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Abstract: In this paper, a time-varying first-order mixture integer-valued threshold autoregressive
process driven by explanatory variables is introduced. The basic probabilistic and statistical properties
of this model are studied in depth. We proceed to derive estimators using the conditional least squares
(CLS) and conditional maximum likelihood (CML) methods, while also establishing the asymptotic
properties of the CLS estimator. Furthermore, we employed the CLS and CML score functions to infer
the threshold parameter. Additionally, three test statistics to detect the existence of the piecewise
structure and explanatory variables were utilized. To support our findings, we conducted simulation
studies and applied our model to two applications concerning the daily stock trading volumes
of VOW.

Keywords: threshold integer-valued autoregressive models; mixture thinning operator; parameter
estimation; Wald test; explanatory variables

1. Introduction

An integer-valued time series represents count data reflecting the states of a particular
phenomenon at different time points. It finds widespread applications across various
real-world domains. For instance, in the field of economics, Ref. [1] employed the integer-
valued moving average model to describe the number of transactions in intra-day stock
data. In industrial contexts, Ref. [2] utilized the compound Poisson integer-valued autore-
gressive (INAR) model to characterize the count of workers in the heavy manufacturing
industry receiving benefits due to burn-related injuries. Within the realm of insurance
actuarial studies, Ref. [3] explored an extension of the classical discrete-time risk model,
incorporating an INAR(1) process to capture temporal dependence among claim counts.
A straightforward approach in the modeling and analyzing of count time series involves
creating an integer-valued autoregressive model by using thinning operators. Ever since [4]
introduced the first INAR(1) time series model, which relied on the binomial thinning
operator [5], it has become a prevalent method to model INAR-type models utilizing
various thinning operators (see [6–10], among others). This approach has been extensively
applied across diverse fields such as epidemiology, social sciences, economics, life sciences,
and more.

Even though INAR-type models are commonly used in practical applications, they
often fall short when confronted with nonlinear phenomena. For instance, researchers in
the field of epidemiology, as exemplified by [11], have detected temporal fluctuations in
the incidence rate of epidemics. Therefore, trying to represent such data with an INAR-
type model may not be the most-appropriate approach. Furthermore, time series data
frequently undergo sudden changes that can either temporarily or permanently disrupt
their dynamics. In such situations, the conventional INAR model may also prove inade-
quate in delivering an accurate fit. To address the nonlinear aspects of integer-valued time
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series data, Ref. [12] introduced the integer-valued self-exciting threshold autoregressive
(SETINAR(2,1)) process, which relies on the binomial thinning operator (“◦”); Ref. [13]
presented the self-excited threshold Poisson autoregressive (SETPAR) model and applied it
to analyze major global earthquake data; Ref. [14] proposed a basic self-exciting threshold
binomial AR(1) model (SETBAR(1)) with values across a finite range of counts; Ref. [15]
investigated an integer-valued threshold autoregressive process (NBTINAR(1)) based on
the negative binomial thinning operator (“∗”) and applied it to analyze the annual counts
of major earthquakes with a magnitude of 7 or above from 1900 to 2015. In a comprehensive
review, Ref. [16] surveyed threshold models for integer-valued time series with an infinite
range and introduced two novel models tailored to cases with a finite range of values. In
the latest research, Ref. [17] pointed out that employing different operators before and
after the threshold can enhance the model’s ability to explain a wider range of phenomena.
As a result, she has proposed the following threshold autoregressive model using the
mixed operators.

Xt =

{
α1 ◦ Xt−1 + Z1,t, Xt−1 ≤ r
α2 ∗ Xt−1 + Z2,t, Xt−1 > r;

where {Z1,t} and {Z2,t} are sequences of i.i.d. Poisson and Geometric distributed random
variables, respectively. However, it is worth noting that the use of constant autoregressive
coefficients in this model ignores the effect of exogenous variables on the observed data.
For example, denote the daily trading volume of a specific stock as Xt. Clearly, in practice,
its autoregressive coefficient is often not static and is often subject to some external factors
related to change over time, such as: market factors: the overall volatility of the stock
market can impact the volatility of individual stocks; industry factors: specific events
or trends within an industry can also affect stock price fluctuations; interest rates and
monetary policy: changes in interest rates and monetary policies can have a wide-ranging
impact on the stock market; political and geopolitical factors: political events, elections,
international relations, and geopolitical tensions can introduce uncertainty and volatility to
the stock market. emotional and investor behavior: investor sentiment and behavior can
significantly influence stock price movements, among other factors.

Inspired by the above discussion and learning the method of constructing models
driven by explanatory variables (see [18,19], just to name a few), in this paper, we pro-
pose a first-order time-varying mixture thinning integer-valued threshold autoregressive
(TVMTTINAR(1)) process driven by explanatory variables. For this, the definition of the
TVMTTINAR(1) model is given, and the statistical inference for the proposed model is
studied. Furthermore, considering that verifying the existence of a piecewise structure and
explanatory variables is key to model construction, we propose three kinds of test statistics.
Finally, from the simulation and two applications, we can also see that our proposed model
is very competitive.

The organization of this paper is as follows. Section 2 gives the definition of the
proposed model, and some properties are also investigated. In Section 3, the estimates
of the model parameters are derived by using the conditional least squares (CLS) and
conditional maximum likelihood (CML) methods. Three test statistics are also constructed
to test the existence of the piecewise structure and explanatory variables, respectively.
Some simulation studies are carried out to investigate the performances of the proposed
estimates and test statistics in Section 4. Two real data examples are given in Section 5. Some
concluding remarks are given in Section 6. All proofs are postponed to Appendix A.

2. The First-Order Time-Varying Mixture Thinning Integer-Valued Threshold
Autoregressive Model

We first introduce the definition of the TVMTTINAR(1) process. Furthermore, we
investigate the statistical properties of the proposed model.
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Definition 1. The process {Xt} is called the TVMTTINAR(1) process if Xt follows the recursion:

Xt =

{
ϕ1,t ◦ Xt−1 + εt, Xt−1 ≤ r
ϕ2,t ∗ Xt−1 + εt, Xt−1 > r,

(1)

or

Xt =

{
ϕ2,t ∗ Xt−1 + εt, Xt−1 ≤ r
ϕ1,t ◦ Xt−1 + εt, Xt−1 > r.

(2)

For convenience, we write the above two models by the symbol R as follows:

Xt = (ϕ1,t ◦ Xt−1)IR
1,t + (ϕ2,t ∗ Xt−1)IR

2,t + εt, t ∈ Z, (3)

where:

1. IR
1,t =

{
I{Xt−1 ≤ r}, R = 0,
I{Xt−1 > r}, R = 1,

and IR
2,t = 1 − IR

1,t =

{
I{Xt−1 > r}, R = 0,
I{Xt−1 ≤ r}, R = 1;

That is,

R = 0 indicates that TVMTTINAR(1) represents the process (1).
2. For fixed i ∈ 1, 2, ϕi,t ∈ (0, 1)

log

(
ϕi,t

1 − ϕi,t

)
= Z⊤

t βi,

where βi = (βi,0, βi,1, . . . , βi,q)
⊤ are the regression coefficients, {Zt := (1, Z1,t, . . . , Zq,t)⊤}t∈Z

is a sequence of stationary, weakly dependent, and observable explanatory variables with a constant
mean vector and covariance matrix. For fixed t, Zt is assumed to be independent of {Xt−l}l≥1.

3. The binomial thinning operator “◦”, proposed by [5], is defined as ϕ1 ◦ X = ∑X
i=1 Bi, where

ϕ ∈ (0, 1), {Bi} is a sequence of i.i.d. Bernoulli random variables satisfying P(Bi = 1) =
1 − P(Bi = 0) = ϕ = and Bi is independent of X.

4. The negative binomial thinning operator “∗”, proposed by [20], is defined as ϕ ∗ X = ∑X
i=1 Wi,

where ϕ ∈ (0, 1), {Wi} is a sequence of i.i.d. Geometric random variables with parameter
ϕ

1+ϕ2
and Wi is independent of X.

5. {εt} is a sequence of i.i.d. Poisson distributed random variables with mean λ. For fixed t, εt is
assumed to be independent of ϕ ◦ Xt−1, ϕ ∗ Xt−1, and Xt−l for all l≥1.

In contrast to the common SETINAR-type model, the TVMTTINAR model does not
require β1 = β2. This is mainly due to the existence of mixed thinning operators. Even
when β1 = β2, there is a piecewise structure. However, this is a small probability event,
and the model inference problem in this case is not specially considered in this paper. In
addition, in practical applications, we can usually choose which of the two TVMTTINAR(1)
models (R = 0 and R = 1) is more applicable based on criteria such as the AIC and BIC.
We will conduct a specific analysis through data examples in Section 5.

Next, we are ready to state that there exists the strict stationarity and ergodicity of the
VTMTTINAR(1) process. Note that, under the assumption that βi satisfies supZ∈Rq+1 |βiZ| <
∞ for i = 1, 2, there is

ϕi,t =
exp(Z⊤

t βi)

1 + exp(Z⊤
t βi)

∈ (0, 1), ∀t.
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Thereby, similar to the method in [19], it is easy to verify that Theorem 3.1 in [21] holds,
and the TVMTTINAR(1) process is a strictly stationary and ergodic Markov chain. More-
over, its transition probabilities are given by

P(zt, xt−1, xt) = P(Xt = xt|Xt−1 = xt−1, Zt = zt)

= P
(

ϕ1,t ◦ Xt−1 IR
1,t + ϕ2,t ∗ Xt−1 IR

2,t + εt = xt|Xt−1 = xt−1, Zt = zt

)
= p(xt−1, xt, ϕ1,t, λ)IR

1,t + p(xt−1, xt, ϕ2,t, λ)IR
2,t

=
2

∑
i=1

p(xt−1, xt, ϕi,t IR
i,t, λ),

(4)

where

p(xt−1, xt, ϕ1,t IR
1,t, λ) = IR

1,t

min(xt−1,xt)

∑
m=0

(
xt−1

m

)
e−λ λxt−m

(xt − m)!
ϕm

1,t(1 − ϕ1,t)
xt−1−m,

p(xt−1, xt, ϕ2,t IR
2,t, λ) = IR

2,t

xt

∑
m=0

Γ(xt−1 + m)

Γ(xt−1)Γ(m + 1)
ϕm

2,t

(1 + ϕ2,t)xt−1+m e−λ λxt−m

(xt − m)!
.

(5)

Since the existence of the first four moments under observable explanatory variables is a
necessary condition for deriving the asymptotic properties of the parameter estimation in
Section 3, we then give the following proposition.

Proposition 1. Let {Xt} be the process defined by Definition 1. Then, the first four conditional
moments are bounded, that is E(Xk

t |Z0, . . . , Zt) < ∞ for k = 1, 2, 3, 4.

Next, we consider the moments and conditional moments of TVMTTINAR(1). For the
simplicity of the notation, we denote E(IR

1,t) = p1, E(IR
2,t) = p2 = 1− p1, µ1 := E(Xt|Xt ≤ r),

µ2 := E(Xt|Xt > r), µ
(h)
ϕ1

:= E(
exp(Z⊤

t+hβ1)

1+exp(Z⊤
t+hβ1)

|Xt+h−1 ≤ r), µ
(h)
ϕ2

:= E(
exp(Z⊤

t+hβ2)

1+exp(Z⊤
t+hβ2)

|Xt+h−1 >

r), ϕi := E
(

exp(Z⊤
t βi)

1+exp(Z⊤
t βi)

)
(i = 1, 2), σ2

ϕi
:= Var

(
exp(Z⊤

t βi)

1+exp(Z⊤
t βi)

)
(i = 1, 2), σ2

1 := Var(Xt|Xt ≤ r),

σ2
2 := Var(Xt|Xt > r), γ

(1)
h := Cov(Xt, Xt+h|Xt+h ≤ r), γ

(2)
h := Cov(Xt, Xt+h|Xt+h > r),

where γ
(i)
0 = [(σ2

i + µ2
i )− µiE(Xt)], i = 1, 2.

The conditional mean and variance for the TVMTTINAR(1) model can be given by

E(Xt|Xt−1, Zt) =
2

∑
i=1

exp(Z⊤
t βi)

1 + exp(Z⊤
t βi)

Xt−1 IR
i,t + λ,

E(Xt|Zt) =
2

∑
i=1

exp(Z⊤
t βi)

1 + exp(Z⊤
t βi)

piµi + λ,

Var(Xt|Xt−1, Zt) =
exp(Z⊤

t β1)

[1 + exp(Z⊤
t β1)]2

Xt−1 IR
1,t +

exp(Z⊤
t β2)[1 + 2 exp(Z⊤

t β2)]

[1 + exp(Z⊤
t β2)]2

Xt−1 IR
1,t + λ,

Var(Xt|Zt) =
2

∑
i=1

{[ exp(Z⊤
t βi)

1 + exp(Z⊤
t βi)

]2[pi(σ
2
i + µ2

i )− p2
i µ2

i
]}

+
exp(Z⊤

t β1)

[1 + exp(Z⊤
t β1)]2

p1µ1

+
exp(Z⊤

t β2)[1 + 2 exp(Z⊤
t β2)]

[1 + exp(Z⊤
t β2)]2

p2µ2 − 2
2

∏
i=1

exp(Z⊤
t βi)

1 + exp(Z⊤
t βi)

piµi + λ.

The unconditional expressions for the marginal mean and variance of the TVMTTINAR(1)
model are



Entropy 2024, 26, 140 5 of 31

E(Xt) =
2

∑
i=1

piϕiµi + λ,

Var(Xt) =
2

∑
i=1

{
ϕ2

i
[
pi(σ

2
i + µ2

i )− p2
i µ2

i
]
+ piσ

2
ϕi
(σ2

i + µ2
i )
}
+ p1µ1(ϕ1 − σ2

ϕ1
− ϕ2

1)

+ p2µ2(ϕ2 + σ2
ϕ2

+ ϕ2
2)− 2p1 p2ϕ1ϕ2µ1µ2 + λ.

Then, we have that the autocovariance function and autocorrelation function (ACF):

Cov(Xt, Xt+h
∣∣Zt+1, . . . , Zt+h) =

2

∑
i=1

exp(Z⊤
t+hβi)

1 + exp(Z⊤
t+hβi)

piγ
(i)
h−1,

Cov(Xt, Xt+h) =
2

∑
i=1

µ
(h)
ϕi

piγ
(i)
h−1,

ρ(h) := Corr(Xt, Xt+h) =
[ 2

∑
i=1

µ
(h)
ϕi

piγ
(i)
h−1

]
\ Var(Xt)

3. Parameters’ Estimation and Testing

Suppose we have a series of observations {Xt}n
t=1 generated from the TVMTTINAR(1)

process. Denote θ = (β⊤
1 , β⊤

2 , λ)⊤ as the parameter vector under the known threshold
parameter r, and η = (β⊤

1 , β⊤
2 , λ, r)⊤ as the parameter vector under the unknown r case.

Their parameter spaces are

Θθ = {θ ∈ Rq+1 ×Rq+1 × (0,+∞)},

Θη = {η ∈ Rq+1 ×Rq+1 × (0,+∞)×N}.

Furthermore, suppose the true values θ0 = (β⊤
1,0, β⊤

2,0, λ0)
⊤ and η0 = (β⊤

1,0, β⊤
2,0, λ0, r0)

⊤ of
θ0 and η0 are the interior points of Θθ and Θη, respectively. In this section, we mainly imple-
ment parameter estimation based on two different approaches, namely the conditional least
squares (CLS) and conditional maximum likelihood (CML) methods. The objective function
is not differentiable with respect to the threshold variable r since r is an integer. Therefore,
we firstly propose solutions to estimate θ under the assumption that the threshold variable
r is known. Later, in Section 3.3, we turn to estimating the threshold variable r based on the
estimation methods mentioned before. All the proofs are presented in Appendix A.

3.1. Conditional Least Squares Estimation

Denote

g(θ, Xt−1, Zt) = E(Xt|Xt−1, Zt) =
exp(Z⊤

t β1)

1 + exp(Z⊤
t β1)

Xt−1 IR
1,t +

exp(Z⊤
t β2)

1 + exp(Z⊤
t β2)

Xt−1 IR
2,t + λ,

Q(θ) :=
n

∑
t=1

(Xt − g(θ, Xt−1, Zt))
2 =

n

∑
t=1

U2
t (θ),

where

Ut(θ) = Xt −
exp(Z⊤

t β1)

1 + exp(Z⊤
t β1)

Xt−1 IR
1,t −

exp(Z⊤
t β2)

1 + exp(Z⊤
t β2)

Xt−1 IR
2,t − λ.

Then, the CLS estimator θ̂CLS := (β̂⊤
1,CLS, β̂⊤

2,CLS, λ̂CLS)
T of θ is obtained by minimizing the

sum of the squared deviations, that is

θ̂CLS = arg min
θ∈Θθ

Q(θ). (6)
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Since the TVMTTINAR(1) model is stationary and ergodic and the first four moments
are bounded, then using the Taylor expansion and the martingale central limit theorem,
the following theorem about the consistency and asymptotic normality of the parameter
estimator can be obtained. The detailed proof is presented in Appendix A.

Theorem 1. Let {Xt} be a TVMTTINAR(1) process. Then, the CLS estimator θ̂CLS is consistent
and has the asymptotic distribution:

√
n(θ̂CLS − θ0)

d−→ N(0, V−1WV−1), (7)

where V and W are square matrices of order 2q + 3 with the jkth element given by

Vjk := E

(
∂

∂θj
g(θ, Xt−1, Zt)

∂

∂θk
g(θ, Xt−1, Zt)

)
θ0

,

Wjk := E

(
U2

t (θ)
∂

∂θj
g(θ, Xt−1, Zt)

∂

∂θk
g(θ, Xt−1, Zt)

)
θ0

.

3.2. Conditional Maximum Likelihood Estimation

For a fixed value of x0, the conditional log-likelihood function for the TVMTTINAR(1)
model can be written as

L(θ) :=
n

∑
t=1

ℓt(θ) =
n

∑
t=1

log P(zt, Xt−1, Xt)

where P(zt, Xt−1, Xt) is the transition probabilities defined in (4). The CML estimator
θ̂CML := (β̂⊤

1,CML, β̂⊤
2,CML, λ̂CML)

T of θ is obtained by maximizing the conditional log-
likelihood function, that is

θ̂CML = arg max
θ∈Θθ

L(θ). (8)

Since ϕi,t is nonlinear with respect to βi,j for arbitrary i = 1, 2 and j = 0, 1, . . . , q, there is no
closed-form expressions for the CLS and CML estimators. The numerical solutions can be
solved by the MATLAB(2021b) function “fmincon” or the R(4.2.1) function “optim”. The
implementation details and performance are discussed in Section 4.

Theorem 2. Let {Xt} be a TVMTTINAR(1) process. Assume that the function E[ℓt(θ)] has a

unique maximizer in the compact parameter space Θ, E
(

1
n

∂2ℓ(θ)
∂θ∂θ⊤

)
θ0

is a nonsingular matrix, and

for a neighborhood of θ0, say N(θ0). For any i, j, k = 1, . . . , 2q + 3, there is

lim
n→∞

sup
θ∈N(θ0)

∣∣∣ ∂3ℓt(θ)

∂θi∂θj∂θk

∣∣∣ < ∞.

Then, the CML estimator θ̂CML is consistent and has the asymptotic distribution:

√
n(θ̂CML − θ0)

d−→ N
(
0, J−1(θ0)I(θ0)J−1(θ0)

)
, (9)

as n → ∞, where I(θ0) = E
[

∂ℓt(θ)
∂θ

∂ℓt(θ)
∂θ⊤

]
θ0

, J(θ0) = E
(

∂2ℓt(θ)
∂θ∂θ⊤

)
θ0

.
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3.3. Inference Methods for Threshold r

In this section, we concentrate on the estimation of threshold variable r. Since r is an
integer, different from the continuous-type threshold models, the integer-type threshold
models usually use a one-by-one search on a fixed interval [r, r] to make the loss function
optimal to obtain the threshold estimator. In applications, typically, the empirical 10th and
90th quantile value of the sample as r and r is used, respectively. The methods commonly
used at present are the CLS and CML. For the CLS method, the estimation of the threshold
variable r can be achieved based on the following steps:
Step 1. Denote r and r as the 10th and 90th quantile value of the observations {X1, . . . , Xn},
for each r ∈ [r, r] ∩N, and find r̂CLS such that

r̂CLS = arg min
r∈[r,r]∩N

Q
(
θ(r)

)
.

Step 2. The parameter vector θ̂CLS(r̂CLS) is estimated by (6) under the estimator r̂CLS, and
all the parameters under r unknown cases are as follows:

η̂CLS = (θ̂⊤CLS(r̂CLS), r̂CLS)
⊤.

Similarly, the CML estimates for the threshold variable r can also be achieved based on the
following steps:
Step 1. Denote r and r as the 10th and 90th quantile value of the observations {X1, . . . , Xn},
for each r ∈ [r, r] ∩N, and find r̂CML such that

r̂CML = arg max
r∈[r,r]∩N

L
(
θ(r)

)
.

Step 2. The parameter vector θ̂CML(r̂CML) is estimated by (6) under the estimator r̂CML, and
all the parameters under r unknown cases are as follows:

η̂CML = (θ̂⊤CML(r̂CML), r̂CML)
⊤.

Similar procedures can be found in [13,14].

3.4. Testing the Existence of the Piecewise Structure

Threshold models are typically characterized by piecewise linearization, which divides
a complex system into regimes using a specific threshold. Therefore, testing to detect the
existence of segmented structures is very necessary. To date, many researchers have come
up with different test statistics. A common high-performance method is to construct the
likelihood ratio (LR) test based on the conditional likelihood function; see [14]. However,
the LR test cannot be implemented because the TVMTTINAR(1) model is constructed by
two operators. In this paper, we constructed the Wald test statistics to detect the existence of
piecewise structures in the TVMTTINAR(1) model. The null hypothesis and the alternative
hypothesis take the form:

H(1)
0 : β1 = β2 vs. H(1)

1 : β1 ̸= β2. (10)

Note that, although the TVMTTINAR(1) model does not degenerate to the INAR-type
model when β1 = β2, the probability of this happening is extremely small and will not be
considered here. That is to say, we only prove the existence of the piecewise structure by
testing β1 ̸= β2. A simple idea, learned from [22], is to use the test of the difference between
two normal population means based on the asymptotic normality of some consistent
estimators. Then, we construct the Wald test based on the asymptotic distribution (9) of the
CLS estimator θ̂CLS and obtain the following result.
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Let Σ̂ = V̂−1ŴV̂−1, where V̂ and Ŵ are square matrices of order 2q + 3 with the jkth
element given by

V̂jk :=

(
1
n

n

∑
t=1

∂

∂θj
g(θ, Xt−1, Zt)

∂

∂θk
g(θ, Xt−1, Zt)

)
θ=θ̂CLS

,

Ŵjk :=

(
1
n

n

∑
t=1

U2
t (θ)

∂

∂θj
g(θ, Xt−1, Zt)

∂

∂θk
g(θ, Xt−1, Zt)

)
θ=θ̂CLS

.

Obviously, they are the consistent estimators of V and W (defined in Theorem 1). Then,
the statistic for testing the problem (10) is defined by

T(1)
n =

I(β̂1,CLS − β̂2,CLS)√
AΣ̂A⊤/n

,

where I = (1, . . . , 1)1×(q+1), A = (I,−I)1×2(q+1). Furthermore, under H(1)
0 ,

T(1)
n

d−→ N(0, 1), as n → ∞.

3.5. Testing the Existence of Explanatory Variables

The existence of observable explanatory variables in the TVMTTINAR(1) model
constructs time-varying characteristics. Once the explanatory variables are not present,
the model degrades to a constant-coefficient mixture thinning operator threshold INAR
model (MTTINAR(1)), i.e.,

Xt = (α1 ◦ Xt−1)IR
1,t + (α2 ∗ Xt−1)IR

2,t + εt, t ∈ Z, (11)

where αi ∈ (0, 1), i = 1, 2. Therandom variables are similar to Definition 1. A more-general
version of such a problem is to test whether the explanatory variable coefficients βi,j(i =
1, 2, j = 1, 2, . . . , q) in each regime are all zeros, i.e.,

H(2)
0 : βi,j = 0, i = 1, 2, j = 1, . . . , q vs. H(2)

1 : At least one βi,j ̸= 0, i ∈ {1, 2}, 1 ≤ j ≤ q. (12)

For this, we construct the following two test statistics. The first method is to construct a
test statistic using the asymptotic normality of the estimator θ̂CLS. Let 0j×k be a zero matrix

with j rows and k columns, B = (0q×1, Iq×q), C =

(
B 0q×(q+1)

0q×(q+1) B

)
. We construct

the test statistic as follows:

T(2)
n = nθ̂⊤CLSC⊤(CΣ̂C⊤)−1Cθ̂CLS.

Then, under H(2)
0 ,

T(2)
n

d−→ χ2
2q, as n → ∞.

Another approach is to construct a classical likelihood ratio (LR) test statistic. Let
θ̃ := (α1, α2, λ)⊤ be the parameter of the MTTINAR(1) model with the parameter set Θθ̃:

Θθ̃ = {θ̃ ∈ (0, 1)× (0, 1)× (0,+∞)}.

Then, the LR statistic for testing problem (12) is defined by

T(3)
n = 2

(
max

Θθ

L(θ)− max
Θθ̃

L̃(θ̃)
)
,
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where L̃(θ̃) is the conditional log-likelihood function for the MTTINAR(1) model (11).
Suppose we have a series of observations {xt}n

t=1 generated from the MTTINAR(1) process,
then L̃(θ̃) is given by

L̃(θ̃) :=
n

∑
t=1

ℓ̃t(θ̃) =
n

∑
t=1

log P̃(xt−1, xt),

P̃(xt−1, xt) = IR
1,t

(min(xt−1,xt)

∑
m=0

(
xt−1

m

)
e−λ λxt−m

(xt − m)!
αm

1 (1 − α1)
xt−1−m

)
+ IR

2,t

( xt

∑
m=0

Γ(xt−1 + m)

Γ(xt−1)Γ(m + 1)
αm

2
(1 + α2)xt−1+m e−λ λxt−m

(xt − m)!

)
.

Furthermore, under H(2)
0 ,

T(3)
n

d−→ χ2
2q, as n → ∞.

4. Simulation Studies

To evaluate the finite-sample performance of the proposed inference methods and
testing statistics, we conducted extensive simulation studies and split the simulation studies
into the following four parts. In the first two parts, we considered the performance of the
CLS and CML estimators in two cases where threshold r is known and unknown. In the
third and forth parts, we mainly focused on the performance of the proposed test statistics
by empirical sizes and powers.

To get started, we first introduce the following models applied to Sections 4.1 and 4.2.
The models are divided into the A-type and B-type models, which represent the R = 0
and R = 1 TVMTTINAR(1) models, respectively. The two types of models choose similar
parameters. In order to save space, we introduce the A-type model, while the parentheses
represent the similar B-type model:

Model A1 (B1): Generated from the TVMTTINAR(1) process (3) with R = 0 (R = 1),
λ = 5, r = 6, (β1,0, β1,1) = (0.1, 0.3), (β2,0, β2,1) = (−0.5,−0.6). The explanatory
variables Z1,t are generalized from the i.i.d. normal distribution N(0, 1).
Model A2 (B2): Generated from the TVMTTINAR(1) process (3) with R = 0 (R = 1),
λ = 5, r = 6, (β1,0, β1,1) = (0.3, 0.3), (β2,0, β2,1) = (−0.5,−0.6). The explanatory
variables Z1,t are generalized from an AR(1) process, i.e., Z1,t = 0.5Z1,t−1 + ϵt with
Z1,0 = 0, ϵt ∼ N(0, 1).
Model A3 (B3): Generated from the TVMTTINAR(1) process (3) with R = 0 (R = 1),
λ = 5, r = 6, (β1,0, β1,1, β1,2) = (0.1, 0.5, 0.3), (β2,0, β2,1, β2,2) = (−0.3,−0.5,−0.6).
The explanatory variables Z1,t are generalized from an AR(1) process, i.e.,
Z1,t = 0.5Z1,t−1 + ϵt with Z1,0 = 0, ϵt ∼ N(0, 1); Z2,t is generalized from a seasonal
series, i.e., Z2,t = sin(2πt/12) + ϵt with ϵt ∼ N(0, 0.25).

All simulations were implemented in MATLAB. The sample size considered in all
simulations was n = 200, 500, 1000. For each model, the value of r was chosen such that the
observations in each regime comprised at least 20% of the total sample size. The empirical
results displayed in the tables and box plots, that is the empirical biases and mean square
errors (MSEs), were computed over 10,000 replications.

4.1. Simulation Study When r Is Known

Tables 1 and 2 report the bias and MSE of the CLS and CML estimators for Models
A1–B3 when r is known. It is easy to see that all the simulation results performed better as
n increased, which implies that the two estimation methods can lead to good and consistent
estimators when r is known. It is worth mentioning that, although it is not mentioned in
the main Conclusion, the simulation showed that the CML estimators are consistent. In
addition, θ̂CML has smaller bias and MSE, which means that θ̂CML is better than θ̂CLS.



Entropy 2024, 26, 140 10 of 31

For the sake of intuition, we also give the box plots and QQ plots of the CLS and
CML estimators. Figure 1 plots the bias of 10,000 CLS and CML simulation estimators for
Models A1 and B1. Note that the box plots are symmetric and centered on zero-bias; both
the bias and MSE for the CML estimators are smaller than the CLS estimators, which is
consistent with the previous conclusions. Figure 2 shows the QQ plots of the CLS and CML
estimators for Models A1 and B1 with the sample size n = 1000. It is easy to see that the
CLS and CML estimators are asymptotically normal for all parameters, especially for the
CML estimator without the asymptotically normal theorem. Similar results were obtained
for the remaining models, and the figures are omitted here to save space.
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Figure 1. Box plots from 10,000 CLS and CML simulation estimators for Models A1 and B1, with the
sample size n = 200, 500, 1000.
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Table 1. Simulation results for Models A1–B2 when r is known.

A1 A2

CLS CML CLS CML

Sample Size Para. Bias MSE Bias MSE Bias MSE Bias MSE

n = 200 β1,0 −0.0544 0.3579 0.0076 0.2669 −0.0856 0.3338 0.0071 0.2476
β1,1 0.0430 0.1017 0.0398 0.0955 0.0261 0.0915 0.0273 0.0882
β2,0 −0.0607 0.0991 −0.0302 0.0731 −0.0837 0.0931 −0.0419 0.0671
β2,1 −0.0216 0.0255 −0.0164 0.0229 −0.0186 0.0216 −0.0160 0.0189
λ 0.0856 0.4181 0.0245 0.3047 0.1343 0.3908 0.0438 0.2752

n = 500 β1,0 −0.0245 0.1947 0.0020 0.1150 −0.0472 0.1886 0.0032 0.1149
β1,1 0.0209 0.0374 0.0156 0.0337 0.0158 0.0323 0.0141 0.0297
β2,0 −0.0324 0.0547 −0.0156 0.0344 −0.0464 0.0515 −0.0194 0.0313
β2,1 −0.0114 0.0105 −0.0077 0.0090 −0.0098 0.0085 −0.0077 0.0068
λ 0.0449 0.2357 0.0141 0.1417 0.0778 0.2224 0.0214 0.1307

n = 1000 β1,0 −0.0157 0.1056 −0.0014 0.0564 −0.0190 0.1021 0.0046 0.0534
β1,1 0.0094 0.0169 0.0067 0.0154 0.0084 0.0152 0.0063 0.0135
β2,0 −0.0197 0.0300 −0.0101 0.0169 −0.0226 0.0283 −0.0075 0.0154
β2,1 −0.0070 0.0053 −0.0048 0.0045 −0.0058 0.0044 −0.0037 0.0035
λ 0.0279 0.1324 0.0108 0.0717 0.0369 0.1239 0.0073 0.0645

B1 B2

CLS CML CLS CML

Sample Size Para. Bias MSE Bias MSE Bias MSE Bias MSE

n = 200 β1,0 −0.0084 0.0553 0.0089 0.0338 −0.0304 0.0466 0.0031 0.0271
β1,1 0.0057 0.0070 0.0045 0.0066 0.0052 0.0039 0.0041 0.0036
β2,0 0.0718 0.3459 0.0684 0.2918 0.1148 0.4075 0.1362 0.3766
β2,1 0.0583 0.2060 0.0587 0.2037 0.0767 0.2385 0.0745 0.2307
λ 0.0100 0.3801 −0.0315 0.2366 0.0794 0.3770 −0.0158 0.2228

n = 500 β1,0 −0.0031 0.0257 0.0013 0.0147 −0.0135 0.0225 −0.0006 0.0121
β1,1 0.0024 0.0026 0.0018 0.0025 0.0026 0.0018 0.0019 0.0017
β2,0 0.0155 0.1914 0.0101 0.1454 0.0323 0.2214 0.0393 0.1878
β2,1 −0.0002 0.0982 0.0005 0.0951 0.0209 0.1220 0.0198 0.1179
λ 0.0050 0.1838 −0.0043 0.1083 0.0370 0.1855 0.0003 0.1014

n = 1000 β1,0 −0.0053 0.0140 −0.0007 0.0077 −0.0100 0.0110 −0.0032 0.0058
β1,1 0.0012 0.0013 0.0007 0.0012 0.0014 0.0008 0.0010 0.0008
β2,0 −0.0084 0.1157 −0.0018 0.0860 −0.0045 0.1376 0.0055 0.1119
β2,1 −0.0163 0.0590 −0.0135 0.0567 −0.0127 0.0662 −0.0114 0.0639
λ 0.0121 0.1020 0.0007 0.0578 0.0278 0.0934 0.0083 0.0504
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Figure 2. QQ plots of CLS and CML estimators for Models A1 and B1, with the sample size n = 200.
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Table 2. Simulation results for Models A3–B3 when r is known.

A3 B3

CLS CML CLS CML

Sample Size Para. Bias MSE Bias MSE Bias MSE Bias MSE

n = 200 β1,0 −0.0905 0.4153 0.0203 0.3111 −0.0285 0.0593 0.0005 0.0371
β1,1 0.0539 0.1056 0.0588 0.1019 0.0088 0.0070 0.0075 0.0065
β1,2 −0.0004 0.2013 0.0026 0.1929 0.0071 0.0126 0.0041 0.0118
β2,0 −0.0837 0.1029 −0.0360 0.0698 0.0269 0.3911 0.0432 0.3349
β2,1 −0.0179 0.0196 −0.0150 0.0172 −0.0159 0.1750 −0.0101 0.1707
β2,2 −0.0283 0.0371 −0.0203 0.0329 0.1030 0.2927 0.1025 0.2824
λ 0.1419 0.4508 0.0369 0.3043 0.0598 0.3590 −0.0090 0.2323

n = 500 β1,0 −0.0467 0.2223 0.0027 0.1373 −0.0137 0.0258 −0.0014 0.0149
β1,1 0.0394 0.0423 0.0351 0.0392 0.0043 0.0025 0.0040 0.0023
β1,2 0.0183 0.0768 0.0148 0.0708 0.0040 0.0052 0.0028 0.0050
β2,0 −0.0398 0.0490 −0.0166 0.0300 −0.0221 0.2194 −0.0052 0.1678
β2,1 −0.0082 0.0069 −0.0066 0.0059 −0.0422 0.0848 −0.0352 0.0803
β2,2 −0.0118 0.0142 −0.0068 0.0121 0.0182 0.1339 0.0204 0.1276
λ 0.0716 0.2330 0.0216 0.1395 0.0312 0.1635 0.0011 0.0974

n = 1000 β1,0 −0.0152 0.1161 0.0076 0.0638 −0.0089 0.0140 −0.0018 0.0077
β1,1 0.0222 0.0216 0.0172 0.0193 0.0016 0.0013 0.0013 0.0012
β1,2 0.0101 0.0356 0.0070 0.0329 0.0019 0.0025 0.0013 0.0023
β2,0 −0.0174 0.0252 −0.0053 0.0144 −0.0197 0.1215 −0.0047 0.0866
β2,1 −0.0037 0.0036 −0.0028 0.0032 −0.0282 0.0507 −0.0225 0.0470
β2,2 −0.0062 0.0071 −0.0028 0.0061 −0.0064 0.0781 −0.0025 0.0748
λ 0.0305 0.1260 0.0049 0.0684 0.0202 0.0922 0.0025 0.0517

4.2. Simulation Study When r Is Unknown

Tables 3 and 4 report the performance of the proposed CLS and CML estimators in
Section 3.3 for Models A1–B3 when r is known. It is easy to draw the following conclusions
from the tabular results. For small sample sizes (such as n = 200), the bias and MSE of
the estimator are still relatively large. However, with the increase of the sample size, this
deviation decreases very quickly, mainly because the accuracy of threshold estimation
is greatly improved with the increase of the sample size. Moreover, the CML estimator
demonstrates a noticeable advantage over the CLS estimator. Nevertheless, this does
not imply that CLS estimators lack any advantages. Table 5 reports the percentage of
correctly identifying r (Frequency) and average time (s) across 10,000 replications. Without
the closed-form solutions of the two methods, the CLS estimation method is still very
advantageous in the calculation speed.

Table 3. Simulation results for Models A1–B2 when r is unknown.

A1 A2

CLS CML CLS CML

Sample Size Para. Bias MSE Bias MSE Bias MSE Bias MSE

n = 200 β1,0 −0.1673 0.4649 −0.0095 0.3159 −0.2118 0.4925 −0.0109 0.2932
β1,1 −0.0600 0.2097 0.0236 0.1342 −0.0609 0.1886 0.0198 0.1131
β2,0 −0.0811 0.0973 −0.0319 0.0738 −0.1050 0.0948 −0.0450 0.0680
β2,1 −0.0372 0.0451 −0.0259 0.0283 −0.0250 0.0350 −0.0222 0.0212
λ 0.1526 0.4610 0.0338 0.3177 0.2131 0.4566 0.0547 0.2883
r 1.0142 5.3096 0.2577 1.2313 0.8968 5.2976 0.1642 0.8174

n = 500 β1,0 −0.0566 0.2308 −0.0009 0.1222 −0.0682 0.2172 0.0014 0.1180
β1,1 0.0054 0.0536 0.0157 0.0367 0.0061 0.0416 0.0140 0.0307
β2,0 −0.0408 0.0566 −0.0166 0.0350 −0.0517 0.0534 −0.0199 0.0316
β2,1 −0.0187 0.0132 −0.0093 0.0093 −0.0123 0.0096 −0.0082 0.0069
λ 0.0703 0.2566 0.0166 0.1451 0.0935 0.2394 0.0226 0.1321
r 0.1719 0.8427 0.0181 0.0705 0.1054 0.6042 0.0067 0.0281
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Table 3. Cont.

n = 1000 β1,0 −0.0188 0.1093 −0.0015 0.0565 −0.0191 0.1023 0.0046 0.0534
β1,1 0.0080 0.0181 0.0067 0.0155 0.0083 0.0152 0.0064 0.0135
β2,0 −0.0207 0.0304 −0.0101 0.0169 −0.0226 0.0284 −0.0075 0.0154
β2,1 −0.0078 0.0055 −0.0048 0.0045 −0.0058 0.0044 −0.0037 0.0035
λ 0.0304 0.1350 0.0109 0.0718 0.0370 0.1240 0.0073 0.0645
r 0.0121 0.0411 0.0009 0.0059 0.0003 0.0003 −0.0001 0.0001

B1 B2

CLS CML CLS CML

Sample Size Para. Bias MSE Bias MSE Bias MSE Bias MSE

n = 200 β1,0 0.0394 0.0738 0.0146 0.0382 0.0001 0.0673 −0.0008 0.0333
β1,1 0.0164 0.0232 0.0078 0.0074 0.0200 0.0155 0.0066 0.0040
β2,0 0.3713 0.6543 0.1386 0.3408 0.5624 0.8281 0.3572 0.4869
β2,1 0.3190 0.4057 0.1768 0.2646 0.5179 0.5136 0.3818 0.3591
λ −0.2125 0.7856 −0.0367 0.3023 −0.1115 0.8718 0.0031 0.3169
r 2.5127 15.9965 0.4938 1.2152 3.2435 25.3375 0.1035 1.0955

n = 500 β1,0 0.0188 0.0330 0.0021 0.0152 0.0361 0.0372 −0.0037 0.0137
β1,1 0.0077 0.0048 0.0025 0.0025 0.0114 0.0055 0.0025 0.0017
β2,0 0.1333 0.3180 0.0325 0.1566 0.5518 0.6754 0.3191 0.2900
β2,1 0.0926 0.1770 0.0390 0.1133 0.4852 0.4148 0.3708 0.2623
λ −0.0858 0.3009 −0.0053 0.1144 −0.1831 0.4647 0.0112 0.1245
r 0.8616 5.2522 0.1170 0.1640 2.3496 18.1162 −0.1513 0.3999

n = 1000 β1,0 −0.0019 0.0150 −0.0007 0.0077 0.0423 0.0197 −0.0004 0.0063
β1,1 0.0020 0.0015 0.0008 0.0012 0.0072 0.0018 0.0013 0.0008
β2,0 0.0105 0.1346 0.0023 0.0884 0.5346 0.5129 0.3481 0.2311
β2,1 0.0005 0.0723 −0.0054 0.0608 0.4726 0.3270 0.3973 0.2285
λ −0.0011 0.1162 0.0008 0.0582 −0.1783 0.2391 −0.0017 0.0570
r 0.1303 0.7299 0.0207 0.0231 1.2562 9.8408 −0.1482 0.2074

Table 4. Simulation results for Models A3–B3 when r is unknown.

A3 B3

CLS CML CLS CML

Sample Size Para. Bias MSE Bias MSE Bias MSE Bias MSE

n = 200 β1,0 −0.2088 0.4902 0.0025 0.3416 −0.0076 0.0699 0.0050 0.0394
β1,1 −0.1031 0.2460 0.0372 0.1274 0.0179 0.0152 0.0107 0.0069
β1,2 −0.1352 0.3164 −0.0169 0.2225 0.0144 0.0274 0.0055 0.0123
β2,0 −0.1069 0.1053 −0.0389 0.0711 0.1478 0.4684 0.0648 0.3516
β2,1 −0.0330 0.0369 −0.0219 0.0196 0.1450 0.3211 0.0455 0.2047
β2,2 −0.0315 0.0598 −0.0251 0.0365 0.2349 0.3862 0.1481 0.3138
λ 0.2373 0.5380 0.0512 0.3236 −0.0311 0.5100 −0.0161 0.2623
r 1.2538 7.7742 0.1827 0.8443 1.3943 9.2127 0.2116 0.5360

n = 500 β1,0 −0.0612 0.2341 0.0012 0.1395 −0.0109 0.0266 −0.0009 0.0150
β1,1 0.0284 0.0513 0.0352 0.0402 0.0052 0.0027 0.0042 0.0023
β1,2 0.0084 0.0855 0.0148 0.0721 0.0045 0.0057 0.0029 0.0050
β2,0 −0.0433 0.0499 −0.0171 0.0302 −0.0082 0.2310 −0.0029 0.1692
β2,1 −0.0106 0.0078 −0.0069 0.0059 −0.0301 0.0983 −0.0304 0.0834
β2,2 −0.0137 0.0151 −0.0071 0.0122 0.0305 0.1447 0.0251 0.1307
λ 0.0837 0.2443 0.0228 0.1406 0.0206 0.1745 0.0001 0.0982
r 0.0853 0.4439 0.0044 0.0140 0.1002 0.5810 0.0163 0.0277

n = 1000 β1,0 −0.0161 0.1170 0.0075 0.0639 −0.0088 0.0141 −0.0018 0.0077
β1,1 0.0216 0.0218 0.0172 0.0193 0.0017 0.0013 0.0013 0.0012
β1,2 0.0095 0.0359 0.0070 0.0330 0.0020 0.0025 0.0013 0.0023
β2,0 −0.0177 0.0253 −0.0053 0.0144 −0.0190 0.1224 −0.0045 0.0867
β2,1 −0.0039 0.0036 −0.0028 0.0032 −0.0280 0.0513 −0.0221 0.0473
β2,2 −0.0063 0.0071 −0.0028 0.0061 −0.0060 0.0785 −0.0020 0.0750
λ 0.0313 0.1269 0.0049 0.0685 0.0198 0.0927 0.0024 0.0517
r 0.0031 0.0103 0.0000 0.0006 0.0036 0.0228 0.0014 0.0020
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Table 5. The performances of r̂ for Models A1–B3.

CLS CML

Model Sample Size Frequency Average Time (s) Frequency Average Time (s)

A1 200 0.6330 0.5269 0.7841 2.3501
500 0.9159 0.6343 0.9694 4.8531

1000 0.9913 0.7666 0.9989 9.0141
A2 200 0.7164 0.4614 0.8564 2.2148

500 0.9619 0.6495 0.9885 5.2616
1000 0.9997 0.7582 0.9999 9.3752

A3 200 0.6700 0.6728 0.8479 3.8789
500 0.9619 0.9298 0.9880 9.2877

1000 0.9974 1.0712 0.9994 16.3961

CLS CML

Model Sample Size Frequency Average Time (s) Frequency Average Time (s)

B1 200 0.4341 0.3850 0.6511 2.0574
500 0.7767 0.4581 0.8909 4.6666

1000 0.9574 0.5514 0.9793 9.2278
B2 200 0.1633 0.4005 0.4463 2.4881

500 0.2720 0.5062 0.6398 5.6456
1000 0.5250 0.6105 0.7944 11.5242

B3 200 0.6513 0.4865 0.8069 3.1971
500 0.9540 0.6448 0.9776 7.5834

1000 0.9965 0.8010 0.9980 14.9456

4.3. Empirical Sizes and Powers of the Wald Test

Some simulations were conducted to investigate the performances of the Wald test
T(1)

n . We selected the significance level as α = 0.05 (the associated critical value was
1.65). For analyzing the empirical size, we first introduced the following two time-varying
integer-valued autoregressive models (TVINAR).

TVINAR(1)-B: Xt =
exp(Z⊤

t β1)

1 + exp(Z⊤
t β1)

◦ Xt−1 + εt, (13)

TVINAR(1)-G: Xt =
exp(Z⊤

t β2)

1 + exp(Z⊤
t β1)

∗ Xt−1 + εt. (14)

where the explanatory variables Z1,t are generalized from an AR(1) process, i.e.,
Z1,t = −0.5 ∗ Z1,t−1 + ϵt with Z1,0 = 0, ϵt ∼ N(0, 1); Z2,t is generalized from a seasonal
series, i.e., Z2,t = sin(2πt/12) + ϵt with ϵt ∼ N(0, 0.25).

For analyzing the empirical size, Models T11–T22 were considered. For analyzing the
empirical power, Models T31–T32 were considered:

Model T11: Generated from the TVINAR(1)-B process (13) with (β⊤
1 , λ)

= (β1,0, β1,1, β1,2, λ) = (0.1, 0.5, 0.3, 5).
Model T12: Generated from the TVINAR(1)-B process (13) with (β⊤

1 , λ)
= (β1,0, β1,1, β1,2, λ) = (−0.7,−0.8, 0.6, 2).
Model T21: Generated from the TVINAR(1)-G process (14) with (β⊤

2 , λ)
= (β2,0, β2,1, β2,2, λ) = (−0.3,−0.3,−0.6, 2).
Model T22: Generated from the TVINAR(1)-G process (14) with (β⊤

2 , λ)
= (β2,0, β2,1, β2,2, λ) = (−0.6, 0.8,−0.5, 7).
Model T31: Generated from the TVMTTINAR(1) process (3) with R = 0, λ = 5, r = 6,
β⊤

1 = (β1,0, β1,1, β1,2) = (0.1, 0.5, 0.3), β⊤
2 = (β2,0, β2,1, β2,2) = (−0.3,−0.3,−0.6). The

explanatory variables Z1,t are generalized from an AR(1) process, i.e.,
Z1,t = −0.5 ∗ Z1,t−1 + ϵt with Z1,0 = 0, ϵt ∼ N(0, 1); Z2,t is generalized from a
seasonal series, i.e., Z2,t = sin(2πt/12) + ϵt with ϵt ∼ N(0, 0.25).
Model T32: Generated from the TVMTTINAR(1) process (3) with R = 1, λ = 3, r = 6,
β⊤

1 = (β1,0, β1,1, β1,2) = (−0.4,−0.8, 0.3), β⊤
2 = (β1,0, β1,1, β1,2) = (−0.3, 0.7,−0.4).
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The explanatory variables Z1,t are generalized from an AR(1) process, i.e., Z1,t =
−0.5 ∗ Z1,t−1 + ϵt with Z1,0 = 0, ϵt ∼ N(0, 1); Z2,t is generalized from a seasonal series,
i.e., Z2,t = sin(2πt/12) + ϵt with ϵt ∼ N(0, 0.25).

The results are reported in Table 6. As can be seen from Table 6, for the empirical
sizes, the Wald test T(1)

n gave satisfactory performances and the empirical sizes for Models
T11–T22 were closer to the significant level of α = 0.05 as the sample size increased. For the
empirical powers, Table 6 also indicates that the T(1)

n succeeded in showing high values in
almost each case. The above discussion shows the success of the proposed Wald test T(1)

n to
detect the existence of the piecewise structure.

Table 6. Empirical sizes and powers of T(1)
n at level 0.05.

Empirical Sizes, Significance Level α = 0.05

Sample Size Sample Size
Model Method n = 200 n = 500 n = 1000 Model Method n = 200 n = 500 n = 1000

T11 T(1)
n 0.0497 0.0515 0.0517 T12 T(1)

n 0.0255 0.0517 0.0559
T21 T(1)

n 0.0123 0.0448 0.0527 T22 T(1)
n 0.0012 0.0127 0.0501

Empirical Powers, Significance Level α = 0.05

Sample Size Sample Size
Model Method n = 200 n = 500 n = 1000 Model Method n = 200 n = 500 n = 1000

T31 T(1)
n 0.8414 0.9507 0.9972 T32 T(1)

n 0.5016 0.7979 0.967

4.4. Empirical Sizes and Powers of the Proposed Test in Section 3.5

Similarly, we investigated the performances of the test T(2)
n and the LR test T(3)

n with
the following models:

Model T41: Generated from the MTTINAR(1) process (11) with (α1, α2, λ, r, R)
= (0.6225, 0.4502, 5, 6, 0).
Model T42: Generated from the MTTINAR(1) process (11) with (α1, α2, λ, r, R)
= (0.4502, 0.6225, 3, 4, 1).
Model T51: Generated from the TVMTTINAR(1) process (3) with R = 0, λ = 5,
r = 6, β⊤

1 = (β1,0, β1,1) = (0.5, 0.3), β⊤
2 = (β2,0, β2,1) = (−0.2,−0.2). The explanatory

variables Z1,t are generalized from the i.i.d. uniform distribution U(−10, 1).
Model T52: Generated from the TVMTTINAR(1) process (3) with R = 1, λ = 5, r = 6,
β⊤

1 = (β1,0, β1,1) = (0.5, 0.3), (β⊤
2 ) = (β2,0, β2,1) = (−0.2,−0.2). The explanatory

variables Z1,t are generalized from the i.i.d. uniform distribution U(−10, 1).

Models T41 and T42 were used to analyze the empirical sizes; Models T41 and T42 were
applied to analyze the empirical powers. We selected the significance level of α = 0.05
(since q = 1, the associated critical value was 5.991). Table 7 shows the empirical sizes
and powers result. It is easy to see that, for the empirical sizes, both tests gave satisfactory
performances and the empirical sizes for Models T41–T42 were closer to the significant
level of α = 0.05 as the sample size increased. For the empirical power, both proposed
tests were increasingly close to 1 as the sample size increased in each case. In addition,
although both tests can successfully detect the existence of the explanatory variables, the LR
test performed significantly better.
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Table 7. Empirical sizes and powers of T(2)
n and T(3)

n at level 0.05.

Empirical Sizes, Significance Level α = 0.05

Sample Size Sample Size
Model Method n = 200 n = 500 n = 1000 Model Method n = 200 n = 500 n = 1000

T41 T(2)
n 0.0580 0.0466 0.0475 T42 T(2)

n 0.0320 0.0413 0.0445

T(3)
n 0.0504 0.0502 0.0495 T(3)

n 0.0456 0.0487 0.0509

Empirical Power, Significance Level α = 0.05

Sample Size Sample Size
Model Method n = 200 n = 500 n = 1000 Model Method n = 200 n = 500 n = 1000

T51 T(2)
n 0.9987 1.0000 1.0000 T52 T(2)

n 0.9987 1.0000 1.0000

T(3)
n 1.0000 1.0000 1.0000 T(3)

n 1.0000 1.0000 1.0000

5. Real Data Example

In this section, we will utilize the TVMTTINAR(1) model to match the daily stock
trading volume dataset of an automotive company, Volkswagen Corporation (VOW). There
are some explanations for the selection of the factors affecting the trading volume of stocks
in the automotive industry. The volume of stock trading in the automotive industry can be
affected by a number of factors, the most well-known of which are the state of the economy
and the state of the oil market. After all, the state of the economy largely determines
consumers’ ability and willingness to buy. On the one hand, the fluctuation of oil prices
increases the production cost, and on the other hand, it affects the willingness of consumers
to buy traditional fuel vehicles and directly or indirectly affects the automobile industry.

Economic conditions can be represented by some stock market indices. We selected the
Dow Jones Industrial average indices (DJI) here. The DJI can reflect the overall performance
of the stock market and is also used as an indicator of the health of the economy. Therefore,
it is reasonable to choose the DJI’s stock data series as economic indicators. On the other
hand, oil prices vary widely between countries and regions, making it difficult to find a
uniform measure, the Crude oil (Co) stock data series was selected here to represent the
oil market.

All datasets were originally downloaded online from the Yahoo finance web site
(https://hk.finance.yahoo.com/, accessed on 7 December 2010). Both the DJI and Co stock
data series include open, high, low, close, and adjusted (Adj) close prices, wherein the Adj
close price datasets were selected as the explanatory variables for the analysis. In addition,
the two explanatory variable datasets need to be differentiated to reflect fluctuations in the
economy and the oil market.

5.1. Volkswagen Corporation Daily Stock Trading Volume Data

We first considered the VOW daily stock trading volume dataset, which consist of
281 observations starting in 7 December 2010 and ending in 11 January 2012. As the data
are relatively large, considering the convenience of calculation, we analyzed the data by
the unit of a “2 × 105” trading volume. Figure 3 shows the sample path and the sample
autocorrelation (ACF) of the observations, where the first line shows the sample path and
ACF of the VOW daily stock trading volume dataset and the second line shows the sample
path after the difference in the DJI and Co’s Adj close prices.

Next, we used the TVMTTINAR(1) model and the following integer-valued threshold
autoregressive models to fit the VOW corporation dataset and compare different models
via the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC):

• SETINAR(2,1) model [12].
• NBTINAR(1) model [15].
• RCTINAR(1) model [11].
• BiNB-MTTINAR(1) (R = 0) model [17].
• BiNB-MTTINAR(1) (R = 1) model [17].

https://hk.finance.yahoo.com/
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Figure 3. Sample path and ACF of the VOW daily stock trading volume dataset (from 7 December
2010 and ending in 11 January 2012).

For each of the above models, we estimated the CML of the parameters and the
threshold r with the range r ∈ {4, 5, . . . , 12}, where 4 and 12 are the 10th and 90th quantiles
of the data. Furthermore, the standard error (SE) of θ̂CML, the root mean square of the
differences between the observations and forecasts (RMS), and the AIC and BIC values are
also given. Among them, the standard error for the CML estimator can be obtained as the
square roots of the elements in the diagonal of the inverse of the negative Hessian of the
log-likelihood calculated at the CML estimates. The RMS is defined as follows:

RMS =

√√√√ 1
n − 1

n

∑
t=2

(
Xt −

2

∑
i=1

exp(Z⊤
t βi)

1 + exp(Z⊤
t βi)

Xt−1 IR
i,t − λ

)2

.

The fitting results are summarized in Table 8. As seen from the results presented in Table 8,
the proposed TVMTTINAR(1) (R = 0) model outperformed the other SETINAR models
when considering the AIC as an information criterion. However, due to the excessive
number of parameters, when considering the BIC as an information criterion, the model
appeared slightly less favorable. Additionally, the TVMTTINAR(1) (R = 0) model had the
lowest RMS value. Taking all factors into account, the TVMTTINAR(1) (R = 0) model was
highly competitive, making it reasonable to apply it for fitting this VOW dataset.

Then, we computed the (standardized) Pearson residuals Prt(θ̂) to check if the fit
model was adequate for the data.

Prt(θ̂) =

Xt −
2
∑

i=1

exp(Z⊤
t βi)

1+exp(Z⊤
t βi)

Xt−1 IR
i,t − λ√

exp(Z⊤
t β1)

[1+exp(Z⊤
t β1)]2

Xt−1 IR
1,t +

exp(Z⊤
t β2)[1+2 exp(Z⊤

t β2)]

[1+exp(Z⊤
t β2)]2

Xt−1 IR
1,t + λ,

. (15)

We proceeded to apply the TVMTTINAR(1) (R = 0) model to fit this dataset and computed
some additional fitting-related information beyond Table 8. These details are summarized
in Table 9, encompassing the proportion of samples below the threshold value relative to
the total sample size (rate), the test statistic T(1)

n for testing the presence of the segmented
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structure, the test statistic T(3)
n for testing the existence of explanatory variables, along with

the mean and variance of the Pearson residuals.

Table 8. Fitting results of different models: CML, SE, r̂CML, AIC, BIC, and RMS based on the first
VOW dataset.

Model Para. CML SE r̂CML AIC BIC RMS

SETINAR(2,1) α1 0.0169 0.0221 6 1395.9685 1406.8836 3.3266
α2 0.3071 0.0092
λ 5.9064 0.0032

NBTINAR(1) α1 0.2689 0.0034 6 1369.2936 1380.2087 12.3344
α2 0.3371 0.0041
v 17.0000 0.0004

RCTINAR(1) ϕ1 0.0000 4.4123 6 1405.0371 1415.9521 3.3656
ϕ2 0.2295 0.0034
λ 6.3869 0.0006

BiNB−MTTINAR(1) ϕ1 0.4852 0.0076 10 1358.6573 1369.5724 3.3655
(R = 0) ϕ2 0.5202 0.0027

λ 3.7781 0.0013
BiNB−MTTINAR(1) ϕ1 0.3910 0.0038 4 1430.5887 1441.5038 3.7434

(R = 1) ϕ2 0.6003 0.0012
λ 4.6621 0.0061

TVMTTINAR(1) β1,0 −0.5391 −0.0006 6 1352.1336 1377.6020 3.1897
(R = 0) β1,1 0.0203 0.0001

β1,2 0.0215 0.0000
β2,0 0.0300 0.0001
β2,1 −0.2134 −0.0005
β2,2 0.0573 0.0003
λ 4.0801 0.0030

TVMTTINAR(1) β1,0 −0.1093 −0.0002 12 1366.3313 1391.7998 3.2179
(R = 1) β1,1 −0.1298 −0.0003

β1,2 0.0793 0.0002
β2,0 −0.0765 −0.0002
β2,1 −0.2039 −0.0007
β2,2 0.0367 0.0002
λ 3.8956 0.0030

Table 9. The other fitting results of the TVMTTINAR(1) model.

Rate T(1)
n T(3)

n Mean(Prt(θ̂)) Var(Prt(θ̂))

0.5018 2.2343 35.2307 0.0041 1.1116

After computing, the proportion of estimated values below the threshold was 0.5018,
indicating reliable results on both sides of the threshold. T(1)

n = 2.2343, surpassing the
critical value of 1.65 at a 0.05 significance level, leading us to reject the null hypothesis
H(1)

0 : β1 = β2, confirming the presence of a segmented structure. T(3)
n = 35.2307,

exceeding the critical value of 9.487 at a 0.05 significance level, compelling us to accept
the alternative hypothesis H(2)

1 : At least one βi,j ̸= 0, i ∈ {1, 2}, 1 ≤ j ≤ q. Although the
TVMTTINAR(1) (R = 0) model in Table 8 demonstrates superiority in terms of the AIC and
RMS, its superiority is not immediately evident. However, it is important to highlight that
these test results fully justify the introduction of mixture thinning operators and observable
explanatory variables. This provides another level of evidence supporting the suitability of
the TVMTTINAR(1) (R = 0) model for fitting this dataset, thus highlighting the model’s
competitiveness. Additionally, the model’s fit Pearson residuals exhibited a mean of 0.0041
and a variance of 1.1116, indicating a well-balanced fit.
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Finally, Figure 4 shows the diagnostic checking plots for our out fit model, including
the (a) standardized residuals, (b) Histogram of the standardized residuals, (c) ACF plot
of the residuals, and (d) PACF plot of the residuals. From Figure 4, it can be seen that the
Pearson residual samples’ ACF and PACF had values close to zero, which reveals that our
fit model was more suitable.
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Figure 4. Diagnostic checking plots for the first VOW dataset.

5.2. Another VOW Daily Stock Trading Volume Dataset

Similar to the first data analysis, we considered another dataset of the VOW daily
stock trading volume, which also consists of 281 observations starting in 4 May 2010 and
ending in 6 June 2011. As the data are relatively large, considering the convenience of
calculation, we analyzed the data by the unit of a “2 × 105” trading volume. Also, Figure 5
shows the sample path and the sample autocorrelation (ACF) of the observations.

Next, we compared the performances of SETINAR(2,1), NBTINAR(1), RCTINAR(1),
and BiNB-MTTINAR(1) versus TVMTTINAR(1) for this series. The estimation results
are shown in Table 10. Clearly, for this dataset, the TVMTTINAR(1) (R = 1) model
demonstrated superior performance in terms of the AIC and RMS. Additionally, it is worth
noting that, while both sets of data analysis belong to the VOW dataset, particularly with
overlapping data (from 7 December 2010 to 6 June 2011), the optimal model selection
changed. This indicates the presence of a change point in this period, suggesting a need for
further discussion and analysis in subsequent research.

Then, we also summarize the rate, the test statistic T(1)
n , T(3)

n , and the mean and vari-
ance of the Pearson residuals in Table 11. After computing, the proportion of estimated val-
ues below the threshold was 0.5267, indicating reliable results on both sides of the threshold.
T(1)

n = 1.6682, surpassing the critical value of 1.65 at a 0.05 significance level, leading us to
reject the null hypothesis H(1)

0 : β1 = β2, confirming the presence of a segmented structure.

T(3)
n = 63.9769, exceeding the critical value of 9.487 at a 0.05 significance level, compelling

us to accept the alternative hypothesis H(2)
1 : At least one βi,j ̸= 0, i ∈ {1, 2}, 1 ≤ j ≤ q.

Also, it is worth noting that the TVMTTINAR(1) (R = 1) model in Table 10 exhibited some
superiority in terms of the AIC and RMS. However, the degree of superiority was not
clearly evident. It is important to mention that the aforementioned test results thoroughly
justified the need to introduce mixture thinning operators and observable explanatory
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variables. These findings provide further evidence that the TVMTTINAR(1) (R = 1) model
is highly suitable for fitting the dataset, thereby highlighting its competitive nature. Ad-
ditionally, the model’s fit Pearson residuals exhibited a mean of 0.0015 and a variance of
1.0148, indicating a well-balanced fit.
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Figure 5. Sample path and ACF of the VOW daily stock trading volume dataset (from 7 December
2010 and ending in 6 June 2011).

Finally, Figure 6 shows the diagnostic checking plots for our out fit model, including
the (a) standardized residuals, (b) Histogram of the standardized residuals, (c) ACF plot
of the residuals, and (d) PACF plot of the residuals. From Figure 4, it can be seen that the
Pearson residual samples’ ACF and PACF had values close to zero, which reveals that our
fitted model was suitable.
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Figure 6. Diagnostic checking plots for another VOW dataset.
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Table 10. Fitting results of different models: CML, SE, r̂CML, AIC, BIC, and RMS based on the second
VOW dataset.

Model Para. CML SE r̂CML AIC BIC RMS

SETINAR(2,1) α1 0.2470 0.0028 6 1257.6000 1268.5151 2.5162
α2 0.3511 0.0068
λ 4.2692 0.0053

NBTINAR(1) α1 0.1245 0.0172 6 1259.0943 1270.0094 33.9008
α2 0.1605 0.0104
v 39.0000 0.0001

RCTINAR(1) ϕ1 0.0228 0.0079 6 1268.9508 1279.8659 2.5308
ϕ2 0.2181 0.0017
λ 5.4232 0.0007

BiNB−MTTINAR(1) ϕ1 0.4788 0.0073 8 1259.9032 1270.8183 2.5413
(R = 0) ϕ2 0.4955 0.0022

λ 3.1526 0.0010
BiNB−MTTINAR(1) ϕ1 0.4441 0.0022 4 1295.9314 1306.8464 2.9048

(R = 1) ϕ2 0.6682 0.0018
λ 3.3134 0.0041

TVMTTINAR(1) β1,0 −0.3448 −0.0003 6 1258.9090 1284.3775 2.5260
(R = 0) β1,1 0.0404 0.0000

β1,2 0.0176 0.0000
β2,0 −0.2200 −0.0002
β2,1 0.0163 0.0000
β2,2 −0.0080 0.0000
λ 3.4359 0.0063

TVMTTINAR(1) β1,0 −1.1063 −0.0010 5 1254.5145 1279.9829 2.4856
(R = 1) β1,1 0.1417 0.0001

β1,2 −0.0427 0.0000
β2,0 −19.9998 −4.3550
β2,1 −0.2643 −0.0002
β2,2 3.3629 0.0030
λ 4.9869 0.0072

Table 11. The other fitting results of the TVMTTINAR(1) model.

Rate T(1)
n T(3)

n Mean(Prt(θ̂)) Var(Prt(θ̂))

0.5267 1.6682 63.9769 0.0015 1.0148

6. Conclusions

This article introduces a first-order time-varying coefficient mixture thinning thresh-
old integer-valued autoregressive process. The process was proven to be stationary and
ergodic. We investigated the CLS and CML techniques for parameter estimation, and the
asymptotic properties of the estimators were demonstrated. Two methods were suggested
for estimating the unknown threshold parameter r, based on the CLS and CML score
functions. Additionally, we constructed the Wald test statistic to check for the existence
of the piecewise structure and constructed two test statistics to test the existence of the
explanatory variables. Finally, we successfully applied the TVMTINAR(1) model to Volk-
swagen Corporation’s daily stock trading volume datasets. From real data studies, potential
problems for future research include extending the results to a mixture thinning threshold
INAR model with random coefficients and studying a TVMTTINAR(1) model with change
points. These will remain the subject of future research.
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Appendix A

Proof of Proposition 1. Denote ϕmax,t = max{ϕ1,t, ϕ2,t} for all t. To simplify the notation,
denote Z t = (Z0, . . . , Zt). Compute to see that, under the stationary distribution,

E(Xt|Z t) = E[(ϕ1,t ◦ Xt−1)IR
1,t|Z t] + E[(ϕ2,t ∗ Xt−1)IR

2,t|Z t] + λ

= E[E((ϕ1,t ◦ Xt−1)IR
1,t|Xt−1)|Z t] + E[E((ϕ2,t ∗ Xt−1)IR

2,t|Xt−1)|Z t] + λ

≤ ϕmax,tE(Xt−1|Z t) + λ

≤ · · ·

≤ (ϕmax,t)
tE(X0|Z t) + λ

t−1

∑
i=0

(ϕmax,t)
i ≤ ∞, (A1)

Similarly, we have

E(X2
t |Z t) =E

[
(ϕ1,t ◦ Xt−1)

2 IR
1,t + (ϕ2,t ∗ Xt−1)

2 IR
2,t + ε2

t

+ 2(ϕ1,t ◦ Xt−1 IR
1,tεt + ϕ2,t ∗ Xt−1 IR

2,tεt)
∣∣∣Z t

]
≤ [(ϕ1,t − ϕ2

1,t + 2ϕ1,tλ)E(Xt−1|Z t) + ϕ2
1,tE(X2

t−1|Z t)

+ (ϕ2,t + ϕ2
2,t + 2ϕ2,tλ)E(Xt−1|Z t) + ϕ2

2,tE(X2
t−1|Z t) + λ + λ2

≤ umax,tE(Xt−1|Z t) + ϕ2
max,tE(X2

t−1|Z t) + λ + λ2

where umax,t = max{(ϕ1,t − ϕ2
1,t + 2ϕ1,tλ), (ϕ2,t + ϕ2

2,t + 2ϕ2,tλ)} for all t.
If t = 1, E(X2

1 |Z t) ≤ umaxE(X0|Z t) + ϕ2
maxE(X2

0 |Z t) + λ + λ2 < ∞. Else, if t ≥ 2,

E(X2
t |Z t) ≤

t−1

∑
i=0

umaxϕt−1+i
max E(X0|Z t) + λ

t−2

∑
i=0

umaxϕt−2+i
max + (λ + λ2)

t−1

∑
i=0

ϕ2i
max (A2)

< ∞.

A similar, but tedious calculation shows that E(X3
t |Z t) ≤ ∞ and E(X4

t |Z t) ≤ ∞. Combin-
ing (A1) and (A2), one can see that E(Xk

t |Z t) < ∞ for k = 1, 2, 3, 4.

Proof of Section 2. The results E(Xt|Xt−1, Zt), E(Xt|Zt) and Var(Xt|Xt−1, Zt) are straight-
forward to verify. We prove the other results of the moments and conditional moments:

(1) The variance of Xt under the condition Zt is given by

Var(Xt|Zt) = Var[IR
1,t(ϕ1,t ◦ Xt−1)|Zt] + Var[IR

2,t(ϕ2,t ∗ Xt−1)|Zt]

+ 2Cov(IR
1,t(ϕ1,t ◦ Xt−1), IR

2,t(ϕ2 ∗ Xt−1)|Zt) + λ

= I + I I + I I I + λ. (A3)
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A direct calculation shows

I = Var
{

E
[
IR
1,t(ϕ1 ◦ Xt−1)

∣∣Xt−1
]∣∣∣Zt

}
+ E

{
Var
[
IR
1,t(ϕ1 ◦ Xt−1)

∣∣Xt−1
]∣∣∣Zt

}
= ϕ2

1,tVar(IR
1,tXt−1) + (ϕ1,t(1 − ϕ1,t)E(IR

1,tXt−1))

= ϕ2
1,tE(IR

1,tX
2
t−1)− ϕ2

1 p2
1µ2

1 + p1ϕ1,t(1 − ϕ1,t)µ1

=
[ exp(Z⊤

t β1)

1 + exp(Z⊤
t β1)

]2[p1(σ
2
1 + µ2

1)− p2
1µ2

1
]
+

exp(Z⊤
t β1)

[1 + exp(Z⊤
t β1)]2

p1µ1. (A4)

Similarly, we have

I I = Var
{

E
[
IR
2,t(ϕ2 ∗ Xt−1)

∣∣Xt−1
]∣∣∣Zt

}
+ E

{
Var
[
IR
2,t(ϕ2 ∗ Xt−1)

∣∣Xt−1
]∣∣∣Zt

}
= ϕ2

2,tVar(IR
2,tXt−1) + (ϕ2,t(1 − ϕ2,t)E(IR

2,tXt−1))

= ϕ2
2,tE(IR

2,tX
2
t−1)− ϕ2

2 p2
2µ2

2 + p2ϕ2,t(1 + ϕ2,t)µ2

=
[ exp(Z⊤

t β2)

1 + exp(Z⊤
t β2)

]2[p2(σ
2
2 + µ2

2)− p2
2µ2

2
]
+

exp(Z⊤
t β2)(2 + exp(Z⊤

t β2))

[1 + exp(Z⊤
t β2)]2

p2µ2. (A5)

and

I I I = 2Cov(IR
1,t(ϕ1,t ◦ Xt−1), IR

2,t(ϕ2 ∗ Xt−1)|Zt)

= −2
exp(Z⊤

t β1)

1 + exp(Z⊤
t β1)

exp(Z⊤
t β2)

1 + exp(Z⊤
t β2)

p1 p2µ1µ2. (A6)

Then, Var(Xt|Zt) follows by replacing (A4), (A5) and (A6) in (A3) and some algebra.
(2) The variance of Xt is given by

Var(Xt) = Var[IR
1,t(ϕ1,t ◦ Xt−1)] + Var[IR

2,t(ϕ2,t ∗ Xt−1)]

+ 2Cov(IR
1,t(ϕ1,t ◦ Xt−1), IR

2,t(ϕ2 ∗ Xt−1)) + λ

= I + I I + I I I + λ. (A7)

Similar to the derivation of Var(Xt|Zt),

I = Var
{

E
[
IR
1,t(ϕ1 ◦ Xt−1)

∣∣Xt−1, Zt
]}

+ E
{

Var
[
IR
1,t(ϕ1 ◦ Xt−1)

∣∣Xt−1, Zt
]}

= Var
[
IR
1,t

∫
f (ϕ1,t)ϕ1,tXt−1dϕ1,t

]
+ E

{
E
[
IR
1,tϕ1,t(1 − ϕ1,t)Xt−1

]
+ Var(IR

1,tϕ1,tXt−1)
}

= Var
[
IR
1,tXt−1E(ϕ1,t)

]
+ E

{
IR
1,tXt−1E[ϕ1,t(1 − ϕ1,t)] + IR

1,tXt−1Var(ϕ1,t)
}

= ϕ2
1 [p1(σ

2
1 + µ2

1)− p2
1µ2

1] + p1µ1(ϕ1 − σ2
ϕ1

− ϕ2
1) + p1σ2

ϕ1
(σ2

1 + µ2
1). (A8)

Similarly, we have

I I = Var
{

E
[
IR
2,t(ϕ2= ◦ Xt−1)

∣∣Xt−1, Zt
]}

+ E
{

Var
[
IR
2,t(ϕ2 ◦ Xt−1)

∣∣Xt−1, Zt
]}

= Var
[
IR
2,t

∫
f (ϕ2,t)ϕ2,tXt−1dϕ2,t

]
+ E

{
E
[
IR
1,tϕ2,t(1 + ϕ2,t)Xt−1

]
+ Var(IR

2,tϕ2,tXt−1)
}

= Var
[
IR
2,tXt−1E(ϕ2,t)

]
+ E

{
IR
2,tXt−1E[ϕ2,t(1 + ϕ2,t)] + IR

2,tXt−1Var(ϕ2,t)
}

= ϕ2
2 [p2(σ

2
2 + µ2

2)− p2
2µ2

2] + p2µ2(ϕ2 + σ2
ϕ2

+ ϕ2
2) + p2σ2

ϕ2
(σ2

2 + µ2
2). (A9)

and

I I I = 2Cov(IR
1,t(ϕ1,t ◦ Xt−1), IR

2,t(ϕ2 ∗ Xt−1))

= −2ϕ1ϕ2 p1 p2µ1µ2. (A10)
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Then, Var(Xt) follows by replacing (A8)–(A10) in (A7) and some algebra.
(3) For the conditional autocovariance Cov(Xt, Xt+h|Zt+1, . . . , Zt+h), when h = 1,

Cov(Xt, Xt+1|Zt+1) = Cov[Xt, E(Xt+1|Xt)|Zt+1]

= Cov{Xt, [ϕ1,t+1Xt + λ]IR
1,t+1 + [ϕ2,t+1Xt + λ]IR

2,t+1|Zt+1}

=
2

∑
i=1

[ϕi,t+1Cov(Xt, IR
i,t+1Xt)],

where

Cov(Xt, IR
i,t+1Xt) = E(IR

i,t+1XtXt)− E(IR
i,t+1Xt)E(Xt) = pi(σ

2
i + µ2

i )− piµiE(Xt),

Then,

Cov(Xt, Xt+1) =
2

∑
i=1

{
ϕi pi[(σ

2
i + µ2

i )− µiE(Xt)]
}
=

2

∑
i=1

ϕi piγ
(i)
0 .

When h > 1, there is

Cov(Xt, Xt+h|Zt+h) = Cov[Xt, E(Xt+h|Xt+h−1)|Zt+h]

= Cov{Xt, (ϕ1,t+hXt+h−1)IR
1,t+h + (ϕ2,t+hXt+h−1)IR

2,t+h + λ|Zt+h}

=
2

∑
i=1

ϕi,t+h[Cov(Xt, IR
i,t+hXt+h−1)],

=
2

∑
i=1

exp(Z⊤
t+hβi)

1 + exp(Z⊤
t+hβi)

Cov(Xt, IR
i,t+hXt+h−1),

where

Cov(Xt, IR
i,t+hXt+h−1) = piCov(Xt, Xt+h−1|Xt+h−1 ≤ r) = piγ

(i)
h−1,

Then, we obtain

Cov(Xt, Xt+h) =
2

∑
i=1

exp(Z⊤
t+hβi)

1 + exp(Z⊤
t+hβi)

piγ
(i)
h−1.

(4) For the unconditional autocovariance Cov(Xt, Xt+h), when h = 1,

Cov(Xt, Xt+1|Zt+1) = Cov[Xt, E(Xt+1|Xt)]

= Cov{Xt, (ϕ1,t+1Xt)IR
1,t+1 + (ϕ2,t+1Xt)IR

2,t+1 + λ}

=
2

∑
i=1

Cov(Xt, [ϕi,t+1 IR
i,t+1Xt)],

where

Cov(Xt, ϕi,t+1 IR
i,t+1Xt) = E(ϕi,t+1 IR

i,t+1XtXt)− E(ϕi,t+1 IR
i,t+1Xt)E(Xt)

= µ
(1)
ϕi

pi(σ
2
i + µ2

i )− µ
(1)
ϕi

piµiE(Xt),

Then,

Cov(Xt, Xt+1) =
2

∑
i=1

{
µ
(1)
ϕi

pi[(σ
2
i + µ2

i )− µiE(Xt)]
}
=

2

∑
i=1

µ
(1)
ϕi

piγ
(i)
0 .
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When h > 1, there is

Cov(Xt, Xt+h) = Cov[Xt, E(Xt+h|Xt+h−1)]

= Cov{Xt, (ϕ1,t+hXt+h−1)IR
1,t+h + (ϕ2,t+hXt+h−1)IR

2,t+h + λ|Zt+h}

=
2

∑
i=1

[Cov(Xt, ϕi,t+h IR
i,t+hXt+h−1)],

where

Cov(Xt, ϕi,t+h IR
i,t+hXt+h−1) = µ

(h)
ϕi

piCov(Xt, Xt+h−1|Xt+h−1 ≤ r) = µ
(h)
ϕi

piγ
(i)
h−1,

Then, we obtain

Cov(Xt, Xt+h) =
2

∑
i=1

µ
(h)
ϕi

piγ
(i)
h−1.

Thus, the autocorrelation function ρ(h) = [∑2
i=1 µ

(h)
ϕi

ϕi piγ
(i)
h−1] \ Var(Xt).

Proof of Theorem 1. By Taylor’s expansion, there is

0 =
1√
n

n

∑
t=1

−1
2

∂U2
t (θ̂CLS)

∂θ

=
1√
n

n

∑
t=1

−1
2

∂U2
t (θ0)

∂θ
+

(
1
n

n

∑
t=1

−1
2

∂2U2
t (θ0)

∂θ∂θ⊤

)√
n(θ̂CLS − θ0) + op(n−1/2).

We first prove

1√
n

n

∑
t=1

−1
2

∂U2
t (θ̂CLS)

∂θ

d−→N(0, W).

Now, let Fn = σ{X0, X1, . . . , Xn, Z1, . . . , Zn+1}, and for i = 1, 2,

M(i,0)
n =

n

∑
t=1

−1
2

∂U2
t (θ0)

∂βi,0
=

n

∑
t=1

[
Ut(θ0)Xt−1 IR

i,t
exp(Z⊤

t βi)

[1 + exp(Z⊤
t βi)]2

]
.

Then, we have

E(M(i,0)
n |Fn−1) = E{M(i,0)

n−1 + Un(θ0)Xn−1 IR
i,n

exp(Z⊤
n βi)

[1 + exp(Z⊤
n βi)]2

∣∣∣Fn−1}

= M(i,0)
n−1 + E{Un(θ0)Xn−1 IR

i,n
exp(Z⊤

n βi)

[1 + exp(Z⊤
n βi)]2

∣∣∣Fn−1} = M(i,0)
n−1,

i.e., {M(i,0)
n ,Fn, n ⩾ 0} is a martingale. By Proposition (1), E(X4

t |Z t) < ∞, there is

E
(
(Ut(θ0))

2X2
t−1 IR

i,n
( exp(Z⊤

t βi)

[1 + exp(Z⊤
t βi)]2

)2
∣∣∣Ft−1

)
< ∞.
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Then, by the ergodic theorem, we have

1
n

n

∑
t=2

(
(Ut(θ0))

2X2
t−1 IR

i,n
( exp(Z⊤

t βi)

[1 + exp(Z⊤
t βi)]2

)2 a.s.−→E
[
Ut(θ0)Xt−1 IR

i,n
exp(Z⊤

t βi)

[1 + exp(Z⊤
t βi)]2

]2

= E
[
U2

t (θ0)(
∂

∂βi,0
g(θ0, Xt−1, Zt))

2
]

= W(i−1)q+i,(i−1)q+i,

Thus, by Corollary 3.2 from [23], the martingale central limit theorem applies, and we

obtain M(i,0)
n /

√
n d−→N(0, W(i−1)q+i,(i−1)q+i). Similarly, we can prove that, for any i =

1, 2, s = 1, . . . , q,

M(i,s)
n =

n

∑
t=1

−1
2

∂U2
t (θ0)

∂βi,s
=

n

∑
t=1

[
Ut(θ0)Xt−1 IR

i,t
Zs,t exp(Z⊤

t βi)

[1 + exp(Z⊤
t βi)]2

]
.

is a martingale, and we have that

1
n

n

∑
t=1

[Ut(θ0)Xt−1 IR
i,t

Zs,t exp(Z⊤
t βi)

[1 + exp(Z⊤
t βi)]2

]2 a.s.−→E[Ut(θ0)Xt−1 IR
i,t

Zs,t exp(Z⊤
t βi)

[1 + exp(Z⊤
t βi)]2

]2

= E
[
U2

t (θ0)(
∂

∂βi,s
g(θ0, Xt−1, Zt))

2
]

= W(i−1)q+i+s,(i−1)q+i+s,

that is M(i,s)
n /

√
n d−→N(0, W(i−1)q+i+s,(i−1)q+i+s). Furthermore, we can also prove that

M(2q+3)
n =

n

∑
t=1

−1
2

∂U2
t (θ0)

∂λ
=

n

∑
t=1

Ut(θ0).

is a martingale and

1
n

n

∑
t=1

[Ut(θ0)]
2 a.s.−→EU2

t (θ0) = W2q+3,2q+3,

that is M(2q+3)
n /

√
n d−→N(0, W2q+3,2q+3).

In the same way, for any c = (c1, . . . , c2q+3)
⊤ ∈ R2q+3\02q+3,1, we have

1√
n

c⊤
(

M(1,0)
n , . . . M(1,q)

n , M(2,0)
n , . . . , M(2,q)

n , M(2q+3)
n

)⊤
=

1√
n

n

∑
t=1

Ut(θ0)
{ 2

∑
i=1

[ q

∑
s=0

c(i−1)q+s+iXt−1
Zs,t exp(Z⊤

t βi)

[1 + exp(Z⊤
t βi)]2

]
IR
i,t + c2q+3

}
d−→N

(
0, E
{

Ut(θ0)
{ 2

∑
i=1

[ q

∑
s=0

c(i−1)q+s+iXt−1
Zs,t exp(Z⊤

t βi)

[1 + exp(Z⊤
t βi)]2

]
IR
i,t + c2q+3

}}2
)

.

Thus, by the Cramér–Wold device,

1√
n

n

∑
t=1

−1
2

∂U2
t (θ0)

∂θ
=

1√
n
(

M(1,0)
n , . . . M(1,q)

n , M(2,0)
n , . . . , M(2,q)

n , M(2q+3)
n

)⊤ d−→N(0, W),



Entropy 2024, 26, 140 28 of 31

Consider the second item of Taylor’s expansion, 1
n ∑n

t=1 − 1
2

∂2U2
t (θ0)

∂θ∂θ⊤
:

1
n

n

∑
t=1

−1
2

∂2U2
t (θ0)

∂θ∂θ⊤

=
1
n

n

∑
t=1

(
− ∂g(θ0, Xt−1, Zt)

∂θ⊤
∂g(θ0, Xt−1, Zt)

∂θ
+

∂2g(θ0, Xt−1, Zt)

∂θ∂θ⊤
(Xt − g(θ0, Xt−1, Zt))

)
.

Note that

E(
∂2g(θ0, Xt−1, Zt)

∂θ∂θ⊤
(Xt − g(θ0, Xt−1, Zt))) = 0

and then, by the ergodic theorem, we have

lim
n→∞

1
n

n

∑
t=1

−1
2

∂2U2
t (θ0)

∂θ∂θ⊤
= −V .

Hence, we have that

√
n(θ̂CLS − θ0)

d−→ N(0, V−1WV−1),

and the proof has been completed.

Proof of Theorem 2. Considering that the case R = 0 is similar to R = 1, we only prove the
case R = 0. We first prove the consistency of θ̂CML. See [24] for a similar technique. Clearly,
L(θ) is a measurable function of xt for all θ ∈ Θθ; it is continuous in an open and convex
neighborhood N(θ0). From the assumption in Theorem 2, it ensures that E[ℓt(θ)] has a
unique maximizer in the compact set Θθ, say θ̌. We can assume θ̌ ∈ N(θ0). Meanwhile,
for arbitrary point θ ∈ N(θ0), by Jensen’s inequality, we have

E[ℓt(θ)− ℓt(θ0)] = E
[

log
(

Pθ(zt, Xt−1, Xt)

Pθ0(zt, Xt−1, Xt)

)]
⩽ log

[
E
(

Pθ(zt, Xt−1, Xt)

Pθ0(zt, Xt−1, Xt)

)]
= 0. (A11)

That is, E[ℓt(θ)] is a strict local maximum at θ0.
In the following, we will show that the log-likelihood function ∑n

t=1 ℓt(θ)/n converges
almost surely and uniformly in Θθ to E[ℓt(θ)], that is∣∣∣∣∣

∣∣∣∣∣ 1n n

∑
t=1

ℓt(θ)− E[ℓt(θ)]

∣∣∣∣∣
∣∣∣∣∣
Θθ

a.s.−→ 0,

as n → ∞. Then, the almost sure convergence of θ̂CML such that θ̂CML
a.s.−→ θ0 follows

by standard arguments due to [25]. Note that {Xt} is stationary and ergodic, then ℓt(θ)
is a stationary and ergodic sequence of random elements that take values in the space
of continuous functions C(Θθ,R) equipped with the uniform norm || · ||Θθ

. Therefore,
the desired convergence result follows by an application of the ergodic theorem of [26], if
the uniform integrability condition E||ℓt(θ)||Θθ

< ∞ is satisfied. Note that

|ℓt(θ)| = − log
(

IR
1,t

min(xt−1,xt)

∑
m=0

(
xt−1

m

)
e−λ λxt−m

(xt − m)!
ϕm

1,t(1 − ϕ1,t)
xt−1−m

+ IR
2,t

xt

∑
m=0

Γ(xt−1 + m)

Γ(xt−1)Γ(m + 1)
ϕm

2,t

(1 + ϕ2,t)xt−1+m e−λ λxt−m

(xt − m)!

)
.



Entropy 2024, 26, 140 29 of 31

For convenience, we first assume that xt−1 ⩽ r and xt−1 < xt, i.e., (xt − xt−1) ⩾ 1, then
together with log(x) < x, there is

|ℓt(θ)| ⩽ − log
(

e−λ λxt−xt−1

(xt − xt−1)!
ϕ

xt−1
1,t

)
⩽ −(−λ + (xt − xt−1) log(λ)− log[(xt − xt−1)] + xt−1 log(ϕ1,t))

⩽ (λ − (xt − xt−1) log(λ) + (xt − xt−1)− xt−1 log(ϕ1,t))

⩽ xt[1 − log(λ)]− xt−1[log(ϕ1,t)− log(λ) + 1] + λ

almost surely for any θ ∈ Θθ. Similarly, if xt−1 = xt and we assume xt−1 ⩽ r,

|ℓt(θ)| ⩽ λ − xt log ϕ1,t

almost surely for any θ ∈ Θθ. If xt−1 > xt and we assume xt−1 ⩽ r,

|ℓt(θ)| ⩽ − log
((

xt−1

xt

)
e−λϕxt

1,t(1 − ϕ1,t)
xt−1−xt

)
⩽

(
xt−1−xt

∑
j=1

log j −
xt−1

∑
j=1

log j

)
+ λ + xt{log[(1 − ϕ1,t)]− log[ϕ1,t]} − xt−1 log[(1 − ϕ1,t)]

⩽ λ + xt{log[(1 − ϕ1,t)]− log[ϕ1,t]} − xt−1 log[(1 − ϕ1,t)]

almost surely for any θ ∈ Θθ. Analogously, in terms of xt−1 > r, there is

|ℓt(θ)| ⩽ λ + xt{log[(1 − ϕ2,t)]− log[ϕ2,t]}+ xt−1 log[(1 + ϕ1,t)]

almost surely for any θ ∈ Θθ. Clearly, E(Xt) < ∞. We have the conclusion E||ℓt(θ)||Θθ
< ∞,

and the strong consistency has been proven.
To prove this asymptotically, we study the method in [15] and perform the Taylor

expansion of the score vector around θ0:

0 =
1√
n

∂L(θ̂CML)

∂θ
=

1√
n

∂L(θ0)

∂θ
+

(
1
n

∂2L(θ∗n)
∂θ∂θ⊤

)√
n(θ̂CML − θ0),

where θ∗n lies in between θ̂CML and θ0. It is easy to see E
(

∂ℓt(θ)

∂θ

)
θ0

= 0, which implies

that {ℓt(θ0)/∂θ} is a martingale difference, and

Cov
(

∂ℓt(θ0)

∂θ

)
= E

[(
∂ℓt(θ)

∂θ

)(
∂ℓt(θ)

∂θ

)⊤
]

θ0

.

By the Cramér–Wold device and the central limit theorem in Theorem 18.3 of Billingsley [27],
it follows that

1√
n

∂L(θ0)

∂θ

d−→ N
(
0, I(θ0)

)
with I(θ0) = E

[
∂ℓt(θ)

∂θ

∂ℓt(θ)

∂θ⊤

]
θ0

.

Next, we aim to show that 1
n

∂2ℓ(θ∗n)
∂θ∂θ⊤

converges to a finite nonsingular matrix:

J(θ0) = E
(

∂2ℓt(θ)

∂θ∂θ⊤

)
θ0
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for any θ∗n
a.s.−→ θ0, where θ∗n lies in between θ0 and θ̂CML. Note that, for any i, j =

1, . . . , 2q + 3, the Taylor’s expansion of the second-order derivatives of L(θ∗n) at θ0 is

1
n

n

∑
t=1

∂2lt(θ∗n)
∂θi∂θj

=
1
n

n

∑
t=1

∂2lt(θ0)

∂θi∂θj
+

(
1
n

n

∑
t=1

∂3lt(θ̃)
∂θi∂θj∂θ⊤

)
(θ̃− θ0),

where θ̃ is between θ0 and θ∗n. According to the assumption in Theorem 2, there is

lim
n→∞

sup
θ∈N(θ0)

∣∣∣ ∂3ℓt(θ)

∂θi∂θj∂θk

∣∣∣ < ∞,

for any i, j, k = 1, . . . , 2q+ 3. Thus, combining the assumption E
(

1
n

∂2ℓ(θ)
∂θ∂θ⊤

)
θ0

is a nonsingular

matrix, the strong consistency of the estimates, and the ergodic theorem in [28], it is easy to
obtain a conclusion:

1
n

∂2ℓ(θ∗n)

∂θ∂θ⊤
a.s.−→ J(θ0),

as n → ∞. To sum up, there is

√
n(θ̂CML − θ0)

d−→ N
(
0, J−1(θ0)I(θ0)J−1(θ0)

)
.

as n → ∞, and the proof has been completed.
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