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Abstract: The traditional maneuver decision-making approaches are highly dependent on accurate
and complete situation information, and their decision-making quality becomes poor when opponent
information is occasionally missing in complex electromagnetic environments. In order to solve this
problem, an autonomous maneuver decision-making approach is developed based on deep reinforce-
ment learning (DRL) architecture. Meanwhile, a Transformer network is integrated into the actor and
critic networks, which can find the potential dependency relationships among the time series trajec-
tory data. By using these relationships, the information loss is partially compensated, which leads to
maneuvering decisions being more accurate. The issues of limited experience samples, low sampling
efficiency, and poor stability in the agent training state appear when the Transformer network is
introduced into DRL. To address these issues, the measures of designing an effective decision-making
reward, a prioritized sampling method, and a dynamic learning rate adjustment mechanism are
proposed. Numerous simulation results show that the proposed approach outperforms the traditional
DRL algorithms, with a higher win rate in the case of opponent information loss.

Keywords: air combat maneuver decision-making; deep reinforcement learning; transformer network;
information loss environment

1. Introduction

With the rapid development of uncrewed aerial vehicle (UAV) technology and au-
tonomous decision-making approaches, the characteristics of air combat including fast
pace, strong adversarial games, and incomplete information have been presented [1]. For
autonomous maneuver decision-making in air combat, UAVs use specific methods such as
optimal control, differential game, and machine learning to generate maneuvering com-
mands based on the environment situation (including opponent information) acquired by
its onboard detection equipment [2]. Autonomous maneuver decision-making is significant
to dogfighting. The autonomous maneuver decision-making method is key to winning
dogfights since it leads UAVs to occupy an advantageous position. How to use the obtained
air combat situation to generate decision-making commands accurately is currently the
difficulty of air combat maneuver decision-making [3]. Thus, it is important to investigate
different intelligence decision-making methods to improve the decision-making speed and
quality of UAVs.

The autonomous maneuver decision-making approaches in air combat include mathe-
matical, search-based, and data-driven approaches. For the mathematical approach, the
maneuver decision-making problem is formulated as an optimization problem and solved
by using mathematical analytical methods, such as differential games [4,5], the bi-objective
optimization method [6], and the situational function optimization method [7]. Although
the analytical solutions obtained from these methods are clear, the calculations can be
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quite complex. For the search-based approach, the maneuver decision-making problem is
modeled as a discrete variable optimization problem, and it is solved by matrix decision-
making [8], heuristic algorithms [9], and dynamic programming [10]. However, for these
search-based approaches, finding a satisfactory solution within a finite number of itera-
tions becomes challenging as the problem size increases. For the data-driven approach, it
includes neural networks [11], fuzzy algorithms [12,13], and reinforcement learning [14,15].
The data-driven approach modeled the maneuver decision-making problem as a mapping
problem between different air combat situations and maneuver decision commands.

Reinforcement learning is a good option for solving sequential decision problems,
which gives agents the ability to perform self-supervised learning. In order to obtain the
maximum accumulated reward, the agent interacts with the environment and continuously
adjusts its own strategy by obtaining reward in the environment. Deep reinforcement
learning (DRL) combines deep neural networks and reinforcement learning approaches,
utilizing the powerful representation and mapping capabilities of neural networks to ap-
proximate the reward function of state and action and map from state to action. DRL is
an effective approach to solving high-dimensional state–action problems, and it is widely
used in fields such as electronic games, recommendation systems, and intelligent control. A
parameter-shared Q-network (PS-DQN) method is proposed in Reference [16]. Multi-UAV
maneuver decision-making applies PS-DQN to converge the strategy to Nash equilibrium
with virtual self-play. But it is assumed that each UAV is flying at the same altitude and
can detect the accurate position of enemy UAVs within a certain range. In Reference [17],
the Soft Actor Critic (SAC) approach is used to design the maneuver decision-making
algorithm. Compared with the Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm, the simulation results show that the SAC algorithm has a shorter training time
and a higher win rate. In Reference [18], a one-to-one air combat model and missile attack
zone are built, and then a Parallel Self-Play training SAC algorithm (PSP-SAC) is proposed
for sharing the sample and policy in multiple combat environments. In Reference [19], an
Asynchronous Advantage Actor–Critic (A3C) algorithm is proposed, employing a multi-
threaded asynchronous mechanism to reduce input correlation and accelerate training
compared to methods based on experience replay. In Reference [20], a bidirectional recur-
rent neural network (BRNN) is used to achieve communication between UAV individuals,
and the multi-UAV cooperative air combat maneuver decision model under the actor–critic
architecture is established. The decision model can obtain the cooperative maneuver policy
through reinforcement learning, and guide UAVs to obtain the overall situational advan-
tage and defeat the opponents under tactical cooperation. In Reference [21], a maneuver
decision-making approach is proposed by applying the LSTM network to the actor and
critic networks in the PPO method, which has the ability to learn temporal air combat
data. The simulation results show that this approach can improve the decision-making
agent’s learning efficiency and decision quality. In Reference [22], the DRL-based maneuver
decision-making approach is proposed by using the LSTM-Dueling DQN network, and the
simulation results show that the agent training efficiency is improved. In Reference [23], an
intelligent maneuver planning method for Beyond-visual-range (BVR) air combat using
an improved deep Q network (DQN) based on the LSTM network is proposed; the results
show that agents can effectively avoid enemy threats and gain tactical advantages. In Ref-
erence [24], a data-driven approach using the LSTM neural network is proposed to predict
missile trajectories in a model-free manner, leveraging their capacity to learn long-term
temporal dependencies and handle both measurement noise and motion uncertainties.

The Transformer network achieves great success in dealing with time series data [25],
and introducing it into DRL has become a current research hotspot. In [26], the self-
attention mechanism in the Transformer network is introduced in DRL for structured
state representation inference. In [27], self-attention is applied to representation learning,
which extracts relationships between multiple agents to learn and express strategies better.
In [28], the Transformer architecture is introduced to offline reinforcement learning, which
is directly applied to the sequence decision-making model.
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According to the above references, the following limitations have been identified.
Firstly, the completely observable air combat environment is assumed in a variety of
approaches, and the situation between the enemy and our agent is assumed to be completely
available. However, in real application cases, the environment and agent state information
is hard to obtain, and usually only partial information can be obtained. Secondly, a
fully connected neural network is applied to DRL algorithms in most approaches. The
fully connected network has a simple and intuitive structure with strong data mapping
ability, but it is difficult to capture the dependency relationships in temporal data. The
LSTM network is applied in some approaches [19,29], which use the gating mechanism
to process data with temporal dependencies and prevent gradient vanishing effectively.
Compared to fully connected networks, the dependency relationships between sequence
inputs can be captured by the LSTM network. Compared to traditional RNNs and GRUs,
additional gating units and memory units are introduced to solve the problem of gradient
vanishing during propagation. However, the data are input in a serial manner, and the
gating mechanism requires a large amount of computation, resulting in high training time
costs. Thus, the DRL with fully connected networks and recurrent neural networks cannot
work well in the situation of enemy information loss. Thirdly, although the Transformer
network has been introduced into DRL, its application to air combat decision-making
has not been sufficiently studied. Thus, the above approaches [16–20] cannot provide
reliable performance for cases with incomplete information in air combat decision-making,
especially for cases with opponent information loss. Therefore, according to the above
analysis, it is important to investigate the intelligent maneuver decision-making method in
the information loss case to improve the decision-making quality.

In this paper, the Transformer network is introduced to design the actor and critic
networks in DRL architecture. Considering the maneuver decision-making problem in
air combat is a continuous-variable optimization problem, the Deep Deterministic Policy
Gradient (DDPG) method based on the framework of actor and critic performs well to
deal with this problem. Thus, in this paper, an approach based on DDPG combined with
a Transformer network is proposed. The main contributions of this paper are concluded
as follows:

(1) Considering the information loss, the Transformer network is introduced to design
the actor and critic networks in DDPG, which can extract hidden relationships in the
temporal trajectory samples and use this relationship as the reference for the agent
network when opponent information is unavailable. Then, the maneuver decision
quality can be improved in the information loss situation.

(2) The issues of limited experience samples, low sampling efficiency, and poor stability
appear when the Transformer network is introduced into the DDPG algorithm. To
address the issue of limited experience samples, a more effective reward function is
designed by combining the global and local rewards, and meanwhile, an exploration
mechanism is designed, which encourages the agent to explore the decision-variable
space thoroughly and accumulate a large number of various experience samples. To
address the issue of low sampling efficiency, a prioritized sampling mechanism is
designed in the episode experience replay, assigning higher sampling probabilities
to focus on more informative episodes and improve training efficiency. To address
the issue of poor stability, a dynamic learning rate adjustment mechanism is designed
to make a quick rapid gradient descent in the initial training stage and an accurate
parameter setting in the later training stage.

(3) Based on numerous experiments, the proposed approach has a better performance
in the case of a 10% probability of information loss compared with the traditional
DDPG-based decision-making approach. This result proves the effectiveness of the
proposed maneuver decision-making approach.
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2. Air Combat Environment Model for DRL

The air combat environment model is first developed to make sure the DRL algorithm
can be trained. It contains the UAV kinematic model, the UAV sensors and weapon
capabilities simulation, and the rules of victory judgment.

2.1. UAV Kinematic Model

The UAV in the inertial coordinate system is treated as a mass point as shown in
Figure 1, ignoring the effects of angle of attack and sideslip on the UAV. The kinematic
model of the UAV is established as follows:

.
x = V cos θ cos ψ
.
y = V cos θ sin ψ
.
z = V sin θ
.

V = g(nx − sin θ)
.
θ = g(nz − cos θ)/V
.
ψ = gny/V cos(θ)

, (1)

where V represents the speed of the UAV, and
.
x,

.
y,

.
z represents the velocity component

along the coordinate axis. θ and ψ represent the pitch and yaw, respectively, and g represents
the gravitational acceleration. nx, ny, and nz are the tangential, lateral, and normal overload,
respectively. Based on Equation (1), the Runge–Kutta method is applied to compute the
trajectory of the UAV with a simulation step of ts, which is given by the initial state.
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2.2. Rules of Victory Judgment for Dogfight Simulation

The one-to-one close-range air combat (i.e., dogfight) scenario is considered. It is
assumed that the red UAV is its own side aircraft and the blue UVA is the opponent aircraft.
Meanwhile, both UAVs are the same, with the same sensors and weapon capabilities
and identical maneuverability. The red UAV employs the deep reinforcement learning
algorithm proposed in this paper for maneuver decision-making, while the blue side’s UAV
employs a fusion of matrix game and genetic algorithms to make the maneuver decision.
The goal of maneuver decision-making is to make the UAV occupy the advantageous attack
position, where the opponent UAV is located in the weapon’s attack range for a fixed period
of time to guarantee successful shooting.

The relative positions of UAVs in dogfights are illustrated in Figure 2, where (xr, yr, zr)
and (xb, yb, zb) represent the position coordinates of the red and blue UAVs, respectively.
vr and vb are the velocity vectors of the red and blue UAVs, with minimum and maximum
speeds denoted as vmin and vmax, respectively. vrb is the relative velocity vector, and φv is
the angle of velocity vectors. Rrb is the relative distance vector, and φr, φb represent the
velocity leading angles. Rmax and Rmin are the maximum and minimum attack distances of
UAV weapons, and βmax represents the maximum attack angle of the weapon.
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Figure 2. The relative positions of uncrewed aerial vehicles in air combat.

In the air combat simulation, the rule of victory judgment is made as follows: when
one side’s UAV locks on the other side’s UAV in its weapon attack zone for a period of time,
then it is assumed to win the game. The victory condition is described as follows:

φr ≤ βmax

Rmin ≤
∣∣∣Rrb

∣∣∣≤ Rmax

tlock ≥ tp

, (2)

where tp is the set lock-on time. Moreover, if neither side’s UAV satisfies the victory
condition in the maximum game simulation time, tmax, the dogfight round is considered
a draw.

2.3. State–Action Pair Design for DRL

The state vector of DRL at time instant t is defined as Equation (3), which includes
information on relative distance, relative velocity, and associated angles as follows:

st = [Rrb, vrb, φv, φr, φb], (3)

where each component of the state vector can be computed as follows:

Rrb = [xb − xr, yb − yr, zb − zr]
vrb = vb − vr

φv = arccos( vr vb

|vr| |vb| )

φr = arccos( vr Rrb

|vr| |Rrb| )

φb = arccos( vb Rrb

|vb| |Rrb| )

. (4)

Considering the factors of electronic jamming or quick evasion maneuvering, the UAV
may fail to obtain information about the opponent UAV such as position, velocity, and flight
path angle. In order to simulate this scenario of information loss, we set the probability of
losing target information during air combat as ploss = 10% and let the state vector be null.

Based on the kinematic model in Equation (1), the UAV is controlled by three accelera-
tions in its body coordinate system. Therefore, the decision-making action for DRL at time
instant t is defined as follows:

at = [nx, ny, nz], (5)

where each acceleration component should satisfy the overload saturation constraint de-
noted as follows:

ni,min ≤ ni ≤ ni,max, (i = x, y, z). (6)
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3. Opponent UAV Decision-Making Model Based on the Genetic Algorithm Optimizing
Matrix Game

It is important to build a competitive UAV opponent for training the DRL-based UAV
decision-making model. Here, a maneuver decision-making approach is adopted, which
combines a genetic algorithm with a matrix game to generate opponent UAV actions. A
matrix game is often used to solve zero-sum game problems, where the decision-maker
can only choose an optimal one from the finite strategy set. In order to use the matrix
game, the common basic maneuvering command set is built and both UAVs are assumed
to select a command from the library. The basic command set consists of seven maneuvers:
maintaining the current state, maximum overload acceleration/deceleration, left/right
turns, pull-up, and dive.

3.1. Maneuver Decision-Making Using the Matrix Game Method

The matrix game method is based on game theory knowledge and is used to solve
two-person finite zero-sum game problems, where decision-makers can only choose from a
limited set of strategies during the decision-making process. The blue side uncrewed aerial
vehicle uses a genetic algorithm to optimize the maneuvering strategy generated by matrix
countermeasures and uses it as an air combat maneuver decision-making method to enable
the uncrewed aerial vehicle to quickly form an attack advantage on the target. Firstly, the
instructions in the typical maneuver instruction set are used as candidate decisions. Then,
matrix games are used to estimate the strategies of the agent and the opponent to select
specific decision instructions as candidate optimal actions. Next, genetic algorithms are
used to iteratively optimize and search for the optimal action instructions in the neighboring
domains within the candidate optimal action space, further improving decision quality
while ensuring decision speed.

Assuming both sides employ one of the seven typical maneuvering actions, the ad-
vantage value of the blue side over the red side can be calculated after one decision step. In
this scenario, the red side selects the n th maneuvering method, while the blue side selects
the m th maneuvering method. By traversing all the action sets of both the red and blue
sides, the advantage matrix for the blue side can be calculated as follows:

Am,n =


adv11 adv12 . . . adv17
adv21 adv22 . . . adv27
...

... advmn
...

adv71 adv72 . . . adv77

. (7)

To ensure that the blue side selects a robust decision value, where the chosen action
maximizes its overall advantage after maneuvering regardless of the maneuvering strategy
adopted by the red side, the blue side should select the action A* corresponding to the row
sum’s maximum value in the advantage matrix as the decision result.

3.2. Genetic Algorithm

The maneuver strategy optimized using the above matrix game method is a coarse-
grained approach with low control accuracy, indicating that there is still room for improve-
ment in the acceleration decision. Therefore, based on the matrix game framework, a
genetic algorithm is integrated into the matrix game framework to select action values
as the central reference for determining decision values. An optimization interval is es-
tablished at 0.1g, extending 1g in both the overloaded left and right directions. Through
continuous iteration, the genetic algorithm outputs the maneuver decision values, which
serve as the final decision adopted by the blue side.

To ensure rapid convergence of the genetic algorithm, the population size is set to
50(p1–p50), and each chromosome is encoded as a real number containing three genes
corresponding to overload in three directions. The fitness function is defined as the sum of
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the advantages of one maneuver of the blue side over the seven typical maneuvers of the
red side after a single decision step.

When employing genetic algorithms for optimization, a new population is formed
through selection, crossover, and mutation operations. Through continuous iteration, this
newly generated population evolves towards higher fitness values, with the individual
exhibiting the highest fitness ultimately output as the final result of the optimization search.

1. Selection

During the selection process, individuals in the population are first sorted by their
fitness from high to low, ranked from 1 to 50. The top 10 individuals (p1–p10) are retained
for the next generation, while individuals numbered 11–40 (p11–p40) undergo crossover
operations to generate 30 new individuals. Additionally, 10 individuals(p41–p50) are
randomly selected for mutation operations.

2. Crossover

During crossover operations, 30 chromosomes are randomly paired, and a gene is
randomly selected for position exchange between the paternal and maternal parents in
each pair.

3. Mutation

During mutation operations, a gene with a value of c is randomly selected, and a
mutation is performed within a uniform distribution range of [c − 0.5, c + 0.5].

The algorithm of opponent UAV decision-making is shown in Algorithm 1.

Algorithm 1: Genetic Algorithm Optimizing Matrix Game

Initialization: Initialize a set containing 7 typical maneuver decisions as {a1. . .a7}, an
advantage matrix advm,n filled with zeros.
Matrix Game:
for the blue side select ai = a1. . .a7 do:

for red side select aj = a1. . .a7 do:
Calculate the advantage value advi,j after one decision step
Fill the value into the advantage matrix advm,n

end for
end for
Calculate the row sum and choose the action A* corresponding to the maximum value
Genetic Algorithm:
Build a population of size 50 centered around decision A*
for iteration = 1. . .20 do:

Sort individuals in the population based on fitness, numbered p1–p50
Select p1 to p10 to directly enter the next generation
Select p11 to p40 for crossover; the offspring enters the next generation
Select p41 to p50 for mutation as the next generation
Calculate the fitness of each individual in the next generation population

end for
Select the individual with the highest fitness as the final decision

4. Decision-Making Approach Based on the Transformer Network and Deep
Reinforcement Learning

The structure of the proposed maneuver decision-making approach is shown in
Figure 3, which includes the red and blue UAV agents, the air combat environment, and
the adopted performance enhancement measures. The red UAV agent is built based
on the AC framework by incorporating a Transformer network for both the actor and
critic components. The blue UAV agent adopts the approach combining the matrix game
and genetic algorithm to make the maneuvering decision. The air combat environment
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comprises a UAV simulation based on kinematic equations and a victory judgment system.
This system provides state and reward feedback to the UAV agents. Also, three measures to
improve the performance of the red UAV agent’s decision are given, which are encourage
exploration, priority sampling, and learning rate dynamic adjustment.
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4.1. Reward Function Design

The goal of DRL is to learn a policy, πθ , parameterized by θ, to maximize the expected
cumulative discounted reward defined as follows:

max J(θ) = maxE[
T

∑
t=0

γtrt], γ ∈ (0, 1), (8)

where γ is the discount factor that discounts future rewards to the current time step, and rt
represents the reward obtained at time step t.

The goal of close-range air combat is to achieve an advantageous attacking position.
This occurs when the opponent is within the weapon’s attack angle and the UAV maintains
a comparable speed to counter evasive maneuvers. Meanwhile, in order to deal with the
poor convergence performance caused by sparse rewards in DRL, a reward function is
designed by combining the local and global rewards. The reward function of the UAV
agent at time t is defined as follows:

rt = αrl + (1− α)rg, (9)

where α is the weight and rl and rg represent the local reward and global reward, respectively.
The local reward refers to the process of reward to guide UAVs to occupy an advanta-

geous position. The global reward refers to the resulting reward related to the final combat
result, and it encourages the UAV agent to win the combat from a global perspective.

The local reward is represented as follows:

rl = α1rφ + α2rv, s.t. α1 + α2 = α (10)

where α1 and α2 are the weights for the local angle reward and the local speed reward,
respectively. The local angle reward rφ and local speed reward rv are designed as follows:
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rφ =



20, 0◦ ≤ φr ≤ 5◦

10, 5◦ < φr ≤ 15◦

5, 15◦ < φr ≤ 30◦

1, 30◦ < φr ≤ 60◦

−30, 60◦ < φr ≤ 180◦

, (11)

rv =



10, 0 ≤
∣∣∣vr

∣∣∣−∣∣∣vb
∣∣∣≤ 10

8, 10 <
∣∣∣vr

∣∣∣−∣∣∣vb
∣∣∣≤ 30

5,
∣∣∣vr

∣∣∣−∣∣∣vb
∣∣∣> 30

3, −10 ≤
∣∣∣vr

∣∣∣−∣∣∣vb
∣∣∣< 0

1, −30 ≤
∣∣∣vr

∣∣∣−∣∣∣vb
∣∣∣< −10

−20,
∣∣∣vr

∣∣∣−∣∣∣vb
∣∣∣< −30

, (12)

Equation (11) defines the angle reward function, which ensures that the blue UAV
remains within the red UAV’s attack angle range. According to Figure 2, a smaller velocity
leading angle (φr) for the red UAV indicates that it is positioned behind the blue UAV,
thereby meeting the attack angle condition specified in Equation (2). Equation (12) defines
the speed reward function, which aims to make the speed of the red UAV close to the blue
UAV. On the one hand, during turning maneuvers in adversarial training, a lower speed is
required to achieve a smaller turning radius, resulting in a smaller velocity leading angle.
On the other hand, to satisfy the attack distance requirement, a higher speed compared to
the blue UAV is encouraged to close the distance.

Also, the global reward is represented as follows:

rg =


5000, victory
−5000, de f eat
0, draw

(13)

where the above result is determined by Equation (2).

4.2. The Transformer-Based Actor and Critic Networks

A Transformer network is an efficient model for handling sequential data with tem-
poral dependencies, and it is widely applied in fields including machine translation, text
summarization, and so on. The core of the Transformer network is the self-attention mech-
anism, which computes attention weights for different positions in the input sequence.
The key component of self-attention is scaled dot-product attention, and it is described
as follows:

Attention(Q, K, V) = so f tmax(
Q · KT
√

dk
+ M) ·V, (14)

where Q, K, and V represent the query matrix, key matrix, and value matrix, respectively.
dk denotes the dimensions of both the query matrix and the key matrix, and M is a lower
triangular matrix used for computing masked self-attention. Especially, the query (Q), key
(K), and value (V) matrices are linear transformations derived from the input sequence.
Assuming the input sequence is X, the matrices are computed as Q = WQ ∗ X, K = WK ∗ X,
V = WV ∗ X, where WQ, WK, and WV are learnable weight matrices.

The multi-head attention mechanism consists of multiple sets of dot-product self-
attention. Each self-attention mechanism enables the model to focus on a specific feature.
Meanwhile, multi-head attention allows interaction between multiple heads to enhance
its representational capacity. By concatenating matrices with different attention focuses, it
obtains the features of different inputs. The multi-head attention is described as follows:
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headi = Attention(Qi, Ki, Vi)
MultiHead(Q, K, V) = concat(head1, . . . , headi) ·W0 (15)

where W0 is a matrix of linear transformation coefficients.
The structure of actor and critic networks based on the Transformer-based GPT model

is shown in Figure 4, and both the networks consist of multi-head attention, residual
connection, layer normalization, feedforward neural network, and other structures. In
the actor network, a linear layer and position encoding layer are used to embed the states
and to encode time instants, respectively, and then through the layers including dropout,
masked multi-head attention, and other layers, the action output is obtained. Similar to the
actor network, the inputs of the critic network are states, actions, and instants, and after
passing through the linear layer, encoding layer, masked multi-head attention, and other
layers, the state–action value Q(t) is obtained.
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In the structure of actor and critic networks based on the GPT model, positional encod-
ing plays a crucial role in addressing the position order problem in sequence data. Unlike
traditional recurrent neural networks (RNNs), which inherently handle the sequential order
of data, the Transformer architecture is entirely based on the self-attention mechanism,
which is position-agnostic. Therefore, positional information needs to be explicitly injected
into the model.

Positional encoding is typically achieved by adding a sequence of vectors—one for
each position in the input sequence—to the input state embeddings. This allows the model
to distinguish between states at different steps. Here, a commonly used method involving
generating positional encodings using sine and cosine functions is adopted. Specifically,
each position’s encoding is calculated as follows:

PE(pos, 2i) = sin( pos
100002i/d )

PE(pos, 2i + 1) = cos( pos
100002i/d )

(16)

where pos is the position of the time step, i is the index of the vector, and d is the dimension
of the encoding vector.

4.3. Priority Sampling Mechanism Based on Episode Experience Replay

In the Transformer network, the continuous time series data of the state–action pair
are used to train the network. However, in the traditional DRL, the experience replay stores
one time instant of state–action data as an experience, which cannot be used to train the
Transformer network. Furthermore, even if several experience samples are drawn, it is hard
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to determine the time order of these samples and meanwhile guarantee these experience
samples have continuity in time and space dimensions, leading to incorrect training of
the Transformer network. Thus, it is necessary to store the state–action time series as an
experience sample in the experience pool, which is convenient for experience sampling to
train the Transformer-based actor and critic network. Also, the random sampling approach
in experience replay cannot ensure that the high-quality experience samples are efficiently
used and learned, which has an influence on the convergence speed and quality of the DRL
algorithm. This problem will worsen in the Transformer-based actor and critic network.
Therefore, it is necessary to design an effective sampling approach in experience replay to
improve the learning efficiency of the proposed DRL method.

To deal with the above problems, an episode-based replay memory is presented, and
based on it a priority sampling approach is proposed. The episode-based replay memory
collects an episode of state–action transitions as a single experience, which is stored in the
sub-memory. When an episode of air combat is finished, the episode experience in the
sub-memory is put in the replay memory and then the sub-memory is clear. Also, in the
priority sampling approach, each episode-based experience is arranged in order based on
cumulative reward, and the sampling probability is proportional to the sort priority of
experiences. This approach guarantees that the good quality experience sample can be
drawn in a larger probability, improving the convergence speed and quality of the proposed
DRL algorithm.

Figure 5 illustrates the episode-based replay and priority sampling mechanism. Firstly,
the sub-experience memory with the capacity defined as B1 is designed, which is used
to store the experiences generated in an episode. If the end time of an episode is less
than the maximum simulation time, tmax, then the remaining time steps are padded with
zeros. When an episode is finished, an episode of experiences is added to the total replay
memory. Meanwhile, the sub-memory is cleared and prepared to store the next episode
of experiences. The capacity of total replay memory is defined as B. When the total
replay memory is full, the first-in-first-out rule is used to update the replay memory. The
introduction of episode-based replay memory can improve the sampling efficiency since
the continuous time samples are required to train the Transformer-based network.
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When the replay memory is full, the priority sampling approach is used to obtain
the sample from the replay memory to train the actor and critic network. The cumulative
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reward of each episode-based experience in the replay memory is first calculated, and then
all experiences are sorted in ascending order by cumulative reward. As a consequence,
the experience with the largest cumulative reward has the maximum sort number. The
sampling probability of each experience is computed as follows:

Pj = j/
M

∑
j=1

j , (17)

where j represents the sort number, M is the number of experiences in the reply memory,
and Pj is the sampling probability. N samples are drawn from the replay memory based on
the sampling probability. For each sample, continuous time series with sequence lengths
of C (i.e., ti, ti+1, · · · , ti+c−1) are collected in random sampling to constitute a batch of
samples. This priority sampling approach can collect higher reward experience samples
for training the actor and critic networks, which can improve the learning efficiency and
accelerate the algorithm’s convergence.

4.4. Dynamic Learning Rate Adjustment for Stable Training

For the Transformer-based network, it is necessary to adjust the learning rate as the
training process goes on. At the initial training stage, a relatively large learning rate is
usually used in order to adjust network weights quickly by adopting gradient descent
optimization. As the training process goes on, the network has a better nonlinear mapping
capability, and then it is more important to focus on the precision of the network output.
This means that at the late stage, the network should use a relatively small learning rate to
guarantee the network output converges to the optimal solution. Therefore, the dynamic
learning rate adjustment by using a cosine annealing schedule is designed as follows:

lrcur = lrmin +
1
2
(lrmax − lrmin) · (1 + cos(

Tcur

Tmax
π)), (18)

where lrcur is the current learning rate, lrmax and lrmin are the set maximum and minimum
learning rates, Tcur represents the current number of training episodes, and Tmax is the total
number of training episodes. By analyzing Equation (18), it is seen that the learning rate
decreases as the training process continues, and the descent speed of the learning rate is
small at the initial and late training stages but large at the middle training stage. In other
words, the network gets close to the optimal solution quickly with a large learning rate at
the initial stage, and after that, the learning rate decreases quickly at the middle state and
then uses a small learning rate to search for the optimal solutions at the late stage. This is
beneficial for stabilizing the reinforcement learning training process and obtaining a good
decision result.

4.5. Trade-Off Between Exploration and Exploitation

A common challenge in deep reinforcement learning (DRL) is balancing the trade-off
between exploration and exploitation. Exploration means trying actions that improve
the model, whereas exploitation means behaving in an optimal way given the current
model. In this paper, the Deep Deterministic Policy Gradient algorithm is adopted, and the
actor network outputs deterministic actions. The actor network parameters are initialized
randomly, but the actor outputs make little difference to various inputs at the beginning of
training. Therefore, the actor outputs are not beneficial for exploring the potential good
maneuver strategy. To encourage exploration, Gaussian white noise is added to the actor
output in order to encourage exploration, which is expressed as follows:


at = µ(st; θ) + η
η ∼ N (0, σ2)

at ∼ clip(Nmin, Nmax)
, (19)
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where at represents the executed action; µ(st; θ) denotes the action output by the actor
network; η is the Gaussian white noise and its mean and standard deviation are 0 and σ;
and clip() represents the truncation function that determines the action values in the range
of (Nmin, Nmax).

Based on Equation (19), it is seen that the noise has an influence on the degree of
exploration. At the initial stage of training, the noise standard deviation is set relatively high
to encourage efficient exploration of the action space. As the training goes on, the standard
deviation of noise decreases gradually in order for the agent to achieve a balance between
exploration and exploitation. At the end stage, the standard deviation is maintained at a
specified small value in order to make the agent exploit the optimal maneuver strategy
given the memory. Thus, inspired by the epsilon-greedy policy, the noise standard deviation
is controlled as follows:

σ =

{
σinit +

(σinit−σend)
Tend

T 0 ≤ T ≤ Tend

σend Tend < T ≤ Tmax
, (20)

where σinit and σend are the initial and end values of the noise standard deviation; T
and Tmax are the current and maximum number of episodes; Tend represents the episode
number; and the noise standard deviation is equal to the end value. In the last training
stage (i.e., Tend < T ≤ Tmax), the noise standard deviation is set to σend, which is not equal
to zero. This prevents the experience samples in the replay memory from becoming overly
homogeneous and subsequently protects the critic network from overfitting. Therefore, by
adding Gaussian random noise to the actor output and controlling its standard deviation,
the balance between exploration and exploitation is achieved.

4.6. Network Training and Policy Update

Once enough experience samples are stored in the replay memory, the priority sam-
pling mechanism is used to collect a batch of samples. These samples are used for training
both the actor and critic networks, and the network parameters are updated through
gradient descent and error backpropagation. The proposed maneuver decision-making
approach introduces the Transformer network in the DDPG algorithm, which contains four
Transformer-based networks: the online and target actor networks with the parameters θ
and θ′, and the online and target critic networks with the parameters ω and ω′. The online
actor network takes the state st as input and outputs the maneuvering action at. The online
critic network takes the joint state–action (st, at) as input and outputs the evaluation value
Q for the joint state–action pair.

A continuous time experience sample with sequence length l is defined as follows:

Sampli =
[
Si

ti−l+1:ti
, Ai

ti−l+1:ti
, Ri

ti−l+1:ti
, Si

ti−l:ti+1

]

=


sti−l+1 ati−l+1 rti−l+1 sti−l+2
sti−l+2 ati−l+2 rti−l+2 sti−l+3

...
...

...
...

sti ati rti sti+1

,
(21)

where Si
ti−l+1:ti

, Ai
ti−l+1:ti

, and Ri
ti−l+1:ti

are the continuous time sequence of state, action,
and reward, and ti is a randomly selected time instant in an episode satisfying l ≤ ti ≤ Tmax.
The N samples are defined as a batch, which is given as follows:

Batch = {Sampl1, Sampl2, · · · , SamplN}, (22)

For each sample, the target Q value for a time ti is calculated as follows:

Qtarget
ti

= rti + γ ·Q′(Si
ti−l:ti+1, µ′(Si

ti−l:ti+1; θ′); ω′) (23)
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where Q′ represents the Q value generated by the target critic network, and µ′ represents
the use of the target actor network. By minimizing the mean-square-error loss function
defined in Equation (24), the online critic network parameters are updated.

LossC =
1
N ∑

i
(Qtarget

i −Q(Si
ti−l+1:ti

, Ai
ti−l+1:ti

; ω))
2

(24)

The online actor network is used to produce the maneuvering strategy for maximizing
the expected cumulative discounted reward. The policy gradient of the actor network is
computed as follows:

∇θ J(θ) = ∇aQ(s, a) · ∇θµ(s)

≈ 1
N

N
∑

i=1
∇aQ(Si

ti−l+1:ti
, Ai

ti−l+1:ti
; ω)∇θµ(Si

ti−l+1:ti
; θ),

(25)

Based on Equations (24) and (25), the parameters of the online critic and actor networks
are updated as follows:

θ ← θ + lrcur·∇θ J(θ)
ω ← ω− lrcur·∇ω LossC

, (26)

where τ is the soft update parameter to control the update degree.
The algorithm of the proposed approach is shown in Algorithm 2.

Algorithm 2: Decision-making approach based on the Transformer network and deep
reinforcement learning.

Initialization: Initialize a sub-memory R1 with capacity B1 and episode-based replay memory R
with capacity B; online actor and critic networks based on the Transformer network with weights
θ, ω; target actor and target critic networks with weights θ′ = θ, ω = ω′; and a random process
N with a mean of 0 and an initial standard deviation of σinit
for episode = 1,2,. . .Tmax do:

Initialize continuous time sequence of state s1 in air combat
for t = 1,2,. . ., tmax do:

Select action at = µ(st; θ) +N according to the online actor network
Execute action at, get a reward rt and a new state st+1
Store a transition with [st, at, rt, st+1] in sub-memory R1
If episode-based replay memory R is full:

Sample a minibatch of N from R with priority sampling weight Pj

Compute Qtarget
ti

= rti + γ ·Q′(Si
ti−l:ti+1, µ′(Si

ti−l:ti+1; θ′); ω′)
Update the online critic network by minimizing the loss:

LossC = 1
N ∑

i
(Qtarget

i −Q(Si
ti−l+1:ti

, Ai
ti−l+1:ti

; ω))
2

Update the online actor network by using the policy gradient:

∇θ J(θ) = 1
N

N
∑

i=1
∇aQ(Si

ti−l+1:ti
, Ai

ti−l+1:ti
; ω)∇θµ(Si

ti−l+1:ti
; θ)

Update the target actor and target critic networks:
θ′ ← τ · θ + (1− τ) · θ′
ω′ ← τ ·ω + (1− τ) ·ω′

If air combat is finished:
break

end for
Put the sub-memory to episode-based replay memory and clear the sub-memory
Decay the standard deviation of a random process and the learning rate of networks

end for

5. Simulation Experiment

To verify the feasibility and stability of the algorithm, simulation experiments were
conducted to perform one-on-one close-range air combat maneuver decision-making.
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These experiments enabled the agent to seize advantageous attack positions during air
combat and achieve the desired combat objectives. In order to determine whether a priority
sampling mechanism is used, whether a dynamic learning rate adjustment is used, and
the size of the set sequence length, and to verify the feasibility of the algorithm, the
situation of the opposing sides is transparent during the process; that is, the opposing
sides can obtain information from each other. In addition, to verify the superiority of using
the Transformer network architecture, a comparison was made between the Transformer
network used in this paper and the deep reinforcement learning method using a fully
connected network. Corresponding experimental scenarios were set up in the case of losing
opponent information with a 10% probability.

5.1. Simulation Experiment Parameters

The simulation parameters for a one-to-one close-range air combat environment are
shown in Table 1.

Table 1. Close-range air combat simulation parameters.

Name Symbol Value

Simulation step/s ts 0.1
Decision step/s tp 1

Simulation time/s tmax 60
Simulated minimum speed/(m·s−1) Vmin 100
Simulated maximum speed/(m·s−1) Vmax 300

All the simulation experiments in this paper were conducted on a PC configured
with Intel i7-11700, 32 GB of memory, and running on the Win10 operating system. The
experiments were compiled and developed using Python 3.8 and PyCharm 2021.3.

The network parameters used in this paper and the necessary parameter configurations
in deep reinforcement learning are shown in Tables 2 and 3.

Table 2. Actor and critic network parameters.

Parameter Value Parameter Value

State vector dimension 9 Linear connection layer dimension 128
Action vector dimension 3 Actor output activation function Tanh

Linear embedding layer dimension 64 Critic output activation function -
Dropout layer inactivation rate 0.1 Maximum learning rate lrmax 0.001

Multiple attention heads 16 Minimum learning rate lrmin 0.00001
Q K V matrix dimension 64 Optimizer Adam

Table 3. DRL model training parameters.

Parameter Value

Discount factor γ 0.9
Total replay memory capacity B (episode) 512

Sub-replay memory capacity B1 (piece) 60
Number of batch sampling N (piece) 256

Soft update parameter τ 0.05

5.2. Performance Analysis of the Improvement Mechanisms

Firstly, the influence of different sample sequence lengths on the performance of
maneuver decision-making is analyzed. The sample sequence lengths l are set as 2, 3, 4, and
5, respectively, and the accumulated reward curves of different sequence lengths are shown
in Figure 6. It illustrates that the model is trained well with a large accumulated reward
when the sequence length is set as 2 and 3. Moreover, as the sequence length increases, the
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Transformer network faces greater difficulty in capturing spatial–temporal relationships,
leading to unstable training results, as shown in Figure 6. Since air combat is a Markov
decision process, when the current information is lost, the previous one or two time instant
information is the most reliable information used to estimate the current information. Thus,
the result of selecting a sequence length of 2 and 3 is reasonable.
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Furthermore, Table 4 gives the winning rate with different sequence lengths in the last
2000 training episodes. It shows that the highest average winning rate with the smallest
standard deviation is obtained when the chosen sequence length is 2, and a sequence length
of 3 comes second. The average winning rate decreases rapidly when the sequence length
is larger than 3. Therefore, the sequence length is set as 2 in the following simulation.

Table 4. Comparison of winning rates for different sequence lengths.

Sequence Length Average Winning Rate Standard Deviation of
Winning Rate

2 98.0% 0.040
3 96.1% 0.068
4 76.1% 0.156
5 27.1% 0.158

Then, the performance influence of introducing the improvement mechanisms is
analyzed in Figure 7. Three cases are compared as follows: Case 1, priority sampling
+dynamic learning rate adjustment; Case 2, random sampling +dynamic learning rate
adjustment; and Case 3, priority sampling +constant learning rate (lr = 0.0001). The episode
cumulative reward curves in the above three cases are present in Figure 6, which are
obtained by several experiments with different random seeds. By comparing the results
of Case 1 and Case 2, it is seen that the training process converges faster when using
priority sampling. This result indicates that the proposed priority sampling method can
improve the DRL model training convergence. By comparing the reward curves of Case 2
and Case 3, it is seen that the model is convergent to the stable status with a large stable
cumulative reward, which is rapidly acquired by using the dynamic learning rate. On the
contrary, by using the constant learning rate, the model training is unstable and the agent
performs poorly in combat since the large learning rate fails to converge to a stable optimal
or sub-optimal maneuvering strategy at the last training stage.
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The average winning rate and its standard deviation in the last 2000 training episodes
via multiple experiments are given in Table 5. It shows that the agent has the highest
average winning rate with the smallest standard deviation by using priority sampling and
dynamic learning rate adjustment. Thus, it also proves that the DRL model training can be
more effective and stable by using the improvement mechanisms.

Table 5. Winning rate for three cases.

Case Average Winning Rate Standard Deviation of
Winning Rate

Case 1: priority sampling +
dynamic learning rate 98.6% 0.026

Case 2: random sampling +
dynamic learning rate 89.5% 0.148

Case 3: priority sampling +
constant learning rate 35.7% 0.242

5.3. Performance Comparison of Different DRL Approaches

Here, we compare the maneuver decision-making performance of the proposed
method, the LSTM network, and the traditional DDPG and PPO methods.

Figure 8 compares the DDPG method based on the Transformer network and the
LSTM network (both with a sequence length of 2) with the DDPG and PPO methods using
fully connected neural networks (with a sequence length of 1). The curves in the figure
show that, even in the presence of information loss, the Transformer network, designed for
processing time series data, outperforms the LSTM network during training. In contrast,
the fully connected network, which only uses the current state as input, fails to make high-
quality decisions when information is lost, resulting in non-convergence of the training
outcomes for both the DDPG and PPO methods.

Table 6 compares the winning rates from the last 2000 training process using the three
methods mentioned above under conditions of information loss. The data indicate that
the Transformer network effectively captures temporal dependencies, achieving higher
winning rates with smaller standard deviations, resulting in a more stable training process.
The LSTM network performs slightly worse than the Transformer network but still out-
performs the fully connected network. In contrast, the fully connected network exhibits a
lower average winning rate, larger standard deviations, and unstable training, leading to a
lack of convergence.
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Table 6. Comparison of winning rates for three deep reinforcement learning methods.

Method Average Winning Rate Standard Deviation of
Winning Rate

Transformer 92.3% 0.068
LSTM 83.8% 0.113
DDPG 48.2% 0.135
PPO 86.1% 0.224

Table 7 compares the time consumption for single-step decisions using the Transformer
network, the fully connected neural network, the LSTM network, and matrix game methods,
as previously described in this article. The matrix game method requires the longest time,
making it difficult to meet the real-time demands of air combat. The Transformer network
takes 0.78 ms longer per single step than the fully connected network but achieves a
winning rate exceeding 44.1% in scenarios involving opponent information loss. Due to
the sequential input processing and the complex gating mechanisms, the LSTM network
exhibits significantly higher time costs per step compared to the parallelized Transformer
network. This demonstrates that, while satisfying the real-time requirements of air combat,
the Transformer network effectively enhances the winning rate in situations with opponent
information loss, validating the superiority of the proposed method.

Table 7. Comparison of time consumption for single-step decision-making.

Method Single-Step Decision
Duration (ms)

Time Consumption
Percentage (%)

Transformer 0.95 4.929
DDPG/PPO 0.17 0.911

LSTM 2.38 12.48
Genetic Algorithm

Optimizing Matrix Game 19.07 100

5.4. Adversarial Training

Figure 9 depicts the confrontation between agents trained using the Transformer
network in a specific episode. In the early stage of the episode, the red agent chooses to
decelerate and climb to the left to gain an angular advantage, while the blue one continues
turning right to achieve an attacking angle advantage. The red agent anticipates the
continued right turn of the blue opponent by analyzing its previous right-turn trajectory.
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Therefore, the red agent takes an early right turn and climb action to gain angular and
distance advantages. In the middle stage, with both sides at similar altitudes, the red
agent adopts a defensive stance against the blue agent and attempts to escape the tail
chase. The blue agent continues turning right to evade while the red agent chooses to keep
decelerating to achieve a smaller turning radius and quickly gain an angular advantage.
However, at this point, the blue agent’s higher speed causes the distance between them
to increase rapidly, and the red agent loses the attack lock. In the end, the red agent
obtains a significant angular advantage and enters a pursuit position against the blue agent.
It chooses to maintain acceleration, continuously reducing the distance between them.
Eventually, meeting the attack conditions, the red agent successfully locks and attacks the
blue agent, resulting in a victory for the red side in this episode.
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Figure 10 illustrates the adversarial process of a specific episode during training using
a fully connected network. In contrast to training with the Transformer network, the
red agent still chooses to accelerate in the middle stage of the episode, despite the loss
of information about the blue opponent. This prevents the red agent from engaging in
a one-circle confrontation with a smaller turning radius, resulting in missing the attack
opportunity. In the late stage, by adjusting its own maneuver decisions during the one-circle
engagement, the red agent eventually establishes a tail chase against the blue agent. After
meeting the attack conditions, the episode is determined as a victory for the red side. This
demonstrates a difference in decision-making between the Transformer network and the
fully connected network training, with the latter adapting its maneuver decisions during
the engagement to overcome the challenges posed by the loss of opponent information.

Figure 11 shows the comparison of the three-direction overload changes of the red
agent during adversarial training using the Transformer and fully connected networks in
Figures 9 and 10. It can be clearly seen from the three-direction overload in the figure that at
the 29th second, the agent using the Transformer network completed the air combat ahead
of schedule, which is faster than using a fully connected network to complete the strike. The
overload changes of the agent using the Transformer network are relatively smooth, with
fewer abrupt mutations. In contrast, the agent using the fully connected network exhibits
larger overload variations and tends to output edge-controlling decision instructions.
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Table 8 compares the energy consumption for each overload of agents using the
Transformer network and the fully connected network under the control instructions
shown in Figure 11. Energy is defined as the area enclosed by the overload and the time
axis in all directions. This table demonstrates that UAVs utilizing Transformer networks
can defeat opponents with less energy and in a shorter time, leading to an advantage in
air combat. This further confirms the superiority of the method proposed in information
loss environments.
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Table 8. Comparison of different methods for controlling energy.

Method
Overload Value and Area Under the Time Axis

nx ny nz

Transformer 23.2970 36.5637 79.2495
Fully connected

network 39.2644 56.7764 102.6854

6. Conclusions

This paper addresses the issue of UAVs facing difficulties in obtaining opponent
information, which affects the quality of autonomous decision-making and the win rate
of air combat. By introducing Transformer networks into deep reinforcement learning
algorithms, we aim to capture the dependency relationships between sequence information
and maintain high-quality decision-making capabilities, even in the absence of information.
In order to address the issues of poor training stability, insufficient training samples, and
low sampling efficiency caused by the introduction of a Transformer network, dynamic
adjustment of the learning rate, the encouragement of exploration mechanism, episode
experience replay, and the priority sampling mechanism were used, respectively, effec-
tively improving training stability and efficiency. A large number of simulation results
show that the proposed method exhibits higher decision quality and higher win rate
compared to traditional fully connected networks, further verifying the superiority of the
proposed method.
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