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Abstract: Spiking neural networks (SNNs) are recurrent models that can leverage sparsity in input
time series to efficiently carry out tasks such as classification. Additional efficiency gains can be
obtained if decisions are taken as early as possible as a function of the complexity of the input time
series. The decision on when to stop inference and produce a decision must rely on an estimate of the
current accuracy of the decision. Prior work demonstrated the use of conformal prediction (CP) as
a principled way to quantify uncertainty and support adaptive-latency decisions in SNNs. In this
paper, we propose to enhance the uncertainty quantification capabilities of SNNs by implementing
ensemble models for the purpose of improving the reliability of stopping decisions. Intuitively, an
ensemble of multiple models can decide when to stop more reliably by selecting times at which most
models agree that the current accuracy level is sufficient. The proposed method relies on different
forms of information pooling from ensemble models and offers theoretical reliability guarantees. We
specifically show that variational inference-based ensembles with p-variable pooling significantly
reduce the average latency of state-of-the-art methods while maintaining reliability guarantees.

Keywords: spiking neural networks; conformal prediction; latency adaptivity; Bayesian learning

1. Introduction

Context: With the advent of large language models, sequence models are currently
among the most studied machine learning techniques. Unlike methods based on conven-
tional neural networks, such as transformers, spiking neural networks (SNNs) process time
series with the prime objective of optimizing energy efficiency, particularly in the presence
of sparse inputs [1–3]. The energy consumption of an SNN depends on the number of
spikes generated internally by the constituent spiking neurons [4], and inference energy can
be further reduced if decisions are taken as early as possible as a function of the complexity
of the input time series [5].

In fact, in conventional SNN classifiers, decisions are typically made after processing
the entire input sequence, leading to uniform inference latency levels across inputs [2].
However, the online operation of SNNs supports an alternative operating principle whereby
inference latency is tailored to the difficulty of each example [5]. The decision on when to
stop inference and produce a decision must rely on an estimate of the current accuracy of
the decision, as stopping too early may cause unacceptable drops in accuracy. The latency-
adaptive rule proposed in [5] uses the SNN’s output confidence levels to estimate the true
accuracy, while reference [6] determined the stopping time via a separate policy network.

SNN models, like their conventional neural network counterpart, tend to be poorly
calibrated and thus produce overconfident decisions [7] (see also Figure 1 in [8]). As a
consequence, the schemes in [5,6] do not offer any reliability guarantee at the stopping
time. To address this problem, recent work [8] demonstrated the use of conformal prediction
(CP) [9–12] as a principled way to quantify uncertainty and support adaptive-latency
decisions in SNNs.
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In the SpikeCP method introduced in [8], the SNN produces set predictions consisting
of a subset of the set of all possible outputs. For instance, given an electroencephalography
(EEG) or electrocardiography (ECG) time series as input, a set predictor determines a set of
plausible conditions that a doctor may need to test for. Accordingly, for many applications,
set predictors provide actionable information while also offering an inherent measure of
uncertainty in the form of the size of the predicted set [9]. SpikeCP leverages the theoretical
properties of CP to define reliable stopping rules based on the size of the predicted set.

Motivation: Predictive uncertainty can be decomposed into aleatoric uncertainty, which
refers to the inherent randomness of the data-generation mechanism, and epistemic un-
certainty, which arises due to the limited knowledge that can be extracted from a finite
dataset [13,14]. While aleatoric uncertainty is captured by individual machine learning
models like SNNs, epistemic uncertainty is typically accounted for by using ensembles
of models. In particular, epistemic uncertainty is quantified by gauging the level of dis-
agreement among the models in the ensemble [13,14]. By relying on conventional SNN
models, SpikeCP does not attempt to quantify epistemic uncertainty and instead focuses only
on aleatoric uncertainty quantification. The application of Bayesian learning and model
ensembling as means to quantify epistemic uncertainty in SNNs was investigated in [15–17]
and showed improvements in standard calibration metrics.

In this paper, we propose to enhance the uncertainty quantification capabilities of
SpikeCP by implementing ensemble SNN models for the purpose of improving the re-
liability of stopping decisions. Intuitively, an ensemble of multiple models can decide
when to stop more reliably by selecting times at which most models agree that the current
accuracy level is sufficient. The proposed method relies on tailored information pooling
strategies across the models in the ensemble that preserve the theoretical guarantees of CP
and SpikeCP.

Main contributions: The main contributions of this work are summarized as follows.

• We propose a novel ensemble-based SNN model that can reliably decide when to stop
in order to produce set predictions with coverage guarantees and with an average
latency that is significantly lower than that of the state of the art.

• As shown in Table 1, we compare two ensembling strategies—deep ensembles
(DE) [18,19] and Bayesian learning via variational inference (VI) [14,15]—and intro-
duce two methods to efficiently combine the decisions from multiple models: namely,
confidence merging (CM) and p-variable merging (PM). In both cases, the resulting set
predictors satisfy theoretical reliability guarantees.

• Experiments show that VI-based ensembles with PM significantly reduce the average
latency of state-of-the-art methods while maintaining reliability guarantees.

Organization: The remainder of the paper is organized as follows. Section 2 presents
the problem, and Section 3 reviews the DC-SNN, while Section 4 introduces the proposed
framework. Section 5 describes the experimental setting and results.

Table 1. Ensembling stategies and information pooling methods for SNN classifiers based on
SpikeCP [8] studied in this paper

ensembling stategies variational inference (VI) deep ensembles (DE)
information pooling confidence merging (CM) p-variable merging (PM)

2. Problem Definition

In this paper, we study adaptive-latency multi-class classification for time series via
SNNs [5,6,8]. As illustrated in Figure 1, unlike prior work [5,6,8], we propose to enhance
the reliability of stopping decisions by explicitly accounting for epistemic uncertainty
when deciding whether to stop or to continue processing the input. The end goal is to
produce reliable set predictions with complexity and latency tailored to the difficulty of
each example. In this section, we start by defining the problem and performance metrics.
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Figure 1. In the proposed system, an ensemble of K SNN models processes an input x and agrees on
when to stop in order to make a classification decision. Each kth SNN model produces a score pk

c for
every candidate class c = 1, ..., C. The scores are combined to determine in an adaptive way whether
to stop inference or to continue processing the input.

2.1. Multi-Class Classification with SNNs

We wish to classify a vector time series x = x1, x2, ... with N × 1 time samples xt =
[xt,1, ..., xt,N ] into C classes using an SNN model. The entries of input vector xt can be
arbitrary, although typical SNN implementations assume binary inputs [20]. As shown
in Figure 1, based on the time samples xt = (x1, ..., xt) observed so far, at any time t,
the C read-out neurons of the SNN produce the C × 1 binary vector yt = [yt,1, ..., yt,C],
with entries equal to 1 representing spikes. Specifically, the SNN processes the input vector
xt at each time t to generate an output vector yt. The output yt depends on the input history
xt, effectively capturing the input’s temporal dependencies and evolution over time.

Internally, an SNN model can be viewed as a recurrent neural network (RNN) with
binary activations. Its operation is defined by a vector θ of synaptic weights, which de-
termines the response of each spiking neuron to incoming spikes. As in most existing
implementations, we adopt a standard spike response model (SRM) [21] for the spik-
ing neurons.

Carrying out decisions on the basis of the outputs of the C read-out neurons is typically
achieved by rate decoding [22]. In rate decoding, at each time t, the SNN maintains a spike
count vector r(xt) = [r1(xt), ..., rC(xt)] in which each cth entry

rc(xt) =
t

∑
t′=1

yt′ ,c (1)

counts the number of spikes emitted so far by read-out neuron c. A normalized measure of
confidence can then be obtained via the softmax function as [22]

fc(xt) = erc(xt)/
C

∑
c′=1

erc′ (xt), (2)

for each class c. Conversely, the loss assigned by the SNN model to label c for input xt is
given by the log-loss

sc(xt) = − log fc(xt). (3)

The general goal of this work is to make reliable classification decisions at the earliest
possible time t on the basis of the confidence levels (2) or, equivalently, of the losses (3)
produced by SNN classifiers.
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2.2. Ensemble Inference and Learning for SNNs

Conventional SNN models consist of a single SNN making decisions on the basis of
the confidence levels (2), or (3), at a fixed time t = T. Neuroscience has long explored the
connection between networks of spiking neurons and Bayesian reasoning [23], and the
recent work [15] has explored the advantages of Bayesian learning and model ensembling
in terms of uncertainty quantification for SNN classifiers. In this work, we leverage
the enhanced uncertainty quantification capabilities of ensemble models to improve the
reliability of adaptive-latency decision making via SNN models.

As illustrated in Figure 1, in the considered setting, K pre-trained SNN classifiers are
used in parallel on an input sequence x1, x2, .... The operation of each kth SNN classifier
is defined by a vector θk of synaptic weights as explained in the previous subsection.
We specifically consider two design methods for the ensembles: namely, deep ensembles
(DE) [19] and Bayesian learning via variational inference (VI) [14].

In DE, the K models are obtained by running conventional SNN training methods
based on a surrogate gradient [24] with K independent weight initializations, with each
weight selected in an independent and identically distributed (i.i.d.) manner as Gaussian
N (0, σ2) variables for some fixed variance σ2. In contrast, in VI, assuming an i.i.d. Gaus-
sian prior distribution N (0, σ2) for the model parameter vector θ, one optimizes over a
variational posterior distribution N (µ, ζ2) parameterized by mean vector µ and diagonal
covariance matrix with diagonal elements given by vector ζ2. The optimization is done
by using gradient descent via the reparameterization trick [15]. At inference time, the K
models are generated by sampling the weight vectors θk from the optimized distribution
N (µ, ζ2).

With DE, generating the K models in the ensemble requires retraining from scratch,
whereas this can be done by simply drawing Gaussian variables in the case of VI. Therefore,
with DE, the ensemble should be practically shared across many input test sequences,
while for VI, it is possible to draw new ensembles more frequently—possibly even for each
new input.

2.3. Set Prediction and Latency Adaptivity

As mentioned, we focus on latency-adaptive classifiers for which the time at which a
decision is made is a function of the input x through the vector f (xt) = [ f1(xt), ..., fC(xt)]
of confidence levels (2) produced by the read-out neurons. Intuitively, when the model
confidence is high enough, the classifier can produce a decision. We denote as Ts(x) the
time at which a decision is made for input x. Furthermore, we allow the decision to be
in the form of a set Γ(x) ⊆ {1, ..., C} of the set of C labels [9]. As mentioned in Section 1,
set decisions provide actionable information in many applications of interest, such as
for robotics, medical diagnosis, and language modeling, and they provide a measure of
uncertainty via the predicted set’s size |Γ(x)| [9].

The performance of the classifier is measured in terms of reliability and latency. A pre-
dictive set Γ(x) is said to be reliable if the probability that the correct label c is included in
the set is no smaller than a predetermined target accuracy ptarg, i.e.,

Pr(c ∈ Γ(x)) ≥ ptarg, (4)

where the probability is taken with respect to the distribution of the test example (x, c) as
well as of the calibration data to be discussed next. The latency of the set prediction is
defined as E[Ts(x)], where the expectation is taken over the same distribution as for (4).

The models are assumed to be pre-trained, and we assume we have access to a separate
calibration dataset:

Dcal = {(x[i], c[i])}|D
cal|

i=1 , (5)

with |Dcal| examples (x[i], c[i]) generated i.i.d. from the same distribution followed by
the test example (x, c) [8,9]. As we will discuss in the next section, calibration data are
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used to optimize the process of deciding when to stop so as to guarantee the reliability
requirement (4).

3. Ensemble-Based Adaptive Point Classification via SNNs

In this section, we first review dynamic-confidence SNN (DC-SNN), a point predictor
for latency-adaptive SNN classification [5], and then introduce the ensemble-based version.

3.1. DC-SNN

DC-SNN produces a decision at the first time t for which the maximum confidence
level across all possible classes is larger than a fixed target confidence level pth ∈ (0, 1).
Accordingly, the stopping time is given by

Ts(x) = min
t∈{1,...,T}

t s.t. max
c∈C

fc(xt) ≥ pth (6)

if there is a time t < T that satisfies the constraint and Ts(x) = T otherwise. The rationale
for this approach is that, by (6), if Ts(x) < T, the classifier has a confidence level no smaller
than pth on the decision

ĉ(x) = arg max
c∈C

fc(xTs(x)). (7)

If the SNN classifier is well calibrated, the confidence level coincides with the true
accuracy of the decision given by the class arg maxc∈C fc(xt) at all times t. Therefore,
setting the target confidence level pth to be equal to the target accuracy ptarg, i.e., pth = ptarg,
guarantees a zero or negative reliability gap for the adaptive decision (7) when Ts(x) < T.
However, the assumption of calibration is typically not valid. To address this problem,
reference [5] introduced a solution based on the use of a calibration dataset.

Specifically, DC-SNN evaluates the empirical accuracy of the decision (7), i.e.,

Âcal(pth) =
1

|Dcal|

|Dcal|

∑
i=1

1(ĉ(x[i]) = c[i]), (8)

where 1(·) is the indicator function, for a grid of possible values of the target confidence
level pth. Then, it chooses either the minimum value pth that ensures the inequality
Âcal(pth) ≥ ptarg so that the calibration accuracy exceeds the target accuracy level ptarg or
the smallest value pth that maximizes Âcal(pth) if the constraint Âcal(pth) ≥ ptarg cannot
be met.

3.2. Ensemble-Based DC-SNN

Following Section 2.2, one can directly extend DC-SNN to implement approximate
Bayesian learning by means of VI and DE methods. Accordingly, at inference time, a de-
cision is made on the basis of K SNN models from a trained ensemble, which is fixed in
the case of DE and randomly generated for VI. In this subsection, we briefly describe the
decision procedure for a Bayesian version of DC-SNN.

Given some input x, each kth model produces a confidence value f k
c (xt) for the pair

(xt, c). Implementing standard Bayesian model averaging, the confidence values f k
c (xt),

k = 1, . . . , K for all models are then pooled by averaging as

fc(xt) =
1
K

K

∑
k=1

f k
c (xt). (9)

The ensemble probability fc(xt) in (9) is finally applied in (6) and (7) to obtain the final
decision.
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4. Ensemble-Based Adaptive Set Classification via SNNs

In this section, we introduce ensemble-based SpikeCP, a novel framework for latency-
adaptive classification that wraps around any pre-trained ensemble of SNN classifiers,
including ensembles obtained via DE and VI. We propose two implementations correspond-
ing to different ways of pooling information across the K models in the ensemble.

4.1. SpikeCP

We first review SpikeCP [8], which applies to a single SNN model, i.e., with K = 1.
The presentation here, unlike in [8], adopts the language of p-variables (see, e.g., [12,25]) in
order to facilitate the extension to ensemble models.

SpikeCP fixes a predetermined set of checkpoint times Ts ⊆ {1, ..., T} at which inference
may stop to produce a decision. The information available to determine whether to stop
or not is the losses {sc(xt)}C

c=1 in (3) for the current input xt as well as the corresponding
losses sc[i](xt[i]) for the calibration data points indexed by i = 1, ..., |Dcal|. For each class c,
SpikeCP computes the quantity

pc(xt) =
∑
|Dcal|
i=1 1(sc(xt) ≤ sc[i](xt[i])) + 1

|Dcal|+ 1
, (10)

where 1(·) equals 1 if the argument is true and 0 otherwise. The quantity (10) corresponds,
approximately, to the fraction of calibration data points for which the loss is no smaller
than the loss for label c when assigned to the current test input xt. The corrections by 1 for
the numerator and denominator are required to guarantee the following property, which
follows from the standard theory of CP ([26], Proposition 1).

Theorem 1. Let Dt,cal = {(xt[i], c[i])}|D
cal|

i=1 be the calibration dataset with samples up to time
t, and define as Ht

c the hypothesis that the pair (xt, c) and the calibration data Dt,cal are i.i.d.
The quantity (10) is a p-variable for null hypothesis Ht

c; i.e., we have the conditional probability

Pr(pc(xt) ≤ α|Ht
c) ≤ α, (11)

for all α ∈ (0, 1), where the probability is taken over the distribution of test and calibration data.

At each checkpoint t ∈ Ts, SpikeCP constructs a predictive set by including all classes
c with a p-variable larger than threshold α

Γ(xt) = {c ∈ C : pc(xt) > α}. (12)

By (11), the probability that the set (12) does not include the true test label c is smaller or
equal to α or, equivalently, ([26], Proposition 1)

Pr(c ∈ Γ(xt)) ≥ 1 − α. (13)

Accordingly, SpikeCP sets α = (1 − ptarg)/|Ts| to ensure that condition (13) is satisfied
irrespective of which checkpoint is selected. As detailed in [8], this is a form of Bonferroni
correction ([27], Appendix 2).

SpikeCP stops inference at the first time Ts(x) for which the size of the predicted set is
smaller than a target set size Ith, so the stopping time is given by

Ts(x) = min{t ∈ Ts : |Γ(xt)| ≤ Ith}. (14)

The threshold Ith is a design choice that is dictated by the desired informativeness of
the resulting set predictor. For any threshold Ith, by construction, SpikeCP satisfies the
reliability property (4) ([8], Theorem 1).
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4.2. Ensemble-Based SpikeCP with Confidence Merging

In the proposed ensemble-SNN architecture in Figure 1, each SNN classifier param-
eterized by θk, k = 1, ..., K produces a generally different probability f k

c (xt) in (2) or,
correspondingly, a different loss sk

c(xt) for each class c given an input xt. In this paper, we
study and compare two combining mechanisms.

First, in order to produce a confidence level for each possible label c, the confidence
levels output by the K models in the ensemble can be combined using the generalized
mean [28]:

fc(xt) =

(
1
K

K

∑
k=1

(
f k
c (xt)

)r
)1/r

(15)

for some integer r ∈ [−∞,+∞]. When r = 1, the ensemble probability (15) reduces to
standard model averaging (9). Other values of r may in practice be advantageous, e.g., to
enhance robustness [29,30], with the maximum operation recovered for r = ∞ and the
minimum operation obtained with r = −∞.

The probability (15) is used to calculate the score via (3), which is then directly used
in (10) and (12) to determine the set predictor. Note that the same combination in (15) is
also applied to calibration data. By the same arguments as for SpikeCP, this approach
guarantees the reliability condition (4) by setting α = (1 − ptarg)/|Ts|.

4.3. Ensemble-Based SpikeCP with P-Variable Merging

Given the reliance of the predicted set (12) on p-variables, directly merging the confi-
dence levels may be suboptimal [31]. Accordingly, in this subsection, we explore the idea
of directly pooling the p-variables rather than combining confidence levels. To this end, we

first calculate the losses for the calibration set by using the kth model as {sk
c[i](xt[i])}|D

t,cal|
i=1

for k = 1, ..., K. Then, for a test input xt, we evaluate the p-variable (10) for the kth model as

pk
c(xt) =

1 + ∑
|Dcal|
i=1 1(sk

c(xt) ≤ sk
c[i](xt[i]))

|Dcal|+ 1
. (16)

The p-variables {pk
c(xt)}K

k=1 are then pooled by using any p-merging function F(·), as de-
fined next.

Definition 1 ([32,33]). A function F : [0, 1]K → [0, ∞) is said to be a p-merging function if, when
the inputs are p-variables, the output is also a p-variable, i.e., we have the inequality

Pr(F
(

pc
1(xt), ..., pc

K(xt)
)
≤ α′) ≤ α′, for all α′ ∈ (0, 1), (17)

where the probability is taken over the joint distribution of the K input p-variables.

Using the merged p-value generated as

pc(xt) = F
(

pc
1(xt), ..., pc

K(xt)
)

(18)

for any p-merging function F(·), the predictive set can be constructed by following (12).
By definition of the p-merging function, the resulting set predictor also satisfies the reliabil-
ity condition (4).

We observe that while CM is also applicable to DC-SNN as per (9), PM is specific to
SpikeCP, which relies on p-variables to construct the predicted set (12).
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In the experiments reported in the next section, we focus on the class of p-merging
functions of the form [33]

F(p1, ..., pK) = ar

(
1
K

K

∑
k=1

(
pk)r

)1/r

, (19)

where ar is a constant chosen so as to ensure (17) as specified in ([33], Table 1). For example,
setting r = −∞ and, correspondingly, ar = K, yields the p-merging function F(p1, ..., pK) =
K min(p1, ..., pK), while setting r = ∞ with a∞ = 1 yields F(p1, ..., pK) = max(p1, ..., pK).

5. Experiments

For numerical evaluations, we consider the standard DVS128 Gesture dataset [34],
MNIST-DVS dataset [35], and the CIFAR-10 dataset. The first dataset represents a video
recognition task, and the latter two represent image classification tasks. The calibration
dataset Dcal is obtained by randomly sampling |Dcal| = 50 examples from the test set,
with the rest used for training, which is done via the surrogate gradient method [24].
The length of the time series is T = 80 samples, and we fix the set of possible checkpoints
as Ts = {20, 40, 60, 80} and the target set size to Ith = 3. The target accuracy ptarg is set
to 0.9.

We compare the performance of ensemble-based SpikeCP using DE or VI equipped
with confidence merging (CM) or p-variable merging (PM) and ensemble-based DC-SNN.
For DE, we follow the standard random initialization made available by PyTorch, while
for VI, we set the prior distribution variance to 0.03. The parameter r in (15) for CM is
set to 1, yielding standard model averaging [15]; while r in (19) for PM is set to r = 45,
with ar = K1/r following ([33], Table 1) based on the numerical minimization of latency on
a held-out dataset. The results are averaged over 50 different realizations of calibration and
test datasets, and the number of ensemble K is set to 6. For fair comparison, we apply the
stopping rule defined in Section 3 to obtain the stopping time and use a top-3 predictor to
produce a set Γd(x) for ensemble-based DC-SNN.

5.1. MNIST-DVS Dataset

The MNIST-DVS dataset contains time series recorded from a DVS camera that is
shown moving handwritten digits from “0” to “9” on a screen. The dataset contains
8000 training examples as well as 2000 examples used for calibration and testing. For this
experiment, we adopt a fully connected SNN with one hidden layer having 1000 neurons.

Figure 2 reports accuracy—Pr(c ∈ Γd(x)) for ensemble-based DC-SNN and Pr(c ∈ Γ(x))
for ensemble-based SpikeCP—and normalized latency E[Ts(x)]/T as a function of the
target accuracy ptarg. Ensemble-based DC-SNN increases the decision latency as the target
probability ptarg increases in order to meet the reliability condition. However, a reliable
decision is only attained by DC-SNN when ptarg is small since DC-SNN guarantees target
accuracy only when the model is well calibrated. In contrast, ensemble-based SpikeCP is
always reliable, irrespective of the target accuracy, as proven. Furthermore, ensemble-based
SpikeCP using VI and PM requires smaller latency to achieve the target accuracy.
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Figure 2. Accuracy (Pr(c ∈ Γd(x)) for ensemble-based DC-SNN and Pr(c ∈ Γ(x)) for ensemble-
based SpikeCP) and normalized latency E[Ts(x)]/T as a function of the target accuracy ptarg for
MNIST-DVS dataset.

In Figure 3, we show the accuracy and normalized latency as a function of the en-
semble size. Note that even with K = 1, DE and VI perform differently, since while DE
directly trains a conventional SNN, VI generates a model by sampling from an optimized
distribution. With a larger ensemble size, both ensemble-based DC-SNN and SpikeCP
exhibit reduced latency to reach a final decision. However, in practice, an excessively
large ensemble size K for DE may increase complexity, necessitating the training of K SNN
models. Furthermore, while SpikeCP maintains its reliability guarantee, DC-SNN falls
short of achieving the target accuracy.
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Figure 3. Accuracy (Pr(c ∈ Γd(x)) for ensemble-based DC-SNN and Pr(c ∈ Γ(x)) for ensemble-based
SpikeCP) and normalized latency E[Ts(x)]/T as a function of the ensemble size K for MNIST-
DVS dataset.

To explore the impact of the hyperparameter r in (15) and (19) for ensemble-based
SpikeCP, we show in Figure 4 the accuracy and normalized latency as a function of r.
To ensure that the p-merging function in (19) produces a valid p-value, we adopt different
p-merging function F(p1, . . . , pK) for different values of r as in ([33], Table 1). CM pooling
methods exhibit the lowest latency when r is approximately around 1, which aligns with
standard Bayesian ensembling, while PM demonstrates a smaller latency with larger values
of r.
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Figure 4. Accuracy Pr(c ∈ Γ(x)) and normalized latency E[Ts(x)]/T as a function of the hyperpa-
rameter r (in (15) for SpikeCP with CM and in (19) for SpikeCP with PM) for MNIST-DVS dataset.

5.2. DVS128 Gesture Dataset

The DVS128 Gesture dataset is a collection of videos from a DVS camera that show an
actor performing one of 11 different gestures under three different illumination conditions.
We divide each time series into T = 80 time intervals and integrate the discrete samples
within each interval to obtain a (continuous-valued) time sample [36]. The dataset contains
1176 training data and 288 test data, from which 50 examples are chosen to serve as calibra-
tion data. The SNN architecture is constructed using a convolutional layer, encompassing
batch normalization and a max-pooling layer, as well as a fully-connected layer as described
in [36].

In Figure 5, we show the accuracy, given by the probability Pr(c ∈ Γ(x)) in (4), and the
average decision latency as a function of the ensemble size K for the DVS128 Gesture
dataset. The performance of ensemble-based DC-SNN is similar to that on the MNIST-DVS
dataset and fails to meet the target accuracy. To highlight the performance of ensemble-
based SpikeCP, we omit the performance of DC-SNN here. Confirming their theoretical
properties, all ensemble-based SpikeCP schemes meet the target accuracy ptarg = 0.9.
Furthermore, the average latency decreases with the ensemble size K, providing substantial
improvements as compared to the original SpikeCP scheme with K = 1 [8].
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VI methods tend to have better performance in terms of latency, showcasing the
benefits of VI as a more principled approach for Bayesian learning. Finally, PM generally
yields smaller latency values as compared to CM, indicating that merging p-variables offers
a more efficient information pooling strategy.

Figure 5. Accuracy Pr(c ∈ Γ(x)) and normalized latency E[Ts(x)]/T as a function of the ensemble
size K for DVS128 Gesture dataset.

5.3. CIFAR-10 Dataset

The CIFAR-10 dataset consists of 60,000 32 × 32 color images that are divided into
10 classes, with 6000 images per class. There are 50,000 training images and 10,000 test
images. We use |Dcal| = 50 calibration samples, which are obtained by randomly selecting
50 data points from the test set. We adopt a ResNet-18 architecture in which conventional
neurons are replaced with SRM neurons [36]. Each example is repeatedly presented to
the SNN for T = 80 times. The CIFAR-10 images are fed directly into the SNN, and the
conversion from images to spikes is executed by the first spiking neural layer as in [36].

In Figure 6, we show the accuracy Pr(c ∈ Γ(x)) and normalized latency E[Ts(x)]/T
as a function of the ensemble size K on the CIFAR-10 dataset for ensemble-based SpikeCP.
As per our theory, SpikeCP can guarantee the reliability condition with all information
pooling schemes. Furthermore, VI with PM produces the best performance in terms
of latency.
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Figure 6. Accuracy Pr(c ∈ Γ(x)) and normalized latency E[Ts(x)]/T as a function of the ensemble
size K for CIFAR-10 dataset.

6. Conclusions

In this work, we have introduced ensemble-based SpikeCP, a novel latency-adaptive
SNN set predictor with provable reliability guarantees. Ensemble-based SpikeCP leverages
the improved epistemic uncertainty quantification capacity of ensemble methods to enhance
the reliability of stopping decisions for adaptive-latency classification. Intuitively, combing
the predictions of multiple models supports the determination of a more reliable stopping
time by focusing on time instants at which most models agree that the current accuracy
level is sufficient. Our proposed approach relies on information pooling from ensemble
models, and it provides a theoretical guarantee of reliability.

A limitation of our work is the use of the Bonferroni correction, which, while ensuring
the reliability condition, may result in higher inference latency for challenging inputs.
A potential future direction is to explore the derivation of tighter bounds on the reliability
condition, which may lead to a solution with lower average latency. Another research
topic involves extending SpikeCP to time decoding for further latency reduction. Finally,
further work may address application of the proposed method to domains like wireless
communications, where latency and reliability are crucial performance metrics [22].



Entropy 2024, 26, 126 14 of 15

Author Contributions: Conceptualization, software, formal analysis, and writing: J.C. and S.P.;
conceptualization, supervision, writing, project administration, and funding acquisition: O.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Union’s Horizon Europe project CENTRIC
(101096379), by an Open Fellowship of the EPSRC (EP/W024101/1), and by the EPSRC project
(EP/X011852/1).

Data Availability Statement: For the experiments in this paper, we used publicly available datasets,
including the MNIST-DVS dataset (http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html), the
DVS128 Gesture dataset (https://ibm.ent.box.com/s/3hiq58ww1pbbjrinh367ykfdf60xsfm8/folder/
50167556794), and the CIFAR-10 dataset (https://www.cs.toronto.edu/~kriz/cifar.html), accessed on
30 November 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jang, H.; Simeone, O.; Gardner, B.; Gruning, A. An Introduction to Probabilistic Spiking Neural Networks: Probabilistic Models,

Learning Rules, and Applications. IEEE Signal Process. Mag. 2019, 36, 64–77. [CrossRef]
2. Ghosh-Dastidar, S.; Adeli, H. Spiking neural networks. Int. J. Neural Syst. 2009, 19, 295–308. [CrossRef] [PubMed]
3. Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S.R.; Masquelier, T.; Maida, A. Deep learning in spiking neural networks. Neural Netw.

2019, 111, 47–63. [CrossRef] [PubMed]
4. Mehonic, A.; Sebastian, A.; Rajendran, B.; Simeone, O.; Vasilaki, E.; Kenyon, A.J. Memristors—From in-memory computing, deep

learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing. Adv. Intell. Syst.
2020, 2, 2000085. [CrossRef]

5. Li, C.; Jones, E.; Furber, S. Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence. arXiv 2023,
arXiv:2303.10276.

6. Li, Y.; Geller, T.; Kim, Y.; Panda, P. SEENN: Towards Temporal Spiking Early-Exit Neural Networks. arXiv 2023, arXiv:2304.01230.
7. Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On calibration of modern neural networks. In Proceedings of the International

Conference on Machine Learning, PMLR, Sydney, NSW, Australia, 6–11 August 2017; pp. 1321–1330.
8. Chen, J.; Park, S.; Simeone, O. SpikeCP: Delay-Adaptive Reliable Spiking Neural Networks via Conformal Prediction. arXiv 2023,

arXiv:2305.11322.
9. Angelopoulos, A.N.; Bates, S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification.

arXiv 2021, arXiv:2107.07511.
10. Shafer, G.; Vovk, V. A Tutorial on Conformal Prediction. J. Mach. Learn. Res. 2008, 9, 371–421.
11. Balasubramanian, V.; Ho, S.S.; Vovk, V. Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications;

Morgan Kaufmann: Waltham, MA, USA, 2014.
12. Vovk, V.; Gammerman, A.; Shafer, G. Algorithmic Learning in a Random World; Springer: New York, NY, USA, 2022.
13. Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and

methods. Mach. Learn. 2021, 110, 457–506. [CrossRef]
14. Simeone, O. Machine Learning for Engineers; Cambridge University Press: Cambridge, UK, 2022.
15. Skatchkovsky, N.; Jang, H.; Simeone, O. Bayesian continual learning via spiking neural networks. Front. Comput. Neurosci. 2022,

16, 1037976. [CrossRef]
16. Katti, P.; Skatchkovsky, N.; Simeone, O.; Rajendran, B.; Al-Hashimi, B.M. Bayesian Inference on Binary Spiking Networks

Leveraging Nanoscale Device Stochasticity. arXiv 2023, arXiv:2302.01302.
17. Cai, R.; Ren, A.; Liu, N.; Ding, C.; Wang, L.; Qian, X.; Pedram, M.; Wang, Y. VIBNN: Hardware acceleration of Bayesian neural

networks. ACM SIGPLAN Not. 2018, 53, 476–488. [CrossRef]
18. Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv.

Neural Inf. Process. Syst. 2017, 30, 6405–6416.
19. Ganaie, M.A.; Hu, M.; Malik, A.; Tanveer, M.; Suganthan, P. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022,

115, 105151. [CrossRef]
20. Shrestha, S.B.; Timcheck, J.; Frady, P.; Campos-Macias, L.; Davies, M. Efficient Video and Audio processing with Loihi 2. arXiv

2023, arXiv:2310.03251.
21. Gerstner, W. Spike-response model. Scholarpedia 2008, 3, 1343. [CrossRef]
22. Chen, J.; Skatchkovsky, N.; Simeone, O. Neuromorphic Wireless Cognition: Event-Driven Semantic Communications for Remote

Inference. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 252–265. [CrossRef]
23. Doya, K. Bayesian Brain: Probabilistic Approaches to Neural Coding; MIT Press: Cambridge, MA, USA, 2007.
24. Neftci, E.O.; Mostafa, H.; Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 2019, 36, 51–63. [CrossRef]

http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
https://ibm.ent.box.com/s/3hiq58ww1pbbjrinh367ykfdf60xsfm8/folder/50167556794
https://ibm.ent.box.com/s/3hiq58ww1pbbjrinh367ykfdf60xsfm8/folder/50167556794
https://www.cs.toronto.edu/~kriz/cifar.html
http://doi.org/10.1109/MSP.2019.2935234
http://dx.doi.org/10.1142/S0129065709002002
http://www.ncbi.nlm.nih.gov/pubmed/19731402
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://www.ncbi.nlm.nih.gov/pubmed/30682710
http://dx.doi.org/10.1002/aisy.202000085
http://dx.doi.org/10.1007/s10994-021-05946-3
http://dx.doi.org/10.3389/fncom.2022.1037976
http://dx.doi.org/10.1145/3296957.3173212
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.4249/scholarpedia.1343
http://dx.doi.org/10.1109/TCCN.2023.3236940
http://dx.doi.org/10.1109/MSP.2019.2931595


Entropy 2024, 26, 126 15 of 15

25. Papadopoulos, H. Inductive conformal prediction: Theory and application to neural networks. In Tools in Artificial Intelligence;
InTech: London, UK, 2008.

26. Vovk, V. Conditional validity of inductive conformal predictors. In Proceedings of the Asian Conference on Machine Learning,
PMLR, Singapore, 4–6 November 2012; pp. 475–490.

27. Hochberg, Y.; Tamhane, A.C. Multiple Comparison Procedures; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1987.
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