
Citation: Chen, L.; Zhang, W.; Dong,

C.; Zhao, D.; Zeng, X.; Qiao, S.; Zhu,

Y.; Tan, C.W. FedTKD: A Trustworthy

Heterogeneous Federated Learning

Based on Adaptive Knowledge

Distillation. Entropy 2024, 26, 96.

https://doi.org/10.3390/e26010096

Academic Editor: Sotiris Kotsiantis

Received: 18 December 2023

Revised: 18 January 2024

Accepted: 19 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

FedTKD: A Trustworthy Heterogeneous Federated Learning
Based on Adaptive Knowledge Distillation
Leiming Chen 1 , Weishan Zhang 1 , Cihao Dong 1, Dehai Zhao 2 , Xingjie Zeng 3 , Sibo Qiao 4,* ,
Yichang Zhu 1 and Chee Wei Tan 5,*

1 School of Computer Science and Technology, China University of Petroleum (East China),
Qingdao 266580, China; chenleiming2020@163.com (L.C.); zhangws@upc.edu.cn (W.Z.);
dch142857@163.com (C.D.); xxz20181027@163.com (Y.Z.)

2 CSIRO’Data61, Sydney 2015, Australia; dehai.zhao@data61.csiro.au
3 School of Computer Science, Southwest Petroleum University, Chengdu 610500, China; zengxjupc@163.com
4 School of Software, Tiangong University, Tianjin 300387, China
5 School of Computer Science and Engineering, Nanyang Technological University,

Singapore 639798, Singapore
* Correspondence: siboqiao@126.com (S.Q.); cheewei.tan@ntu.edu.sg (C.W.T.)

Abstract: Federated learning allows multiple parties to train models while jointly protecting user
privacy. However, traditional federated learning requires each client to have the same model structure
to fuse the global model. In real-world scenarios, each client may need to develop personalized
models based on its environment, making it difficult to perform federated learning in a heterogeneous
model environment. Some knowledge distillation methods address the problem of heterogeneous
model fusion to some extent. However, these methods assume that each client is trustworthy.
Some clients may produce malicious or low-quality knowledge, making it difficult to aggregate
trustworthy knowledge in a heterogeneous environment. To address these challenges, we propose a
trustworthy heterogeneous federated learning framework (FedTKD) to achieve client identification
and trustworthy knowledge fusion. Firstly, we propose a malicious client identification method
based on client logit features, which can exclude malicious information in fusing global logit. Then,
we propose a selectivity knowledge fusion method to achieve high-quality global logit computation.
Additionally, we propose an adaptive knowledge distillation method to improve the accuracy of
knowledge transfer from the server side to the client side. Finally, we design different attack and data
distribution scenarios to validate our method. The experiment shows that our method outperforms
the baseline methods, showing stable performance in all attack scenarios and achieving an accuracy
improvement of 2% to 3% in different data distributions.

Keywords: heterogeneous federated learning; adaptive knowledge distillation; malicious client
identification; trustworthy knowledge aggregation

1. Introduction

As deep learning continues to advance, many organizations use artificial intelligence
technology to optimize their digital management processes. Nevertheless, while artificial
intelligence brings undeniable benefits, it has ushered in a new set of challenges. First
and foremost, the widespread adoption of cross-industry data analysis methodologies
has transformed data analysis into a collaborative, multidisciplinary endeavor. This shift
means that data analysis no longer confines itself to a single industry but rather spans
various sectors. Consequently, the need to pool data resources from diverse domains has
become increasingly apparent. This collaborative approach extends to constructing model
training datasets, necessitating cooperation among institutions within the same industry
and across different sectors. One solution to addressing these challenges is multi-party data
sharing. However, implementing this approach introduces its own set of issues. Traditional

Entropy 2024, 26, 96. https://doi.org/10.3390/e26010096 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26010096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7701-6313
https://orcid.org/0000-0001-9800-1068
https://orcid.org/0000-0003-3637-4939
https://orcid.org/0000-0003-4371-0953
https://orcid.org/0000-0001-6922-5986
https://orcid.org/0000-0002-6624-9752
https://doi.org/10.3390/e26010096
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26010096?type=check_update&version=1

Entropy 2024, 26, 96 2 of 31

data analysis practices entail the collection of data from multiple sources, centralizing it
on a server for analysis. Unfortunately, this centralized data collection method poses a
significant risk to data privacy. Furthermore, in certain sectors such as healthcare and
finance, where data often contains sensitive personal or proprietary information, direct
industry data sharing becomes infeasible. Consequently, the need to achieve multi-party
federated data analysis while preserving data privacy has become an urgent concern.
Simultaneously, the demand for complex tasks has driven organizations to train larger
network models with an increased number of parameters. These large, highly accurate
models have successfully addressed challenges in various domains. However, resource
constraints and associated costs have made it challenging for some participants to engage
in the training of such complex models. This predicament has placed the spotlight on
addressing model training for resource-constrained participants.

To tackle the data privacy conundrum on mobile devices, Google pioneered federated
learning technology [1]. Federated learning is a distributed computing method that solves
data privacy issues by exchanging model parameters between mobile devices and servers
instead of sharing raw data. Google also proposed the FedAvg method [1], a global fusion
method that calculates the client weights based on the ratio of client samples to the total
samples. However, in practical scenarios, this method faces two significant challenges.
On the one hand, the inherent diversity in devices and data sources makes it difficult to
achieve convergence in the fused global model when using the average weighting method
employed by FedAvg. On the other hand, frequent model transfers between the server and
clients result in increased communication costs, which can be unacceptable in resource-
constrained wireless and mobile network environments. Therefore, some research [2–4]
has concentrated on enhancing model convergence speed and optimizing communication
costs in federated learning. Despite these efforts to address model convergence in federated
learning, most of these methods assume a uniform network model and structure across
all clients. In practice, different clients may design their own network models to suit their
computational environments, giving rise to the “heterogeneous model fusion” challenge in
federated learning. Conventional federated learning algorithms are ill-equipped to resolve
this challenge.

To address the constraints imposed by computationally limited devices, Hinton et al.
introduced knowledge distillation [5]. This technique guides the training of a small model
(student model) on resource-constrained devices by first pre-training a complex network
model (teacher model) with high performance. Knowledge is then transferred from the
teacher model to the student model, enabling the latter to perform better. Notably, knowl-
edge distillation permits the teacher and student models to possess different network
structures, effectively solving the problem of knowledge transfer between heterogeneous
networks. Leveraging the advantages of knowledge distillation, researchers have explored
its integration with federated learning, which brings the series of federated knowledge
distillation methods. Federated knowledge distillation, a two-step knowledge distillation
process encompassing server-side and client-side knowledge distillation, has emerged as a
solution to the heterogeneous model fusion problem in federated learning. However, the
combination also brings some new challenges.

On the one hand, in the server-side knowledge distillation phase, each client model
assumes the role of a teacher, while the server-side model serves as the student. Allocating
the fusion weight of each student is the key issue. Some research endeavors implement
multi-teacher knowledge distillation by maintaining fixed teacher weights. Moreover,
certain approaches employ rotating teacher selection [6] to facilitate knowledge distillation.
These methods address the challenge of knowledge fusion in heterogeneous models but do
not entirely resolve the issue of knowledge distillation in federated learning. Federated
learning, characterized by dynamic changes in the client model with each communication
round, necessitates a method that can dynamically select the teacher model based on the
quality of the client model. Furthermore, each federated learning communication round

Entropy 2024, 26, 96 3 of 31

involves distributing server-side knowledge to individual clients, posing challenges in
leveraging global knowledge to guide the training of each client’s private model.

On the other hand, we cannot share clients’ private data in the federated learning envi-
ronment, so training a teacher model while preserving client privacy remains the new issue.
Current research in this direction can be broadly categorized into two main approaches: the
public dataset method [7–9] and the method based on Generative Adversarial Networks
(GANs) [10–12]. Nevertheless, the GAN-based method requires clients to possess signif-
icant computational resources, and GAN training is a time-consuming process, limiting
its accessibility to some participants. The public dataset method, too, faces its own set of
challenges. It assumes the trustworthiness of all participating clients, but in reality, some
clients may exhibit malicious behavior. These clients may intentionally manipulate the
outputs of their local models on public datasets. Incorporating malicious information into
global knowledge fusion can significantly impact overall accuracy. Additionally, variations
in each client’s computational power and data quality result in differences in the quality of
information output by client models on public datasets. Some algorithms (e.g., FedMD [7])
employ an average weighting method to merge this information, leading to compromised
global information performance. While current approaches, such as public datasets and
GAN-based methods, offer partial solutions to the problem of heterogeneous federated
learning, they presume the trustworthiness of all federated learning participants. However,
some clients may produce malicious or low-quality knowledge in real-world environments,
making achieving trusted knowledge aggregation in heterogeneous settings challenging.
For instance, in medical image applications, certain hospitals have designed personalized
models tailored to their specific computational environments. These hospitals seek to
reuse their original models and collaboratively train a more accurate model based on their
existing models. Before embarking on the federated task, these hospitals must annotate
their respective sample data to prepare the training dataset. Medical dataset annotation is a
complex task that demands domain expertise and significant time investment. Annotators’
domain knowledge directly impacts the quality of image annotations. Errors in annotation
may result in discrepancies in the knowledge output by each hospital’s model. Addition-
ally, in an attempt to reduce costs or subvert the co-trained models, some individuals may
intentionally upload entirely random knowledge or employ randomly labeled samples for
model training, generating malicious knowledge. Utilizing such malicious or low-quality
knowledge for global knowledge fusion can jeopardize the entire federated task.

These challenges make building a framework for Trustworthy AI increasingly impera-
tive. In efforts to promote Trustworthy AI applications, Lu et al. have explored various
domains, including software development processes [13] and pattern design [14]. Trust-
worthy federated learning technology plays a pivotal role in safeguarding privacy and
enabling collaborative learning for Trustworthy AI. To actualize Trustworthy AI, Chen
et al. [15] have devised a computational framework for trustworthy federated learning,
ensuring the security of the entire federated learning process.

In response to these challenges, we propose a knowledge distillation-based approach
that utilizes public data to address the problem of heterogeneous model fusion in federated
learning. Our objectives encompass (1) achieving trustworthy global information fusion
in heterogeneous federated learning environments and (2) enhancing the accuracy of
knowledge transfer between servers and clients through knowledge distillation techniques.
To attain these goals, we present a trustworthy federated learning framework grounded
in knowledge distillation. This framework incorporates client information verification
on the server side to prevent malicious clients from participating in information fusion.
Additionally, we introduce a model training methodology based on two-stage knowledge
refinement to elevate the accuracy of client models.

The main contributions of this paper are as follows:

• We design a trustworthy federated learning framework in a heterogeneous environ-
ment, which can realize client identification and trustworthy knowledge fusion.

Entropy 2024, 26, 96 4 of 31

• We propose a malicious client identification method based on client logit features. To
the best of our knowledge, we are the first to propose a malicious client identification
method based on logit information in heterogeneous federated learning.

• We propose a trustworthy global logit computation method, which ensures the accu-
racy of global logit information by training the model on the server side. At the same
time, it can adaptively fuse the logit information of each client to realize a high-quality
fusion of logit information.

• We propose an adaptive knowledge distillation method, which can adaptively select
the parameters of knowledge distillation according to the confidence of the server-side
global logit, and the method can improve the accuracy of the client model.

• We design different attack scenarios to verify the reliability of our methods. Meanwhile,
we compare five baseline algorithms under different data distribution scenarios to
verify the performance of our approach.

2. Related Work
2.1. Federated Learning

The FedAvg method, initially proposed by Google [1], computes fusion weights
for each client model based on the ratio of client samples to the total. However, due
to device and data heterogeneity, FedAvg may lead to slow global model convergence.
Therefore, several research focuses on improving convergence problem, such as the FedProx
algorithm [3], which introduced a loss function that corrects the parameters of the clients’
models that deviate from the global model, thus accelerating the convergence of the global
model. Karimireddy et al. also proposed the Scaffold algorithm [2], which corrects the
client drift problem by introducing control variables. Wang et al. proposed the FedNova
algorithm [16]. This method requires each client to upload normalized model parameters,
and then the server calculates the average parameters, thus solving the global model fusion
problem. Li et al. proposed the MOON algorithm [17], which solves the global model
convergence problem by introducing the contrast loss of the model.

Although these methods solve the global model convergence problem, they require
clients to use the same structural model, so they cannot work in a heterogeneous model
environment, making it challenging to perform federated learning in a heterogeneous
environment.

2.2. Federated Knowledge Distillation

Knowledge distillation can transfer knowledge between heterogeneous networks.
Some research has applied knowledge distillation to federated learning scenarios to solve
the fusion problem of heterogeneous models. However, we cannot share participants’
private data in the federated learning environment. How to train teacher models while
guaranteeing privacy becomes an urgent problem. We can categorize this research into
three primary categories: public dataset-based, calculating category information, and using
data-generated approaches.

The public dataset-based approach accomplishes client-side and server-side knowl-
edge distillation by constructing a public dataset between the server and the client. For
example, Li et al. proposed FedMD [7], which supports using different models for each
client and accomplishes heterogeneous model knowledge distillation through the public
dataset. Lin et al. proposed the FedDF method, which aggregates the average soft-label
information uploaded by the clients to the server side and then computes the average
soft-label information sent to the client. Jiang et al. proposed the FedDistill method [9],
which builds a personalized model for each client and transfers the knowledge from the
global model to the personalized model. Some researchers use the category information of
the client’s private dataset to transfer knowledge. For example, the FedDistill+ method [18]
requires each client to calculate the average logit information of each category, and the
server-side fuses this information to form the global logit information of each category and
finally guides the client model training through this information. Chan et al. proposed

Entropy 2024, 26, 96 5 of 31

the FedHe method, which also aggregates the logit information of private data to achieve
knowledge aggregation and then uses this knowledge to guide the model training of each
client. Chen et al. also proposed FedHKD [19], which sends the client’s data represen-
tations and corresponding soft predictions to the server, and the server aggregates this
information to achieve knowledge merging. Generative model-based methods mainly
solve the knowledge fusion problem by training GAN networks to generate client data
samples. For example, Zhu et al. proposed the FedGEN [10] method to achieve client-side
model aggregation by generating a lightweight data generator on the server side. Such as,
Zhang et al. proposed the FedFTG method [11] to transfer knowledge from local models
to global models by exploring the input space of local models through generators. The
FedDTG method [12] implements knowledge fusion by training GAN networks to generate
pseudo-samples.

Although the GAN method solves the problem of client data protection, training
GAN requires the client to have high computational power, and the training process of
GAN is very time-consuming. Therefore, some resource-limited clients cannot use this
method. Although the public dataset approach can use fewer resources to train teacher
models, the current method cannot guarantee trustworthy federated learning, which needs
an evaluation step for client information. The private data-based approach does not require
the construction of additional datasets. However, the method uses the average knowledge
of each category to guide the client model training, which is only effective on very simple
data sets. Therefore, achieving a credible heterogeneous federated learning algorithm is
important while maintaining the efficiency and accuracy of knowledge calculation.

2.3. Trustworthy Federated Learning

Current research aims to achieve credible federated learning in three main categories:
client identification, model parameter-based identification, and model parameter pruning
method. The client selection method prevents malicious clients from participating in fusion
by identifying their behavior. For example, Li et al. proposed a reliable federated learning
framework [20], which uses a spectral anomaly detection method on the server side to
realize the identification of the malicious client. Chen et al. also proposed a reinforcement
learning method to adaptively select the trusted clients for model aggregation [21]. Model
parameter identification-based methods mainly distinguish malicious clients by calculating
the Euclidean distance between models, such as Krum and Mutil-Krum [22]. In addition,
Chen et al. [23] also proposed a model fusion feature approach to identify malicious clients.
Model parameter pruning-based methods achieve secure global model fusion by pruning
the outlier parameters of malicious models. These methods include TrimmedMean [24],
ClippedClustering [25], and Centered Clipping [26] methods.

Although these methods address the problem of trustworthy federated learning, most
research is based on evaluating clients’ model accuracy or detecting models’ parameters.
However, each client may have a different model structure in the heterogeneous federated
learning scenario. Therefore, these methods cannot solve the problem of heterogeneous
model detection. Some federated learning algorithms use model logit on datasets in
heterogeneous environments for global information fusion. Therefore, using the logit
information to detect malicious information becomes the key to solving this problem.
Zhang et al. proposed a credible federated learning framework (RobustFL) [27], which
realizes the identification of malicious clients by constructing a predictive model based on
logit on the server side. Wang et al. also proposed a method based on the distribution of
logit to determine the distribution of malicious samples [28].

However, these methods encounter the cold-start problem because they must collect
specific malicious logit information and train a predicted model before detecting malicious
information. The malicious model outputs different information in each communication
round. We cannot train a recognition model in every communication round, which will
affect the progress of federated learning. Therefore, we need a real-time dynamic detection
method for malicious message identification.

Entropy 2024, 26, 96 6 of 31

3. Method
3.1. Problem Definition

In real federated learning environments, there are differences in computing resources
and computing environments across clients, leading to clients needing to design their
respective models according to their environments and problems. Therefore, each client
may use a different network structure, known as the model heterogeneity problem. Tra-
ditional federated learning algorithms (e.g., FedAvg, FedPorx, etc.) require clients to use
the same model and structure. These methods ensure that the parameters of each layer
of the model are consistent, so the server-side computes the global model parameters by
fusion of the model parameters of each layer. However, these methods cannot be used
in heterogeneous federated learning. To describe the heterogeneous model problem, we
will describe the critical processes of heterogeneous model fusion in federated learning
and the problems in the process. The knowledge distillation method is a common method
to solve the information transfer of heterogeneous networks. Therefore, we also use the
knowledge distillation method to solve the fusion problem of heterogeneous models in
federated learning.

3.1.1. The Processes of Federated Knowledge Distillation

Traditional federated learning approaches accomplish information transfer by passing
models between the server and the client. In a federated heterogeneous modeling envi-
ronment, the structure of each client’s model is different, which makes it unable to use
the traditional approach. To complete the information transfer between the client and the
server side, we exchange information through the logit information output from the model.
The method is divided into six steps, as shown in Figure 1, where the key processes are
described as follows.

Figure 1. Heterogeneous network fusion method based on logit information.

(1) Train Local Model: The client trains the local model on the private dataset and
then uses the local model to output the logit information on the private or public dataset.

(2) Output Logit Information: Different federated knowledge distillation methods
require different logit information output. For example, public dataset-based knowledge
distillation methods need to share a public dataset between server and client, and these
methods require each client to upload each sample’s logit of the public dataset. However,
private dataset-based methods only need to upload the logit information of the private
dataset of each client (e.g., the average logit information of the client-side categories).

Entropy 2024, 26, 96 7 of 31

(3) Global Logit Information Fusion: After receiving the logit from each client, the
server performs the global logit information fusion for this round. Then, the server sends
down the global logit to each client.

(4) Model Training Based on Knowledge Distillation Method: Each client receives the
global logit information and uses the knowledge distillation method to train the local model.
Each client treats the global logit information as the teacher model output information and
the local model as the student model.

The entire federated task repeats these steps until the specified communication rounds
are completed.

3.1.2. The Problem of Heterogeneous Federated Learning

Although some federated knowledge distillation methods solve the heterogeneous
model fusion problem, these methods assume that the logit information output by each
client is trustworthy. In practical scenarios, a malicious client-side may tamper with the
logit information to launch an attack behavior. Therefore, the following three problems are
encountered during federated heterogeneous model fusion.

(1) Client Identification Problem: Some clients may intentionally upload malicious
logit information to launch attacks. If the server uses this malicious information for global
information fusion, this will seriously affect the accuracy of global information.

We use the CIFAR-10 dataset as an example to describe the problem, as shown in
Figure 2. The CIFAR-10 is a 10-categorical dataset, and the logit output by each client
for the samples in this dataset is a vector of probabilities of length 10, with each element
of the vector representing the probability of belonging to a certain category. We assume
that there are N clients involved in the fusion of global information, and the N-th client is
malicious. Each client outputs logit information for the same sample data, and the N-th
client outputs a malicious logit. If the server side directly adopts the average fusion method
for information fusion, this will lead to the final prediction result being the cat. However,
the actual sample’s category is a dog.

Figure 2. Logit attack behavior of malicious clients.

To solve this problem, we must design a client identification method to filter out
malicious information to participate in the global information fusion. We assume that n
clients participate in the global information fusion. We define Ci as the ith client, whereas
the set of n clients is defined as {C1, C2, . . . , Cn}. Then, the problem is shown in Equation (1).
The SelectTrustworthyClient(.) is a method that selects the trustworthy client from all
the clients.

{C1, C2, . . . , Ck} ← SelectTrustworthyClient({C1, C2, . . . , Cn}) (1)

(2) Global Knowledge Fusion Problem: When the server identifies the malicious
client, the next step of the server is to use the selected trustworthy client for global infor-
mation fusion. Due to the problem of computational resources and data distribution of
the clients, this leads to quality differences in the accuracy of the output logit information
of each client model, e.g., some clients may output incorrect or low-quality logit. The

Entropy 2024, 26, 96 8 of 31

traditional federated heterogeneous model methods (FedMD, FedDistill) directly use the
average weight fusion method to fuse the logit information, and these methods are unrea-
sonable. To solve this problem, we must design an adaptive information fusion method to
achieve high-quality global information fusion. We define the logit information output by
the ith client as Li, and then the logit set output by all clients is defined as {L1, L2, . . . , Lk}.
The problem is shown in Equation (2).

Lglobal ← FusionGlobalLogit({L1, L2, . . . , Lk}) (2)

(3) Client Knowledge Distillation Problem: In each communication round of feder-
ated learning, the server sends the global logit information to each client. How to use this
global knowledge to train the local model is also a problem. We also use the knowledge
distillation approach to solve this problem, where we treat the global logit information
as the teacher model and the client’s model as the student model. We use the knowledge
distillation method to transfer global information from the teacher to the student model.
However, in real scenarios, the information output by the teacher model may also have
errors. In that case, this will lead to the client using the wrong knowledge to guide the
training of the local model, so we need to design an adaptive knowledge distillation method
to solve this problem. This method can select the correct knowledge to guide the student
model. We define Mi as a model of the ith client, and the set of models of clients is denoted
as {M1, M2, . . . , Mk}. Then, we define the problem as Equation (3).

{M1, M2, . . . , Mk} ← AdaptiveKD(Lglobal) (3)

The AdaptiveKD(.) is the adaptive knowledge distillation method, which can adap-
tively transfer the server-side global knowledge to the client models.

In summary, To accomplish trustworthy federated learning in a heterogeneous envi-
ronment, we need to solve the following problems.

(1) Client Identification Problem: How to identify a malicious client based on logit
information. We must exclude malicious clients from global knowledge fusion.

(2) Global Knowledge Fusion Problem: How to adaptively select clients based on the
logit information to achieve high-quality global knowledge fusion.

(3) Global Knowledge Migration Problem: How to transfer global information from
the server to the client and use the global knowledge to guide the client model training.

In this paper, we address the problem of federated heterogeneous model fusion by
sharing a labeled dataset between the server and each client. The following four sections,
Sections 3.2–3.5, will detail how to solve these problems.

3.2. Malicious Client Identification Method Based on Logit Feature

Client identification stands as a foundational step in realizing trustworthy federated
learning. This process involves identifying and excluding malicious clients, thus prevent-
ing their logit information from being incorporated into global information fusion. Our
approach shares a public dataset between the server and each client to facilitate knowledge
fusion within a heterogeneous federated learning framework. The global knowledge is
derived by amalgamating the logit information produced by each client based on this
public dataset.

Drawing on the method of [29], we also train a model at the server and use the model
to output each sample’s logit for the public dataset. Since the server-side logit information
is independent of the client model, this ensures that the server-side logit information is
trustworthy. We can compare the logit information of each client and server to identify the
type of client. The process consists of four stages, as shown in Figure 3.

Before describing these stages, we define the following elements. We define the set
of clients as {C1, C2, . . . , Ck}, and the public dataset is denoted as D0; it has a total of m
samples and n categories. We define sj as the j-th sample in the public dataset D0, and l j

i
as the logit corresponding to the sample sj of client Ci, then the set of logits on the public

Entropy 2024, 26, 96 9 of 31

dataset output by the i-th client is {l1
i , l2

i , . . . , lm
i }. Similarly, we define the set of logit output

from the server side as {l1
s , l2

s , . . . , lm
s }.

Figure 3. Trustworthy client identification method based on logit feature information.

Stage 1 (Preprocessing of Logit Information): we first preprocess the logit information
from each client and server, which mainly includes two steps: (1) logit information grouping
and (2) vectorizing each subgroup logit.

(1) Logit information grouping: When the server receives the logit information up-
loaded by the client, it first groups the logit information according to its category. The
process is shown in Equation (4).

The GroupByCategory(.) denotes grouping sample logit according to the sample
category, where Gj

i is the j-th subgroup of the i-th client, and each client has n subgroups.

{G1
i , G2

i , . . . , Gn
i } ← GroupLogitByCategory({l1

i , l2
i , . . . , lm

i }) (4)

At the same time, we also need to group the server-side logit information, and we define
the set of the subgroup of the server as Gs = {G1

s , G2
s , . . . , Gn

s }.
(2) Vectorize sub-grouping logit: After finishing logit grouping, we need to merge

logit within each sub-grouping into a one-dimensional vector. We define vj
i as j-th vector

of j-th subgroup, and then n subgroups correspond to n vectors. The process is shown in
Equation (5).

{v1
i , v2

i , . . . , vn
i } ← VectorLogit({G1

i , G2
i , . . . , Gn

i }) (5)

VectorLogit(.) is denoted as a vectorized subgroup. We define the set of vectors for the i-th
client as Vi, where Vi = {v1

i , v2
i , . . . , vn

i }.
Repeating steps (1) and (2), we compute the set of vectors for each client and server,

respectively.
Stage 2 (Logit Feature Extraction): In the previous phase, we extracted the client

and server logit vectors, and in this stage, we need to compute the logit feature values for
each client based on the vector information. Since we also output the logit information
independently on the server side, this can guarantee that the server-side logit information is
trustworthy. Therefore, we can identify the client type by comparing the similarity between
the client-side and server-side vectors.

To ensure trustworthy federated learning, we employ cosine similarity as a key metric
to compare the server’s and clients’ vectors. Cosine similarity values range from −1 to 1,
indicating the degree of similarity between two vectors. A value close to 1 signifies that
the vectors are nearly identical, whereas a value approaching −1 indicates that the vectors
are opposed. In this context, the eigenvectors of a malicious client are expected to differ
significantly from those on the server side. Conversely, a trustworthy client’s vectors will
consistently align closely with the server’s. This characteristic variance in cosine similarity
values provides a reliable means to identify trustworthy clients.

Entropy 2024, 26, 96 10 of 31

We assume that there are n categories in the public dataset, and for the j-th category,
we define the j-th vector of the i-th client as vj

i and the vector of the server as vj
s. We

compute the client cosine similarity value using Equation (6). Then, we compute the cosine
similarity values for all categories on the client side in turn.

csj
i = cosim(vj

i , vj
s) =

vj
i · v

j
s

∥vj
i∥ · ∥v

j
s∥

, j ∈ [1, n] (6)

The set of all categories of the i-th client is expressed as {cs1
i , cs1

i , . . . , csm
i }. We take the

cosine similarity set of each client as the client’s feature value.
Stage 3 (Clustering based on client features): In this stage, we use the client features

extracted in the previous step and group the clients into two clusters using the clustering
method, as shown in Equation (7).

{Group1, Group2} ← Cluster({CS1, CS2, . . . , CSk}) (7)

represents the clustering method. G1 and G2 represent two class clusters, respectively.
Stage 4 (Verify Clients): In the previous stage, we divided the clients into two groups.

However, we do not know which group is normal, so we need to verify these two groups.
We use the accuracy of the clients in each group on the public dataset to determine whether
they are credible clients. The group with the highest accuracy is the trusted client group,
and the lower group is the malicious client group. The process is shown in Equation (8).

{Acc1, Acc2} ← ValidateGroupAcc({Group1, Group2}) (8)

Although this step can identify most malicious clients, some malicious clients (e.g.,
noise attack clients) can escape the method. To further exclude malicious clients, we need to
verify the accuracy of the clients in the normal group. We first validate the accuracy of each
client on the public dataset and then calculate the average accuracy of those clients. Finally,
we calculate the difference between the client and average accuracy. We also exclude clients
from participating in global logit calculations when their accuracy is below the average
value and the difference exceeds a set threshold. The process is shown in Algorithm 1.

3.3. Global Information Fusion Methods

Once we have identified the malicious clients, our next task is to use these trustworthy
clients’ logit to fuse the global logit. Most federated knowledge distillation methods (such
as FedMD and FedDF) use average weight methods to fuse the global logit, which calculates
the global logit value by the average of all clients’ logit value, and each client is given the
same weight. However, in real scenarios, each client’s data distribution and computational
resources are different, which leads to differences in the quality of the logit for the same
sample. At the same time, some clients may output an error or a low-quality logit. Using
the error logit to fuse the global logit will affect the accuracy of the global information.
Therefore, we need to filter out the error information to improve the performance of global
information. To accomplish this goal, we design a trustworthy logit calculation method
that calculates the global logit in two parts. The flow of the method is shown in Figure 4.
The flow of the algorithm is shown in Algorithm 2.

Entropy 2024, 26, 96 11 of 31

Algorithm 1 Client identification algorithms

Input: Each client’s Logit: L = {L1, L2, · · · , Ln}, Public Data: D0
Output: Trustworthy Clients C = {C1, C2, · · · , CK}

1: /* Center Node Process */
2: for Round t from 1 to T do
3: Init Trustworthy Client List TC_List = {}// Initialise client features List
4: Ms ← TrainServerModel(D0)
5: {l1

s , l2
s , · · · , lm

s } ← OutPutLogit(Ms, D0) // Output logit on the Public Dataset
6: {G1

s , G2
s , · · · , Gn

s } ← GroupLogitByCategories({l1
s , l2

s , · · · , lm
s })

7: {v1
s , v2

s , · · · , vn
s } ← VectorLogitEachCategories({G1

s , G2
s , · · · , Gn

s })
8: for Client Ci from 1 to K do
9: {G1

i , G2
i , · · · , Gn

i } ← GroupLogitByCategories({l1
i , l2

i , · · · , ln
i })

10: {v1
i , v2

i , · · · , vn
i } ← VectorLogitEachCategories({G1

i , G2
i , · · · , Gn

i })
11: {cs1

i , cs2
i , · · · , csn

i } ← CalculateCosineValue({G1
i , G2

i , · · · , Gn
i })

12: CSi ← GetClientFeature({cs1
i , cs2

i , · · · , csn
i })

13: {Group1, Group2} ← Cluster({CSi, CS2, · · · , CSk}) // Clustering the clients
14: {Acc1, Acc2} ← ValidateACC(Group1, Group2) // Validation accuracy
15: UC_List← AddMaxAccGroup({Ca, Cb, · · · , Ck})
16: Aavg ← CalculateAvgAcc({A1, A2, · · · , Ak})
17: for client Cj from 1 to t in UC_List do
18: if

∣∣Ai − Aavg
∣∣ > ϵ then

19: TC_List← AddClientToList(Ai)

20: Output Trustworthy Clients TC = {Ca, Cb, · · · , CK}

Figure 4. The calculation process of global logit.

In our method, we train a model on the server side using the public dataset, and we
use the server model to output the logit of each sample of the public dataset. After we
obtain all the samples’ logit, we divide the logit into two groups according to whether
the predicted result of the logit is consistent with the actual labels of the sample. We
divide the logit into the correctly predicted and the incorrectly predicted groups. When
the server model has incorrect predictions, it means that the server side cannot predict this
information, which requires the integration of logit from the clients to obtain the correct
value [29]. We calculate the logit in two parts according to the grouping of the samples,
and the calculation process is shown in Figure 4.

We define (xi, yi) as the i-th sample and the label, and the D0 as the public dataset.
Suppose D0 is a K-categorical dataset with m samples. The set of all samples is denoted

Entropy 2024, 26, 96 12 of 31

as D0 = {(x1, y1), (x2, y2), . . . , (xn, yn)}, yi ∈ [1, K]. We define lm
i as the m-th sample logit

output by the i-th client and define Li as the set of the logit of the public dataset output by
client Ci. The set is denoted as Li = {l1

i , l2
i , . . . , lm

i }.
We define lm

s as the m-th sample’s logit output by the server model and ps(xm) as the
predicted label of the server model for the sample xm. Then, we calculate the global logit
for the sample xm based on the results of the server-side prediction. We define lm

global as
the global logit of the m-th sample. The FusionLogit({lm

1 , lm
2 , · · · , Lm

k }) represents fusing
k clients’ logit to calculate the new global logit for the sample xm. We use Equation (9)
to calculate all the sample logit in turn. We will introduce how to calculate the logit in
the following.

lm
global =

{
lm
s , ps(xm) = y.

FusionLogit({l1
m, l2

m, · · · , lk
m}) , ps(xm) ̸= y.

(9)

Part 1: If the server-side output logit is consistent with the actual category of labels,
we directly use the server-side model output logit as part of the global logit.

Part 2: If the server-side output logit is wrong, we will obtain the logit from the client’s
logit. In this condition, we can regard the global logit calculation problem as a multi-teacher
logit fusion problem. Each client’s logit is the output of a teacher model, and our goal is to
obtain the global logit from those teachers’ logit. However, the quality of logit output from
each teacher model is different. To adaptively fuse multiple teachers’ logit information, we
need to assign higher weights to high-quality information while assigning lower weights
to low-quality information. We draw on the paper’s method [30] to calculate the weight
value. This calculation process consists of three steps.

(1) The Calculation of Fusion Weight: We first calculate the cross-entropy loss for
each client, where k denotes the k-th client. This loss can reflect the confidence level of each
client in the sample [30]. The calculation process is shown in Equation (10).

Lk
CE = −

C

∑
1

yc log(So f tmax(Lk
c , T)) (10)

where So f tmax(Lk
c , T) denotes the calculation of Lk

c at temperature T using the softmax
function. Then, we calculate the weight of each client according to Equation (11).

wk =
1

K− 1

(
1−

exp(Lk
CE)

∑
j
1 exp Lj

CE

)
(11)

Unlike [30], we calculate each client’s weight for each category according to logit
categories. We first group each client’s logit categories on the public dataset’s output and
then use Equation (11) to calculate the client’s fusion weight. Eventually, we obtain a weight
matrix where each row represents each category of logit, and each column represents each
client’s weight. The weight matrix is shown in Equation (12).

W(C, Y) =

 w11 w12 · · · w1k
· · · · · · · · · · · ·

wm1 wm2 · · · wmk

 (12)

(2) Re-adjust Client Weight: After determining each client’s weight for each category,
it is essential to address the issue of incorrect logit outputs. Some clients may produce an
error logit for a sample, which necessitates the removal of these incorrect logits from the
fusion process. When computing the logit for a sample, if an incorrect logit is identified and
removed, the fusion weight assigned to that logit should consequently be reduced to zero.
This adjustment then requires recalibrating the fusion weights for the remaining clients
to maintain the balance in the model’s overall learning. To recalibrate these weights, we
employ L1-normalization, which effectively redistributes the weights among the remaining

Entropy 2024, 26, 96 13 of 31

clients. The pk(x) is the k-th client prediction, and y is the label of a sample x. The
calculation process of the new weight is shown in Equation (13).

wk =

0 , pk(x) ̸= y.
wj

∑N
j=1|wj| , pk(x) = y. (13)

where
∣∣wj
∣∣ is the L1-normalization for all the correct logits.

(3) New Logit Calculation: Having obtained the revised weights in the previous
stage, we now proceed to recalculate the logit for each sample using these new weights
in conjunction with the logit information from each client. The process for this new logit
calculation is outlined in Equation (14).

Lnew =
K

∑
1

wkLk
n (14)

When we obtain the logit of all the samples in part 1 and part 2, we merge these two
to form the global logit for this communication round. Then, the server sends this global
logit down to each client. The process is shown in Algorithm 2.

Algorithm 2 The Calculation of Glogit Logit Information

Input: Client Logit List: L = {L1, L2, · · · , Lk}. Public Dataset D0
Output: Global Logit Lg = {l1, l2, · · · , lm}

1: /*Public Dataset Logit Calculate Process*/
2: CrroctList = {} // Initialise IDs of Correctly predicted sample Logit
3: ErrorCrroctList = {} // Initialise IDs of Error predicted sample Logit
4: NewCrroctList = {} // Initialise IDs of new calculate sample Logit
5: Ms ← TrainServerModel(D0)
6: {l1, l2, · · · , lm} ← OutPutLogit(Ms, D0) // OutPut Logit on the Public Dataset
7: W(C, Y)← CalculateWeightMatirc({L1, L2, · · · , Lk})
8: /**The Calculation of Logit in Part-1**/
9: for Logit ls from 1 to m in Public Dataset do

10: if ls = label then
11: CrroctList← AddLogit(ls)
12: else
13: ErrorList← AddLogit(ls)
14: /**The Calculation of Logit in Part-2**/
15: for Logit ls from 1 to n in ErrorList do
16: Init SumLogits = 0 // Initialise the Logit value for this sample
17: for Client Ci from 1 to Ck do
18: ls ← GetLogitFromClient(Ci)
19: ws ← GetWeightFromWeightMatric(Ci)
20: SumLogits = SumLogits + ws · ls
21: ls = SumLogits
22: NewCorectList← AddNewLogit(ls)
23: Lg = MergeTwoPartLogit({CrroctList, NewList})
24: Output Global logit Lg

3.4. Calculation of Weighting Parameters Based on Teacher Logit Confidence Level

Having calculated the global logit information, the server will distribute the global
logit to each client. In this phase, clients use the global logit as the output of a teacher model,
training their local models on the public dataset via knowledge distillation. Traditional
knowledge distillation involves a combined loss function, consisting of cross-entropy loss

Entropy 2024, 26, 96 14 of 31

(LCE) and distillation loss (LKD), with a balance weight α. The total loss (Ltotal) used to
optimize the model is shown in Equation (15):

Ltotal = αLCE + (1− α)LKD (15)

The values of α are fixed in the traditional knowledge distillation method throughout
the model training process. However, in the heterogeneous federated learning knowledge
fusion process, the data distribution and computational resources are different across
clients, leading to quality differences in logit. When we use these client logits to compute
the global logit, the accuracy of the global logit is dynamically changing, which will make
the accuracy of the global logit different for each category in the same communication
round [31]. To address this, an adaptive knowledge distillation method is required, one
that can adjust weight parameters in line with sample categories to enhance client model
accuracy. Thus, we propose a redefined equation for Ltotal , as shown in Equation (16),
where wk represents the weight for the k-th category.

Ltotal = (1− wk)LCE + wkLKD (16)

Next, we calculate each category’s wk value. The value is determined by the accuracy
of the global logit on the public dataset, which means that the higher the accuracy of the
global logit for a category, the higher the global logit confidence value in that category. If
the global logit has a low accuracy for one category, this means that the global logit is not
credible in that category. To prevent the global logit’s incorrect knowledge from passing to
the client model, we need to set wk to 0. Therefore, we can calculate the wk by evaluating
the confidence value of the global logit. We borrow the calculation method from [32]. We
divide the weight calculation process into three steps, and this process is shown in Figure 5.

Figure 5. Calculation of weighting parameters based on teacher logit confidence level.

Step 1 (Marginal Value Calculation): We need first to calculate the marginal value
of each category, which can measure the confidence value of the teacher model in each
category in the public dataset, and the larger the marginal value, the higher the prediction
accuracy of the teacher model for that category. We define Mk(k, pt(x)) as the marginal
value of the sample x. The pt(x) is the probability that the teacher model predicts a sample
x, where k is the actual category of the sample, and k′ is the other category. The L is the total
number of categories. We obtain the marginal value by calculating the difference between
the probability of predicting the sample as category k and the probability of predicting the
sample as any other category. The calculation process is shown in Equation (17).

Mk(k, pt(x)) = pt
k(x)− 1

L− 1 ∑
k′ ̸=k

pt
k′(x) (17)

Step 2 (Confidence Value Calculation): After calculating each sample’s marginal
value, we first sum up the marginal values of each category, and then we calculate the

Entropy 2024, 26, 96 15 of 31

average value of the marginal values of each category. We define Ck
value as the confidence

value of the k-th category. The calculation process of Ck
value is shown in Equation (18).

Ck
value = Ex|k[Mk(k, pt

k(x))] (18)

Step 3 (Weight Calculation): When we calculate the value of the Ck
value, we can get

the value of the wk based on this value. Notably, as the accuracy of global logit typically
increases over communication rounds, the confidence value of the global logit for each
category will be close to 1 after a certain number of rounds. At this point, if we directly use
this value (Ck

value = 1) to determine the weight value (wk = 1), it will make the weight value
of LCE become 0 (1− wk = 0), leading to ignoring the loss of the actual label of the sample.
However, we aim to use the two losses fully to complete the model training. Therefore, we
added the parameter β to limit the value of Ck

value, which prevents the value from being too
large and leads to the problem of ignoring the LCE during the training process. The process
is shown in Equation (19).

wk =

{
0 , Ck

value ≤ 0.
(1− β) · Ck

value , Ck
value > 0.

(19)

When Ck
value ≤ 0, it indicates that the global logit has low confidence in the category k.

We directly ignore the teacher’s knowledge in this situation. When Ck
value > 0, it indicates

that the global logit has higher confidence in the class. We set the value of β according to
different data distribution scenarios, and we will describe the setting of this value in the
subsequent experimental section.

3.5. Client Model Training Based on Adaptive Knowledge Distillation

This phase completes the client model training, which consists of two steps: (1) training
the client model on the public dataset using adaptive knowledge distillation and (2) model
retraining on the private dataset. The process is shown in Figure 6, and the algorithm flow
is shown in Algorithm 3.

Figure 6. The process of client model training based on adaptive knowledge distillation.

(1) Train Model on Public Dataset by Adaptive Knowledge Distillation: We regard
the global logit as the output of the teacher model and the client model as the student
model. Then, we use the knowledge distillation method to complete the training of the
client model. We define the predicted value of the teacher’s model for the sample xi as
pt(xi). We define lk as the logit of a sample xi. We calculate the predicted value at sample
temperature T by the softmax function. The calculation is shown in Equation (20).

pt
k(x) =

elk(x)/T

∑K
j=1 elj(x)/T

(20)

Entropy 2024, 26, 96 16 of 31

We define LCE as the cross-entropy loss of the client. We can calculate the cross-entropy
loss by client model prediction with the label y, as shown in Equation (21).

LCE =
1
N

N

∑
n=1

K

∑
k=1
−yk log(pk(x)) (21)

We define the knowledge distillation loss as LKD. The knowledge distillation loss
LKD is obtained by calculating the KL loss between the teacher and student models. The
calculation is shown in Equation (22).

LKD =
1
N

N

∑
n=1

K

∑
k=1
−pt

k(xi) log(pk(x)) (22)

Before each communication round starts, the server sends the global logit and weight
list to each client, and the client selects the wk adaptively according to the sample category.
We define the set of weights for communication round t as {w1, w2, . . . , wk}. Each client
completes the computation of the loss of each category according to the category weights
wk. The calculation process is shown in Equation (23).

Ltotal = (1− wk)LCE + wkLKD (23)

Finally, each client uses the public dataset and the adaptive knowledge distillation
method to train the local model.

(2) Model training using Private Dataset: In this stage, clients continue to train their
local models on their private datasets using the model obtained from the previous phase.
We use cross-entropy loss during model training at this node to optimize the model. We
define the cross-entropy loss as Lprivate_CE and the client model prediction as pk(x), where x
is the private sample of the client, and k is the sample category. Then, we obtain Lprivate_CE
by calculating the model prediction with the actual labels of y. The process is shown in
Equation (24).

Lprivate_CE =
1
N

N

∑
n=1

K

∑
k=1
−yk log(pk(x)) (24)

Algorithm 3 Train Client Model

Input: Global Logit: Lg, Each categories weight: W = {w1, w2 . . . wk}
Output: Trained Client Model M = {M1, M2 . . . Mn}

1: /* Each Client Training Step */
2: for Ci from 1 to Cn do
3: /* Step 1:Train Client Model on Public Dataset */
4: M0 ← InitClientModel(round) // Initiate the model with the previous model
5: pre← PredValueOnPublicData(M0)
6: LCE ← GetCELoss(ypre, ylabel) //Calculate CE Loss on Public Dataset
7: LKD ← GetKDLoss({so f tmax(ypre)}, Lg) //Calculate KD Loss on Public Dataset
8: wk ← SelectKDWeightByCategories({w1, w2 . . . wk})
9: Ltotal = (1− wk) ∗ LCE + wk ∗ LKD

10: Mi ← TrainClientModel(Ltotal)
11: /* Step 2:Train Client Model on Private Dataset */
12: ypre ← PredValueOnPrivateData(Mi)
13: Lprviate_CE ← GetCELoss(ypre, ylabel) //Calculate CE Loss on Private Dataset
14: M′i ← TrainClientModel(Lprviate_CE)

15: Output Model of Clients = {M′1, M′2, . . . , M′n}

Entropy 2024, 26, 96 17 of 31

4. System Design

In addressing the challenges of trustworthy federated learning in heterogeneous
environments, we design the FedTKD framework. This framework includes two core
processes: client model training through adaptive knowledge distillation and trustworthy
information fusion on the server side. The server is responsible for client identification
and the fusion of global information, while the client focuses on model training and logit
information output. The process is shown in Figure 7, and the algorithm flow detailed in
Algorithm 4.

Figure 7. The system architecture of FedTKD.

(1) Initialization Phase: The server distributes a public dataset to each client. This
dataset is sent only once at the beginning.

(2) Output Client Logit: Clients train their local models using both public and private
datasets. Then, each client outputs a logit for each sample in the public dataset using the
local model.

(3) Upload Logit Information: After generating logits for the public dataset, clients
upload this logit information to the server. We have designed an efficient logit informa-
tion storage format, as shown in Equation (25), where each sample in the public dataset
corresponds to a unique piece of information.

{Index, Logit[class_1_value, class_2_value, . . . , class_n_value]} (25)

Entropy 2024, 26, 96 18 of 31

(4) Global Logit Information Fusion: Upon receiving logit from all clients in a com-
munication round, the server identifies the type of each client and selects the information
from trustworthy clients to perform global logit fusion. This is a three-step process:

Step 1 (Identify Client): The server uses Algorithm 1 to distinguish between malicious
and trustworthy clients.

Step 2 (Trustworthy Logit Fusion): The server calculates new global logit information
using Algorithm 2.

Step 3 (Category Weight Calculation): After global logit calculation, the server com-
putes the weight value for each category based on confidence levels.

(5) Distribute Global Logit and Weight List: The server sends the latest global logit
information and category weight list to each client for the new round.

(6) Train Client Model: This stage is crucial for transferring knowledge from the
global knowledge base to each client model. It includes two steps.

Step 1 (Model Training Based on Adaptive Knowledge Distillation): Clients receive
the global logit and weight list and use this information to train the local model on the
public dataset.

Step 2 (Client Model Retraining): The client uses the model from the previous phase
and continues to train the local model on the private dataset.

Algorithm 4 The Workflow of FedTKD

Input: Client Model: M = {M1, M2, . . . Mn}, Private Dataset: D = {D1, D2, . . . Dn}, Public
Dataset: D0, Communication round: T.

Output: Trained client model M = {M′1, M′2, . . . , M′n}
1: /* Client Process */
2: for round t from 1 to T do
3: for Ck from 1 to Cn do
4: /* Step 1: Train Client Model On Public Data */
5: Mk ← InitClientModel(t) // Load Previous Model
6: Lt

g ← RecieveGlobalLogit(Lt
g)

7: M1
k ← TrainModelByAKD(D0, M1

k , Lt
g) // According to Algorithm 3

8: /* Step 2: Train Client Model On Private Data */
9: M2

k ← TrainLocalModel(Dk, Mk)
10: /* Step 3: Output Logit On Public Dataset */
11: {l1

k , l2
k , · · · , lm

k } ← OutPutLogit(M2
k , D0)

12: Server ← SendLogitToServer(Lk)

13: /* Server Process */
14: for round t from 1 to T do
15: for Ci from 1 to Cn do
16: {L1, L2, · · · , Ln} ← ReceiveClientLogit({C1, C2, · · · , Cn})
17: {C1, C2...Ck} ← IdentifyClientType({L1, L2, · · · , Ln}) // Algorithm 1
18: Lt

g ← CalculateGlobalLogit({L1, L2, · · · , Lk}) // Algorithm 2
19: {w1, w2, · · · , wk} ← CalculateCategoryWeight(Lt

g)

20: {C1, C2, · · · , Ck} ← SendLogitAndWeight(Lt
g, W) //Send to Clients

21: Train Client Model According to global logit Lt
g and weight list W.

22: Output Client Model List: M = {M′1, M′2, . . . , M′n}

5. Experiment
5.1. Experiment Setup
5.1.1. Experiment Datasets

Dataset Description: Our experiment utilizes three categorical datasets: MNIST,
Fashion-MNIST, and CIFAR-10, each dataset is described as follows:

Entropy 2024, 26, 96 19 of 31

MNIST: A dataset for handwritten digit classification consisting of 60,000 training and
10,000 test samples. Each sample is a 28 × 28 grayscale image representing digits from
0 to 9.

Fashion-MNIST: It is a ten-category dataset. This dataset comprises 60,000 training
and 10,000 test images, each a single-channel grayscale image.

CIFAR-10: A more diverse dataset with ten categories containing 50,000 training and
10,000 test samples. Each sample is a 32 × 32 color image.

Dataset Preprocessing: Our algorithm necessitates the construction of a shared public
dataset between the server and client sides, alongside private datasets for each client. We
achieve this goal through the following preprocessing steps:

(1) Public Dataset Part: A portion of the original dataset is reserved as the public
dataset. We ensure a uniform representation by selecting 10% of data from each category.
For instance, in CIFAR-10’s ten categories, 500 samples per category are allocated to the
public dataset.

(2) Private Dataset Part: To mimic the Non-IID data distribution of each client, We control
client data distribution by adjusting the Dirichlet function’s parameter α. A lower α value leads
to a more Non-IID distribution, while a higher value approximates an IID (independently
identically distributed) scenario. This distribution is visualized in Figure 8, where each dot’s
size represents the sample count, and its color indicates the sample category.

(a) α = 0.5 (b) α = 1 (c) α = 10 (d) IID

Figure 8. Different data distribution scenarios for the Cifar-10 dataset (10 clients).

5.1.2. Baseline

We compared our method with five baseline algorithms. These include three methods
(FedMD, FedDF, and FedDistill), which require sharing public datasets between the server
and clients, and two methods (FedDistill+ and FedHe), which do not require public datasets.

FedMD [7]: This method solves the heterogeneous model knowledge fusion problem
by constructing a public dataset. The server fuses the logit information of each client with
the average weight method, and the client uses the knowledge distillation method to train
the client model on the public dataset and then migrates the client model to the private
dataset for further training.

FedDF [8]: This method needs to construct an auxiliary dataset, and the server side
integrates the logit information of each client to the global logit. Each client treats the global
logit as the teacher’s model knowledge to guide the local model training.

FedDistill [9]: This method needs to build a public dataset. The approach applies
knowledge distillation methods to federated learning, which uses global logit as a teacher
to guide the local model training of each client.

FedDistill+ [18]: This method does not require a public dataset. Each client first
calculates the average logit of each category, and the server side aggregates the logit of each
category and calculates the average value. Finally, each client uses the average logit as a
regularization loss to guide the local model training.

FedHe [33]: This method does not require a public dataset. It also uses the average
logit information of each category as a loss to assist client model training.

Entropy 2024, 26, 96 20 of 31

5.1.3. Metrics

We evaluate the performance of each algorithm by three key metrics, described below.
(1) Average Client Model Accuracy on the Test Dataset: This metric assesses the

algorithm’s effectiveness in enhancing the accuracy of the client’s model. Higher average
accuracy indicates better performance across all clients. We assume that K clients participate
in federated learning with m communication rounds. We denote the accuracy of the i-th
client in the t-th communication round as Ai

t. Then, we define At
avg as the average client

model accuracy for the t-th round, and we can calculate the average accuracy of K clients
for t-th rounds according to Equation (26).

At
avg =

1
K

K

∑
i=1

At
i , t ∈ [1, m] (26)

Then, we define Aavg as the set for all communication rounds, and the set is defined as
Aavg = {A1

avg, A2
avg, · · · , Am

avg}.
(2) Accuracy of Global Logit on the Public Dataset: This metric reflects the server’s

capability to amalgamate knowledge from each client. When the server calculates the
global logit at t-th communication rounds, we can test the global logit’s accuracy on the
public dataset. We define At

global as the accuracy of global logit. The m communication
round set is as shown in Equation (27).

Agobal = {A1
gobal , A2

gobal , . . . , Am
gobal} (27)

(3) Accuracy of Client Logit on the Public Dataset: When clients finish training
the local model, each client outputs the logit of the public dataset. We get this metric by
calculating the accuracy of the client’s logit on the public dataset. We define At

i as the
accuracy of the i-th client’s logit on the public dataset at the t-th round. Then, the set of all
the clients at the t-th round is shown in Equation (28).

At = {At
1, At

2, . . . , At
k} (28)

5.1.4. Heterogeneous Network Setup

To simulate a heterogeneous federated learning environment, we employed CNN
networks as our foundational architecture, customizing them to have varying structures.
We categorized the clients into five distinct groups, with each group utilizing a different
network structure but maintaining consistency within the group.

Client Network Setup: For the MNIST and Fashion-MNIST datasets, we designed five
pairs of CNN networks for processing single-channel images. For the CIFAR-10 dataset,
we designed five CNN networks processing three channels.

Server Network Setup: It is crucial that the parameter of the server model is more
complex than that of the client-side model. This ensures the server’s model can fully
integrate knowledge from each client model.

We designed experiments with different numbers of clients (10, 15, and 20, respec-
tively) participating in the federation task, and the client network configurations in each
experiment are shown in Table 1. Taking the CIFAR-10 dataset as an example, we elaborate
on the parameter settings of both client- and server-side network models. Each network
is characterized by different convolutional layers and structures. For instance, Conv-X
denotes the convolutional module, and C2d(a, b) means the 2D convolution. FC is the fully
connected module, and Line(a, b) denotes the linear layer.

5.1.5. Hardware and Software Environment

Hardware Setup: Our experiments were conducted on a high-performance work-
station equipped with an Intel i9-12900K CPU, 64GB of RAM, and an NVIDIA RTX 3090
graphics card.

Entropy 2024, 26, 96 21 of 31

Software Setup: We developed a federated learning framework (FedBolt) to imple-
ment key functionalities such as partitioning client datasets, customizing client training
models, simulating various client attacks, and facilitating multi-client co-training.

Table 1. Network configuration in heterogeneous environments.

ID Conv-1 Conv-2 Conv-3 Conv-4 Conv-5 Conv-6 FC

Server K = 3, S = 1 C2d (16, 16) C2d (16, 32) C2d (32, 64) C2d (32, 64) C2d (54, 128) Line (512, 512)
Out = 16 C2d (16, 16) C2d (32, 32) C2d (64, 64) C2d (64, 64) C2d (256, 512) Line (512, 10)

1, 2, 11, 16 K = 3, S = 1 C2d (16, 16) C2d (16, 32) C2d (32, 64) C2d (32, 64) C2d (54, 128) Line (512, 512)
Out = 16 C2d (16, 16) C2d (32, 32) C2d (64, 64) C2d (64, 64) C2d (256, 512) Line (512, 10)

3, 4, 12, 17 K = 3, S = 1 C2d (16, 16) C2d (16, 32) C2d (32, 64) C2d (32, 64) C2d (64, 128) Line (256, 256)
Out = 16 C2d (16, 16) C2d (32, 32) C2d (64, 64) C2d (64, 64) C2d (256, 256) Line (256, 10)

5, 6, 13, 18 K = 3, S = 1 C2d (16, 16) C2d (16, 32) C2d (32, 64) C2d (32, 64) - Line (512, 128)
Out = 16 C2d (16, 16) C2d (32, 32) C2d (64, 64) C2d (64, 64) - Line (128, 10)

7, 8, 14, 19 K = 3, S = 1 C2d (16, 16) C2d (16, 32) C2d (32, 64) - - Line (1024, 128)
Out = 16 C2d (16, 16) C2d (32, 32) C2d (64, 64) - - Line (128, 10)

9, 10, 15, 20 K = 3, S = 1 C2d (16, 16) C2d (32, 32) C2d (64, 64) - - Line (2048, 256)
Out = 16 C2d (16, 16) C2d (32, 32) C2d (64, 128) - - Line (256, 10)

5.2. Experimental Results and Analysis

Our experiments are structured into four parts to validate the performance and relia-
bility of our algorithm: malicious client identification, attack experiments, different data
distribution experiments, and framework performance analysis. Notably, the malicious
client attack experiments are crucial in evaluating our algorithm’s robustness. We also
compare our algorithm against other baselines in both attack and normal scenarios.

5.2.1. Malicious Client Attack Experiment

To verify the performance of each algorithm under different attack scenarios, we
designed three attack-type scenarios. The details of each attack scenario are as follows.

Label Flipping Attack (Type-1): In the classification task, each sample’s logit informa-
tion is a vector of K values, and the maximum of these values is the classification result of
the model. We select this maximum value and swap it to a random location. We follow this
strategy to replace 50% of the number of samples’ logit to form a label-flipping attack.

Noisy Data Attack (Type-2): We add a certain percentage of noisy data (e.g., Gaussian
noise) to the client’s private dataset to train the local model, reducing the client’s model’s
accuracy. Then, we use the low-quality model to output the logit in the public dataset,
which generates inaccurate logits of the public dataset.

SecondMax Attack (Type-3): We tamper with the logit information correspond-
ing to the sample. We first find the position of the largest value in the logit, then ran-
domly select 50% of the remaining positions, and modify the value of these positions to
(MaxValue − 0.00001). For example, in a ten-classification task, the element at position 9 is
the maximum value (3.56789). We modify the values of the elements at positions 0, 1, 5, 6,
and 8 to (3.56789− 0.00001).

Federated Task Setup: Our experiments involved scenarios with 10, 15, and 20 clients
participating in a federated task with 100 communication rounds. At the same time, each
client performs one epoch of local model training. We divide the clients into two groups:
malicious clients and normal clients. Client IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 are normal
clients, and client IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 are malicious clients, where the
malicious client group performs the specified attack method.

Dataset Setup: In all three attack experiments, clients were set up with independently
homogeneous data distributions (IID). For instance, in a 10-client experiment, each client has
6000 samples for MNIST and Fashion-MNIST. Each client has 5000 samples for CIFAR-10.

In particular, in the noise attack experiments, we set different ratios of noise data
for the malicious client groups, in which for the MNIST dataset, the noise data ratios of
clients 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 are 0.91, 0.92, 0.93, 0.94, 0.95, 0.91, 0.92, 0.93, 0.94, 0.95,
respectively. For the Fasion-MNIST dataset, the noise data ratios of malicious clients are

Entropy 2024, 26, 96 22 of 31

0.75, 0.8, 0.85, 0.9, 0.95, 0.75, 0.8, 0.85, 0.9, 0.95, respectively. For the CIFAR-10 dataset, they
are 0.5, 0.55, 0.6, 0.65, 0.7, 0.5, 0.55, 0.6, 0.65, 0.7, respectively.

To evaluate the performance of the client identification module, we process logit
information in the following three steps:

(1) Vector Conversion: We gathered the logit information from the client and server.
Then, we group the logit for each category and transform each subgroup into a one-
dimensional vector.

(2) Cosine Similarity Calculation: For each category vector, we calculated the cosine
similarity between the client’s category vectors and the server’s corresponding category
vectors. This similarity measurement serves as a pivotal metric in our evaluation.

(3) Feature Value Calculation: We regard the cosine similarity values for the various
categories as the feature values for each client.

We take the CIFAR-10 dataset as an example and apply this methodology to this
dataset. We conduct the experiment on the three specified attack scenarios. The feature
values for each client under these scenarios are illustrated in Figure 9. This figure reveals
notable disparities in feature values between normal and malicious clients, particularly
in Type-1 and Type-3 attack scenarios. In contrast, the Type-2 (noisy data attack) sce-
nario demonstrates a variation in feature values across certain categories, though not as
pronounced as in the other types.

(a) Label Flipping Attack (Type-1) (b) Noisy Data Attack (Type-2) (c) SecondMax Attack (Type-3)

Figure 9. The feature values of each client in different attack scenarios.

After computing the feature values for each category of each client, we proceed with
the following steps:

(1) Client Clustering: We take the cosine similarity value of each category as the fea-
ture values of each client. Then, we employ the K-means method to cluster clients into
two subgroups.

(2) Accuracy Verification on Public Data: For each resulting cluster, we assess the
accuracy of the logit on the public dataset. The subgroup exhibiting the highest accuracy is
deemed the ’trusted client list,’ while the one with lower accuracy is classified as comprising
malicious clients.

We follow the steps above for clustering analysis, and the clustering outcomes are
presented in Figure 10. In Attack Types 1 and 3, our method successfully identifies malicious
clients from the first communication round. In later rounds, the difference between the feature
values of normal and malicious clients will become larger and larger, and our method can
more easily separate the client types. However, in Attack Type 2, our method requires up to
six communication rounds to categorize the clients accurately. The initial rounds are marked
by relatively low logit accuracy, which obscures the differences between normal and malicious
clients. As a result, some malicious clients may initially be misclassified as normal. To mitigate
this issue, we need to verify client logit accuracy further, as detailed in the fourth stage of our
method. This additional step is crucial for ensuring accurate client categorization in scenarios
where initial data may not be distinct enough for immediate classification.

Entropy 2024, 26, 96 23 of 31

(a) Attack Type 1 (Round 1) (b) Attack Type 2 (Round 6) (c) Attack Type 3 (Round 1)

Figure 10. Clustering results for each client under different attack scenarios (10 clients).

5.2.2. Experimental Analysis of Different Attack Scenarios

This experiment mainly evaluates our algorithm’s robustness across various attack
scenarios. We benchmark our algorithm against five baseline methods, using two key
performance metrics: the accuracy of the global logit on the public dataset and the average
client model’s accuracy.

We tested the algorithms under predefined attack scenarios, adhering to our experi-
mental configuration. As the FedDistill+ and FedHe methods do not necessitate a public
dataset, our comparison of the accuracy of the global logitis is limited to the three algo-
rithms (FedMD, FedDF, FedDistill). The experimental results are shown in Table 2. The
experiment shows that our algorithms consistently outperform others across three datasets.

Notably, in Attack Types 1 and 2, the global logit accuracy of FedMD, FedDF, and
FedDistill exhibited a significant decline. This observation suggests that these algorithms
may not be as effective in mitigating the impact of Attack Types 1 and 2.

Table 2. The global logit accuracy of each algorithm in different attack types.

Number Method
MNIST Fashion-MNIST CIFAR-10

Type-1 Type-2 Type-3 Type-1 Type-2 Type-3 Type-1 Type-2 Type-3

10 clients

FedMD 0.54 0.961 0.968 0.577 0.894 0.901 0.548 0.617 0.709
FedDF 0.75 0.953 0.973 0.706 0.897 0.915 0.41 0.628 0.639

FedDistill 0.83 0.996 0.996 0.796 0.964 0.966 0.52 0.92 0.988
Ours 0.997 0.998 0.998 0.996 0.998 0.996 0.997 0.996 0.998

15 clients

FedMD 0.846 0.945 0.949 0.684 0.867 0.884 0.556 0.601 0.676
FedDF 0.835 0.941 0.958 0.746 0.868 0.886 0.446 0.595 0.634

FedDistill 0.891 0.979 0.978 0.815 0.913 0.911 0.715 0.861 0.992
Ours 0.988 0.986 0.992 0.936 0.939 0.932 0.998 0.996 0.997

20 clients

FedMD 0.837 0.936 0.943 0.675 0.885 0.869 0.528 0.583 0.663
FedDF 0.835 0.941 0.958 0.676 0.855 0.869 0.446 0.564 0.601

FedDistill 0.891 0.979 0.978 0.787 0.898 0.903 0.611 0.851 0.992
Ours 0.989 0.989 0.99 0.932 0.937 0.931 0.998 0.993 0.998

To illustrate the influence of the malicious client’s logit accuracy on the overall global
logit, we meticulously tracked the logit accuracy of each client across all communication
rounds. The results are shown in Figure 11. We analyze the impact of different attack
scenarios on each algorithm as follows:

Attack Type 1: In this scenario, malicious clients significantly compromised the global
logit accuracy of methods such as FedMD, FedDF, and FedDistill. The primary reason for
this degradation is that these methods do not filter out malicious clients during the fusion
process of the global logit.

Attack Type 2: In this scenario, FedMD, FedDF, and FedDistill methods use a simplistic
weighted calculation for fusing global logit. Consequently, they fail to discern low-quality
model outputs, leading to a reduction in logit accuracy.

Attack Type 3: The FedMD and FedDF methods are particularly vulnerable to tam-
pered logit information, resulting in diminished global knowledge accuracy.

Entropy 2024, 26, 96 24 of 31

Contrastingly, our method consistently maintains high accuracy across all three attack
scenarios. This resilience stems from our method’s capability to exclude malicious informa-
tion from the fusion process and our server’s function to detect and ensure the fusion of
high-quality logit information.

(a1) FedMD Type-1 (b1) FedDF Type-1 (c1) FedDistill Type-1 (d1) Ours Type-1

(a2) FedMD Type-2 (b2) FedDF Type-2 (c2) FedDistill Type-2 (d2) Ours Type-2

(a3) FedMD Type-3 (b3) FedDF Type-3 (c3) FedDistill Type-3 (d3) Ours Type-3

Figure 11. The accuracy of each client in the public dataset under different attack scenarios (10 clients).

Furthermore, we evaluated the impact of different algorithms on average client accu-
racy. To assess how malicious clients affect federated tasks, we also introduce the scenarios
without malicious clients (denoted as ’normal type’). These results are detailed in Table 3.
our algorithm demonstrates superior accuracy on both the Fashion-MNIST and CIFAR-10
datasets. On the MNIST dataset, our algorithm slightly trails behind the FedHe algorithm
in Attack Type 1 and FedDistill in Attack Type 3. This outcome can be attributed to the
relative simplicity of the MNIST dataset, where methods like FedDistill+ and FedHe, which
regularize categories, tend to achieve higher accuracy.

We conducted a comparative analysis of different algorithms to evaluate their perfor-
mance under various attack scenarios. we take the CIFAR-10 as an example, and the results
are shown in Figure 12. Notably, algorithm performance varies significantly depending on
the type of attack:

Attack Type 1: Both FedDistill+ and FedHe methods experienced a notable decrease
in accuracy. This suggests that these methods may be more vulnerable or less equipped to
handle the specific challenges posed by this attack type.

Attack Type 2: The FedMD and FedDF methods showed a marked decline in per-
formance. This indicates that these methods, while possibly effective in other scenarios,
struggle to maintain accuracy under the conditions of Attack Type 2.

Entropy 2024, 26, 96 25 of 31

Table 3. Average client model accuracy of each algorithm in different attack scenarios.

Number Method
MNIST Fashion-MNIST CIFAR-10

Type-1 Type-2 Type-3 Normal Type-1 Type-2 Type-3 Normal Type-1 Type-2 Type-3 Normal

10 clients

FedMD 0.928 0.945 0.948 0.961 0.835 0.841 0.828 0.851 0.537 0.517 0.512 0.56
FedDF 0.939 0.938 0.953 0.952 0.837 0.841 0.847 0.849 0.523 0.527 0.521 0.578

FedDistill 0.952 0.945 0.954 0.956 0.848 0.839 0.852 0.852 0.57 0.533 0.578 0.584
FedDistill+ 0.96 0.869 0.96 0.959 0.851 0.812 0.851 0.851 0.58 0.53 0.576 0.582

FedHe 0.961 0.867 0.673 0.961 0.853 0.815 0.674 0.852 0.581 0.525 0.566 0.583
Ours 0.955 0.947 0.955 0.958 0.862 0.847 0.855 0.858 0.586 0.541 0.589 0.592

15 clients

FedMD 0.942 0.936 0.927 0.949 0.822 0.819 0.823 0.835 0.513 0.501 0.505 0.547
FedDF 0.935 0.927 0.941 0.939 0.746 0.816 0.826 0.828 0.446 0.492 0.503 0.546

FedDistill 0.942 0.934 0.943 0.945 0.823 0.816 0.826 0.827 0.552 0.518 0.553 0.557
FedDistill+ 0.947 0.832 0.947 0.947 0.838 0.784 0.84 0.841 0.528 0.484 0.518 0.528

FedHe 0.941 0.779 0.938 0.95 0.842 0.789 0.834 0.843 0.534 0.492 0.528 0.536
Ours 0.947 0.939 0.946 0.945 0.843 0.821 0.842 0.848 0.564 0.528 0.56 0.562

20 clients

FedMD 0.936 0.928 0.912 0.942 0.813 0.809 0.811 0.828 0.482 0.481 0.487 0.525
FedDF 0.923 0.921 0.934 0.932 0.815 0.808 0.818 0.818 0.464 0.474 0.483 0.527

FedDistill 0.942 0.934 0.939 0.938 0.817 0.813 0.821 0.817 0.531 0.502 0.541 0.54
FedDistill+ 0.938 0.787 0.937 0.937 0.832 0.764 0.833 0.831 0.497 0.457 0.496 0.498

FedHe 0.95 0.829 0.938 0.941 0.836 0.768 0.825 0.834 0.534 0.492 0.528 0.506
Ours 0.942 0.934 0.941 0.941 0.843 0.821 0.838 0.835 0.545 0.532 0.545 0.546

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 12. Average client accuracy for each algorithm in different attack scenarios.

To illustrate how the accuracy of different algorithms fluctuates across communication
rounds, we conducted an in-depth analysis using the CIFAR-10 dataset. We calculated the
average client model accuracy at each communication round, as shown in Figure 13.

(a) Label Flipping Attack (Type-1) (b) Noisy Data Attack (Type-2) (c) SecondMax Attack (Type-3)

Figure 13. Average client accuracy for different attack scenarios (10 clients).

In Attack Types 1 and 3, the accuracy of the FedMD and FedDF algorithms showed
a significant decrease with increasing communication rounds. This decline is attributed
to their reliance on a simple weighted average method for global logit fusion. Such a

Entropy 2024, 26, 96 26 of 31

method proves ineffective in excluding the erroneous logit information from malicious
clients, thereby diminishing the overall accuracy of the global logit. As a result, clients
utilizing this compromised information for local model training experience a reduction in
their model’s accuracy.

Our algorithm consistently achieves the highest accuracy rates across all three attack
scenarios. The strength of our method lies in its ability to prevent malicious informa-
tion from influencing the model fusion process. Additionally, it empowers the server to
fuse high-quality knowledge from the client selectively. This capability ensures that our
approach remains stable and effective under various attack scenarios.

5.2.3. Experimental Analysis of Different Data Distribution Scenarios

In this section, we focus on assessing each algorithm’s performance in different data
distribution scenarios. The experimental setup is as follows:

Federated Task Configuration: We set different numbers of clients (10, 15, and 20) to
participate in the federated task with 100 communication rounds. Each client completed
one training epoch, while the server conducted two on the public dataset.

Network Model Configuration: We follow Table 1 of the previous section to set up
the client-side and server-side models in each scenario.

Dataset Division: We divided each dataset using the Dirichlet method of the previous
subsection. This involved creating three Non-IID data scenarios (α = {0.5, 1, 10}) and one
IID data distribution scenario.

Following these specified configurations, the experiments were conducted separately
for each data distribution scenario. The accuracy results of each algorithm under these
conditions are compiled and presented in Table 4.

Table 4. The global logit accuracy of each algorithm in different data distribution scenarios.

Number Method
MNIST Fashion-MNIST CIFAR-10

α = 0.5 α = 1 α = 10 IID α = 0.5 α = 1 α = 10 IID α = 0.5 α = 1 α = 10 IID

10 clients

FedMD 0.95 0.958 0.961 0.974 0.871 0.875 0.884 0.91 0.556 0.576 0.541 0.66
FedDF 0.948 0.947 0.949 0.972 0.866 0.878 0.884 0.905 0.589 0.609 0.595 0.726

FedDistill 0.993 0.993 0.997 0.997 0.927 0.946 0.953 0.96 0.991 0.994 0.99 0.994
Ours 0.997 0.998 0.998 0.998 0.997 0.996 0.997 0.998 0.995 0.996 0.998 0.999

15 clients

FedMD 0.937 0.945 0.941 0.957 0.855 0.862 0.872 0.883 0.57 0.576 0.583 0.669
FedDF 0.929 0.937 0.948 0.951 0.859 0.856 0.876 0.882 0.582 0.572 0.575 0.665

FedDistill 0.966 0.967 0.969 0.976 0.889 0.895 0.901 0.907 0.983 0.991 0.993 0.995
Ours 0.987 0.988 0.989 0.992 0.921 0.932 0.934 0.935 0.996 0.998 0.997 0.998

20 clients

FedMD 0.928 0.936 0.941 0.951 0.855 0.86 0.862 0.875 0.546 0.55 0.568 0.645
FedDF 0.929 0.931 0.938 0.94 0.851 0.86 0.861 0.872 0.551 0.554 0.543 0.631

FedDistill 0.965 0.967 0.97 0.971 0.877 0.884 0.893 0.899 0.99 0.991 0.993 0.997
Ours 0.987 0.989 0.989 0.991 0.932 0.932 0.927 0.935 0.992 0.996 0.998 0.998

The experiment demonstrates that our algorithms consistently achieve the highest ac-
curacy across all data distribution scenarios on the three datasets. Notably, the performance
of the FedMD and FedDF algorithms exhibits a decline in Non-IID scenarios (α = {0.5, 1}),
a trend that is particularly pronounced in the CIFAR-10 dataset.

To further explore the relationship between client and global logit accuracy, we metic-
ulously tracked and analyzed the accuracy of each client and the global logit for every
communication round, as shown in Figure 14. The accuracy of the FedMD and FedDF
algorithms diminishes as the disparity in Non-IID data distribution increases. This trend
underscores that the performance of algorithms relying on average weighting methods,
such as FedMD and FedDF, is significantly hindered in Non-IID scenarios. In contrast, our
algorithm and FedDistill demonstrate robustness against the variation in data distribution,
maintaining consistent accuracy irrespective of the data scenario.

Entropy 2024, 26, 96 27 of 31

(a1) FedMD (α = 0.5) (b1) FedDF (α = 0.5) (c1) FedDistill (α = 0.5) (d1) Ours (α = 0.5)

(a2) FedMD (α = 1) (b2) FedDF (α = 1) (c2) FedDistill (α = 1) (d2) Ours (α = 1)

(a3) FedMD (α = 10) (b3) FedDF (α = 10) (c3) FedDistill (α = 10) (d3) Ours (α = 10)

Figure 14. The accuracy of each client in a public dataset with different data distributions (10 clients).

To verify the performance of each algorithm under different data distribution scenar-
ios, we also calculated the average client model accuracy metrics, and the experimental
results are shown in Table 5. The experiment results show that our algorithms obtain the
highest values on both Fashion-MNIST and CIFAR-10 datasets. The FedDistill+ and FedHe
algorithms show a serious drop in accuracy in Non-IID (α = {0.5, 1}) scenarios, which
indicates that these two algorithms do not work stably in Non-IID scenarios.

To compare the accuracy of each algorithm on different rounds, we take the CIFAR-10
dataset as an example and compare the accuracy of five algorithms under different data
distribution scenarios. The results are shown in Figure 15. The experiments show that our
algorithms obtain the highest accuracy under different data scenarios.

We utilized the CIFAR-10 dataset to assess the effectiveness of the adaptive knowledge
distillation method. This involved monitoring the weight values assigned to each category
over each communication round. We adjusted the hyperparameters for different data distri-
bution scenarios for optimal performance. Specifically, in Non-IID scenarios (α = {0.5, 1}),
we set the β parameter to 0.8. For the Non-IID scenario (α = 10) and the IID scenario, we
set the β parameter to 0.75.

The weight values of each category for different data scenarios are shown in Figure 16.
The results show that the weight values of each scenario no longer change after 15 commu-
nication rounds. This is because when our communication rounds reach a certain number
of rounds, our algorithm has fully integrated the knowledge of each client. At the same
time, the prediction of the samples of each category in the public dataset reaches the best
accuracy, so after 15 rounds, the weight values of each category no longer change.

Entropy 2024, 26, 96 28 of 31

Table 5. Average client model accuracy of each algorithm in different data distribution scenarios.

Number Method
MNIST Fashion-MNIST CIFAR-10

α = 0.5 α = 1 α = 10 IID α = 0.5 α = 1 α = 10 IID α = 0.5 α = 1 α = 10 IID

10 clients

FedMD 0.931 0.95 0.959 0.961 0.781 0.825 0.848 0.851 0.486 0.499 0.542 0.56
FedDF 0.933 0.938 0.948 0.952 0.799 0.824 0.845 0.849 0.517 0.545 0.557 0.578

FedDistill 0.938 0.946 0.953 0.956 0.777 0.827 0.842 0.852 0.534 0.551 0.574 0.584
FedDistill+ 0.799 0.865 0.956 0.959 0.703 0.786 0.845 0.851 0.371 0.453 0.549 0.582

FedHe 0.788 0.846 0.955 0.961 0.698 0.762 0.846 0.852 0.391 0.474 0.549 0.583
Ours 0.956 0.958 0.957 0.958 0.812 0.832 0.853 0.858 0.545 0.565 0.583 0.592

15 clients

FedMD 0.901 0.928 0.944 0.949 0.751 0.788 0.833 0.835 0.44 0.489 0.528 0.547
FedDF 0.902 0.92 0.935 0.939 0.766 0.791 0.822 0.828 0.505 0.509 0.531 0.546

FedDistill 0.913 0.925 0.939 0.945 0.766 0.793 0.821 0.827 0.505 0.528 0.548 0.557
FedDistill+ 0.731 0.838 0.939 0.947 0.657 0.764 0.832 0.841 0.336 0.39 0.497 0.528

FedHe 0.705 0.859 0.943 0.95 0.646 0.728 0.831 0.843 0.354 0.413 0.506 0.536
Ours 0.924 0.934 0.937 0.945 0.77 0.802 0.836 0.848 0.528 0.542 0.555 0.562

20 clients

FedMD 0.884 0.909 0.937 0.942 0.734 0.781 0.823 0.828 0.426 0.463 0.513 0.525
FedDF 0.899 0.913 0.927 0.932 0.766 0.787 0.821 0.818 0.485 0.497 0.514 0.527

FedDistill 0.907 0.919 0.934 0.938 0.751 0.795 0.822 0.817 0.499 0.515 0.533 0.54
FedDistill+ 0.686 0.843 0.929 0.937 0.619 0.74 0.822 0.831 0.314 0.379 0.476 0.498

FedHe 0.673 0.823 0.933 0.941 0.657 0.735 0.824 0.834 0.336 0.373 0.483 0.506
Ours 0.918 0.924 0.939 0.941 0.769 0.796 0.83 0.835 0.519 0.522 0.54 0.546

(a) Non-IID (α = 0.5) (b) Non-IID (α = 1) (c) Non-IID (α = 10) (d) IID

Figure 15. Average client accuracy for different data distribution scenarios (10 clients).

(a) Non-IID (α = 0.5) (b) Non-IID (α = 1) (c) Non-IID (α = 10) (d) IID

Figure 16. Weight allocation for each category in different data scenarios (10 clients).

5.2.4. Performance Validation of the FedTKD Framework

We evaluated the computational efficiency of four main modules within our federated
learning framework. These modules are Client-Side Identification, Server-Side Model
Training, Global Logit Information Computation, and Category Weight Computation.

Experimental Setup: We set the number of communication rounds in the federated
task to 50 for this evaluation. We meticulously recorded the computation time of each
module across every communication round under each attack scenario. These results are
presented in Figure 17.

Experimental Analysis: The experimental result reveals that the computation times
of each round for each module are generally consistent, with only occasional variations.
These inconsistencies are attributed to the high-performance workstations used for the

Entropy 2024, 26, 96 29 of 31

experiments, which ran other tasks concurrently. This multitasking environment led to
fluctuating resource allocation, resulting in sporadic peaks in computation time.

(a) Attack Type 1 (20 clients) (b) Attack Type 2 (20 clients) (c) Attack Type 3 (20 clients)

Figure 17. Computation time for each model per communication round.

To gain a more comprehensive understanding of computational efficiency, we also
calculated the average computation time for each module throughout the entire federated
task. The detailed results are tabulated in Table 6. We differentiate between ‘total time 1’
and ‘total time 2’. The ‘total time 1’ is the aggregate time for all modules. The ‘total time 2’
is the cumulative time of all modules, excluding the server-side training model module.

Table 6. Average computation time for each module on the server side (seconds).

Number Attack Train Model Identify Client Calculate Logit Calculate Weight Total Time 1 Total Time 2

10 clients
Type-1 10.112 2.802 0.298 2.081 15.294 5.181
Type-2 10.095 2.724 0.296 2.039 15.155 5.06
Type-3 10.196 2.679 0.301 1.932 15.108 4.912

15 clients
Type-1 10.3 4.017 0.292 2.951 17.56 7.26
Type-2 10.497 3.964 0.297 3.005 17.764 7.267
Type-3 10.26 3.885 0.293 2.807 17.215 6.955

20 clients
Type-1 10.625 5.611 0.298 4.069 20.604 9.978
Type-2 10.321 5.259 0.295 3.984 19.86 9.539
Type-3 10.337 5.278 0.299 3.826 19.74 9.403

The experiment shows that the number of clients does not influence the training model
and logit calculation computation times. The training model times depend on network
parameters, epochs, and the number of samples. The logit calculation time depends on
the number of samples in the public dataset. The computation time of these two modules
does not increase with the number of nodes because the factors affecting these modules are
independent of the number of nodes. The time required for client identification and weight
calculation increases with the number of clients. For server-side computational efficiency,
the ‘total time 2’ is more relevant as server-side model training is independent of client-side
tasks. We assume the server has sufficient computational resources to pre-train the model
before receiving the client’s logit. Thus, the ‘total time 2’ can reflect the efficiency of our
algorithm in processing client logit messages. Notably, in scenarios with 20 clients, our
framework can complete essential steps in under 10 s, which is crucial for the real-time
detection of client type.

6. Conclusions

To address the issue of trustworthy computing and information fusion in heterogeneous
federated environments, we have designed a trustworthy federated learning framework
(FedTKD). This framework encompasses several key functions. Firstly, we proposed a client
recognition method based on logit features to exclude malicious clients from participating in
global information fusion. Additionally, we proposed a reliable global logit fusion method
to ensure high-quality information fusion. Finally, we proposed an adaptive knowledge
distillation method to improve the accuracy of knowledge transfer from the server side to

Entropy 2024, 26, 96 30 of 31

the client side. We conducted experiments in various attack scenarios, including logit tag
flipping and low-quality information fusion scenarios, to assess the reliability and robustness
of FedTKD. Furthermore, we have evaluated the algorithm’s performance under different data
distribution scenarios and compared it with five baseline algorithms. The results demonstrate
that our algorithms outperform others in various circumstances.

However, it is important to note that our approach requires a common dataset shared
between the server and clients, which should include samples of all types. In practical
scenarios, creating such a comprehensive common dataset can be challenging. Therefore, our
future research will investigate how to achieve trustworthy heterogeneous federated learning
when only a subset of sample types is available. We also plan to explore a wider range of
client attacks to expand the applicability of our method. Additionally, we intend to deploy
FedTKD in a distributed environment to assess and optimize its real-world performance.

Author Contributions: Conceptualization, L.C., W.Z. and C.W.T.; methodology, L.C., S.Q., D.Z. and
X.Z.; software, L.C., C.D. and X.Z.; validation, L.C., C.D., X.Z. and S.Q.; formal analysis, L.C., D.Z.,
S.Q. and X.Z.; data curation, L.C., C.D. and Y.Z.; writing—original draft preparation, L.C., D.Z. and
C.W.T.; writing—review and editing, L.C., C.W.T. and W.Z.; project administration, W.Z. and C.W.T.
visualization, L.C., C.D. and Y.Z.; supervision, C.W.T.; funding acquisition, L.C., W.Z. and C.W.T. All
authors have read and agreed to the published version of the manuscript.

Funding: The work is supported by the Singapore Ministry of Education (AcRF Tier 1 RG91/22 and
NTU startup fund), the National Natural Science Foundation of China (No. 62072469), and the China
Scholarship Council (No. 202206450035).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

2. Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.; Suresh, A.T. Scaffold: Stochastic controlled averaging for federated
learning. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 5132–5143.

3. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc.
Mach. Learn. Syst. 2020, 2, 429–450.

4. Xie, C.; Koyejo, S.; Gupta, I. Asynchronous federated optimization. arXiv 2019, arXiv:1903.03934.
5. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
6. Fukuda, T.; Suzuki, M.; Kurata, G.; Thomas, S.; Cui, J.; Ramabhadran, B. Efficient Knowledge Distillation from an Ensemble of

Teachers. In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017; pp. 3697–3701.
7. Li, D.; Wang, J. Fedmd: Heterogenous federated learning via model distillation. arXiv 2019, arXiv:1910.03581.
8. Lin, T.; Kong, L.; Stich, S.U.; Jaggi, M. Ensemble distillation for robust model fusion in federated learning. Adv. Neural Inf. Process.

Syst. 2020, 33, 2351–2363.
9. Jiang, D.; Shan, C.; Zhang, Z. Federated learning algorithm based on knowledge distillation. In Proceedings of the 2020

International Conference on Artificial Intelligence and Computer Engineering (ICAICE), Beijing, China, 23–25 October 2020;
pp. 163–167.

10. Zhu, Z.; Hong, J.; Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In Proceedings of the
International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 12878–12889.

11. Zhang, L.; Shen, L.; Ding, L.; Tao, D.; Duan, L.Y. Fine-tuning global model via data-free knowledge distillation for non-iid
federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA,
USA, 18–24 June 2022; pp. 10174–10183.

12. Zhang, Z.; Shen, T.; Zhang, J.; Wu, C. Feddtg: Federated data-free knowledge distillation via three-player generative adversarial
networks. arXiv 2022, arXiv:2201.03169.

13. Lu, Q.; Zhu, L.; Xu, X.; Whittle, J.; Xing, Z. Towards a roadmap on software engineering for responsible AI. In Proceedings of the
1st International Conference on AI Engineering: Software Engineering for AI, Pittsburgh, PA, USA, 16–17 May 2022; pp. 101–112.

Entropy 2024, 26, 96 31 of 31

14. Lu, Q.; Zhu, L.; Xu, X.; Whittle, J. Responsible-AI-by-design: A pattern collection for designing responsible AI systems. IEEE
Softw. 2023, 40, 63–71. [CrossRef]

15. Chen, L.; Zhang, W.; Xu, L.; Zeng, X.; Lu, Q.; Zhao, H.; Chen, B.; Wang, X. A Federated Parallel Data Platform for Trustworthy AI.
In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China,
15 July–15 August 2021; pp. 344–347.

16. Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; Poor, H.V. Tackling the objective inconsistency problem in heterogeneous federated
optimization. Adv. Neural Inf. Process. Syst. 2020, 33, 7611–7623.

17. Li, Q.; He, B.; Song, D. Model-contrastive federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 10713–10722.

18. Seo, H.; Park, J.; Oh, S.; Bennis, M.; Kim, S.L. Federated Knowledge Distillation. In Machine Learning and Wireless Communications;
Cambridge University Press: Cambridge, UK, 2022; p. 457.

19. Chen, H.; Vikalo, H. The Best of Both Worlds: Accurate Global and Personalized Models through Federated Learning with
Data-Free Hyper-Knowledge Distillation. arXiv 2023, arXiv:2301.08968.

20. Li, S.; Cheng, Y.; Wang, W.; Liu, Y.; Chen, T. Learning to detect malicious clients for robust federated learning. arXiv 2020,
arXiv:2002.00211.

21. Chen, L.; Dong, C.; Qiao, S.; Huang, Z.; Nie, Y.; Hou, Z.; Tan, C. FedDRL: A Trustworthy Federated Learning Model Fusion
Method Based on Staged Reinforcement Learning. arXiv 2023, arXiv:2307.13716.

22. Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient
descent. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017.

23. Chen, L.; Zhao, D.; Tao, L.; Zeng, X.; Tan, C. A Credible and Fair Federated Learning Framework Based on Blockchain. IEEE
Trans. Artif. Intell. 2024, 1, 1–15. [CrossRef]

24. Yin, D.; Chen, Y.; Kannan, R.; Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings
of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5650–5659.

25. Li, S.; Ngai, E.C.H.; Voigt, T. An Experimental Study of Byzantine-Robust Aggregation Schemes in Federated Learning. arXiv
2023, arXiv:2302.07173.

26. Karimireddy, S.P.; He, L.; Jaggi, M. Learning from history for byzantine robust optimization. In Proceedings of the International
Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 5311–5319.

27. Zhang, J.; Ge, C.; Hu, F.; Chen, B. RobustFL: Robust federated learning against poisoning attacks in industrial IoT systems. IEEE
Trans. Ind. Inform. 2021, 18, 6388–6397. [CrossRef]

28. Wang, Y.; Xie, L.; Liu, X.; Yin, J.L.; Zheng, T. Model-agnostic adversarial example detection through logit distribution learning. In
Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021;
pp. 3617–3621.

29. Cheng, S.; Wu, J.; Xiao, Y.; Liu, Y. Fedgems: Federated learning of larger server models via selective knowledge fusion. arXiv
2021, arXiv:2110.11027.

30. Zhang, H.; Chen, D.; Wang, C. Confidence-aware multi-teacher knowledge distillation. In Proceedings of the ICASSP 2022—2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 23–27 May 2022;
pp. 4498–4502.

31. He, Y.; Chen, Y.; Yang, X.; Zhang, Y.; Zeng, B. Class-wise adaptive self distillation for heterogeneous federated learning. In
Proceedings of the 36th AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 22.

32. Lukasik, M.; Bhojanapalli, S.; Menon, A.K.; Kumar, S. Teacher’s pet: Understanding and mitigating biases in distillation. arXiv
2021, arXiv:2106.10494.

33. Chan, Y.H.; Ngai, E.C. Fedhe: Heterogeneous models and communication-efficient federated learning. In Proceedings of the 2021
17th International Conference on Mobility, Sensing and Networking (MSN), Exeter, UK, 13–15 December 2021; pp. 207–214.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/MS.2022.3233582
http://dx.doi.org/10.1109/TAI.2024.3355362
http://dx.doi.org/10.1109/TII.2021.3132954

	Introduction
	Related Work
	Federated Learning
	Federated Knowledge Distillation
	Trustworthy Federated Learning

	Method
	Problem Definition
	The Processes of Federated Knowledge Distillation
	The Problem of Heterogeneous Federated Learning

	Malicious Client Identification Method Based on Logit Feature
	Global Information Fusion Methods
	Calculation of Weighting Parameters Based on Teacher Logit Confidence Level
	Client Model Training Based on Adaptive Knowledge Distillation

	System Design
	Experiment
	Experiment Setup
	Experiment Datasets
	Baseline
	Metrics
	Heterogeneous Network Setup
	Hardware and Software Environment

	Experimental Results and Analysis
	Malicious Client Attack Experiment
	Experimental Analysis of Different Attack Scenarios
	Experimental Analysis of Different Data Distribution Scenarios
	Performance Validation of the FedTKD Framework

	Conclusions
	References

