11: i = i + 1
12: end while

2.2. Exponentially Weighed Average of MMD2

While in Successive Halving, half of the configurations are discarded at each elim-
ination round, it is not entirely clear why we should do so. Indeed, it is not clear what
proportion to discard in each round would lead to better results without prior knowledge
about the convergence behavior of the sequences of losses. We propose to use statistical
tests to detect when two models have separated in their performance to make on-the-fly
elimination decisions. Before we jump into the statistical test, we first introduce our choice
of metric to represent the intermediate performance of generative models, based on which
we develop our statistical test to distinguish between their model performance.

Entropy 2024, 26, 150 4 of 17

While for supervised learning tasks, models are usually compared by their validation
errors on a hold-out set, there is no such straightforward measure for generative model
comparisons. Although there are a number of evaluation measures for generative models
that have been proposed in recent years including the average log-likelihood, different
variants of the Wasserstein distance [14], Fréchet Inception Distance (FID) [15] and Maxi-
mum Mean Discrepancy (MMD), there is no consensus as to which measure best captures
the strengths and limitations of generative models and should be used for a fair model
comparison. Indeed, there are a number of desired properties for a good measure, including
the ability to distinguish generated samples from real ones, favoring models that generate
diverse samples, and having low computational and sample complexity. It is unlikely
that a single measure can cover all aspects. Since different applications require different
trade-offs among the desired properties, it has been argued that the evaluation metric
should be chosen with respect to specific applications [16]. On the other hand, previous
works have shown through empirical studies that MMD performs well in terms of the
discriminability, robustness and efficiency compared to other metrics when it operates
in the feature space [17,18]. Moreover, the empirical estimate of MMD enjoys favorable
statistical properties such as asymptotic normality, making it a favorable choice to construct
two-sample and three-sample tests that compares probability distributions. Therefore, we
base our model selection criterion on MMD.

MMD is a metric of probability measures which falls within the family of integral
probability metrics (IPMs) [19]. For two probability measures, P and Q, over X ⊂ Rd, IPM
is defined as

DF (P,Q) = sup
f∈F

EP f (X)−EQ f (Y), (1)

which is the maximum difference between the mean function values on the two probability
measures. The choice of the witness function class F determines the probability metric.
The MMD is defined as the IPM with F being the unit ball in a reproducing kernel Hilbert
space (RKHS) H, with a positive definite kernel k(·, ·) : X ×X → R,

MMD(P,Q;H) = sup
f∈H,∥ f ∥H≤1

EP f (X)−EQ f (Y).

It can be interpreted as the distance between the mean embeddings of P and Q into H. It
can be shown that the square of the MMD can be expressed as

MMD2(P,Q;H) = EP⊗P
[
k
(
X, X′)]− 2EP⊗Q[k(X, Y)] +EQ⊗Q

[
k
(
Y, Y′)], (2)

where X and X′ are independent random variables having distribution P, and Y and Y′

are independent random variables having distribution Q [13]. It immediately follows that
MMD has a straightforward unbiased empirical estimator:

MMD2
u(Xm, Yn,H) =

1
m(m − 1)

m

∑
i=1

m

∑
j ̸=i

k
(
xi, xj

)
+

1
n(n − 1)

n

∑
i=1

n

∑
j ̸=i

k
(
yi, yj

)
− 2

mn

m

∑
i=1

n

∑
j=1

k
(
xi, yj

)
,

(3)

where Xm := {x1, . . . , xm} and Yn := {y1, . . . , yn} are i.i.d. samples from P and Q, respec-
tively. Let vi := (xi, yi), i = 1, . . . , m be i.i.d samples from P×Q, when m = n. Then,

MMD2
u(Xm, Ym,H) =

1
(m)(m − 1)

m

∑
i ̸=j

h
(
vi, vj

)
(4)

Entropy 2024, 26, 150 5 of 17

is a U-statistic with h
(
vi, vj

)
= k

(
xi, xj

)
+ k

(
yi, yj

)
− k

(
xi, yj

)
− k

(
xj, yi

)
. According to the

properties of U-statistics,
√

m
(

MMD2
u(Xm, Ym,H)− MMD2(P,Q,H)

)
converges weakly

to a Gaussian distribution as m → ∞, when P ̸= Q and E
(
h2) < ∞. MMD and the

Wasserstein distance are two extremes of the Sinkhorn divergences, an entropic regularized
variant of the Wasserstein distance, e.g., [20,21].

Instead of simply using the MMD2 at the current iteration to represent the intermediate
performance of each candidate model, we consider an exponentially weighted average of
MMD2 that takes into account the model performance at previous training iterations, i.e.,

ℓ̃
β,h
k,R =

∑h−1
r=0 βr MMD2(P,QR−r

k ,H)

∑h−1
r=0 βr

, for k = 1, . . . , K and R > h − 1, (5)

where h ≥ 1 is the window size, β ∈ (0, 1) is the decay rate, P is the reference/target
distribution and QR

k denotes the distributions of the samples generated from model k
after being trained for R units of resources. An exponentially weighted average smooths
the learning curves. As a result, the models’ performance represented by the smoothed
MMD2 are more distinguishable from each other. Figure 1 shows an illustrative example.
Two Generative Adversarial Network (GAN) models with different training objectives
are trained on the Half Moons dataset, respectively (details of the dataset can be found in
Section 3). At the early stage of training, the variation of the loss tends to be large. While
any sequences of losses (under the convergence assumption) would eventually stabilize and
be separated from each other even without smoothing, smoothed loss is able to distinguish
between the two models at a much earlier stage, which can help us make the right decision
about which models should be trained further.

Figure 1. Upper: MMD2
u versus training iteration; lower: exponentially weighted average of MMD2

u
with h = 10 and β = 0.9 versus training iteration.

2.3. Adaptive Successive Halving with Hypothesis Testing

Now, we introduce our proposed algorithm called Adaptive Successive Halving
(AdaptSH), shown in Algorithm 2. As the name of our algorithm suggests, instead of
following a predetermined elimination schedule as in Successive Halving, we base our
decision on test results and adaptively change the elimination schedule based on the
remaining budget and remaining number of arms. In particular, the major difference
between AdaptSH and the original Successive Halving lies in line 8 of Algorithm 2, where

Entropy 2024, 26, 150 6 of 17

we perform a sequence of statistical tests to compare the intermediate performance of the
current “best” arm and each of other remaining arms by taking samples from them and
compare their relative similarity to the target distribution. The corresponding p-values are
adjusted using the procedure proposed by Benjamini and Yekutieli [22], which controls
the false discovery rate. To avoid inflating the type I error rate, we use two independent
samples from each model to sort the models (line 7) and to perform the statistical tests
(line 8), respectively. The algorithm stops allocating further resources to models that
perform significantly worse than the current “best” model, as measured by a desired loss
criteria (e.g., MMD). It should be noted that our proposed algorithm can perhaps be used if
an alternative loss (e.g., the Wasserstein distance and alike) is chosen, but developing an
asymptotic theory required by the statistical tests can be challenging.

Algorithm 2 Adaptive Successive Halving
Input: Budget B, K models M1, . . . , MK, decay rate β, window size h, significance level α

1: S0 = {1, 2, . . . , K}
2: Initialize i = 0
3: n = K
4: while B > 0 and n >= 2 do
5: Allocate ri =

⌊
B

n⌈log2(n)⌉

⌋
units of resource to train each model in Si

6: Ri = ∑i
j=0 rj

7: Sort the intermediate losses of the models in Si such that ℓ̃β,h
σi(1),Ri

≤ ℓ̃
β,h
σi(2),Ri

≤ . . . ≤

ℓ̃
β,h
σi(n),Ri

, where σi(·) is a bijection from {1, 2, . . . , n} to Si

8: Compare Mσi(1) against Mσi(j)(j = 2, . . . , n) using three-sample tests comparing the
relative closeness of their generated samples to the validation dataset with Benjamini
and Yekutieli [22] correction to obtain the adjusted p-values padjusted

2 , . . . , padjusted
n

9: Si+1 = {σi(j) | 2 ≤ j ≤ n and padjusted
j > α} ∪ {σi(1)}

10: B = B − nri
11: n = |Si+1|
12: i = i + 1
13: end while

The statistical test in line 8 is a three-sample relative similarity test that aims to
determine with high significance whether the samples generated by the current “best”
model are closer to the evaluation data set than those of each remaining model. While
there is rich literature on two-sample test problems for multivariate data, statistical tests for
three-sample relative similarity are rarely studied in the literature. Bounliphone et al. [23]
propose a relative similarity test:

H0 : MMD2(P,Q,H) = MMD2(P,T,H)

H1 : MMD2(P,Q,H) < MMD2(P,T,H),

which tests the null hypothesis that two distributions Q and T are equally close to a target
distribution P against the alternative hypothesis that Q is closer to P than T. They propose
the following test statistic:

MMD2
u(Xm, Ym,H)− MMD2

u(Xm, Zm,H), (6)

where Xm := {x1, . . . , xm}, Ym := {y1, . . . , ym} and Zm := {z1, . . . , zm} are iid samples
from P, Q and T, respectively. The test statistic is asymptotically Gaussian, which directly
follows from Hoeffding [24] (Theorem 7.1), which states that the joint distribution of several
U-statistics converges weakly to a multivariate Gaussian distribution as m → ∞.

We generalize their test to compare the averages of MMD2 between two arms. In
Section 2.2, we defined the exponentially weighted MMD2, ℓ̃β,h

k,R that we use to represent

Entropy 2024, 26, 150 7 of 17

the performance of arm k after being trained for R units of resources. In particular, we want
to determine with high significance whether one arm has a smaller exponentially weighted
MMD2 than the other, which translates to the following null and alternative hypothesis:

H0 :
h−1

∑
r=0

βr MMD2(P,QR−r
1 ,H) =

h−1

∑
r=0

βr MMD2(P,QR−r
2 ,H)

H1 :
h−1

∑
r=0

βr MMD2(P,QR−r
1 ,H) <

h−1

∑
r=0

βr MMD2(P,QR−r
2 ,H),

where {QR
i }R>0, i = 1, 2 denote two sequences of distributions corresponding to two arms

that are being compared. It is then natural to use the following test statistic:

Th,β
m =

h−1

∑
r=0

βr MMD2
u(Xm, Y1,R−r

m ,H)−
h−1

∑
r=0

βr MMD2
u(Xm, Y2,R−r

m ,H), (7)

where Xm := {x1, . . . , xm}, Y1,R
m := {y1,R

1 , . . . , y1,R
m } and Y2,R

m := {y2,R
1 , . . . , y2,R

m } are iid
samples from P, QR

1 and QR
2 respectively. The following theorem states the asymptotic

normality of the joint distribution of multiple unbiased estimators of MMD2s, which
follows directly from Hoeffding [24] (Theorem 7.1).

Theorem 1. Assume that Ev,v′∼P×Qr
i
h2(v, v′) < ∞ and P ̸= Qr

i for i = 1, 2 and r = R − h +
1, . . . , R, then

√
m

MMD2
u(Xm, Y1,R

m ,H)
. . .

MMD2
u(Xm, Y1,R−h+1

m ,H)

MMD2
u(Xm, Y2,R

m ,H)
. . .

MMD2
u(Xm, Y2,R−h+1

m ,H)

−

MMD2(P,QR
1 ,H

)
. . .

MMD2
(
P,QR−h+1

1 ,H
)

MMD2(P,QR
2 ,H

)
. . .

MMD2
(
P,QR−h+1

2 ,H
)

d−→ N

(
02h, Σ

h,β
m

)
, (8)

where 02h denotes a vector of zeros with length 2h, and Σ
h,β
m denotes the covariance matrix.

The explicit form of Σ
h,β
m and its empirical estimate are given in Appendix A. Then,

the p-value can be approximated by

p ≈ Φ
(

Th,β
m√

1
m βT

h Σ
h,β
m βh

)
, (9)

where βh = (1, β2, . . . , βh−1,−1,−β2, . . . ,−βh−1)T and Φ(·) is the cumulative distribution
function of a standard normal distribution. When h = 1, our proposed test reduces to the
three-sample relatively similarity test proposed in Bounliphone et al. [23]. Notice that as we
have a closed form expression to compute the p-values using the asymptotic distribution
(as given in the Appendix A), there is not much additional overhead in using the statistical
tests within our proposed AdaptSH compared to the traditional SH.

We use the same example as we used in Section 2.2 to illustrate the effect of using
exponentially weighted average on the results of the statistical test between arms. We
apply the test based only on the current MMD2 and our proposed test respectively to
the two models shown in Figure 1. The tests are performed every 10 iterations, and the
alternative hypothesis considered is that Model 1 (represented in blue in Figure 1) has
smaller (exponentially weighted) MMD2s. The resulting p-values are shown in Figure 2.
Suppose the significance level α = 0.01 is considered. Then, a p-value less than 0.01 indicates
that the Model 2 is significantly worse than Model 1 and will be stopped from further

Entropy 2024, 26, 150 8 of 17

training based on our model search algorithm. And a p-value greater than 0.99 indicates
that Model 2 is significantly better then Model 1 and that Model 1 will be early stopped,
since it is equivalent to a p-value less than 0.01 if the opposite alternative hypothesis were
considered. Figure 3 shows that increasing h increases the ease of making the right decision
during the training process. For this particular example, when h ≥ 7, the chance of early
stopping in favor of the worse model reduces to zero.

Figure 2. Upper: p-values of the statistical tests when only the most recent MMD2 is considered;
lower: p-values of the statistical tests when historical MMD2s within the moving window with h = 10
and β = 0.9 are considered. The two horizontal dashed lines correspond to p-values of 0.01 and 0.99
respectively.

Figure 3. Upper: The change of the percentage of tests that have a p-value less than 0.01 with h; lower:
The change of the percentage of tests that have a p-value greater than 0.99 with h.

3. Experimental Results

In this section, we compare our proposed algorithm to Successive Halving on two hy-
perparameter optimization problems for GAN models. In particular, we consider a number

Entropy 2024, 26, 150 9 of 17

of GAN models that are trained using different variants of the Sliced Wasserstein distance.
The space of the models to search includes the set of distance metrics to search over and
the reasonable ranges of their associated hyperparameters. We consider seven different
variants of the Sliced Wasserstein distance and a set of different combinations of hyper-
parameters for each of them, which sum up to 30 GAN models in total. The details of
the hyperparameter configurations considered for each distance metric can be found in
Appendix B. The same generator and discriminator architectures are used for all 30 models
(See Appendix B).

To evaluate the different search algorithms’ performance under different budgets,
we set the total budget of the iterations to a sequence of values, and for each budget let
the search algorithms decide how to allocate it amongst the different arms. The final
performance of the models is represented by their final losses, defined as νk = limj→∞ ℓk,j
for each model k. As νk is unknown, and we approximate it by the loss after training
the model for some finite units of resources R. In real-world applications, R is often
determined by the maximum amount of resources that one wants to allocate to any given
configuration, which are often inferred from previous training experiences on similar tasks
or determined by the time and money one wants to spend on training one model for a
particular task. To address the oscillation around the optimal value when the models are
trained by stochastic optimization methods, we use the average loss within a small window
[R, R + ∆) to approximate νk, k = 1, . . . , K, i.e, v̂k =

1
∆ ∑R+∆−1

j=R ℓ̂k,j.
2-D Half Moons We first apply the searching algorithms to compare the 30 GAN

models being trained on the Half Moons dataset. We uniformly sample 1000 points on
the half moons as the training set and another 1000 points as the validation set. These
sample sizes are used for just for numerical illustration but the results are not sensitive
to these choices unless we use very small sample sizes. The training data are shown in
Figure 4. At each elimination round, 500 points are sampled from each model to compute
MMD2

u that is used for sorting, and another 500 points are sampled for statistical testing.
We set one unit of resources to 10 training iterations. And we vary the budget from 400
to 1400 units by a step of 50. And for each budget, we record the estimated final loss of
the selected arm by each searching algorithm. We repeat the experiment for 20 trials. For
each searching algorithm and each budget, we compute the average loss of the 20 trials,
µ̂i,B = 1

20 ∑20
j=1 v̂j

k(i,B,j), where i, B and j denote the search algorithm, budget and trial
number, respectively, k(i, B, j) denotes the index of the model selected by algorithm i using
budget B at trial j, and v̂j

k denotes the estimated final loss of the model k at trial j. The
tuning parameters for the exponential weighting are chosen as β = 0.9 and h = 6. For the
choice of the kernel function in MMD, we follow Bounliphone et al. [23] and use a Gaussian
kernel with bandwidth selected as the median pairwise distance between data points. But
one can use alternative kernel functions (e.g., the semantic-aware deep kernel proposed
by Gao et al. [25]). Additional numerical results for other tuning parameter settings are
provided in Appendix C.

As is shown in Figure 5, for the majority of the budgets considered, our proposed
method selects arms with smaller final losses on average. To further compare the losses of
the arms selected by the two searching algorithms, we conduct a Mann–Whitney U test
between the two samples {v̂j

k(1,B,j)}
20
j=1 and {v̂j

k(2,B,j)}
20
j=1 for each B with the alternative

hypothesis that the final loss obtained by AdaptSH is stochastically smaller than that of
Successive Halving. The p-values of the tests are shown in Figure 5. For budgets over 600,
the p-value stays around 0.05, which indicates that our algorithm outperforms SH with a
high confidence for a large range of budgets.

3-D Swiss Roll We next compare AdaptSH to Successive Halving on the Swiss Roll
dataset. A total of 1000 points are sampled on the Swiss Roll as the training set and
another 2000 points as the validation set. The training data are shown in Figure 6. At each
elimination round, 1000 points are sampled from each model to compute MMD2

u that is
used for sorting, and another 1000 points are sampled for statistical testing. The experiment

Entropy 2024, 26, 150 10 of 17

setting is the same as that in the previous example, as well as the choice of the tuning
parameters for the exponential weighting. We repeat the experiment for 20 trials. And the
results are shown in Figure 7. Our proposed method selects arms with smaller final losses
on most of the budgets, and the advantage is significant for most moderate budgets.

Figure 4. One thousand points sampled on the “Half Moons”.

Figure 5. Results on the 2-D Half Moons dataset. Upper: Final loss of the selected models averaged
over 20 trials against the input budget. Lower: p-values of the Mann–Whitney U tests. Two horizontal
dashed lines represent p-value = 0.05 and 0.5, respectively.

Figure 6. One thousand points sampled on the “Swiss Roll”.

Entropy 2024, 26, 150 11 of 17

Figure 7. Results on the 3-D Swiss Roll dataset. Upper: Final loss of the selected model averaged over
20 trials against the input budget. Lower: p-values of the Mann–Whitney U tests. Two horizontal
dashed lines represent p-value = 0.05 and 0.5 respectively.

4. Conclusions

We have presented a method for hyperparameter optimization for generative mod-
els. We cast it as a non-stochastic best-arm identification problem with a fixed budget
and identify the clearly underperforming arms early on through statistical tests between
average empirical MMD2s of partially trained models. In our experiments, we showed
that our procedure leads to a significant improvement in the performance of the selected
configurations compared to Successive Halving on a wide range of budgets and is robust
to the choice of the tuning parameters. Our method does not make any assumptions about
the parametric form of the learning curves, nor about their monotonicity or smoothness,
which makes it general enough to be suitable for most hyperparameter optimization tasks.

Author Contributions: Conceptualization, L.C. and S.K.G.; methodology, L.C. and S.K.G.; software,
L.C.; validation, L.C.; formal analysis, L.C.; investigation, L.C.; resources, L.C. and S.K.G.; data
curation, L.C.; writing—original draft preparation, L.C.; writing—review and editing, L.C. and
S.K.G.; visualization, L.C.; supervision, S.K.G.; project administration, S.K.G.; funding acquisition,
not applicable. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Datasets used in this paper were generated during the study. The code
to generate the datasets is available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Derivation of the Covariance Matrix

The variance and covariance of MMD2
u are derived and in Bounliphone et al. ([23],

Appendix A), as well as their sample estimates. Here, we extend their results and give the
explicit expression for our covariance matrix Σ

h,β
m in Equation (8).

Let ϕ(x) = k(x, ·) : X → R, a feature mapping from X to R, and µP(·) = Ex∼Pk(x, ·) ∈
H, the mean embedding of the distribution P into H.

Entropy 2024, 26, 150 12 of 17

Then the diagonal terms of Σ
h,β
m are given by

σii =

{
4ζP,QR−i+1

1 if 1 ≤ i ≤ h

4ζP,QR−i+1+h
2 if h < i ≤ 2h

,

where

ζP,Q =Ex∼P
[
⟨ϕ(x), µP⟩2

H

]
− Ex∼P[⟨ϕ(x), µP⟩H]

2

− 2
(
Ex∼P

[
⟨ϕ(x), µP⟩H

〈
ϕ(x), µQ

〉
H
]
− Ex∼P[⟨ϕ(x), µP⟩H]Ex∼P

[〈
ϕ(x), µQ

〉
H
])

+ Ey∼Q
[〈

ϕ(y), µQ
〉2
H

]
− Ey∼Q

[〈
ϕ(y), µQ

〉
H
]2

− 2
(
Ey∼Q

[〈
ϕ(y), µQ

〉
H⟨ϕ(y), µP⟩H

]
− Ey∼Q

[〈
ϕ(y), µQ

〉
H
]
Ey∼Q[⟨ϕ(y), µP⟩H]

)
+ Ex∼P

[〈
ϕ(x), µQ

〉2
H

]
− Ex∼P

[〈
ϕ(x), µy

〉
H
]2

+ Ey∼Q
[
⟨ϕ(y), µP⟩2

H

]
− Ey∼Q[⟨ϕ(y), µP⟩H]

2

(A1)

with sample estimate

ζ̂P,Q =
1

m(m − 1)2 eTK̃xxK̃xxe −
(

1
m(m − 1)

eTK̃xxe
)2

− 2
(

1
m2(m − 1)

eTK̃xxKxye − 1
m3(m − 1)

eTK̃xxeeTKxye
)

+
1

m(m − 1)2 eTK̃yyK̃yye −
(

1
m(m − 1)

eTK̃yye
)2

− 2
(

1
m2(m − 1)

eTK̃yyKyxe − 1
n2(m − 1)m

eTK̃yyeeTKxye
)

+
1

m3 eTKyxKxye − 2
(

1
m2 eTKxye

)2
+

1
m3 eTKxyKyxe,

(A2)

where e is a vector of 1s with appropriate size, Kxx, Kyy and Kxy are the kernel matrices, and
K̃ indicates that the diagonal terms have been set to zero. For example,

[
K̃xx

]
ij = [Kxx]ij for

all i ̸= j and
[
K̃xx

]
ij = 0 for i = j.

And the off-diagonal terms of Σ
h,β
m are given by

σij =

4ζP,QR−i+1

1 ,QR−j+1
1 if 1 ≤ i, j ≤ h

4ζP,QR−i+1
1 ,QR−j+1+h

2 if 1 ≤ i ≤ h and h < j ≤ 2h

4ζP,QR−i+1+h
2 ,QR−j+1+h

2 if h < i, j ≤ 2h

,

where

ζP,Q,T =Ex∼P
[
⟨ϕ(x), µP⟩2

]
− Ex∼P[⟨ϕ(x), µP⟩]2

− (Ex∼P[⟨ϕ(x), µP⟩⟨ϕ(x), µT⟩]− Ex∼P[⟨ϕ(x), µP⟩]Ex∼P[⟨ϕ(x), µT⟩])
−

(
Ex∼P

[
⟨ϕ(x), µP⟩

〈
ϕ(x), µQ

〉]
− Ex∼P[⟨ϕ(x), µP⟩]Ex∼P

[〈
ϕ(x), µQ

〉])
+ Ex∼P

[〈
ϕ(x), µQ

〉
⟨ϕ(x), µT⟩

]
− Ex∼P

[〈
ϕ(x), µQ

〉]
Ex∼P[⟨ϕ(x), µT⟩],

(A3)

with sample estimator

Entropy 2024, 26, 150 13 of 17

ζ̂P,Q,T =
1

m(m − 1)2 eTK̃xxK̃xxe −
(

1
m(m − 1)

eTK̃xxe
)2

−
(

1
m2(m − 1)

eTK̃xxKxze − 1
m3(m − 1)

eTK̃xxeeTKxze
)

−
(

1
m2(m − 1)

eTK̃xxKxye − 1
m3(m − 1)

eTK̃xxeeTKxze
)

+

(
1

m3 eTKyxKxze − 1
m4 eTKxyeeTKxze

)
.

(A4)

Appendix B. Experiment Settings

Table A1 lists the distance metrics considered in the experiment as well as the choices
of hyperparameters of each of them. Here, niter refers to the number of iterations used
to compute the distance metric if it requires an optimization procedure. L denotes the
number of the projections (slices) used to estimate the sliced distances. The definition of
the remaining hyperparameters can be found in their corresponding original papers.

The generator architecture used for training the GAN models:

z ∈ R2 → FC512 → ReLU → FC512 → ReLU → FC512 → ReLU → FC2(3)

The discriminator architecture used for training the GAN models:

x ∈ R2(3) → FC512 → ReLU → FC512 → ReLU → FC128 → ReLU → FC1 → Sigmoid

Table A1. Variants of the Sliced Wasserstein distance and their hyperparameter settings that are
considered in the experiment.

Distance Metric Hyperparameters

ASWD [26]
L: {1000}, niter: {10, 20}, λ: {1, 5},
learningrate: {0.005, 0.0005}

MSWD [27] niter: {10, 50}

SWD [28] L: {10, 1000}

GSWD [29] L: {10, 1000}, r: {2, 5}

MGSWD [29] niter: {10, 50}, r: {2, 5}

MGSWNN [29] niter: {10, 50}

DSWD [30]
L: {1000}, niter: {10, 20}, λC: {1, 5},
learning rate: {0.005, 0.0005}

Appendix C. Additional Experimental Results

In this appendix, we provide additional experimental results to illustrate the ro-
bustness of our algorithm to the choice of tuning parameters h and β, and to yield a
better understanding about the resource allocation behavior of our proposed algorithm.
Figures A1–A4 show the results of using different combinations of the tuning parameters h
and β on the Half Moons and the Swiss Roll dataset respectively. The results show that for
all the combinations of the tuning hyperparameters, our algorithm outperforms Successive
Halving on average for most of the budgets.

Entropy 2024, 26, 150 14 of 17

Figure A1. Results on the 2-D Half Moons dataset with β = 0.9 and varying h. Upper: Final loss
of the selected models averaged over 20 trials against the input budget. Lower: p-values of the
Mann–Whitney U tests. Two horizontal dashed lines represent p-value = 0.05 and 0.5 respectively.

Figure A2. Results on the 2-D Half Moons dataset with h = 6 and varying β. Upper: Final loss
of the selected models averaged over 20 trials against the input budget. Lower: p-values of the
Mann–Whitney U tests. Two horizontal dashed lines represent p-value = 0.05 and 0.5 respectively.

Entropy 2024, 26, 150 15 of 17

Figure A3. Results on the 3-D Swiss Roll dataset with β = 0.9 and varying h. Upper: Final loss
of the selected models averaged over 20 trials against the input budget. Lower: p-values of the
Mann–Whitney U tests. Two horizontal dashed lines represent p-value = 0.05 and 0.5 respectively.

Figure A4. Results on the 3-D Swiss Roll dataset with h = 6 and varying β. Upper: Final loss
of the selected models averaged over 20 trials against the input budget. Lower: p-values of the
Mann–Whitney U tests. Two horizontal dashed lines represent p-value = 0.05 and 0.5 respectively.

Figure A5 illustrates the difference between the resource allocation of Successive
Halving and that of AdaptSH. Successive Halving has exhausted the budget and has to
make the final decision at around iteration 1000, while AdaptSH is able to train some of the
models to 2000 iterations before making the final decision, which results in overall smaller
MMDs of the selected models (see Figure A6).

Entropy 2024, 26, 150 16 of 17

Figure A5. Comparison of learning curves of AdaptSH and Successive Halving on the Half Moons
dataset with budget B = 700. The plots contain all learning curves from the 20 runs. Each curve is
truncated at the time of early stopping. The blue curves represent the final selected models of the
20 runs respectively.

Figure A6. Iteration 3000 to 5000 of Figure A5.

References
1. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 25th Annual

Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain, 12–15 December 2011; Neural Information
Processing Systems Foundation: La Jolla, CA, USA, 2011; Volume 24.

2. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In
Proceedings of the International Conference on Learning and Intelligent Optimization, Rome, Italy, 17–21 January 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 507–523.

Entropy 2024, 26, 150 17 of 17

3. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process.
Syst. 2012, 25. [CrossRef]

4. Wang, Z.; Zoghi, M.; Hutter, F.; Matheson, D.; De Freitas, N. Bayesian Optimization in High Dimensions via Random Embeddings.
In Proceedings of the IJCAI, Beijing, China, 3–9 August 2013; pp. 1778–1784.

5. Swersky, K.; Snoek, J.; Adams, R.P. Freeze-thaw bayesian optimization. arXiv 2014, arXiv:1406.3896.
6. Domhan, T.; Springenberg, J.T.; Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by

extrapolation of learning curves. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
Buenos Aires, Argentina, 25–31 July 2015.

7. Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; Hutter, F. Fast bayesian optimization of machine learning hyperparameters on large
datasets. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Lauderdale, FL, USA, 20–22
April 2017; pp. 528–536.

8. Sparks, E.R.; Talwalkar, A.; Haas, D.; Franklin, M.J.; Jordan, M.I.; Kraska, T. Automating model search for large scale machine
learning. In Proceedings of the Sixth ACM Symposium on Cloud Computing, Kohala Coast, HI, USA, 27–29 August 2015;
pp. 368–380.

9. Jamieson, K.; Talwalkar, A. Non-stochastic best arm identification and hyperparameter optimization. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 240–248.

10. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter
optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.

11. Karnin, Z.; Koren, T.; Somekh, O. Almost optimal exploration in multi-armed bandits. In Proceedings of the International
Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; pp. 1238–1246.

12. Wang, Z.; She, Q.; Ward, T.E. Generative adversarial networks in computer vision: A survey and taxonomy. ACM Comput. Surv.
(CSUR) 2021, 54, 1–38. [CrossRef]

13. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773.
14. Villani, C. Optimal Transport: OLD and New; Springer: Berlin/Heidelberg, Germany, 2009; Volume 338.
15. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a

local nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]
16. Theis, L.; Oord, A.v.d.; Bethge, M. A note on the evaluation of generative models. arXiv 2015, arXiv:1511.01844.
17. Bińkowski, M.; Sutherland, D.J.; Arbel, M.; Gretton, A. Demystifying mmd gans. arXiv 2018, arXiv:1801.01401.
18. Xu, Q.; Huang, G.; Yuan, Y.; Guo, C.; Sun, Y.; Wu, F.; Weinberger, K. An empirical study on evaluation metrics of generative

adversarial networks. arXiv 2018, arXiv:1806.07755.
19. Müller, A. Integral probability metrics and their generating classes of functions. Adv. Appl. Probab. 1997, 29, 429–443. [CrossRef]
20. Ramdas, A.; Trillos, N.G.; Cuturi, M. On wasserstein two-sample testing and related families of nonparametric tests. Entropy

2017, 19, 47. [CrossRef]
21. Genevay, A.; Peyré, G.; Cuturi, M. Learning generative models with sinkhorn divergences. In Proceedings of the International

Conference on Artificial Intelligence and Statistics, Playa Blanca, Lanzarote, Spain, 9–11 April 2018; pp. 1608–1617.
22. Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29,

1165–1188. [CrossRef]
23. Bounliphone, W.; Belilovsky, E.; Blaschko, M.B.; Antonoglou, I.; Gretton, A. A test of relative similarity for model selection in

generative models. arXiv 2015, arXiv:1511.04581.
24. Hoeffding, W. A Class of Statistics with Asymptotically Normal Distribution. Ann. Math. Stat. 1948, 293–325. [CrossRef]
25. Gao, R.; Liu, F.; Zhang, J.; Han, B.; Liu, T.; Niu, G.; Sugiyama, M. Maximum mean discrepancy test is aware of adversarial attacks.

In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 3564–3575.
26. Chen, X.; Yang, Y.; Li, Y. Augmented Sliced Wasserstein Distances. arXiv 2020, arXiv:2006.08812.
27. Deshpande, I.; Hu, Y.T.; Sun, R.; Pyrros, A.; Siddiqui, N.; Koyejo, S.; Zhao, Z.; Forsyth, D.; Schwing, A.G. Max-Sliced Wasserstein

distance and its use for GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 15–20 June 2019; pp. 10648–10656.

28. Deshpande, I.; Zhang, Z.; Schwing, A.G. Generative modeling using the sliced wasserstein distance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3483–3491.

29. Kolouri, S.; Nadjahi, K.; Simsekli, U.; Badeau, R.; Rohde, G. Generalized sliced wasserstein distances. In Proceedings of the
Annual Conference on Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 261–272.

30. Nguyen, K.; Ho, N.; Pham, T.; Bui, H. Distributional sliced-Wasserstein and applications to generative modeling. arXiv 2020,
arXiv:2002.07367.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.48550/arXiv.1206.2944
http://dx.doi.org/10.1145/3439723
http://dx.doi.org/10.48550/arXiv.1706.08500
http://dx.doi.org/10.2307/1428011
http://dx.doi.org/10.3390/e19020047
http://dx.doi.org/10.1214/aos/1013699998
http://dx.doi.org/10.1214/aoms/1177730196

	Introduction
	Methods
	Non-Stochastic Best-Arm Identification and Successive Halving
	Exponentially Weighed Average of MMD2
	Adaptive Successive Halving with Hypothesis Testing

	Experimental Results
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

