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Abstract: We propose a general procedure for evaluating, directly from microphysics, the constitutive
relations of heat-conducting fluids in regimes of large fluxes of heat. Our choice of hydrodynamic for-
malism is Carter’s two-fluid theory, which happens to coincide with Öttinger’s GENERIC theory for
relativistic heat conduction. This is a natural framework, as it should correctly describe the relativistic
“inertia of heat” as well as the subtle interplay between reversible and irreversible couplings. We
provide two concrete applications of our procedure, where the constitutive relations are evaluated,
respectively, from maximum entropy hydrodynamics and Chapman–Enskog theory.
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1. Introduction

The most widespread theory for relativistic dissipation is the Israel–Stewart theory [1,2],
which has proven to be very effective in modeling viscosity and heat conduction in relativis-
tic gases [3] and liquids [4]. The rationale of the Israel–Stewart theory is rooted in Extended
Irreversible Thermodynamics [5], which posits that the dissipative fluxes, like the heat
flux q, should be treated as non-equilibrium thermodynamic variables. This allows one
to define a non-equilibrium entropy density s(q2), which can be expanded to the second
order in the flux:

s(q2) = seq −
β1

2T
q2 +O(q4) . (1)

Using the second law of thermodynamics as a guiding principle, one can then derive
some dissipative equations of motion for the fluxes, which resemble Catteno’s model:
τq̇ + q ∝ “local gradients” [6]. This model has indeed been shown to be consistent with the
kinetic theory of gases [7,8] and the rheological theory of liquids [9–11].

It is natural to ask whether we can extend the Israel–Stewart framework beyond the
second order in dissipative fluxes. (In this article, we interpret the Israel–Stewart framework
as a formulation of transient hydrodynamics, and not as a gradient expansion, see [8],
interpretation (iii). This means that q is a dynamical effective field, which parameterizes
the displacement of the fluid from local equilibrium. In the case of heat conduction, Israel–
Stewart hydrodynamics reduces to the M1 closure scheme [12–14]). This question was
addressed in the literature for certain dissipative processes, and the resulting formalism
seems to depend on the flux under consideration. For the bulk stress, the extension of
Israel–Stewart beyond quadratic order can be identified with Hydro+ [15–17]. For the shear
stress, the extension is called “anisotropic hydrodynamics” [18,19]. In this work, we focus
on heat conduction, which is probably the least understood case.

The two most promising extensions of the Israel–Stewart theory for heat conduction
beyond quadratic order are Carter’s multifluid theory [20–22] (which treats heat as a carrier
of inertia) and the GENERIC theory [23]. These were recently proven to be the same
mathematical system of equations [11] (just written in different variables). Both approaches
define a heat-flux-dependent equation of state, similarly to (1), which can be in principle
extrapolated to large values of heat flux. However, to date, no practical procedure has been
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proposed to compute such an equation of state from microscopic models. This article aims
to propose such a procedure.

Throughout the article, we adopt the metric signature (−,+,+,+) and work in natural
units: c = kB = h̄ = 1.

2. Mathematical Structure of the GENERIC-Multifluid Theory for Heat Conduction

First, let us analyze the theory of Öttinger [23] for relativistic heat conduction. Such
theory arises from direct application of the GENERIC framework [24] to relativistic con-
ductive fluids. Since this same theory can also be derived within Carter’s multifluid
framework [11], we will refer to it as the GENERIC-Multifluid (GM) theory.

2.1. Non-Equilibrium Thermodynamics

The fields of the GM theory are, by assumption, Ψ = {n, uµ, wµ}. The first two
may be interpreted as the rest-frame baryon density and the (Eckart frame [25]) flow
velocity. The covector wµ is an effective non-equilibrium field, usually called “thermal
momentum” [22]. The non-equilibrium temperature is defined to be T = −uµwµ. If the
fluid is in the local thermodynamic equilibrium, wµ must be parallel to uµ (by isotropy). It
follows that the non-negative definite scalar wµwµ+T2 can be interpreted as a measure of
how far from local equilibrium the fluid is. This motivates (in agreement with Extended
Irreversible Thermodynamics [5]) the introduction of a non-equilibrium free-energy density
F(T, n, wµwµ), which has an absolute minimum at wµwµ = −T2, for fixed values of n and
T [26,27]. We define the non-equilibrium entropy density s and chemical potential µ from
the following differential:

dF = −s dT + µ dn +
σ

2
d(wµwµ+T2) . (2)

At equilibrium, the thermodynamic coefficient σ is necessarily positive (for F to be in a
minimum [27]). Additionally, we can define the thermodynamic energy density ε = F+ Ts
and the thermodynamic pressure P = −F+ µn, as in standard thermodynamics [28]. The
thermodynamic identities below follow directly from the above definitions:

dε = T ds + µ dn +
σ

2
d(wµwµ+T2) ,

dP = s dT + n dµ − σ

2
d(wµwµ+T2) ,

ε+P = Ts + µn .

(3)

2.2. Hydrodynamic Constitutive Relations

The effective fields Ψ are not observable. They are just mathematical degrees of
freedom that we use to parameterize the macroscopic state of the system. Within relativistic
hydrodynamics, the relevant physical observables are the following fluxes: Tµν (the stress-
energy tensor), sµ (the entropy current), and nµ (the baryon current). Thus, we need some
formulas to express these fluxes in terms of the effective fields Ψ. Such formulas are
usually referred to as constitutive relations. For the GM theory, the constitutive relations
are postulated to be

Tµν = Pgµν + (ε + P − σT2)uµuν + σwµwν ,

sµ = (s − σT)uµ + σwµ ,

nµ = nuµ .

(4)



Entropy 2024, 26, 147 3 of 12

These are just the most natural constitutive relations that one can write working in the
Eckart frame, i.e., assuming that nµ ∝ uµ, n = −nµuµ, and ε = Tµνuµuν. Indeed, we
defined the heat flux vector

qµ = σT(wµ−Tuµ) , (5)

which satisfies the orthogonality condition uµqµ = 0, and we can rewrite the constitutive
relations (4) as follows:

Tµν = Pgµν + (ε + P)uµuν + uµqν + qµuν +
qµqν

T2σ
,

sµ = suµ +
qµ

T
,

nµ = nuµ .

(6)

These can be interpreted as non-perturbative generalizations of the Israel–Stewart con-
stitutive relations [2,29,30] (in the Eckart frame). It should be kept in mind that all the
thermodynamic variables may depend on the heat flux in a fully non-linear manner. Thus,
the present theory is in principle applicable in regimes with large fluxes of heat.

2.3. Consistency with Relativistic Thermodynamics

Let us verify that the above theory is consistent with the principles of relativistic ther-
modynamics in the van Kampen–Israel formulation [1,31–34]. Using Equations (3) and (4),
one can easily prove the following identities:

Tsµ = Puµ − µnµ − uνTνµ ,

Tdsµ = − µdnµ − uνdTνµ − 2σu[µwν]dwν .
(7)

The first equation is Israel’s covariant Euler relation [32]. Note that, while in general this
is an equilibrium identity, in the GM theory, it happens to hold also in the presence of a
heat flux. The second equation coincides with Israel’s covariant Gibbs relation if and only
if wµ = Tuµ. This implies that the fluid is in local thermodynamic equilibrium if and only
if qµ = 0 [see Equation (5)], i.e., there is no flow of heat across the fluid. Thus, the theory is
indeed consistent with the principles of van Kampen–Israel thermodynamics.

It is also straightforward to verify that the GM theory describes a multifluid of
Carter [26,35]. In fact, if we express the free energy as a function F(wα, nα, gαβ), we have
the following partial derivatives:

∂F

∂wα

∣∣∣∣
nβ ,gβγ

= sα ,
∂F

∂nα

∣∣∣∣
wβ ,gβγ

= −µuα +
s−σT

n
(wα−Tuα) , 2

∂F

∂gαβ

∣∣∣∣
nβ ,wγ

= Tαβ − Pgαβ , (8)

which are consistent with Carter’s theory in the generating function formulation [36].
This implies that, as long as the second law of thermodynamics is respected, and the
equation of state for F is prescribed in accordance with the requirements listed in [37],
the GM theory is linearly causal [38] and covariantly stable [39], both dynamically and
thermodynamically [40,41].

2.4. Equations of Motion

To complete the theory, we need to prescribe some equations of motion for the fields
Ψ = {n, uµ, wµ}. Since the algebraic degrees of freedom are eight, we need eight inde-
pendent equations of motion. Out of these, five are the conservation laws ∇µnµ = 0 and
∇µTµν = 0. The remaining three are derived to guarantee consistency with the principles
of GENERIC [24]. The simplest equation of motion fulfilling all the requirements is [23]

uµ(∇µwν −∇νwµ) = − 1
τ
(wν − Tuν) , (9)
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where τ(T, n, wµwµ) > 0 can be interpreted as the relaxation time. In (9), there are only
three independent equations, since contraction of both sides with uν returns a trivial identity
“0=0”. Consistency with GENERIC automatically entails consistency with the Onsager–
Casimir principle [42,43] and with the second law of thermodynamics. Indeed, with the
aid of the second equation of (7), we can explicitly evaluate the entropy production rate:

T∇µsµ =
σ

τ
(wµwµ + T2) , (10)

which is non-negative definite for arbitrary values of Ψ.
To get a better insight into the physical content of Equations (9) and (10), we can

express them in terms of the heat flux vector (5). The result is

τσTLu

(
q

σT

)
ν

+ qν = − τσT(gµ
ν+uµuν)(Tuλ∇λuµ+∇µT) ,

T∇µsµ =
qµqµ

τσT2 .

(11)

The consistency with the Israel–Stewart theory [1,2] in the limit of small heat fluxes is
evident. The Lie derivative Lu in the first equation automatically accounts for the cou-
pling with the vorticity predicted by kinetic theory [3], and it guarantees that qν remains
orthogonal to uν at all times.

3. Evaluation of the Constitutive Relations from Microphysics

In the previous section, we outlined a general hydrodynamic framework for describing
relativistic heat conduction non-perturbatively. Now, we need a procedure for computing
the non-equilibrium equation of state F(n, uµ, wµ) from microphysics. The main difficulty
is that the field wµ does not have a straightforward physical interpretation. Indeed, even T
itself is not clearly defined (out of equilibrium [25]). This may open the doors to all sorts
of ambiguities when trying to connect hydrodynamics with other levels of description,
like kinetic theory. Here, we present a simple (and rigorous) procedure that allows one to
circumvent all interpretative difficulties and to evaluate F unambiguously.

3.1. General Strategy

Pick a spacetime event P and move to the local rest frame of the fluid. Align the x1

axis with the heat flux vector qµ(P). Then, the constitutive relations (4) and (6) can be
expressed in components as follows:

Tµν(P) =


ε σTw 0 0

σTw P+σw2 0 0
0 0 P 0
0 0 0 P

 =


ε q 0 0
q PL 0 0
0 0 PT 0
0 0 0 PT

 , (12)

where w =
√

wµwµ+T2 is the non-equilibrium excursion, q =
√

qµqµ is the heat flux

magnitude, PL = P + q2/(T2σ) is the longitudinal pressure, and PT = P is the transversal
pressure. Comparing the two matrices above, and recalling the second law (10), we obtain

w
T

=
PL−PT

q
, T2σ =

q2

PL−PT
, T =

PL−PT
τ∇µsµ . (13)

If one has a microscopic model for the heat flux (e.g., from kinetic theory), they can evaluate
q, PL, PT , τ, and ∇µsµ explicitly. Note that there is no ambiguity in the kinetic definition of
each of these quantities. Thus, there is no ambiguity over the exact values of w, σ, and T
for a given kinetic state. Varying the state, we can reconstruct the function σ = σ(T, n, w2).
Additionally, the equilibrium free-energy density Feq(T, n) = F(T, n, w2=0) is known from
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statistical mechanics. Therefore, from (2), one can finally compute the non-equilibrium
free energy

F(T, n, wµwµ) = Feq(T, n) +
1
2

∫ wµwµ+T2

0
σ(T, n, w2)d(w2) . (14)

Once F is known, all the constitutive relations can be computed through partial differentiation.

3.2. Two Simple Examples

Suppose that heat is transported by a single branch of quasi-particle excitations, which
have a long mean free path and carry zero net baryon number (so their motion does not
modify the value of uµ). For simplicity, we assume that the variable T, defined in (13), fully
characterizes the energy distribution of such excitations. It follows that the non-equilibrium
excursion w only affects the angular distribution of the excitation momenta, but not the
magnitude of the momenta. Thus, we can express the heat flux and the pressure anisotropy
in the following form:

q = vch(T, n)R(T, n)
∫ +1

−1
f (cos θ) cos θ d(cos θ) ,

PL−PT = R(T, n)
∫ +1

−1
f (cos θ)

3(cos θ)2−1
2

d(cos θ) ,
(15)

where R(T, n) is the average stress content of the excitation branch, vch(T, n) is the char-
acteristic speed of the branch, and f (cos θ) is the (normalized) angular distribution of the
momenta in the branch. (Note that the fluid possesses other excitation branches, with
shorter mean free path (some of which carry net baryon number). All of these other excita-
tions manage to thermalize (being short-lived). Hence, R does not describe the totality of
the stress trace 2PT + PL. Instead, the stress trace can be decomposed as R+ 3C, where C is
an isotropic piece. At this stage, we do not need to model C explicitly, because it does not
contribute to the difference PL − PT , being isotropic). To determine f , we need a kinetic
model for flux-limited diffusion. There are two popular proposals in the literature [44].
The first, due to Minerbo [45], postulates that the angular distribution f should maximize
the entropy for the given value of heat flux q. The second, due to Levermore [12,46], is
an approximate solution of the Boltzmann equation for the long-lived excitations, with
a derivation that goes back to Chapman and Enskog [47]. Both approaches lead to a for-
mula for f that depends on a free parameter Z ∈ [0,+∞]. The exact expressions for f are
provided below:

Minerbo: f (x) =
ZeZx

2 sinh Z
, (16)

Levermore: f (x) =
1

2Z(coth Z−x)
. (17)

When Z = 0, the distribution is isotropic. When Z = +∞, all of the excitations travel
in the direction of the heat flux. In Appendix A, we sketch the derivation of (15)–(17).
Both models lead to the same prescription for the heat flux as a function of Z, namely
q = vchR (coth Z−1/Z), but predict different pressure anisotropies (see Figure 1, left panel):
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Figure 1. Non-equilibrium thermodynamics of heat conducting fluids according to the Minerbo
prescription (blue) and the Levermore prescription (red). (Left panel): Pressure anisotropy as a
function of the heat flux. (Right panel): Transport coefficient σ as a function of the non-equilibrium
excursion w. The dashed lines represent the polynomial fits.

Minerbo:
PL−PT

R
=

Z2−3Z coth Z+3
Z2 , (18)

Levermore:
PL−PT

R
=

3 coth Z(Z coth Z−1)
2Z

− 1
2

. (19)

Plugging these formulas into (13), we obtain two alternative constitutive relations σ(w),
which are plotted in Figure 1, right panel. There is no analytical expression because, in both
cases, the relation σ(w) is given in a parametric form, {w(Z), σ(Z)}, and the dependence
of w on Z does not admit an analytic inverse. However, we can fit the relations using
a polynomial approximation. Below, we report a good compromise between analytical
simplicity and accuracy (see dashed lines in Figure 1):

Minerbo:
T2σ

Rv2
ch

=
5
3
− 3

2

(
vchw

T

)2

+

(
vchw

T

)4

− 1
6

(
vchw

T

)6

, (20)

Levermore:
T2σ

Rv2
ch

=
5
6
+

1
6

(
vchw

T

)4

. (21)

These approximations are designed to be very accurate up to vchw/T ∼ 0.5. At larger heat
fluxes, the accuracy is slightly lower (∼5 % error). However, at maximum heat flux, namely
for vchw/T = 1, the polynomial approximation becomes exact. As a consistency check,
we note that, in the limit of small q, the conductivity coefficient κ = τσT, as predicted by
Equation (11), has the correct scaling [48] for both models:

κ ∝
τ R v2

ch
T

. (22)

Using Equation (14), we finally obtain the non-equilibrium free-energy density for both
models (see Figure 2):
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Figure 2. Non-equilibrium part of the free energy density according to Minerbo’s model (blue) and
Levermore’s model (red).

Minerbo: F = Feq +

[
5
6

(
vchw

T

)2

− 3
8

(
vchw

T

)4

+
1
6

(
vchw

T

)6

− 1
48

(
vchw

T

)8]
R , (23)

Levermore: F = Feq +

[
5

12

(
vchw

T

)2

+
1
36

(
vchw

T

)6]
R . (24)

These are the equations of state we were looking for.

4. Conclusions

At present, we don’t know whether the GM theory is applicable outside of the Israel–
Stewart regime. For that to happen, three conditions need to be met. First, the dynamics
of heat must be fully characterized by a single non-equilibrium structural variable wµ.
Secondly, it should still be possible to define an extended thermodynamic theory involving
the non-equilibrium excursion parameter wµwµ + T2. Finally, the equation of motion for
wµ should be governed by GENERIC dynamics. And all of this must be true for large
values of heat flux. Admittedly, these are quite strong assumptions to digest. However,
given the success of GENERIC in describing complex fluids [49], it may happen that certain
relativistic liquids indeed fulfill the requirements.

The main danger when dealing with “far-from-equilibrium” theories of this kind is
the risk of non-falsifiability. There is so much freedom in the construction of the non-
equilibrium equation of state F(T, n, wµwµ) that it is virtually possible to fit any given data
a posteriori, by simply adjusting the equation of state to the needs. This would likely result
in overfitted fluid models. To avoid this problem, one should know the non-equilibrium
equation of state before fitting the data with hydrodynamics. Ideally, the (theoretical) error
bars of the non-equilibrium equation of state should be smaller than the (experimental)
error bars of the data points.

Here, we have proposed a simple procedure for evaluating F(T, n, wµwµ) for any
given microscopic model. This procedure has the advantage of being free of intrinsic
uncertainties. Rather than coming up with a statistical interpretation of F, which would
suffer from ambiguities related to the unclear microscopic definition of wµ, we adopted a
more rigorous approach: We showed that T, wµwµ, and ∂F/∂(wµwµ) can all be expressed
in terms of physical observables that are unambiguously defined in any kinetic theory.
Therefore, if the GM theory holds for large values of q (which is admittedly a big “if”),
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there is one and only one free energy for each given microscopic model. This makes the
GM theory at least falsifiable.

We have tested the method with two simple kinetic models of flux-limited diffusion.
The first, due to Minerbo [45], based on the maximum entropy principle, and the second,
due to Levermore [12,46], based on the Chapman–Enskog procedure [47]. The resulting non-
equilibrium free energies are reported in Figure 2. Their qualitative behavior is reasonable.
For example, the non-equilibrium deviations of the free energy are of the order of the
pressure anisotropy, which is rather natural, considering that F = µn − P. Indeed, all the
scaling laws agree with the expectations.

Funding: L.G. is partially supported by a Vanderbilt’s Seeding Success Grant. This research was
supported in part by the National Science Foundation under Grant No. PHY-1748958.

Institutional Review Board Statement: Not applicable.
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Appendix A. Microscopic Derivation of the Toy Model

Appendix A.1. Basic Definitions

Our model in Section 3.2 describes heat conduction in a quantum liquid, which exhibits
different types of weakly interacting elementary excitations (called “branches”) that form
an ideal gas. Each type of elementary excitation can be viewed as a quasi-particle, and
it has an associated dispersion relation. (We work with quasi-particles rather than with
conventional particles because we are mostly interested in applying the GM framework
to neutron-star matter and quark matter. Both can be viewed as quantum liquids, and
the quasi-particle picture was proven effective in both contexts [50–55]) [56]. The main
working assumption of the model is that all of the heat and the pressure anisotropy is
carried by a quasi-particle “Q” that transports zero net baryon number and has a long
mean free path (similarly to what happens in radiation hydrodynamics [57,58]). Thus, if fp
is the distribution function of the quasiparticles, we have the following formulas (in the
rest frame of uµ) [59–61]:

qj =
∫ d3 p

(2π)3 fp qj ,

∆Pjk =
∫ d3 p

(2π)3 fp pjk ,
(A1)

where qj is the heat flux, and ∆Pjk is the contribution to the stress tensor coming from the
quasi-particles Q. The vector qj and tensor pjk are the contributions to respectively the heat
flux and the stress tensor coming from a single excitation with momentum pj. By isotropy
of the background state, we have that qj ∝ pj and pjk ∝ pj pk.

It is natural, when working within the M1 closure scheme, to assume that fp = f (Ω) f (ϵp),
where f (Ω) is the normalized angle distribution of the quasi-particles (Ω is a point on the
two-sphere), and f (ϵp) quantifies how many quasiparticles have energy ϵp. Therefore, we
can split the momentum integral into two separate integrals:

qj =
∫

4π

d2Ω
4π

f (Ω)Ωj
∫ +∞

0

p2dp
2π2 f (ϵp)q ,

∆Pjk =
∫

4π

d2Ω
4π

f (Ω)ΩjΩk
∫ +∞

0

p2dp
2π2 f (ϵp)p ,

(A2)
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where d2Ω is the solid-angle element, Ωj is the unit vector pointing in the direction of pj.
Let us define the scalars

R =
∫ +∞

0

p2dp
2π2 f (ϵp)p , vch =

∫ +∞

0

p2dp
2π2 f (ϵp)q∫ +∞

0

p2dp
2π2 f (ϵp)p

. (A3)

The first is just the trace ∆Pj
j . The interpretation of the second as a velocity comes from

the fact that, in the non-relativistic limit, q ∼ ϵv ∼ pv2, while p ∼ pv [60]. However, we
remark that, in relativity, qj may carry also some rest mass and may be much larger than p.
Thus, relativistic effects may render vch larger than one.

Finally, we recall that, in the setting outlined in Section 3.1, the system is invariant
under rotations around the x1 axis. Therefore, setting up spherical coordinate such that
Ω1 = cos θ, we can write f (Ω) = 2 f (cos θ) (the 2 is a normalization constant due to the
change of variables), and we obtain

qj = vchR δ
j
1

∫ +1

−1
d(cos θ) f (cos θ) cos θ ,

∆Pjk = R

∫ +1

−1
d(cos θ) f (cos θ)


cos2 θ 0 0

0
1 − cos2 θ

2
0

0 0
1 − cos2 θ

2

 .
(A4)

A comparison with (12) gives q = q1, and PL − PT = ∆P11 − ∆P22, so that

q = vch R

∫ +1

−1
d(cos θ) f (cos θ) cos θ ,

PL−PT = R

∫ +1

−1
d(cos θ) f (cos θ)

3(cos θ)2−1
2

,
(A5)

in agreement with Equation (15).

Appendix A.2. Non-Equilibrium Temperature

If we fix the direction of the heat flux, the hydrodynamic state-space depends on three
scalars, namely {T, n, wµwµ}, see Section 2.1. Thus, also the distribution fp = f (Ω) f (ϵp)
should depend on three kinetic parameters. In general, we expect the angular distribution
f (Ω) to depend on a single parameter Z, which tells us how “anisotropic” the gas is. The
energy distribution f (ϵp), instead, should depend on the density n (since the dispersion
relation is density-dependent), and on an additional parameter W, which quantifies how
much energy is stored in the quasi-particle branch Q. In principle, the detailed structure
of f (ϵp) may depend on Z, too. However, this should not affect the integrals in (A3)
appreciably, if W is carefully defined. Thus, we can rewrite (A5) in the form

q = vch(W, n)R(W, n)M1(Z) ,

PL − PT = R(W, n)M2(Z) ,
(A6)

where M1 and M2 are the angular integrals in (A5). Under these assumptions, we can write
a similar formula for the entropy production rate:

τ∇µsµ = S(W, n)L(Z) . (A7)

To derive the above equation, one can work in the relaxation-time approximation, see [62],
Equation (8.16), and consider that, in our model setup, most of the dissipation is due to the
anisotropy of fp, so that
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τ∇µsµ =
∫ d3 p

(2π)3 fp s[ fp/ feq,p] ≈
∫ d3 p

(2π)3 fp s[ f (Ω)] =
∫ +∞

0

p2dp
2π2 f (ϵp)

∫
4π

d2Ω
4π

f (Ω)s[ f (Ω)] , (A8)

where s = s[ fp/ feq,p] is the entropy production per quasi-particle at given fp/ feq,p (with
feq,p being the equilibrium distribution), and it depends on the quantum statistics of the
quasi-particles. Thus, we recover (A7), with

S(W, n) =
∫ +∞

0

p2dp
2π2 f (ϵp) , L(Z) =

∫
4π

d2Ω
4π

f (Ω)s[ f (Ω)] . (A9)

Hence, from Equation (13), we obtain a formula for the non-equilibrium temperature:

T =
R(W, n)M2(Z)
S(W, n)L(Z)

. (A10)

The second (and most delicate) working assumption of the model is that the quotient
M2(Z)/L(Z) does not depend on Z. If that is true, then T = T(W, n), which can be
inverted, giving W = W(T, n). As a consequence, vch = vch(T, n) and R = R(T, n), and
(A6) becomes (15).

Appendix A.3. Minerbo Closure

Now, we only need a formula for the dependence of f (Ω) on Z. Minerbo [45] adopted
Jaynes’ interpretation of the entropy as missing information [63] and postulated that the
most probable distribution f (Ω), for the given value of qj, is the one that maximizes the
(Boltzmann) entropy at fixed qj. Working with Maxwell–Boltzmann statistics [28,64], we
should therefore require that

δ
∫

4π

d2Ω
4π

( f ln f − f − Zj f Ωj − λ f ) = 0 , (A11)

for any linear variation δ f , at fixed values of the Lagrange multipliers Zj (constraining qj)
and λ (constraining the normalization). After evaluating λ explicitly, to guarantee that
f (Ω) is indeed normalised, we obtain

f (Ω) =
|Z|eZjΩj

sinh(|Z|) . (A12)

Setting Zj = (Z, 0, 0), and recalling that f (Ω) = 2 f (cos θ), we recover equation (16).

Appendix A.4. Levermore Closure

The approach of Levermore [12,46] is different. The main idea is to approximately
solve the Boltzmann equation in the relaxation-time approximation

d
dl

fp + fp = feq,p , (A13)

where d/dl denotes the derivative along the path of the quasi-particle in phase space [60],
parameterized in units of the relaxation time. As usual, it is assumed that fp = f (ϵp) f (Ω).
Additionally, one assumes that d f (Ω)/dl ≈ 0, because f (Ω) is expected to be a slowly
varying function (compared to τ). This gives

f (Ω) =
feq,p

f (ϵp) + d f (ϵp)/dl
. (A14)

Recalling that we are working in the local rest frame defined by uµ, we see that all the
angular dependence of f (Ω) is encoded in the term d f (ϵp)/dl, because both feq,p and f (ϵp)
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are isotropic. Furthermore, it is straightforward to see that the dependence of d f (ϵp)/dl on
the vector Ω comes from terms proportional to Ωj∂jF(ϵp, T, n), for some function F. Thus,
Equation (A14) can be rearranged in the abstract form

f (Ω) =
1

λ − ZjΩj , (A15)

where λ and Zj do not depend on Ω. Recalling that f (Ω) is normalised, Equation (A15) is
equivalent to

f (Ω) =
1

|Z| coth(|Z|)− ZjΩj . (A16)

Setting Zj = (Z, 0, 0), and recalling that f (Ω) = 2 f (cos θ), we recover Equation (17).
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