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Abstract: RGB-T salient object detection (SOD) has made significant progress in recent years. How-
ever, most existing works are based on heavy models, which are not applicable to mobile devices.
Additionally, there is still room for improvement in the design of cross-modal feature fusion and
cross-level feature fusion. To address these issues, we propose a lightweight cross-modal information
mutual reinforcement network for RGB-T SOD. Our network consists of a lightweight encoder, the
cross-modal information mutual reinforcement (CMIMR) module, and the semantic-information-
guided fusion (SIGF) module. To reduce the computational cost and the number of parameters,
we employ the lightweight module in both the encoder and decoder. Furthermore, to fuse the
complementary information between two-modal features, we design the CMIMR module to en-
hance the two-modal features. This module effectively refines the two-modal features by absorbing
previous-level semantic information and inter-modal complementary information. In addition, to
fuse the cross-level feature and detect multiscale salient objects, we design the SIGF module, which
effectively suppresses the background noisy information in low-level features and extracts multiscale
information. We conduct extensive experiments on three RGB-T datasets, and our method achieves
competitive performance compared to the other 15 state-of-the-art methods.

Keywords: salient object detection; RGB-T; lightweight; mutual reinforcement; multiscale information

1. Introduction

Salient object detection (SOD) is a computer vision technique that segments the most-
visually interesting objects from an image, mimicking attention mechanisms. It is important
to note that SOD differs from object detection tasks that aim to predict object bounding
boxes. SOD has been employed as a preprocessing step in many computer vision tasks,
such as image fusion [1], perceptual video coding [2], compressed video sensing [3], image
quality assessment [4], and so on.

Traditional methods for RGB SOD were initially proposed, but they could not achieve
optimal performance. With the advent of CNNs [5] and U-Nets [6], deep-learning-based
methods became popular in SOD. For example, multiscale information was extracted in
PoolNet [7] and MINet [8]. The edge feature was generated and supplemented to the object
feature in EGNet [9] and EMFINet [10]. Later, depth maps were introduced in SOD, which
is called RGB-D SOD. In this field, the depth-enhanced module [11] was designed to fuse
two-modal features. However, the RGB-D dataset still has some shortcomings. Some depth
maps are not accurate due to the limitations of the acquisition equipment. Researchers
turned to introducing thermal infrared images into SOD, called RGB-T SOD.

RGB-T SOD has seen significant progress in recent years. For example, CBAM [12]
is employed in [13] to fuse two-modal features. To capture multiscale information, FAM
module is employed in [13], and the SGCU module is designed in CSRNet [14]. Despite
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their outstanding efforts in RGB-T SOD, there are still some problems that need to be
addressed. Most of the existing works are based on a heavy model, which is unsuitable
for mobile devices. Besides, there is still room for research on effectively integrating the
complementary information between two-modal features. Figure 1 shows some examples
where PCNet [15] and TAGF [16] cannot present the detection results well. Another
problem is how to fuse two-level features and explore multiscale information during the
decoding stage.

(a) (b) (c)RGB T GT

Figure 1. Some examples of RGB-T datasets. (a) Ours. (b) PCNet. (c) TAGF.

Based on the aforementioned discussions, we propose a lightweight network for RGB-
T SOD. Specifically, we employ the lightweight backbone MobileNet-V2 [17] in the encoder
and the depth-separable convolution [18] in the decoder. To address the problem of two-
modal feature fusion, we introduce the CMIMR module. We enhance two-modal features
by transferring semantic information into them using the previous-level decoded feature.
After this enhancement, we mutually reinforce two-modal features by communicating
complementary information between them. Additionally, we design the SIGF module to
aggregate two-level features and explore multiscale information during the decoding stage.
Unlike RFB [11,19] and FAM [7], we employ the visual attention block (VAB) [20] to explore
the multiscale information of the fused feature in the decoder.

Our main contributions are summarized as follows:

1. We propose a lightweight cross-modal information mutual reinforcement network
for RGB-T salient object detection. Our network comprises a lightweight encoder, the
cross-modal information mutual reinforcement (CMIMR) module, and the semantic-
information-guided fusion (SIGF) module.

2. To fuse complementary information between two-modal features, we introduce the
CMIMR module, which effectively refines the two-modal features.

3. Extensive experiments conducted on three RGB-T datasets demonstrate the effective-
ness of our method.

2. Related Works
Salient Object Detection

Numerous works have been proposed for SOD [21–23]. Initially, prior knowledge and
manually designed features [24] were employed. With the advent of deep learning, CNN-
based methods have made significant strides. For instance, many methods have attempted
to capture multiscale information in images (RFB [19,25] and FAM [7]). Additionally, many
works have focused on refining the edge details of salient objects [9,26,27]. Furthermore,
several lightweight methods have been proposed to adapt to mobile devices [28,29]. While
these methods have made great progress in RGB SOD, they do not perform as well when
the RGB image has cluttered backgrounds, low contrast, and object occlusion.

RGB-D SOD is a technique that uses depth maps to provide complementary informa-
tion to RGB images. To fuse two-modal features, several methods have been proposed,
including the depth-enhanced module [11], selective self-mutual attention [30], the cross-
modal depth-weighted combination block [31], the dynamic selective module [32], the
cross-modal information exchange module [33], the feature-enhanced module [34], the
cross-modal disentanglement module [35], the unified cross dual-attention module [36],
and inverted bottleneck cross-modality fusion [37]. Despite the progress made by RGB-D
SOD, it performs poorly on low-quality examples, where some depth maps are inaccurate
due to the limitations of the acquisition equipment.
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In addition to depth maps, thermal infrared images have been employed to provide
complementary information to RGB images, which is called RGB-T SOD. Many works have
made efforts in this area [38,39]. To fuse two-modal features, several methods have been
proposed, including CBAM [12,13], the complementary weighting module [40], the cross-
modal multi-stage fusion module [41], the multi-modal interactive attention unit [42], the
effective cross-modality fusion module [43], the semantic constraint provider [44], the
modality difference reduction module [45], the spatial complementary fusion module [46],
and the cross-modal interaction module [15]. To fuse two-level features during the de-
coding stage, the FAM module [13] and interactive decoders [47] were proposed. Addi-
tionally, lightweight networks [14,48] have been proposed to meet the requirements of
mobile devices.

3. Methodology
3.1. Architecture Overview

We present the overall architecture of our method in Figure 2, which is a typical
encoder–decoder structure. In the encoder part, we adopted the lightweight MobileNet-V2
(E1∼E5) [17] as the backbone to extract five-level features

{
FR

i , FT
i
}

i=1,...,5 for the two-modal
inputs, respectively. To explore the complementary information between the two-modal
features, we designed the cross-modal information mutual reinforcement module to fuse
the two-modal features. To detect multiscale objects and fuse the two-level features, we
designed the semantic-information-guided fusion module to suppress interfering informa-
tion and explore multiscale information. Additionally, we employed two auxiliary decoder
branches. On the one hand, this guides the two-modal encoders to extract modality-specific
information [49] for the two-modal inputs, which helps to make the feature learning process
more stable. On the other hand, this provides supplementary information in terms of single-
channel saliency features. The decoder modules of the two auxiliary decoder branches are
equipped with a simple structure, namely concatenation followed by 3 × 3 depth-separable
convolution (DSConv) [18]. Finally, the 1 × 1 convolution is applied on three decoded
features, resulting in three single-channel saliency features SFFd

1 , SFTd
2 , and SFRd

2 . After that,
the sigmoid activation function is applied to obtain saliency maps SF, ST, and SR. To fuse
the complementary information between the three decoder branches, we summed the three
single-channel saliency features and applied the sigmoid function to obtain the saliency
map Stest during the testing stage. The above processes can be formulated as follows:

SFFd
1 = Conv1×1

(
FFd

1

)
SFTd

2 = Conv1×1

(
FTd

2

)
SFRd

2 = Conv1×1

(
FRd

2

) , (1)



SF = σ
(

SFFd
1

)
ST = σ

(
SFTd

2

)
SR = σ

(
SFRd

2

)
Stest = σ

(
SFFd

1 + SFTd
2 + SFRd

2

)
, (2)

where Conv1×1 means the 1 × 1 convolution and σ is the sigmoid function, which maps
the single-channel saliency feature to the saliency map. FFd

1 , FTd
2 , and FRd

2 are the output
features of the primary decoder and two auxiliary decoders.

3.2. Cross-Modal Information Mutual Reinforcement Module

Fusing complementary information between two-modal features is an essential ques-
tion for RGB-T SOD. Two-modal features often contain noisy and inconsistent information,
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which can hinder the learning process of the saliency features. To address these issues, we
designed the CMIMR module to suppress noisy information in the two-modal features and
mutually supply valuable information.
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Figure 2. Overall architecture of our lightweight cross-modal information mutual reinforcement
network for RGB-T salient object detection. ‘E1∼E5’ are the five modules of the encoder. ‘TDec’ and
‘RDec’ are the decoder modules of the auxiliary decoder. ‘CMIMR’ is the cross-modal information
mutual reinforcement module. ‘SIGF’ is the semantic-information-guided fusion module.

The structure of the CMIMR module is illustrated in Figure 3. Specifically, we used the
previous-level decoded feature, which contains accurate semantic and location information,
to enhance the two-modal features by the concatenation–convolution operation, respec-
tively. This guides the two-modal features to concentrate more on valuable information
and alleviate background noise. However, this enhancement operation may weaken the
beneficial information in the two-modal features. To address this issue, we added residual
connections to the two-modal enhanced features. This process can be described as follows:FTle

i = FT
i

FRle
i = FR

i

i = 5, (3)


FTle

i = FT
i ⊕ Conv1×1

([
FT

i , Up×2

(
FFd

i+1

)])
FRle

i = FR
i ⊕ Conv1×1

([
FR

i , Up×2

(
FFd

i+1

)]) i = 1, . . . , 4, (4)

where ⊕ means elementwise summation and Conv1×1 is the 1 × 1 convolution block
consisting of the 1 × 1 convolution layer, and a batch normalization layer. [·, ·] denotes
concatenating two features along the channel dimension. Up×2 means 2-times bilinear
upsampling. FT

i and FR
i are the encoder features of the thermal image and RGB image

at the ith-level. FTle
i and FRle

i are the previous-level information-enhanced two-modal
features. FFd

i+1 is the decoded feature at the (i + 1)th level. The semantic and location
information from the previous-level decoded features help suppress noisy information in
the two-modal features, which facilitates the exploration of complementary information in
the subsequent process.
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After the aforementioned enhancement, we further exchanged the complementary
information between the two-modal features. Since two-modal features contain both
complementary and misleading information, directly concatenating them together can
harm the appropriate fusion. Taking the RGB feature as an example, we intended to utilize
the thermal feature to enhance it. Considering that spatial attention [50] can adaptively
highlight regions of interest and filter the noisy information, we utilized the spatial attention
map of the RGB feature to filter misleading information in the thermal features. This is
because we wanted to preserve valuable information in the thermal feature, which is
complementary to the RGB feature. After that, we concatenated the spatial-attention-
filtered thermal feature with the RGB feature to supplement beneficial information into the
RGB feature. Through this operation, the complementary information in the thermal feature
can adaptively flow into the RGB feature, thereby obtaining a cross-modal information-
enhanced RGB feature. The enhancement process for the thermal feature is similar to that
of the RGB feature. Finally, we combined the two-modal enhanced features by elementwise
summation to aggregate them:

FTme
i = DSConv3×3

([
FTle

i , SA
(

FTle
i

)
⊙ FRle

i

])
FRme

i = DSConv3×3

([
FRle

i , SA
(

FRle
i

)
⊙ FTle

i

])
FF

i = DSConv3×3
(
FTme

i ⊕ FRme
i

) i = 1, . . . , 5, (5)

where DSConv3×3 is the 3 × 3 DSConv layer [18], ⊙ represents the elementwise multiplica-
tion operation, and SA denotes the spatial attention [50]. FTme

i and FRme
i are cross-modal

enhanced two-modal features. FF
i is the two-modal fused feature. In summary, the CMIMR

module can effectively suppress background noise in two-modal features under the guid-
ance of previous-level semantic information. Furthermore, it can supplement valuable
information to each modal feature, which helps to effectively fuse the two-modal features.

⊕R
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Figure 3. Architecture of the cross-modal information mutual reinforcement (CMIMR) module.
‘Conv 1 × 1’ is the 1 × 1 convolution. ‘SA’ is the spatial attention. ‘DSConv 3 × 3’ is the depth-
separable convolution with the 3 × 3 convolution kernel.

3.3. Semantic-Information-Guided Fusion Module

How to design the two-level feature aggregation module during the decoding stage
is a crucial question for SOD. It is related to whether we can recover the elaborate details
of salient objects. Since low-level features contain much noisy information, directly con-
catenating them together will inevitably introduce disturbing information into the fused
features. To rectify the noisy information in the low-level features, we transmitted the
semantic information in the high-level feature into it. Besides, multiscale information is
vital in SOD tasks. Salient objects in different scenes are of various sizes and shapes, but the
ordinary 3 × 3 convolution cannot accurately detect these salient objects. Inspired by the
great success of multiscale information-capture modules (e.g., RFB [7,11] and FAM [19]) in
SOD, we employed the visual attention block (VAB) [20] to capture the multiscale features.
The VAB was initially designed as a lightweight feature-extraction backbone for many
visual tasks.
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The SIGF module structure is shown in Figure 4. Specifically, to suppress the back-
ground noisy information in the low-level feature, we utilized the high-level feature to
refine the feature representation of the low-level feature. We concatenated the high-level fea-
ture into the low-level feature to enhance it. In the feature-enhancement process, valuable
information in the low-level features may be diluted, so we introduced residual connections
to preserve it. This process can be expressed as follows:

FFe
i = FF

i ⊕ DSConv3×3

([
FF

i , Up×2

(
FFd

i+1

)])
i = 1, . . . , 4, (6)

where FFe
i is the semantic-information-enhanced feature. FFd

i+1 is the decoded feature at
the (i + 1)th level. FF

i is the two-modal fused features. Then, to enable our method to
detect salient objects of various sizes and shapes, we used the VAB to extract multiscale
information contained in the fused features:

FFd
i =

{
VAB

(
FF

i
)

i = 5
VAB

(
DSConv3×3

([
FFe

i , Up×2

(
FFd

i+1

)]))
i = 1, . . . , 4

, (7)

where VAB is the visual attention block [20]. FFd
i is the decoded feature at the ith level.

The VAB consists of two parts: the large kernel attention (LKA) and feed-forward network
(FFN) [51]. In the large kernel attention, the depth-separable convolution, depth-separable
dilation convolution with dilation d, and a 1 × 1 convolution are successively stacked to
capture multiscale information:VAB(F) = FFN(LKA(F))

LKA(F) = Conv1×1(DSConvd(DSConv(F)))⊙ F
, (8)

where DSConvd is the depth-separable convolution with dilation d. F stands for the feature
being processed. In summary, our module can rectify noisy information in the low-level
feature under the guidance of high-level accurate semantic information. Meanwhile,
the VAB successfully extracts multiscale information, which is beneficial for detecting
multiscale salient objects.

F

iF ©©
Upx2

Fd

1i+F

Fe

iF
⊕DSConv

3×3

DSConv

3×3
VAB

Upx2

Fd

iF

Figure 4. Architecture of the semantic-information-guided fusion (SIGF) module. ‘DSConv 3 × 3’
is the depth-separable convolution with the 3 × 3 convolution kernel. ‘VAB’ is the visual attention
block. ‘Up×2’ is the two-times upsample.

3.4. Loss Function

The deep supervision strategy [52] is adopted in our method. Specifically, the saliency
predictions of deep features FFd

i (i=1,...,5) are supervised, as shown in Figure 2. Additionally,
the saliency predictions of two auxiliary decoders’ output features FTd

2 , FRd
2 are also super-

vised. The BCE loss [53] and IoU loss [54] are employed to calculate the losses between
saliency predictions and the GT: ℓall = ∑5

i=1
1

2i−1 ℓloss
(
SF

i , G
)
+ ℓloss

(
ST, G

)
+ ℓloss

(
SR, G

)
ℓloss = ℓbce + ℓIoU

, (9)

where SF
i , ST, and SR mean the saliency predictions of the deep features FFd

i , FTd
2 , and

FRd
2 , respectively. G means the ground truth. ℓbce and ℓIoU mean the BCE loss and IoU

loss, respectively.
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4. Experiments
4.1. Experiment Settings
4.1.1. Datasets

There are three RGB-T SOD datasets that have been widely employed in existing works:
VT821 [55], VT1000 [56], and VT5000 [13]. VT821 consists of 821 manually registered RGB-T
image pairs. VT1000 is composed of 1000 well-aligned RGB-T image pairs. VT5000 has
5000 RGB-T image pairs, containing complex scenes and diverse objects. Following the
previous works’ setting [47], 2500 samples from VT5000 were selected as the training dataset.
The other 2500 samples from VT5000 and all samples from VT821 and VT1000 served as the
testing datasets. To avoid overfitting, the training dataset was augmented by random flipping
and random rotation [11].

4.1.2. Implementation Details

The model was trained on a GeForce RTX 2080 Ti (11GB memory). The Pytorch
framework was employed in the code implementation. The encoders were initialized with
the pre-trained MobileNet-V2 [17], while the other parameters were initialized with the
Kaiming uniform distribution [57]. The input image was resized to 224 × 224 for both the
training and testing stages. The training epochs and batch size were set to 120 and 20,
respectively. The Adam optimizer was employed to reduce the loss of our method. The
learning rate was set to 1 × 10−4 and will decay to 1 × 10−5 after 90 epochs.

4.2. Evaluation Metrics

To compare the performance of our method with other methods, four numeric evalua-
tion metrics were employed, the mean absolute error (M), F-measure (Fβ) [58], E-measure
(Eξ) [59], and structure-measure (Sα) [60]. Besides, the PR curve and F-measure curve are
plotted to show their evaluation results.

4.2.1. M
The mean absolute error M calculates the mean absolute error between the prediction

value and the GT:
M =

1
W × H ∑W

i=1∑H
j=1|S(i, j)− G(i, j)|, (10)

where G(i, j) and S(i, j) denote the ground truth and the saliency map, respectively.

4.2.2. Fβ

The F-measure (Fβ) is the weighted harmonic mean of the recall and precision, which
is formulated as

Fβ =
(1 + β2)Precision · Recall

β2 · Precision + Recall
, (11)

where β2 was set to 0.3, referring to [58].

4.2.3. Eξ

The E-measure (Eξ) evaluates the global and local similarities between the ground
truth and predictions:

Eξ =
1

W × H ∑W
i=1∑H

j=1 φ
(
S(i, j), G(i, j)

)
, (12)

where φ is the enhanced alignment matrix.

4.2.4. Sα

The structure-measure (Sα) evaluates the structural similarities of salient objects
between the ground truth and predictions:
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Sα = αSo + (1 − α)Sr, (13)

where Sr and So mean region-aware and object-aware structural similarity, respectively,
and α was set to 0.5, referring to [60].

4.3. Comparisons with the SOTA Methods

To show the effectiveness of our method, we compared it with 15 SOTA methods, the
RGB SOD methods BASNet [27], EGNet [9], and CPD [19] and the RGB-T SOD methods
ADF [13], MIDD [47], MMNet [41], MIADPD [42], OSRNet [61], ECFFNet [43], PCNet [15],
TAGF [16], UMINet [62], MGAI [63], APNet [64], CGFNet [65], CSRNet [14], and LSNet [48].
For a fair comparison, the saliency maps of all compared methods are either directly
provided by the author or re-implemented by the official public code.

4.3.1. Quantitative Comparison

We compared the performance of the heavy-model-based methods in Table 1 and the
lightweight methods in Table 2. The PR and F-measure curves of the compared methods on
the three RGB-T datasets are plotted in Figure 5. Our method outperformed most methods
in terms of four metrics, except for Sα, which was slightly inferior to the other methods.
Compared to the heavy-model-based methods, as shown in Table 1, our method improved
6.9%, 2.0%, and 1.1% in terms of M, Fβ, and Eξ on VT5000. Although our method was
not as good as other methods in terms of Sα, it requires only 6.1M parameters and 1.5G
FLOP and can be easily applied to mobile devices. The inference speed of our method
was mediocre on a professional GPU (GeForce RTX 2080 Ti, Santa Clara, CA, USA) with
34.9 FPS. However, given that the mobile devices only have access to the CPU, our method
outperformed the other methods with 6.5 FPS (AMD Ryzen 7 5800H, Santa Clara, CA,
USA). Besides, we compare our method with existing lightweight methods in Table 2. Our
method outperformed the other methods on most metrics, except for Sα on VT1000 and VT821.
Our method improved 12.5%, 2.3%, and 1.2% in terms of M, Fβ, and Eξ on VT5000. Among
the lightweight methods, the FLOP and FPS of our method were not as good as LSNet, but
our method performed better. In addition, we plot the PR and F-measure curves in Figure 5 to
visually compare the performance of all methods. We can see that the precision of our method
was higher than other methods on VT5000 and VT821, when the recall was not very close to 1.
The F-measure curves consider the trade-offs between precision and recall. We can see that
our method obtained better F-measure scores on VT5000 and VT821. We evaluate the IoU and
Dice scores of our method in Table 3 with reference to most image segmentation tasks. We can
see that our method performed better on VT1000 than on VT5000 and VT821. Additionally,
our method outperformed the compared method LSNet on all three datasets.

To demonstrate the significance of the performance improvement of our method, the
t-test was performed. We retrained our method and obtained six sets of experiment results,
shown in Table 4. Concretely, assuming the metrics X ∼ N(µ, σ2), the test statistic was
t = X̄−µ0

S/
√

n , where S2 is an unbiased estimate of σ2. X̄−µ0
S/

√
n ∼ t(n − 1). t(n − 1) is the Student

distribution with n − 1 degrees of freedom. Therefore, the t-test was used in our hypothesis
test. For the evaluation metric M, the left-sided test was performed, i.e., the H0 hypothesis
was that the M of our method was greater than that of the compared method. For the
other five metrics Fβ, Sα, Eξ , IoU, and Dice, the right-sided test was performed, i.e., the H0
hypothesis was that the corresponding results of our method were less than those of the
compared method. The p-value is reported in our t-test. Three significance levels α were
used in our t-test, i.e., 0.01, 0.05, and 0.1. Generally speaking, if p-value ≤ 0.01, the test is
highly significant. If 0.01 < p-value ≤ 0.05, the test is significant. If 0.05 < p-value ≤ 0.1,
the test is not significant. If p-value > 0.1, then there is no reason to reject the H0 hypothesis.
As shown in Table 5, the p-value of our method was less than 0.01 for M, Fβ, and Eξ on the
three datasets, indicating that the t-test was highly significant.
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Table 1. Quantitative comparisons with the heavy-model-based methods on the RGB-T datasets.
Param means the number of parameters. FLOP means floating point operations. FPS means frames
per second, which was tested on two types of processors, i.e., professional graphics processing
unit GeForce RTX 2080 Ti (GPU) and central processing unit AMD Ryzen 7 5800H @ 3.2 GHz
(CPU), respectively. The top three results are marked in red, green, and blue color in each column,
respectively. ↑ and ↓ mean a larger value is better and a smaller value is better, respectively.

Pub.
Param ↓ FLOP ↓ FPS ↑ VT5000 VT1000 VT821

M G CPU GPU M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑

RGB
BASNet CVPR19 87.1 127.6 0.94 73.0 0.0542 0.762 0.8386 0.878 0.0305 0.8449 0.9086 0.9223 0.0673 0.7335 0.8228 0.8556
EGNet ICCV19 108.0 156.8 0.93 95.1 0.0511 0.7741 0.853 0.8886 0.0329 0.8474 0.9097 0.923 0.0637 0.7255 0.8301 0.8581
CPD CVPR19 47.9 17.8 3.97 38.2 0.0465 0.7859 0.8547 0.8964 0.0312 0.8617 0.9072 0.9308 0.0795 0.7173 0.8184 0.8474

RGB-T

ADF TMM22 − − − − 0.0483 0.7775 0.8635 0.891 0.034 0.8458 0.9094 0.9222 0.0766 0.7159 0.8102 0.8443
MIDD TIP21 52.4 216.7 1.56 36.5 0.0461 0.7876 0.8561 0.8926 0.0293 0.8695 0.9069 0.9353 0.0446 0.8032 0.8712 0.8974

MMNet TCSVT21 64.1 42.5 1.79 31.1 0.0433 0.7809 0.8618 0.8894 0.0268 0.8626 0.9133 0.932 0.0397 0.7949 0.8731 0.8944
MIADPD NP22 − − − − 0.0404 0.7925 0.8786 0.8968 0.0251 0.8674 0.9237 0.936 0.0699 0.7398 0.8444 0.8529
OSRNet TIM22 15.6 42.4 2.29 63.1 0.0399 0.8207 0.8752 0.9108 0.0221 0.8896 0.9258 0.9491 0.0426 0.8114 0.8751 0.9
ECFFNet TCSVT21 − − − − 0.0376 0.8083 0.8736 0.9123 0.0214 0.8778 0.9224 0.9482 0.0344 0.8117 0.8761 0.9088

PCNet MTA23 − − − − 0.0363 0.829 0.8749 0.9188 0.021 0.8865 0.932 0.9482 0.0362 0.8193 0.8734 0.9005
TAGF EAAI23 36.2 115.1 0.87 33.1 0.0359 0.8256 0.8836 0.9162 0.0211 0.8879 0.9264 0.9508 0.0346 0.8205 0.8805 0.9091

UMINet VC23 − − − − 0.0354 0.8293 0.882 0.922 0.0212 0.8906 0.926 0.9561 0.0542 0.7891 0.8583 0.8866
APNet TETCI21 30.4 46.6 0.99 36.9 0.0345 0.8221 0.8751 0.9182 0.0213 0.8848 0.9204 0.9515 0.0341 0.8181 0.8669 0.9121

Our 6.1 1.5 6.5 34.9 0.0321 0.8463 0.8795 0.932 0.0205 0.9016 0.9229 0.9608 0.0311 0.841 0.8776 0.9262

Table 2. Quantitative comparisons with the lightweight methods on the RGB-T datasets. The best
result is marked in red color in each column. ↑ and ↓ mean a larger value is better and a smaller value
is better, respectively.

Pub.
Param ↓ FLOP ↓ FPS ↑ VT5000 VT1000 VT821

M G CPU GPU M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑

CSRNet TCSVT21 1.0 4.4 2.7 24.8 0.0417 0.8093 0.8678 0.9068 0.0242 0.8751 0.9184 0.9393 0.0376 0.8289 0.8847 0.9116
LSNet TIP23 4.6 1.2 11.6 51.1 0.0367 0.8269 0.8764 0.9206 0.0224 0.8874 0.9244 0.9528 0.0329 0.8276 0.8777 0.9179
Our 6.1 1.5 6.5 34.9 0.0321 0.8463 0.8795 0.932 0.0205 0.9016 0.9229 0.9608 0.0311 0.841 0.8776 0.9262

Figure 5. PR curves and F-measure curves of the compared methods on the RGB-T datasets.
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Table 3. The t-test of our method with the compared methods on the RGB-T datasets. For the
evaluation metrics IoU and Dice, the right-sided test was performed. The p-value is reported in this
table. ↑ mean a larger value is better and a smaller value is better, respectively.

VT5000 VT1000 VT821

IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑

LSNet 0.7609 0.8411 0.8627 0.9137 0.7665 0.8393

Our

0.7721 0.8531 0.865 0.916 0.7684 0.8439
0.7728 0.8531 0.863 0.9149 0.7676 0.8424
0.7718 0.852 0.8649 0.9161 0.7608 0.8357
0.7738 0.8538 0.8632 0.9151 0.7669 0.8416
0.771 0.8519 0.8629 0.9141 0.7685 0.8432

0.7703 0.8512 0.8624 0.9135 0.765 0.8398

p-value 1.9 ×10−6 4.7 ×10−7 0.0562 0.0154 0.5938 1.1 ×10−8

Table 4. Six sets of experiment results of our method on the RGB-T datasets. ↑ and ↓ mean a larger
value is better and a smaller value is better, respectively.

VT5000 VT1000 VT821

No. M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑

1 0.0321 0.8463 0.8795 0.932 0.0205 0.9016 0.9229 0.9608 0.0311 0.841 0.8776 0.9262
2 0.0325 0.843 0.8797 0.9311 0.0205 0.8978 0.9215 0.9589 0.0312 0.8385 0.8764 0.9251
3 0.0322 0.8451 0.8797 0.9318 0.0199 0.9004 0.9232 0.9608 0.032 0.8384 0.8735 0.9222
4 0.0324 0.8436 0.88 0.9319 0.0203 0.8973 0.9216 0.9591 0.0316 0.8369 0.8761 0.9244
5 0.0331 0.8401 0.8786 0.9299 0.0205 0.8972 0.9214 0.9597 0.0311 0.8361 0.8773 0.9242
6 0.0332 0.8407 0.8781 0.93 0.0205 0.8981 0.9214 0.9595 0.031 0.8369 0.8753 0.9242

Table 5. The t-test of our method with the compared methods on the RGB-T datasets. For the
evaluation metric M, the left-sided test was performed, while for the other three metrics Fβ, Sα, and
Eξ , the right-sided test was performed. The p-value is reported in this table. ↑ and ↓ mean a larger
value is better and a smaller value is better, respectively.

VT5000 VT1000 VT821

Compared Method M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑

BASNet 4.8 × 10−10 2.5 × 10−9 2.2 × 10−10 2.1 × 10−10 8.4 × 10−10 4.8 × 10−9 9.3 × 10−8 5.5 × 10−10 1.6 × 10−11 1.4 × 10−10 1.9 × 10−9 2.7 × 10−10

EGNet 1.0 × 10−9 5.7 × 10−9 2.0 × 10−9 6.2 × 10−10 2.9 × 10−10 6.1 × 10−9 1.4 × 10−7 6.1 × 10−10 2.7 × 10−11 1.0 × 10−10 3.9 × 10−9 3.3 × 10−10

CPD 4.3 × 10−9 1.4 × 10−8 2.8 × 10−9 1.7 × 10−9 6.0 × 10−10 3.1 × 10−8 5.7 × 10−8 2.0 × 10−9 3.7 × 10−12 7.0 × 10−11 1.3 × 10−9 1.6 × 10−10

ADF 2.4 × 10−9 7.3 × 10−9 2.5 × 10−8 8.3 × 10−10 1.9 × 10−10 5.2 × 10−9 1.3 × 10−7 5.5 × 10−10 5.0 × 10−12 6.6 × 10−11 6.5 × 10−10 1.3 × 10−10

MIDD 5.0 × 10−9 1.7 × 10−8 3.7 × 10−9 1.0 × 10−9 1.6 × 10−9 1.0 × 10−7 5.1 × 10−8 4.6 × 10−9 2.3 × 10−9 3.5 × 10−8 0.0003 2.9 × 10−8

MMNet 1.6 × 10−8 9.5 × 10−9 1.5 × 10−8 6.9 × 10−10 8.1 × 10−9 3.5 × 10−8 8.0 × 10−7 2.5 × 10−9 2.3 × 10−8 1.2 × 10−8 0.0024 1.7 × 10−8

MIADPD 7.7 × 10−8 2.7 × 10−8 0.0399 1.8 × 10−9 3.8 × 10−8 7.2 × 10−8 0.9980 5.4 × 10−9 1.1 × 10−11 2.0 × 10−10 2.5 × 10−8 2.3 × 10−10

OSRNet 1.1 × 10−7 1.5 × 10−6 2.1 × 10−5 2.5 × 10−8 5.5 × 10−6 3.2 × 10−5 0.9999 2.9 × 10−7 5.2 × 10−9 1.4 × 10−7 0.0932 4.9 × 10−8

ECFFNet 7.0 × 10−7 1.7 × 10−7 4.1 × 10−6 3.7 × 10−8 6.9 × 10−5 5.4 × 10−7 0.8566 1.9 × 10−7 3.4 × 10−6 1.4 × 10−7 0.5414 4.5 × 10−7

PCNet 3.1 × 10−6 1.5 × 10−5 1.5 × 10−5 3.0 × 10−7 0.0007 7.7 × 10−6 1 1.9 × 10−7 3.4 × 10−7 7.8 × 10−7 0.0038 5.4 × 10−8

TAGF 5.5 × 10−6 5.2 × 10−6 1.5 × 10−5 1.2 × 10−7 0.0004 1.4 × 10−5 0.9999 6.8 × 10−5 2.5 × 10−6 1.1 × 10−6 0.9996 5.0 × 10−7

UMINet 1.2 × 10−5 1.7 × 10−5 0.0001 1.4 × 10−6 0.0002 5.6 × 10−5 0.9999 5.4 × 10−5 1.5 × 10−10 6.4 × 10−9 4.5 × 10−7 5.5 × 10−9

APNet 7.9 × 10−5 2.1 × 10−6 1.9 × 10−5 2.4 × 10−7 0.0001 4.0 × 10−6 0.0025 1.0 × 10−6 5.6 × 10−6 5.7 × 10−7 1.2 × 10−5 1.5 × 10−6

CSRNet 3.6 × 10−8 2.0 × 10−7 1.2 × 10−7 1.0 × 10−8 1.1 × 10−7 2.9 × 10−7 6.1 × 10−5 1.1 × 10−8 9.7 × 10−8 2.8 × 10−5 0.9999 1.2 × 10−6

LSNet 1.9 × 10−6 7.6 × 10−6 0.0001 6.6 × 10−7 2.5 × 10−6 1.1 × 10−5 0.9996 2.4 × 10−6 9.0 × 10−5 1.4 × 10−5 0.9794 3.4 × 10−5
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4.3.2. Qualitative Comparison

To demonstrate the effectiveness of our method, we also provide the visual compar-
isons with other methods in Figure 6. In this figure, the challenging scenes include small
objects (1st and 2nd row), multiple objects (3rd and 4th row), a misleading RGB image
(5th row), and misleading thermal images (6th, 7th, and 8th row). As seen in Figure 6, our
method can detect salient objects better than other methods. For example, in the first and
second rows, our method can accurately detect small salient objects, while other methods
like MMNet and MIADPD failed in this case. In the third and fourth rows, our method
can detect multiple objects in the scene, but the other methods performed poorly. In the
fifth row, our method can detect the salient object effectively despite the low contrast in the
RGB image, while the other methods were interfered with by the noisy information in the
RGB image. In the sixth and seventh rows, the salient objects have apparent contrast in the
RGB image, but are similar to other objects in the background in the thermal image. The
thermal images provide misleading information, which can be easily solved by our method.
In summary, our method can accurately overcome the challenges in these scenarios due to
the better fusion of the complementary information between the two-modal features and
multiscale information extraction.

1

2

3

4

5

6

7

8

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)RGB T GT

Figure 6. Visual comparisons with other methods. (a) Ours. (b) ADF. (c) MIDD. (d) MMNet.
(e) MIADPD. (f) OSRNet. (g) ECFFNet. (h) PCNet. (i) TAGF. (j) UMINet. (k) APNet.

4.4. Ablation Study
4.4.1. Effectiveness of Cross-Modal Information Mutual Reinforcement Module

To demonstrate the effectiveness of the CMIMR module, we perform several ablation
experiments in Table 6. First, we removed the CMIMR module, i.e., the two-modal features
were directly concatenated followed by the 3 × 3 DSConv, referred to as w/o CMIMR.
Compared with this variant, our method improved M and Fβ by 5.0% and 1.7% on VT5000,
respectively. This suggests that our method can effectively fuse complementary information
between two-modal features by enhancing them with the guidance information of the
previous level and inter-modality. To demonstrate that the performance improvement of
each module is significant, we perform t-test in Table 7. As shown in Table 7, the p-value of
our method was less than 0.01 for all four metrics compared to the variant w/o CMIMR, so
the test was highly significant. To demonstrate that the CMIMR outperformed the other
modules that play the same role in existing methods, we replaced it with the two-modal
feature fusion module in ADF [13], abbreviated as w ADF-TMF. Compared to this variant,
our method improved the M and Fβ by 2.4% and 0.8% on VT5000, respectively. Compared
to the variant w ADF-TMF, the p-value of our method was less than 0.01 for Fβ and Sα on
VT5000, so the test was highly significant. This suggests that the design of the CMIMR
module is sound.
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Table 6. Ablation studies of our method on three RGB-T datasets. The best result is marked in red
color in each column. ↑ and ↓ mean a larger value is better and a smaller value is better, respectively.

VT5000 VT1000 VT821

M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑

w/o CMIMR 0.0338 0.8321 0.8744 0.9274 0.0222 0.8881 0.9174 0.9556 0.0334 0.8249 0.8682 0.9163
w/o PDFE 0.0328 0.8396 0.8762 0.9295 0.0211 0.8935 0.92 0.9571 0.033 0.8309 0.8693 0.9182
w/o IMR 0.0331 0.8394 0.8777 0.9292 0.0208 0.8945 0.9203 0.9577 0.0321 0.8308 0.8712 0.9208

w ADF-TMF 0.0329 0.8396 0.8778 0.9309 0.0208 0.8934 0.9189 0.9591 0.0314 0.8368 0.8766 0.9259

w/o SIGF 0.0334 0.8366 0.8767 0.9287 0.0215 0.8853 0.9159 0.9541 0.0316 0.827 0.8747 0.9207
w/o SIE 0.0327 0.8405 0.8784 0.93 0.0208 0.8927 0.9202 0.9571 0.0335 0.8308 0.8712 0.9201

w/o VAB 0.033 0.8392 0.8771 0.9299 0.0208 0.894 0.9199 0.9572 0.0312 0.8327 0.8748 0.9229
w ADF-Decoder 0.0328 0.8377 0.8783 0.9299 0.021 0.8941 0.9198 0.9582 0.0319 0.8354 0.8772 0.9238

w SIGF-FAM 0.0328 0.8416 0.8795 0.9312 0.0205 0.8965 0.9215 0.9595 0.0316 0.8351 0.8775 0.9231
w SIGF-RFB 0.0328 0.8411 0.8794 0.9302 0.0208 0.8966 0.9219 0.9584 0.0328 0.8354 0.8766 0.9221

w/o IoU 0.0331 0.8344 0.8788 0.9276 0.0222 0.8828 0.9216 0.9488 0.0332 0.8259 0.8764 0.9165
SF 0.0327 0.8396 0.8847 0.9289 0.0211 0.8903 0.9269 0.9499 0.0304 0.8353 0.8872 0.9219
SR 0.0419 0.7967 0.8578 0.9065 0.0265 0.8727 0.9139 0.9403 0.0427 0.7716 0.8446 0.8914
ST 0.0461 0.7608 0.8389 0.8911 0.0354 0.8327 0.8864 0.9204 0.0518 0.745 0.8228 0.8751

SF + SR + ST 0.0402 0.7649 0.8774 0.8844 0.0276 0.844 0.9214 0.9216 0.0407 0.7677 0.8793 0.8802
w LPW 0.0335 0.8316 0.8818 0.9255 0.0211 0.8861 0.9259 0.9493 0.0311 0.8296 0.8891 0.9199
w/o AD 0.036 0.8294 0.8778 0.9228 0.0211 0.8902 0.9261 0.9522 0.0334 0.8277 0.8794 0.9198

RGB 0.0419 0.8105 0.8616 0.9115 0.0257 0.8809 0.916 0.9467 0.0543 0.7638 0.8431 0.8939
T 0.044 0.7766 0.8439 0.9007 0.0339 0.8444 0.8884 0.9286 0.0494 0.7595 0.8249 0.8853

Our 0.0321 0.8463 0.8795 0.932 0.0205 0.9016 0.9229 0.9608 0.0311 0.841 0.8776 0.9262

Table 7. The t-test of our method with ablation experiments on the RGB-T datasets. For the evaluation
metric M, the left-sided test was performed. For the other three metrics Fβ, Sα, and Eξ , the right-sided
test was performed. The p-value is reported in this table. ↑ and ↓ mean a larger value is better and a
smaller value is better, respectively.

VT5000 VT1000 VT821

Ablation Variant M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑ M ↓ Fβ ↑ Sα ↑ Eξ ↑

w/o CMIMR 0.0006 5.0 × 10−5 8.6 × 10−6 0.0001 4.2 × 10−6 1.5 × 10−5 1.8 × 10−5 2.9 × 10−5 2.4 × 10−5 4.6 × 10−6 2.5 × 10−5 1.2 × 10−5

w/o PDFE 0.1514 0.0080 8.2 × 10−5 0.0045 0.0004 0.0005 0.0010 0.0002 6.7 × 10−5 9.2 × 10−5 5.3 × 10−5 4.3 × 10−5

w/o IMR 0.0204 0.0064 0.0018 0.0022 0.0036 0.0012 0.0019 0.0008 0.0024 8.6 × 10−5 0.0003 0.0006
w ADF-TMF 0.0771 0.0080 0.0024 0.3017 0.0036 0.0004 0.0001 0.0461 0.3457 0.0824 0.8023 0.9816

w/o SIGF 0.0037 0.0006 0.0002 0.0008 4.4 × 10−5 4.8 × 10−6 4.6 × 10−6 6.6 × 10−6 0.0766 1.1 × 10−5 0.0402 0.0005
w/o SIE 0.2818 0.0223 0.0179 0.0178 0.0036 0.0002 0.0015 0.0002 1.9 × 10−5 8.6 × 10−5 0.0003 0.0002

w/o VAB 0.0392 0.0052 0.0004 0.0133 0.0036 0.0007 0.0008 0.0003 0.7808 0.0004 0.0495 0.0199
w ADF-Decoder 0.1514 0.0014 0.0123 0.0133 0.0007 0.0008 0.0006 0.0025 0.0080 0.0080 0.9431 0.1634

w SIGF-FAM 0.1514 0.0906 0.7613 0.5802 0.1177 0.0151 0.0983 0.2068 0.0766 0.0052 0.9694 0.0312
w SIGF-RFB 0.1514 0.0473 0.6604 0.0330 0.0036 0.0177 0.3889 0.0044 0.0001 0.0080 0.8023 0.0040

w/o IoU 0.0204 0.0002 0.0927 0.0001 4.2 × 10−6 2.1 × 10−6 0.1434 2.5 × 10−7 3.9 × 10−5 6.8 × 10−6 0.7131 1.3 × 10−5

SF 0.2817 0.0080 0.9999 0.0012 0.0004 4.7 × 10−5 0.9999 4.3 × 10−7 0.999 0.0069 1 0.0029
SR 3.2 × 10−8 4.1 × 10−8 5.4 × 10−9 9.6 × 10−9 1.0 × 10−8 1.8 × 10−7 1.1 × 10−6 1.5 × 10−8 5.0 × 10−9 1.4 × 10−9 2.6 × 10−8 1.1 × 10−8

ST 5.0 × 10−9 2.4 × 10−9 2.3 × 10−10 8.5 × 10−10 1.2 × 10−10 1.7 × 10−9 7.1 × 10−10 4.3 × 10−10 2.6 × 10−10 2.6 × 10−10 1.9 × 10−9 1.5 × 10−9

SF + SR + ST 8.8 × 10−8 3.0 × 10−9 0.0008 3.9 × 10−10 4.5 × 10−9 4.4 × 10−9 0.0669 5.0 × 10−10 1.3 × 10−8 1.1 × 10−9 0.9988 2.5 × 10−9

w LPW 0.0023 4.0 × 10−5 0.9998 1.5 × 10−5 0.0004 6.5 × 10−6 0.9999 3.2 × 10−7 0.8996 4.1 × 10−5 1 0.0002
w/o AD 4.7 × 10−6 1.7 × 10−5 0.0024 2.1 × 10−5 0.0004 4.5 × 10−6 0.9999 1.6 × 10−6 2.4 × 10−5 1.5 × 10−5 0.9987 0.0002

RGB 3.2 × 10−8 2.4 × 10−7 1.4 × 10−8 3.0 × 10−8 2.1 × 10−8 1.2 × 10−6 5.0 × 10−6 1.1 × 10−7 1.5 × 10−10 8.0 × 10−10 2.1 × 10−8 1.6 × 10−8

T 1.2 × 10−8 6.8 × 10−9 4.5 × 10−10 3.3 × 10−9 2.0 × 10−10 4.6 × 10−9 9.4 × 10−10 1.4 × 10−9 4.9 × 10−10 6.1 × 10−10 2.3 × 10−9 4.6 × 10−9

Second, we removed the previous-level decoded feature enhancement, which is ab-
breviated as w/o PDFE, i.e., two-modal features are not enhanced by the previous-level
decoded feature, but are directly fed into the cross-modal information mutual enhancement
component of the CMIMR module. Compared to this variant, our method improved the M



Entropy 2024, 26, 130 13 of 21

and Fβ by 2.1% and 0.8% on VT5000, respectively. Compared to the variant w/o PDFE, the
p-value of our method was less than 0.01 for the Fβ, Sα, and Eξ on VT5000; therefore, the test
was highly significant. This shows that the PDFE component is conducive to suppressing
noisy information in two-modal features. Finally, we removed the cross-modal information
mutual reinforcement component, which is abbreviated as w/o IMR, i.e., after the PDFE
component, the two-modal features were fused by the concatenation–3 × 3 DSConv. Com-
pared to this variant, our method improved the M and Fβ by 3.0% and 0.8% on VT5000,
respectively. Compared to the variant w/o IMR, the p-value of our method was less than
0.01 for the Fβ, Sα, and Eξ on VT5000, so the test was highly significant. This suggests
that the IMR component helps to transfer complementary information to each other and
suppress the distracting information in each modality. We also show the saliency maps of
the ablation experiments in Figure 7. In the first row, the holly is obvious in the RGB image,
and other ablation variants mistook it for salient objects. In the second row, the potato
in the thermal image is similar to the salient objects, and other ablation variants cannot
distinguish it accurately. However, with the CMIMR module, our method can eliminate
this misleading information. In conclusion, the CMIMR module can effectively fuse the
complementary information between two-modal features and mitigate the adverse effects
of distracting information.

(a) (b) (c) (d)RGB T GT

Figure 7. Visual comparisons with ablation experiments on the effectiveness of the CMIMR module.
(a) Ours. (b) w/o CMIMR. (c) w/o PDFE. (d) w/o IMR.

4.4.2. Effectiveness of Semantic-Information-Guided Fusion Module

To demonstrate the effectiveness of the semantic-information-guided fusion module,
we conducted three ablation experiments. The results are shown in Table 6. First, we
removed the SIGF module in our method, abbreviated as w/o SIGF, i.e., the two-level
features were directly concatenated, followed by the 3 × 3 DSConv. Compared to this
variant, our method improved the M and Fβ by 3.9% and 1.2% on VT5000, respectively.
This demonstrates that the SIGF module is helpful in suppressing interfering information
and exploring multiscale information. To demonstrate that the performance improvement
of the SIGF module is significant, we perform the t-test in Table 7. Compared to the variant
w/o SIGF, the p-value of our method was less than 0.01 for four metrics on VT5000, so
the test was highly significant, except for the p-value, which was less than 0.05 for Sα on
VT821, which was significant. To demonstrate that the SIGF module outperformed other
the modules that play the same role in existing methods, we replaced it with the decoder
module in ADF [13], abbreviated as w ADF-Decoder. Compared to this variant, our method
improved the M and Fβ by 2.4% and 1.0% on VT5000, respectively. Compared to the
variant w ADF-Decoder, the p-value of our method was less than 0.01 for Fβ on VT5000, so
the test was highly significant. This suggests that the design of the SIGF module is sound.

Second, we removed the previous-level semantic information enhancement in the SIGF
module, which is abbreviated as w/o SIE, i.e., the previous-level semantic information en-
hancement was removed, and the two-level features were directly concatenated in the SIGF
module. Compared with this variant, our method improved the M and Fβ by 1.8% and 0.7%
on VT5000, respectively. This demonstrates that the SIE component helps to suppress interfer-
ing information. Compared to the variant w/o SIE, the p-value of our method was less than
0.05 for the Fβ, Sα, and Eξ on VT5000, so the test was significant. Next, we removed the VAB
component in the SIGF module, which is abbreviated as w/o VAB, i.e., the VAB component
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was removed in the SIGF module, and the other components were retained. Compared to
this variant, our method improved the M and Fβ by 2.7% and 0.8% on VT5000, respectively.
This shows that the VAB is capable of capturing the multiscale information of salient objects.
Compared to the variant w/o VAB, the p-value of our method was less than 0.01 for the Fβ

and Sα on VT5000, so the test was highly significant. Besides, we also replaced the VAB
in the SIGF module with the RFB and FAM, abbreviated as w SIGF-RFB and w SIGF-FAM,
respectively. Compared to the RFB variant, our method improved the M and Fβ by 2.1%
and 0.6% on VT5000, respectively. Compared to the variant w SIGF-RFB, the p-value of
our method was less than 0.05 for the Fβ and Eξ on VT5000, so the test was significant.
Compared to the FAM variant, our method improved the M and Fβ by 2.1% and 0.6%
on VT5000, respectively. These two results indicate that the VAB slightly outperformed
the RFB and FAM in capturing multiscale context information. We also show the visual
comparisons of the ablation experiments in Figure 8. In the first row, the variants are
disturbed by the tire. In the second row, other variants are unable to detect small objects.
With the SIGF module, our method effectively addresses these challenges. In summary,
the SIGF module can effectively suppress interfering information and capture multiscale
information.

(a) (b) (c) (d)RGB T GT

Figure 8. Visual comparisons with ablation experiments on the effectiveness of the SIGF module.
(a) Ours. (b) w/o SIGF. (c) w/o SIE. (d) w/o VAB.

4.4.3. Effectiveness of Hybrid Loss and Auxiliary Decoder

To demonstrate the effectiveness of the hybrid loss and auxiliary decoder, we con-
ducted two ablation experiments. The results are presented in Table 6. First, we removed
the IoU loss, which is abbreviated as w/o IoU, i.e., only the BCE loss was employed in
training our model. Compared to this variant, our method improved the M and Fβ by
3.0% and 1.4% on VT5000, respectively. Compared to the variant w/o IoU, the p-value
of our method was less than 0.01 for the Fβ and Eξ on VT5000, so the test was highly
significant. This demonstrates that the IoU loss is conducive to boosting the performance
from the perspective of integral consistency. As shown in Figure 9b, the variant w/o IoU
is susceptible to background noise. To demonstrate of the effectiveness of summing three
single-channel saliency features, we employed three learnable parameters to weight them
and, then, summed the weighted features, abbreviated as w LPW. Compared to this variant,
our method improved the M and Fβ by 4.2% and 1.8% on VT5000, respectively. Compared
to the variant w LPW, the p-value of our method was less than 0.01 for M, Fβ, and Eξ

on VT5000, so the test was highly significant. However, our method failed to perform in
the Sα, i.e., the learnable parameters can improve the Sα, but it did not perform as well
as our method on the other metrics. Besides, we also conducted an experiment on the
summation of three saliency maps, abbreviated as SF + SR + ST. The results were even
worse than those only employing SF. Compared to this variant, our method improved the
M and Fβ by 20.1% and 10.6% on VT5000, respectively. Compared to the variant SF + SR

+ ST, the p-value of our method was less than 0.01 for four metrics on VT5000, so the test
was highly significant. This suggests that summing the three saliency maps together can
have a detrimental effect. In Table 6, we also report the evaluation results of the three
saliency maps, abbreviated as SF, SR, and ST, respectively. Note that we wished to evaluate
the contribution of the three saliency maps (SF, SR, and ST) in the same setup as our full
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method, and therefore, the network parameters remained unchanged. The primary decoder
saliency map SF was much better than the two auxiliary decoder saliency maps SR and ST.
Compared to the SF, our method improved the M and Fβ by 1.8% and 0.8% on VT5000,
respectively. This suggests that summing three single-channel saliency features can also
provide beneficial information for SF. Unfortunately, however, this strategy had an adverse
effect on Sα, reducing the Sα by 0.6% on VT5000.

(a) (b) (c)RGB T GT

Figure 9. Visual comparisons with ablation experiments on the effectiveness of the IoU loss and
auxiliary decoder. (a) Ours. (b) w/o IoU. (c) w/o AD.

We also conducted experiments only employing one modality as the input, abbreviated
as RGB and T. That is, two auxiliary decoders were removed, the CMIMR module was
removed, and no two-modal feature fusion were required since only one modality was
used as the input. We input the RGB image and thermal image into the modified network
separately. Then, the SIGF module was employed to decode the two-level features from
top-to-bottom. Only employing the RGB image as the input was better than only employing
the T image, but our method can greatly improve the results. Compared to the variant
RGB, out method improved the M and Fβ by 23.4% and 4.4% on VT5000, respectively.
Compared to the variant RGB, the p-value of our method was less than 0.01 for four metrics
on VT5000, so the test was highly significant.

Besides, to demonstrate the necessity of two auxiliary decoders, we removed two
auxiliary decoders, which is abbreviated as w/o AD, i.e., only the primary decoder was
retained in our modified model. Compared to this variant, our method improved the M
and Fβ by 10.8% and 2.0% on VT5000, respectively. Compared to the variant w/o AD,
the p-value of our method was less than 0.01 for four metrics on VT5000, so the test was
highly significant. This demonstrates that two auxiliary decoders can guide the two-modal
encoders to extract modality-specific information and supplement valuable information at
the single-channel saliency feature level. Unfortunately, the AD module did not perform
well in all cases, but considering that it boosted most metrics, its failure cases in Sα are
acceptable. Note that since the network structure was modified in these three cases (w/o
AD, RGB, and T), we needed to retrain the network to obtain the saliency maps, which is a
different experimental setup from the ablation experiments SF, SR, and ST. As shown in
Figure 9c, the variant w/o AD failed to guide two encoders to extract beneficial information.
On the contrary, our entire model performed well in these cases.

4.5. Scalability on RGB-D Datasets

To demonstrate the scalability of our method, we retrained it on the RGB-D datasets.
Following the settings in [66], we employed the 1485 images from NJU2K [67] and 700 images
from NLPR [68] as the training datasets. The other parts of NJU2K, NLPR, and all images
of SIP [66], STERE1000 [69] were taken as the testing datasets. Note that when testing on
DUT [70], the extra 800 images from DUT were also taken as the training datasets, namely
a total of 2985 images for training on DUT.

To demonstrate the effectiveness of our method, we compared it with 10 SOTA meth-
ods, S2MA [30], AFNet [71], ICNet [31], PSNet [72], DANet [73], DCMF [35], MoADNet [37],
CFIDNet [34], HINet [33], and LSNet [48]. As shown in Table 8, our method improved 3.2%
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and 0.5% in terms of the M and Eξ on the NJU2K dataset. Besides, our method improved
0.8% and 0.9% in terms of the M and Fβ on the NLPR dataset. This demonstrates that our
method has a preferable generalization ability on the RGB-D datasets. To demonstrate that
the performance improvement of our method was significant, the t-test is performed in
Table 9. We retrained our method and obtained six sets of experiment results. As shown
in Table 9, compared to other methods, the p-value of M, Fβ, and Eξ on NJU2K were less
than 0.01; therefore, the t-test was highly significant. The p-value of M and Fβ on NLPR
were less than 0.01; therefore, the test was highly significant.

Table 8. Quantitative comparisons with 10 methods on the RGB-D datasets. The top three results are
marked in red, green, and blue color in each row, respectively. ↑ and ↓ mean a larger value is better
and a smaller value is better, respectively.

S2MA AFNet ICNet PSNet DANet DCMF MoADNet CFIDNet HINet LSNet Our

NJU2K

M ↓ 0.0533 0.0533 0.052 0.0485 0.0464 0.0427 0.041 0.038 0.0387 0.0379 0.0367
Fβ ↑ 0.8646 0.8672 0.8676 0.8659 0.8763 0.8804 0.8903 0.891 0.896 0.8998 0.901
Sα ↑ 0.8942 0.8801 0.8939 0.8898 0.8969 0.9125 0.9062 0.9141 0.9151 0.9107 0.9021
Eξ ↑ 0.9163 0.9188 0.9127 0.9125 0.926 0.9246 0.9339 0.9289 0.9385 0.9401 0.9447

NLPR

M ↓ 0.03 0.033 0.0284 0.0287 0.0285 0.029 0.0274 0.0258 0.0259 0.0244 0.0242
Fβ ↑ 0.8479 0.8203 0.865 0.8838 0.8662 0.849 0.8664 0.8803 0.8725 0.8824 0.8917
Sα ↑ 0.9145 0.8994 0.9215 0.9061 0.9137 0.921 0.9148 0.921 0.9212 0.9169 0.9136
Eξ ↑ 0.9407 0.9306 0.9435 0.9457 0.9478 0.9381 0.9448 0.95 0.9491 0.9554 0.9564

DUT

M ↓ 0.044 − 0.0722 − 0.0467 0.0351 0.0313 − − − 0.0332
Fβ ↑ 0.8847 − 0.8298 − 0.8836 0.9057 0.9214 − − − 0.9212
Sα ↑ 0.903 − 0.8524 − 0.8894 0.9279 0.9269 − − − 0.9154
Eξ ↑ 0.9349 − 0.9012 − 0.929 0.9505 0.9589 − − − 0.9531

SIP

M ↓ − − 0.0697 − 0.054 − 0.0585 0.0603 0.0658 0.0492 0.0521
Fβ ↑ − − 0.8334 − 0.8615 − 0.846 0.8565 0.8434 0.8819 0.8805
Sα ↑ − − 0.8527 − 0.8771 − 0.8648 0.8632 0.8552 0.8844 0.8709
Eξ ↑ − − 0.899 − 0.9167 − 0.9102 0.9058 0.899 0.9271 0.9178

STERE1000

M ↓ 0.0508 0.0472 0.0447 0.0521 0.0476 0.0427 0.0424 0.0427 0.049 0.0543 0.0439
Fβ ↑ 0.8545 0.8718 0.8642 0.8522 0.8581 0.8659 0.8666 0.8789 0.8586 0.8542 0.874
Sα ↑ 0.8904 0.8914 0.9025 0.8678 0.8922 0.9097 0.8989 0.9012 0.8919 0.8707 0.8822
Eξ ↑ 0.9254 0.9337 0.9256 0.9066 0.9263 0.9298 0.9343 0.9325 0.9273 0.9194 0.9364
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Table 9. Hypothesis test of our method with the compared methods on the RGB-D datasets. The t-test was used in our hypothesis test. For the evaluation metric M,
the left-sided test was performed. For other three metrics Fβ, Sα, and Eξ , the right-sided test was performed. The p-value is reported in this table. ↑ and ↓ mean a
larger value is better and a smaller value is better, respectively.

Our S2MA AFNet ICNet PSNet DANet DCMF MoADNet CFIDNet HINet LSNet

NJU2K

M ↓ 0.0367 0.037 0.0363 0.0359 0.0361 0.0362 8.8 × 10−10 8.8 × 10−10 1.3 × 10−9 4.6 × 10−9 1.2 × 10−8 1.2 × 10−7 5.6 × 10−7 9.4 × 10−5 1.7 × 10−5 0.0001
Fβ ↑ 0.901 0.9013 0.9013 0.9028 0.9034 0.9035 2.8 × 10−9 4.0 × 10−9 4.2 × 10−9 3.3 × 10−9 1.8 × 10−8 4.3 × 10−8 8.6 × 10−7 1.2 × 10−6 2.1 × 10−5 0.0018
Sα ↑ 0.9021 0.9018 0.9027 0.9039 0.9034 0.9034 8.1 × 10−7 6.6 × 10−9 6.9 × 10−7 1.1 × 10−7 5.1 × 10−6 1 0.9999 1 1 1
Eξ ↑ 0.9447 0.9442 0.9447 0.9451 0.945 0.945 2.3 × 10−11 3.6 × 10−11 1.3 × 10−11 1.2 × 10−11 1.8 × 10−10 1.3 × 10−10 2.8 × 10−9 4.2 × 10−10 4.4 × 10−8 1.9 × 10−7

NLPR

M ↓ 0.0242 0.0245 0.0247 0.0245 0.0243 0.0246 4.6 × 10−9 5.3 × 10−10 2.5 × 10−8 1.8 × 10−8 2.2 × 10−8 1.3 × 10−8 1.1 × 10−7 5.5 × 10−6 3.9 × 10−6 0.7897
Fβ ↑ 0.8917 0.8888 0.8898 0.8922 0.8925 0.8927 7.4 × 10−9 6.3 × 10−10 9.1 × 10−8 4.5 × 10−5 1.1 × 10−7 8.4 × 10−9 1.2 × 10−7 6.9 × 10−6 4.8 × 10−7 2.0 × 10−5

Sα ↑ 0.9136 0.9119 0.9127 0.9129 0.913 0.9122 0.9996 2.1 × 10−8 1 6.8 × 10−7 0.9948 1 0.9998 1 1 0.9999
Eξ ↑ 0.9564 0.9548 0.9551 0.9556 0.9561 0.9557 1.1 × 10−8 8.4 × 10−10 3.1 × 10−8 8.5 × 10−8 2.8 × 10−7 5.0 × 10−9 5.5 × 10−8 1.4 × 10−6 6.9 × 10−7 0.2078

DUT

M ↓ 0.0332 0.0331 0.0321 0.0324 0.0321 0.0326 1.4 × 10−8 - 2.8 × 10−11 - 4.8 × 10−9 2.5 × 10−5 0.9994 - - -
Fβ ↑ 0.9212 0.9192 0.9224 0.9214 0.9229 0.9205 6.8 × 10−9 - 7.0 × 10−11 - 5.9 × 10−9 4.8 × 10−7 0.5922 - - -
Sα ↑ 0.9154 0.9142 0.9156 0.9145 0.9156 0.9141 8.1 × 10−8 - 2.0 × 10−11 - 1.8 × 10−9 1 1 - - -
Eξ ↑ 0.9531 0.9546 0.9553 0.9544 0.9558 0.9545 2.4 × 10−8 - 1.6 × 10−10 - 6.4 × 10−9 5.5 × 10−5 0.9999 - - -

SIP

M ↓ 0.0521 0.0507 0.0553 0.0536 0.0534 0.0542 - - 9.6 × 10−7 - 0.1443 - 0.0002 6.1 × 10−5 3.7 × 10−6 0.9991
Fβ ↑ 0.8805 0.8855 0.8759 0.8781 0.8798 0.8773 - - 2.2 × 10−7 - 2.3 × 10−5 - 1.1 × 10−6 7.0 × 10−6 7.5 × 10−7 0.9280
Sα ↑ 0.8709 0.8759 0.8661 0.8693 0.8697 0.868 - - 2.7 × 10−5 - 0.9983 - 0.0062 0.0021 5.7 × 10−5 0.9999
Eξ ↑ 0.9178 0.9211 0.9113 0.9155 0.915 0.9133 - - 3.7 × 10−5 - 0.7525 - 0.0058 0.0005 3.7 × 10−5 0.9998

STERE1000

M ↓ 0.0439 0.0453 0.0443 0.0441 0.0445 0.0444 2.7 × 10−7 1.6 × 10−5 0.1052 1.1 × 10−7 8.3 × 10−6 0.9998 0.9999 0.9998 1.4 × 10−6 3.0 × 10−8

Fβ ↑ 0.874 0.8691 0.8728 0.8747 0.8758 0.877 6.1 × 10−6 0.0608 0.0002 3.5 × 10−6 1.7 × 10−5 0.0004 0.0007 0.9966 1.9 × 10−5 5.6 × 10−6

Sα ↑ 0.8822 0.88 0.8807 0.8818 0.8809 0.8812 1 1 1 7.8 × 10−8 1 1 1 1 1 2.6 × 10−7

Eξ ↑ 0.9364 0.9352 0.9353 0.9363 0.9359 0.9365 4.9 × 10−8 0.0001 5.4 × 10−8 2.9 × 10−10 7.6 × 10−8 7.2 × 10−7 0.0004 1.3 × 10−5 1.3 × 10−7 5.1 × 10−9
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5. Discussion

This paper further identifies three important issues in RGB-T SOD: two-modal feature
fusion, two-level feature fusion, and the saliency information fusion of three decoder
branches. It also provides feasible solutions to these issues, which researchers can use to
make further improvements. Our method has three advantages. First, in the two-modal
feature fusion, the supplementary information is retained and interfering information is
filtered. Second, in the two-level feature fusion, the guidance of the semantic information
helps to suppress noise information in the low-level features. Third, the auxiliary decoder
can guide the two encoders to extract modality-specific information. However, there are
limitations to our method. First, the summation of three single-channel saliency features
improves other the metrics, but degrades the Sα. Second, while the full CMIMR and
SIGF bring significant improvements to our method, their subcomponents do not largely
improve the metrics. We will further address these limitations in future work. There are
several directions for future development in this field. First, boundary information should
be taken into account to recover clearer boundaries of salient objects. Second, although
existing methods have made great progress, the structure is complex and simpler, and
more-effective solutions need to be explored. Finally, the solutions of two-modal feature
fusion and two-level feature fusion need further improvement.

6. Conclusions

In this paper, we propose a lightweight cross-modal information mutual reinforcement
network for RGB-T salient object detection. Our proposed method consists of the cross-
modal information mutual reinforcement module and the semantic-information-guided
fusion module. The former module fuses complementary information between two-modal
features by enhancing them with semantic information of the previous-level decoded
feature and the inter-modal complementary information. The latter module fuses the two-
level features and mines the multiscale information from the deep features by rectifying
the low-level feature with the previous-level decoded feature and inserting the VAB to
obtain the global contextual information. In summary, our method can effectively fuse
complementary information between two-modal features and recover the details of salient
objects. We conducted extensive experiments on three RGB-T datasets, and the results
showed that our method is competitive compared with 15 state-of-the-art methods.
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