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Abstract: This paper presents a continuation of the Chambadal model optimization of the irreversible
Carnot engine. We retrieved the results presented in the Special Issue “Carnot Cycle and Heat
Engine Fundamentals and Applications II” and enriched them with new contributions that allowed
comparing two points of view: (1) the now classical one, centered on entropy production in the four
processes of the cycle, which introduces the action of entropy production, with several sequential
optimizations; (2) the new one that is relative to an energy degradation approach. The same démarche
of sequential optimization was used, but the results were slightly different. We estimate that the
second approach is more representative of physics by emphasizing the energy conservation and the
existence on an upper and a lower bound in the mechanical energy and power output of the engine.

Keywords: Carnot irreversible engine; Chambadal model; optimization; mechanical energy; power;
entropy production; energy degradation

1. Introduction

The year 2024 marks the two-century anniversary of Carnot booklet publication [1].
Although the well-known maximum efficiency of the cycle introduced by Carnot is rela-
tive to equilibrium conditions, and the source and the sink are thermostats (infinite heat
reservoirs) at, respectively, THS (hot source) and TCS (cols sink), this cycle is still used.

Since that publication, numerous papers related to the Carnot cycle have been pub-
lished. Among them, we noticed the paper of Curzon and Ahlborn [2], which proposes an
expression of efficiency associated with the first law that was derived at maximum work W
and maximum power output

.
W of the Carnot engine, in endo-reversible conditions (or no

conversion irreversibilities):

ηI endo(MaxW) = 1 −

√
TCS
THS

(1)

This first limitation of the Carnot cycle efficiency was particularly reconsidered in a
previous Special Issue [3] and in [4] from a historical point of view.

The topic of efficiency at maximum power was widely developed by scientists in the
last 50 years, since recent research in Web of Science (January 2024) using this keyword
found 32,221 papers. Among them, 2076 publications are relative to engine efficiency at
maximum power, and four of them were published in 2023.

We noted an important evolution in these works, starting with classical configura-
tions of engines [5] and evolving towards quantum engines and statistical modeling [6].
However, recent studies on classical engines [7,8] and quantum engines [9] concern other
configurations than the Carnot one, since they are oriented towards applications rather
than theoretical aspects.
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Another recent research trend is the scale reduction of engines. As a proof, many
studies are devoted to a quantum approach [9,10], small-scale models [11], or biomolecular
configurations [12]. They show that improvements are always possible.

Back to the Carnot cycle and its improvements, we noted that the main recent contri-
butions focus on the study of the effect of the cycle’s irreversibilities on its performance.

Thus, Ref. [4] confirmed a natural gradation of the models, from Carnot [13], through
Chambadal [3,14], to Curzon-Ahlborn, by taking into account transfer and conversion
irreversibilities.

To summarize, two ways have been mainly used to introduce irreversibilities in a
model: (1) the ratio method, proposed by Ibrahim et al. [15] and Novikov [16]; (2) the
entropy production method [17]. Our choice fell on the last method, which was used
throughout this study.

In 2019, we published the first paper [3] relative to progress in the Carnot and Cham-
badal modeling of thermomechanical engines by considering entropy production and heat
transfer entropy.

It was pursued in 2022 by another paper [18] that was integrated in the second Special
Issue “Carnot Cycle and Heat Engines Fundamentals and Applications II”.

We propose here for the third Special Issue “Carnot Cycle and Heat Engines Funda-
mentals and Applications III” a revisited Chambadal model of the Carnot engine, providing
new results.

It appears that the year 2024, marking the two-century anniversary of the Carnot
booklet publication, will offer surprises because of the many additions and extensions of
the Carnot cycle modeling that are still possible and are on course.

Section 2 provides a summary of the results obtained previously for the Chambadal
configuration [18]. It presents a first optimization relative to TH (the hot-side temperature
of the cycle) with a linear heat transfer law, and a second one relative to transformation
duration. Afterward, an optimization of the mean power with respect to the cycle duration
is described.

Section 3 reconsiders the irreversible Chambadal engine based on a degraded energy
point of view instead of an entropy production one, as presented in Section 2.

Section 4 presents a comparison–discussion of the results described in Sections 2 and 3.
Section 5 reports conclusions and perspectives.

2. Chambadal Model Optimization Based on Entropy Production and with a Coupling
Constraint for the Heat Transfer between Source and Converter

We summarize hereafter the results obtained in the preceding paper [18]. According
to Figure 1, we have:
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• The heat energy expense from the hot source that is expressed as:
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QH = TH∆SH , (2)

where TH is the hot temperature of the cycle, and ∆SH is the heat transfer entropy at the
source.

• The heat energy converted into mechanical one along the isothermal transformation at
TH:

Qconv = TH(∆SH − ∆SIH), (3)

where ∆SIH is the entropy production in the hot temperature isothermal transformation of
the cycle.

• The entropy balance over the cycle, expressed by:

∆Sconv + ∆SI = ∆SS, (4)

with ∆SS being the entropy rejected (QS = TCS∆SS) during the isothermal transformation
at TCS, generally with TCS = T0, i.e., ambient temperature.

• The total entropy production of the cycle ∆SI, which is the sum of the four entropy
productions during the processes:

∆SI = ∆SIH + ∆SIEx + ∆SIC + ∆SICo. (5)

• The energy balance over the cycle for the system composed of heat source, converter,
and heat sink:

W = Qconv − QS. (6)

By combining Equations (3) and (5) with Equation (6), we obtain:

W = (TH − TCS)∆S − TH∆SIH − TCS(∆SIEx + ∆SIC + ∆SICo), (7)

where the notation ∆SH = ∆S defines the reference heat transfer entropy. It corresponds to
the heat expense.

We note that the reference entropy ∆S implies an endo-reversible mechanical energy
that only retains the first term of Equation (7), that is:

Wendo = (TH − TCS)∆S, (8)

And the entropy production along the adiabatic processes is associated with TCS. In
fact, this corresponds to a maximum of W, because ∆SIEx and ∆SICo are produced within
the [TCS, TH] range.

Also, it appears that the heat energy expense from the hot source (Equation (2)) can be
expressed as depending on the heat transfer conductance GH [3]:

QH = TH∆S = (THS − TH)GH . (9)

Consequently, as ∆S and GH are considered parameters of the cycle (converter) and
the source, respectively, the temperature TH results to be:

TH =
GHTHS

GH + ∆S
. (10)
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This result differs from those of the modified Chambadal engine [18], according to
which we obtained:

T∗
H =

√
THSTCS

1 + sI
, (11)

with sI =
∆SIH
GH

being a specific ratio relative to the irreversible isothermal transformation
TH, and

Max1W = GH

(√
THS −

√
(1 + sI)TCS

)2
− TCS∆SI . (12)

The subsequent optimization is relative to the transformation duration, with ∆SIi =
CIi
τi

.
According to published results that were reported in Appendix B in [18] and are relative to
Max2W:

Max2W ≈ Wendo −
TCS

τ
N2, (13)

with τH
* =

√√
T0THS

CIH
λ , and τi

* =
√

T0CIi
λ ;

√
λ = N

√
THS

τ .
Wendo is deduced from Equation (11) and corresponds to ∆SI = 0.
This second energy optimization is completed by the mean power optimization over

the cycle period τ, knowing that N =
√

TCS
THS

CIH +
√

CIEx +
√

CIC +
√

CICo. We obtain:

τ∗ =
2TCSN2

Wendo
. (14)

The main power over a cycle is:

Max
.

W ≈ Wendo
2

4TCSN2 , (15)

and the corresponding efficiency could be determined, though within the scope of the
approximation indicated by Equation (13). We propose here to reconsider the optimization
without this approximation.

3. Chambadal Model Optimization from the Energy Degradation Point of View

We introduced energy degradation in each transformation of the cycle and globally as:

EI = EIH + EIEx + EIC + EICo, (16)

where EI is the total energy degradation considered as a parameter, and EIi is the energy
degradation in process i of the cycle.

By using Equation (7) and the relation of energy degradation in each process,
EIi
Ti

= ∆SIi, we obtain:

W = [GH(THS − TH)− EIH ]

(
1 − TCS

TH

)
− TCS

(
EIH
TH

+
EIEx
TIEx

+
EIC
TCS

+
EICo
TICo

)
. (17)

We noticed that the mechanical energy output from the cycle depends on the four
degradations of mechanical energy EIi and on the four corresponding temperatures. The
two temperatures of the isothermal transformations are known (TH and TCS), but the tem-
peratures of the adiabatic transformations depend on the irreversibility path of the cycle.

Figure 1 illustrates all available options. Among them, we noticed that for the two
adiabatic processes, the corresponding temperatures pertain to the range [TCS, TH].

Thus, if we choose in Equation (17) the first limiting case TIEx = TICo = TH, we obtain
the lowest value of the ratios EIEx

TIEx
and EICo

TICo
in the two adiabatic transformations and,

correspondingly, the highest value of the mechanical energy output, Sup W.
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For the second limiting case TIEx = TICo = THS in Equation (17), the effect will be quite
opposite, determining the highest value of the two ratios EIEx

TIEx
and EICo

TICo
, and the lowest

useful effect, INF W.
Consequently, an upper bound and a lower bound for W yields, from Equation (17):

SUP W = [GH(THS − TH)− EIH ]

(
1 − TCS

TH

)
− TCS

(
EIH
TH

+
EIEx
TH

+
EIC
TCS

+
EICo
TH

)
, (18)

INF W = [GH(THS − TH)− EIH ]

(
1 − TCS

TH

)
− TCS

(
EIH
TH

+
EIEx + EIC + EICo

TCS

)
. (19)

After some arrangements, the resulting expression of Equation (18) is:

SUP W = GH(THS − TH)

(
1 − TCS

TH

)
− TCS

(
EIH
TCS

+
EIC
TCS

+
EIEx + EICo

TH

)
, (20)

and Equation (19) combined with Equation (16) leads to:

INF W = GH(THS − TH)

(
1 − TCS

TH

)
− EI . (21)

Based on Equations (20) and (21), Max1(SUP W) and Max1(INF W) can be determined
(see Appendix A). We obtained the following expressions of the maximum mechanical
energy delivered by the cycle:

Max1(SUP W) = GH

(√
THS +

EIA
GH

−
√

TCS

)2

− EI , (22)

Max1(INF W) = GH

(√
THS −

√
TCS

)2
− EI . (23)

The corresponding efficiency at maximum mechanical energy yields:

η(Max1SUP W) =

(√
GHTHS + EIA −

√
GHTCS

)2 − EI√
GHTHS + EIA

(√
GHTHS + EIA −

√
GHTCS

)
− EIA

, (24)

η(Max1 INF W) =
GH
(√

THS −
√

TCS
)2 − EI

GH
√

THS
(√

THS −
√

TCS
) = 1 −

√
TCS
THS

− EI

GH
√

THS
(√

THS −
√

TCS
) . (25)

It is easy to see in the above results (Equation (22) or Equation (23)) that we recovered
the maximum of the mechanical work in the endo-reversible case as a limit, when the
energy degradation in all transformations was zero (EIi = 0, see Equation (16)):

MaxWendo = GH

(√
THS −

√
TCS

)2
. (26)

The cycle efficiency corresponding to Max Wendo retrieves from Equation (24) or
Equation (25) the well-known expression:

η(MaxWendo) = 1 −

√
TCS
THS

. (27)

4. Discussion
4.1. Model Considering Heat Transfer Entropy

In a previous paper [18], the reference heat transfer entropy corresponded to heat
expense (∆SH = ∆S), but without the coupling constraint between the heat source and
the converter. Consequently, the optimization of mechanical energy was performed with
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respect to the temperature TH (variable), as originally proposed by Chambadal, though in
the endo-reversible case (Section 2):

T∗
H =

√
THSTCS
1 + sI

, (28)

with sI =
∆SIH
GH

, i.e., specific entropy ratio.
The maximum of the mechanical energy yields:

max1W = GH

(√
THS–

√
(1 + sI)TCS

)2
− T0∆SI . (29)

A sequential optimization was performed using a simple form of entropy production
in each process of the cycle, expressed by:

∆SIi =
CIi
τi

. (30)

and introducing the new concept of entropy production action, CI, expressed in Js/K [13].
According to Equation (30), CIi is a quantity related to the entropy production in each

process of the cycle. This new concept was introduced by analogy to the well-known action
principle of Maupertuis [19], reason why we chose to call it action of entropy production
related to the irreversibility of process i. Until now, it was considered a constant parameter
without physical significance.

Thus, the duration of each process associated with the entropy production action
(Equation (30)) submitted to a finite cycle duration constraint led to a second sequential
optimization. The entropy method allowed obtaining Max2W in an approximated form
corresponding to the low-irreversibility case in a TH isothermal process. The results of this
optimization were:

- The optimum duration of the isothermal process at TH:

τH
∗ =

τ

N

√
TCS
THS

C
IH

. (31)

- The optimum duration of each process of the cycle:

τi
∗ =

τ

N

√
CIi. (32)

- The maximum of the mechanical energy:

Max2W ≈ Wendo −
TCS

τ
N2, (33)

with N =
√

TCS
THS

CIH +
√

CIEx +
√

CIC +
√

CICo.
A third optimization regarding, this time, the power output of the engine was per-

formed, generating the following result:

.
W(Max2W) =

Wendo
2

4TCSN2 , (34)

for τ* = 2TCS N2

Wendo
.
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4.2. Model Considering Energy Degradation

In the present paper (Section 3), we developed a model that considers the cycle irre-
versibilities from the energy degradation point of view, instead of the entropy production
perspective, in each process. However, these two irreversibilities are related by ∆SIi =

EIi
Ti

.
We noticed in this relation that, for the two isothermal transformations, the tempera-

tures TH and TCS were known, while for the two adiabatic processes, the temperatures TIEx
and TICo depended on their irreversibility path, though they were always in the [TCS, TH]
range.

The result was that, for the first time to our knowledge, an upper and a lower bound
for the mechanical energy output in the irreversible case could be derived:

SUP W = GH(THS − TH)

(
1 − TCS

TH

)
− TCS

(
EIH
TCS

+
EIC
TCS

+
EIEx + EICo

TH

)
, (35)

INF W = GH(THS − TH)

(
1 − TCS

TH

)
− EI . (36)

The optimization of the mechanical energy in the two cases led to:

Max1SUP W =
(√

GHTHS + EIA −
√

GHTCS

)2
− EI , (37)

with TH
* =

√
THSTCS − TCSEIA

GH
, and EIA = EIEx + EICo.

Max1 INF W = GH

(√
THS −

√
TCS

)2
− EI , (38)

with TH
* =

√
THSTCS.

The efficiencies corresponding to the maximum mechanical energy in the two cases
are:

η(MaxSUP W) =

(√
GHTHS + EIA −

√
GHTCS

)2 − EI√
GHTHS + EIA

(√
GHTHS + EIA −

√
GHTSC

)
− EIA

, (39)

η(MaxINF W) =
GH
(√

THS −
√

TCS
)2 − EI

GH(THS −
√

THSTCS)
. (40)

5. Conclusions

The two models presented here are complementary.
The first one is based on an entropy approach and allows the optimization of mechani-

cal energy and power output according to the entropy production model. Nevertheless, it
remains to determine the equivalent temperature in each irreversible adiabatic process.

The second model, using the energy degradation approach, allows the optimization of
the mechanical energy of the irreversible engine with known upper and lower bounds. It
remains to extend it to the power optimization.

In the first case, entropy production is expressed in a simple form related to the
duration of the processes:

∆SIi =
CIi
τi

.

Thus, we introduced a new concept, namely, the action of entropy production CIi, and
the corresponding connection to time (second law of thermodynamics).

In the second case, energy degradation is expressed in relation to entropy production,
as:

∆SIi =
EIi
Ti

,



Entropy 2024, 26, 125 8 of 10

where EIi is the mechanical energy degraded in process i. It relates directly to energy
conservation (first law of thermodynamics).

For each case, the constraint of finiteness can be applied as follows:

1. First case, ∑
i

∆SIi = ∆SI : entropy production method.

2. Second case, ∑
i

EIi = EI : energy degradation method.

The difference could explain the complementarity of the two approaches. Further
developments are on course.

Two centuries have passed since the publication of Carnot’s booklet, which was the
first step in the evolution of thermodynamics. Most probably, it was also the most difficult
step because it introduced new concepts.

Now we see that we can pursue and complete this foresighted work by Carnot and
enrich it by considering the irreversibilities during the four processes of the cycle.
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Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data supporting reported results are available from the authors.
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Appendix A

Optimization of the mechanical work SUP W
Equation (20) can be rewritten as:

SUP W = GH(THS − TH)

(
1 − TCS

TH

)
− TCS

(
EIA
TH

+
EIT
TCS

)
, (A1)

where EIA = EIEx + EICo is the energy degradation in the adiabatic processes, EIT = EIH + EIC
is the energy degradation in the isothermal processes, and EI = EIA + EIT is the total energy
degradation in the cycle.

The maximum SUP W is obtained by differentiation according to the variable TH:

∂(SUP W)

∂TH
= 0 = GH

[
−1 +

TCS
TH

+ (THS − TH)
TCS

T2
H

]
+

TCS

T2
H

EIA. (A2)

After some arrangements, a second-order equation in TH results in:

GHT2
H = GHTHSTCS + EIATCS, (A3)

which leads to the only possible physical solution, expressed as:

T∗
H =

√
GHTHSTCS + EIATCS

GH
. (A4)

Once the optimum T∗
H expression is found, it can be replaced in Equation (A1):

Max1SUP W = GH(THS − T∗
H)

(
1 − TCS

T∗
H

)
− EIT − TCS

T∗
H

EIA. (A5)
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Furthermore, an arrangement of the terms is performed through the addition and
subtraction of EIA:

Max1SUP W = GH(THS − T∗
H)

(
1 − TCS

T∗
H

)
− EIT − EIA + EIA

(
1 − TCS

T∗
H

)
, (A6)

which leads to a more compact expression of MaxSUP W:

Max1SUP W = (GHTHS + EIA − GHT∗
H)

(
1 − TCS

T∗
H

)
− EI . (A7)

By replacing Equation (A4) in Equation (A7) and after some calculations, we obtain:

Max1SUP W = GH

(√
THS +

EIA
GH

−
√

TCS

)2

− EI . (A8)

Optimization of the mechanical work INF W
The starting point in this optimization is:

INF W = GH(THS − TH)

(
1 − TCS

TH

)
− EI , (A9)

which is differentiated according to the variable TH:

∂(INF W)

∂TH
= 0 = GH

[
−1 +

TCS
TH

+ (THS − TH)
TCS

T2
H

]
. (A10)

The only solution of Equation (A10) is:

T∗
H =

√
THSTCS. (A11)

By replacing Equation (A11) in Equation (A9), we obtain:

Max1 INF W = GH

(
THS −

√
THSTCS

)(
1 − TCS√

THSTCS

)
− EI . (A12)

After some calculations, the final expression of MaxINF W is:

Max1 INF W = GH

(√
THS −

√
TCS

)2
− EI . (A13)

Note that the efficiencies corresponding to Max1SUP W and Max1INF W are provided
by Equations (24) and (25) in the text.
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