
Citation: De Gregorio, J.; Sánchez, D.;

Toral, R. Entropy Estimators for

Markovian Sequences: A

Comparative Analysis. Entropy 2024,

26, 79. https://doi.org/10.3390/

e26010079

Academic Editors: Elena Castilla,

Abhik Ghosh and Nikolay Kolev

Vitanov

Received: 31 October 2023

Revised: 21 December 2023

Accepted: 16 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Entropy Estimators for Markovian Sequences:
A Comparative Analysis
Juan De Gregorio , David Sánchez * and Raúl Toral

Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), Campus Universitat de les Illes
Balears, E-07122 Palma de Mallorca, Spain; juan@ifisc.uib-csic.es (J.D.G.); raul@ifisc.uib-csic.es (R.T.)
* Correspondence: david.sanchez@uib.es

Abstract: Entropy estimation is a fundamental problem in information theory that has applications in
various fields, including physics, biology, and computer science. Estimating the entropy of discrete
sequences can be challenging due to limited data and the lack of unbiased estimators. Most existing
entropy estimators are designed for sequences of independent events and their performances vary
depending on the system being studied and the available data size. In this work, we compare different
entropy estimators and their performance when applied to Markovian sequences. Specifically, we
analyze both binary Markovian sequences and Markovian systems in the undersampled regime. We
calculate the bias, standard deviation, and mean squared error for some of the most widely employed
estimators. We discuss the limitations of entropy estimation as a function of the transition proba-
bilities of the Markov processes and the sample size. Overall, this paper provides a comprehensive
comparison of entropy estimators and their performance in estimating entropy for systems with
memory, which can be useful for researchers and practitioners in various fields.

Keywords: Shannon entropy; Markovian systems; data analysis; estimators

1. Introduction

The entropy associated with a random variable is a measure of its uncertainty or
diversity, taking large values for a highly unpredictable random variable (i.e., all outcomes
equally probable) and low values for a highly predictable one (i.e., one or few outcomes
much more probable than the others). As such, the concept has found multiple applications
in a variety of fields including but not limited to nonlinear dynamics, statistical physics,
information theory, biology, neuroscience, cryptography, and linguistics [1–13].

Due to its mathematical simplicity and clear interpretation, Shannon’s definition is
the most widely used measure of entropy [14]. For a discrete random variable X with L
distinct possible outcomes x1, . . . , xL, the Shannon entropy reads

H[X] = −
L

∑
i=1

p(xi) ln(p(xi)), (1)

where p(xi) denotes the probability that the random variable X takes the value xi.
It often occurs in practice that the probability distribution of the variable X is unknown,

either due to mathematical difficulties or to the lack of deep knowledge of the details of the
underlying experiment described by the random variable X. In those situations, it is not
possible to compute the entropy using Equation (1) directly. In general, our information
is restricted to a finite set of ordered data resulting from the observation of the outcomes
obtained by repeating a large number of times, N, the experiment. Hence, the goal is to
estimate H from the ordered sequence S = X1, . . . , XN , where each Xj ∈ {xi}L

i=1 with
j = 1, . . . , N.

A numerical procedure that provides an approximation to the true value of H based
on the sequence S is called an entropy estimator. As the sequence S is random, it is clear
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that an entropy estimator is itself a random variable, taking different values for different
realizations of the sequence of N outcomes. It would be highly desirable to have an
unbiased entropy estimator, i.e., an estimator whose average value coincides with the true
result H for all values of the sequence length N. However, it can be proven that such an
estimator does not exist [15] and that, apart from the unavoidable statistical errors due
to the finite number N of data of the sample (and which typically scale as N−1/2), all
estimators present systematic errors which are in general difficult to evaluate properly.
Therefore, a large effort has been devoted to the development of entropy estimators that,
although necessarily biased, provide a good value for H with small statistical and systematic
errors [16].

The problem of finding a good estimator with small errors becomes more serious
when the number of data N is relatively small. Indeed, when the sizes of available data
are much larger than the possible outcomes (N ≫ L), it is not difficult to estimate H
accurately, and all of the most popular estimators are naturally satisfactory in this regime.
The task becomes much harder as the numbers L and N come closer to each other. It is
particularly difficult in the undersampled regime (N ≲ L) [17], where some, or potentially
many, possible outcomes may not be observed in the sequence. It is in this regime where
the difference in accuracy among the available estimators is more significant.

We emphasize that the discussed difficulties already appear for independent iden-
tically distributed (i.i.d.) random variables. Precisely, the previous literature has largely
dealt with entropy estimators proposed for sequences of i.i.d. random variables [16,18–21].
However, it is not clear that real data arising from experimental observation can be de-
scribed with i.i.d. random variables due to the ubiquitous presence of data correlations.
The minimal correlations in discrete sequences are of a Markovian nature. Then, how do
the main entropy estimators behave for Markovian sequences?

The purpose of this work is to make a detailed comparison of some of the most widely
used entropy estimators in systems whose future is conditionally independent of the past
(Markovian). In Markovian sequences, correlations stem from the fundamental principle
that the probability of a data value appearing at a specific time depends on the value
observed in the preceding time step. Markov chains have been used to model systems
in a large variety of fields such as statistical physics [22], molecular biology [23], weather
forecast [24], and linguistics [25], just to mention a few. Below, we analyze the strengths
and weaknesses of estimators tested in a correlated series of numerically generated data.
We compare the performances for the estimators that have shown to give good results for
independent sequences [16]. For definiteness, we below consider Markovian sequences
of binary data. Furthermore, the calculation of relevant quantities in information theory,
such as entropy rate and predictability gain [26], requires estimating the block entropy of a
sequence, obtained from the estimation of the entropy associated not to a single result, but
to a block of consecutive results. As we will argue in the following sections, the construction
of overlapping blocks induces correlations amongst them, even if the original sequence
is not correlated. The calculation of the block entropy is also a tool that can be used to
estimate the memory of a given sequence [27], which is of utmost importance when dealing
with strongly correlated systems [28–33].

The rest of the paper is organized as follows. In Section 2, we make a brief overview
of the ten entropy estimators being considered in this study, nine of which are already
known in the literature and an additional estimator built from results presented in ref. [34],
which is further developed in this work. In Section 3, we present the results of our
comparative analysis of these estimators in two Markovian cases: (A) binary sequences;
and (B) in an undersampled regime. Section 4 contains the conclusions and an outlook.
Finally, in Appendix A we provide a new interpretation in terms of geometric distributions
of an estimator which is widely used as the starting point to construct others, and in
Appendix B we prove the equivalence between a dynamics of block sequences and a
Markovian random variable.
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2. Materials and Methods

In the following, we will use the notation â to refer to a numerical estimator of the
quantity a. The bias of â is defined as

B[â] = ⟨â⟩ − a, (2)

where ⟨â⟩ represents the expected value of â. The estimator â is said to be unbiased if
B[â] = 0. The dispersion of â is given by the standard deviation

σ[â] =
√
⟨â2⟩ − ⟨â⟩2. (3)

Ideally, â should be as close to the true value a as possible. Therefore, it is desirable that â
has both low bias and low standard deviation. With this in mind, it is natural to consider
the mean squared error of an estimator, given by

MSE[â] = B[â]2 + σ[â]2, (4)

to assess its quality. Hence, when comparing estimators of the same variable, the one with
the lowest mean squared error is preferable.

Given an estimator Ĥ of the entropy, its k-th moment can be computed as

⟨Ĥk⟩ = ∑
S

P(S)Ĥ(S)k, (5)

where the sum runs over all possible sequences S = X1, . . . , XN of length N and Ĥ(S) is
the value that the estimator takes on in this sequence. The probability P(S) of observing the
sequence S depends on whether S is correlated or not. For example, if S is an independent
sequence, P(S) can be calculated as

P(S) =
N

∏
i=1

p(Xi). (6)

For correlated sequences, Equation (6) no longer holds. Consider a Markovian system, in
which the probability of the next event only depends on the current state. In other words,
the transition probabilities satisfy

P(Xs = xj|Xs−1 = xℓ, . . . , X1 = xk) = P(Xs = xj|Xs−1 = xℓ), (7)

with s the position in the series. A homogeneous Markov chain is one in which the
transition probabilities are independent of the time step s. Therefore, a homogeneous
Markov chain is completely specified given the L × L matrix of transition probabilities
p(xj|xℓ) = P(Xs = xj|Xs−1 = xℓ), j, ℓ = 1, . . . , L. In this case, the probability of observing
the sequence S can be calculated as

P(S) = p(X1)
N−1

∏
i=1

p(Xi+1|Xi). (8)

where we have applied Equation (7) successively.
The calculation of P(S) can be generalized to an m-order Markov chain defined by the

transition probabilities:

P(Xs = xj|Xs−1 = xℓ, . . . , X1 = xk) = P(Xs = xj|Xs−1 = xℓ, . . . , Xs−m = xu), (9)

that depend on the m previous results of the random variable.
It is clear that the moments of the estimator Ĥ, and consequently its performance

given by its mean squared error, depend on the correlations of the system being analyzed.
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Most of the entropy estimators considered in this work only depend on the number of
times each outcome occurs in the sequence. In this case, the calculation of the moments of
the estimator can be simplified for independent and Markovian systems considering the
corresponding multinomial distributions [35].

Several entropy estimators were developed with the explicit assumption that the
sequences being analyzed are uncorrelated [36,37]. The main assumption is that the
probability of the number of times ni that the outcome xi occurs in a sequence of length N
follows a binomial distribution,

P(ni) =

(
N
ni

)
p(xi)

ni (1 − p(xi))
N−ni . (10)

This approach is not valid when dealing with general Markovian sequences because
Equation (10) no longer holds. Instead, the Markovian binomial distribution [38] should be
used, or more generally, the Markovian multinomial distribution [35]. Even for entropy
estimators that were not developed directly using Equation (10), their performance is
usually only analyzed for independent sequences [16]. Hence, the need to compare and
evaluate the different estimators in Markov chains.

Even though there exists a plethora of entropy estimators in the literature [15,39–47],
we here focus on nine of the most commonly employed estimators, and we also propose a
new estimator, constructed from known results [34].

2.1. Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) (also known as plug-in estimator) simply
consists of replacing the exact probabilities in Equation (1) for the estimated frequencies,

p̂(xi) =
n̂i
N

, (11)

where n̂i is the number of times that the outcome xi is observed in the given sequence. It is
well known that Equation (11) is an unbiased estimator of p(xi), but the MLE estimator,
given by

ĤMLE = −
L

∑
i=1

p̂(xi) ln( p̂(xi)), (12)

is negatively biased [15], i.e., ⟨ĤMLE⟩ − H < 0.

2.2. Miller–Madow Estimator

The idea behind the Miller–Madow estimator (MM) [48] is to correct the bias of ĤMLE

up to the first order in 1/N, resulting in

ĤMM = ĤMLE +
N0 − 1

2N
, (13)

where N0 is the number of different elements present in the sequence. Corrections of higher
order are not considered because they include the unknown probabilities p(xi) [49].

2.3. Nemenman–Shafee–Bialek Estimator

A large family of entropy estimators are derived by estimating the probabilities using a
Bayesian framework [40,44,50–53]. The Nemenman–Shafee–Bialek estimator (NSB) [54–56]
provides a novel Bayesian approach that, unlike traditional methods, does not rely on
strong prior assumptions on the probability distribution. Instead, this method uses a
mixture of Dirichlet priors, designed to produce an approximately uniform distribution
of the expected entropy value. This ensures that the entropy estimate is not exceedingly
biased by prior assumptions.
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The Python implementation developed in ref. [57] was used in this paper for the
calculations of the NSB estimator.

2.4. Chao–Shen Estimator

The Chao–Shen estimator (CS) [18] takes into account two corrections to Equation (12)
to reduce its bias: first, a Horvitz–Thompson adjustment [58] to account for missing ele-
ments in a finite sequence; second, a correction to the estimated probabilities,
p̂CS(xi) = ĈCS p̂(xi), leading to

ĈCS = 1 − N1

N
, (14)

where N1 is the number of elements that appear only once in the sequence.
The Chao–Shen entropy estimator is then

ĤCS = − ∑
xi∈S

p̂CS(xi) ln( p̂CS(xi))

1 − (1 − p̂CS(xi))N . (15)

2.5. Grassberger Estimator

Assuming that all p(xi) ≪ 1, the probability distribution of each ni can be approxi-
mated by a Poisson distribution. Following this idea, Grassberger (G) derived the estimator
presented in ref. [36] by first considering Rényi entropies of order q [59]:

H(q) =
1

q − 1
ln

L

∑
i=1

p(xi)
q. (16)

Taking into account that the Shannon case can be recovered by taking the limit q → 1, the
author proposed a low bias estimator for the quantity pq, for an arbitrary q. This approach
led to the estimator given by

ĤG = ln(N)− 1
N

L

∑
i=1

n̂iGn̂i , (17)

with G1 = −γ − ln 2, G2 = 2 − γ − ln 2, and the different values of Gn̂i computed using the
recurrence relation

G2n+1 = G2n (18)

G2n+2 = G2n +
2

2n + 1
, (19)

where γ = 0.57721 . . . is Euler’s constant.

2.6. Bonachela–Hinrichsen–Muñoz Estimator

The idea behind the Bonachela–Hinrichsen–Muñoz estimator (BHM) [37] is to make
use of Equation (10) to find a balanced estimator of the entropy that, on average, minimizes
the mean squared error. The resulting estimator is given by

ĤBHM =
1

N + 2

L

∑
i=1

(n̂i + 1)
N+2

∑
j=n̂i+2

1
j
. (20)

2.7. Shrinkage Estimator

The estimator proposed by Hausser and Strimmer [20] (HS) is a shrinkage-type esti-
mator [60], in which the probabilities are estimated as an average of two models:

p̂HS(xi) = α
1
L
+ (1 − α) p̂(xi), (21)



Entropy 2024, 26, 79 6 of 26

where the weight α is chosen so that the resulting estimator p̂HS has lower mean squared
error than p̂ and is calculated by [61]

α = min

(
1,

1 − ∑L
i=1( p̂(xi))

2

(N − 1)∑L
i=1(1/L − p̂(xi))2

)
. (22)

Hence, the shrinkage estimator is

ĤHS = −
L

∑
i=1

p̂HS(xi) ln( p̂HS(xi)). (23)

2.8. Chao–Wang–Jost Estimator

The Chao–Wang–Jost estimator (CWJ) [62] uses the series expansion of the logarithm
function, as well as a correction to account for the missing elements in the sequence. This
estimator is given by

ĤCWJ =
L

∑
i=1

n̂i
N
(ψ(N)− ψ(n̂i)) +

N1

N
(1 − A)1−N

(
− ln(A)−

N−1

∑
j=1

1
j
(1 − A)j

)
, (24)

where ψ(z) is the digamma function and A is given by

A =



2N2

(N − 1)N1 + 2N2
, if N2 > 0,

2
(N − 1)(N1 − 1) + 2

, if N2 = 0, N1 > 0,

1, if N1 = N2 = 0,

(25)

with N1 and N2 the number of elements that appear once and twice, respectively, in
the sequence.

In the supplementary material of ref. [62], it is proven that the first sum in Equation (24)
is the same as the leading terms of the estimators developed in refs. [41,42]. In Appendix A,
we show that each term in this sum is also equivalent to an estimator that takes into account
the number of observations made prior to the occurrence of the element xi.

2.9. Correlation Coverage-Adjusted Estimator

The correlation coverage-adjusted estimator (CC) [27] uses the same ideas that support
Equation (15) but considers a different correction to the probabilities, p̂CC(xi) =ĈCC p̂(xi),
where now ĈCC is calculated sequentially taking into account previously observed data,

ĈCC = 1 −
N′

∑
j=1

1
N′ + j

I(XN′+j /∈ (X1, . . . , XN′+j−1)), (26)

where N′ ≡ N/2 and the function I(Z) yields 1 if the event Z is true and 0 otherwise. By
construction, this probability estimator considers possible correlations in the sequence.

Then, the CC estimator is given by

ĤCC = − ∑
xi∈S

p̂CC(xi) ln( p̂CC(xi))

1 − (1 − p̂CC(xi))N . (27)
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2.10. Corrected Miller–Madow Estimator

In ref. [34] it is shown that the bias of the MLE estimator can be approximated based
on a Taylor expansion as

B[ĤMLE] ≈ −N0 − 1
2N

− 1
N

∞

∑
l=1

K(l), (28)

where

K(l) =
L

∑
i=1

P(Xs+l = xi|Xs = xi)− 1. (29)

Notice that the first term in Equation (28) is simply the Miller–Madow correction shown
in Section 2.2, whereas the second term involves the unknown conditional probabilities
with a lag l that tends to infinity. These quantities can be hard to estimate directly from
observations, especially if dealing with short sequences. However, the calculation of K(l)
can be simplified. Assuming that the sequence is independent, it can easily be seen that
K(l) = 0 for all l and one recovers the Miller–Madow correction. Considering that the
sequence is Markovian, then K(l) can be written in a simpler way by first noticing that
P(Xs+l = xj|Xs = xi) = (Tl)ij, where T is the L × L transition probability matrix given by
(T)ij = p(xj|xi). Hence,

K(l) =
L

∑
i=1

(Tl)ii − 1 = Tr(Tl)− 1 =
L

∑
i=1

λl
i − 1, (30)

where Tr(Tl) is the trace of the matrix Tl and λi are the eigenvalues of T. The last equality
of Equation (30) is a well-known result in linear algebra. Given that T is a stochastic
matrix, then all eigenvalues fulfil that |λ| ≤ 1, and at least one eigenvalue is equal to 1. We
will assume that only λ1 = 1 and we will discuss later on the case where more than one
eigenvalue is equal to 1.

We can write Equation (28) as

B[ĤMLE] ≈ −N0 − 1
2N

− 1
N

∞

∑
l=1

L

∑
i=2

λl
i . (31)

Using the well-known result for the sum of the geometric series, then,

B[ĤMLE] ≈ −N0 − 1
2N

− 1
N

L

∑
i=2

λi
1 − λi

. (32)

Notice that the convergence of the series of Equation (31) requires that none of the eigen-
values λ2, . . . , λL has an absolute value equal to 1.

Given a finite sequence, we need to estimate the transition matrix T as

(T̂)ij = p̂(xj|xi) =
n̂ij

∑L
k=1 n̂ik

, (33)

with n̂ik the number of times the block (xi, xk) is observed in the sequence. We can then
calculate the eigenvalues λ̂1, . . . , λ̂L of the matrix T̂, which is also stochastic, and hence,
one of its eigenvalues, λ̂1, is equal to 1. Therefore, the proposed corrected Miller–Madow
estimator (CMM) is

ĤCMM = ĤMM +
1
N

L

∑
i=2

λ̂i

1 − λ̂i
. (34)



Entropy 2024, 26, 79 8 of 26

The correction to the MM estimator should only be used when the absolute value of
all eigenvalues but λ̂1 of the stochastic matrix T̂ are not equal to 1. Otherwise, it is
recommended to avoid that correction and simply use ĤMM as the estimator.

3. Results

We now proceed to compare the performance of the different estimators defined in the
previous Section 2. Let us note first that, given a particular sequence, all entropy estimators,
with the exception of the CC and CMM estimators, will yield exactly the same value if we
permute arbitrarily all numbers in the sequence. The reason behind this difference is that
although the CC estimator takes into account the order in which the different elements
appear in the sequence, and the CMM estimator considers the transition probabilities of the
outcomes, all other estimators are based solely on the knowledge of the number of times
that each possible outcome appears, and this number is invariant under permutations.

Certain estimators, such as CS or CC, can be calculated without any prior knowledge
of the possible number of outcomes, L. This feature is particularly advantageous in
fields like ecology, where the number of species in a given area may not be accurately
known. Conversely, estimators like HS and NSB require an accurate estimate of L for
their computation.

As mentioned before, when analyzing an estimator, there are two important statistics
to consider: the bias and the standard deviation. Ideally, we would like an estimator with
zero bias and low standard deviation. For the entropy, we have already argued that such
an unbiased estimator does not exist. Hence, in this case, the “best” estimator (if it exists)
would be the one that has the best balance between bias and standard deviation, i.e., the
one with the lowest mean squared error given by Equation (4).

In this section, we will analyze and compare these three statistics—bias, standard
deviation, and mean squared error—for the ten entropy estimators reviewed in Section 2 in
two main Markovian cases: (A) binary sequences; and (B) in an undersampled regime.

3.1. Binary Sequences

First, we consider homogeneous Markovian binary (L = 2) random variables, with pos-
sible outcomes xi = 0, 1. One advantage of discussing this system is that it is uniquely de-
fined by a pair of independent transition probabilities, p(0|0) and p(1|1), where p(xi|xj) ≡
P(Xs+1 = xi|Xs = xj). Then, p(1|0) = 1 − p(0|0) and p(0|1) = 1 − p(1|1). To shorten the
notation, we hereafter write p00 for p(0|0) and p11 for p(1|1).

It is possible to compute the Shannon entropy of this random variable using the
general definition given by Equation (1).

H = −p(0) ln p(0)− p(1) ln p(1) (35)

with the stationary values [5]:

p(0) =
1 − p11

2 − p00 − p11
,

p(1) = 1 − p(0).
(36)

The average value and standard deviation of the different entropy estimators were
computed using Equation (5) for k = 1, 2 by generating all 2N possible sequences S and
computing the probability of each one using Equation (8), where p(X1) are the stationary
values given by Equation (36). We have followed this approach to compute the estimator

bias B = ⟨Ĥ⟩ − H and its standard deviation σ =
√
⟨Ĥ2⟩ − ⟨Ĥ⟩2. As an example, we

plot the absolute value of the bias for sequences of length N = 4 in the colour map of
Figure 1, for the ten entropy estimators presented in Section 2, as a function of the transition
probabilities p00 and p11.
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In Figure 1, we can see that, for all ten estimators, the bias is larger in the region around
the values p00 ≃ p11 ≃ 1. The reason is that, in this region, the stationary probabilities of
0 and 1 are very similar, but given these particular values of the transition probabilities,
a short sequence will most likely feature only one of these values, which makes it very hard
to correctly estimate the entropy in those cases. Apart for this common characteristic, the
performance of the estimators when considering only the bias is quite diverse, all of them
having different regions where the bias is lowest (darker areas in the panels).
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Figure 1. Colour maps representing the bias of the nine entropy estimators reviewed in Section 2 for
Markovian binary sequences of length N = 4. The values of the transition probabilities p(0|0) and
p(1|1) vary from 0.01 to 0.99 with step ∆p = 0.02. (a) MLE [Equation (12)], (b) Miller–Madow [48],
(c) Nemenman et al. [54], (d) Chao–Shen [18], (e) Grassberger [36], (f) Bonachela et al. [37], (g) Shrink-
age [20], (h) Chao et al. [62], (i) correlation coverage-adjusted [27], (j) corrected Miller–Madow
[Equation (34)].

In order to quantitatively compare the performance of the different estimators, we have
aggregated all values in the (p00, p11) plane. We define the aggregated bias of an estimator,

B = (∆p)2 ∑
p00,p11

|B(p00, p11)|, (37)

where the sum runs over all values of the transition probabilities used to produce Figure 1,
∆p = 0.02 is the step value used for the grid of the figure, and B(p00, p11) is the bias for the
particular values of the transition probabilities. The aggregated bias given by Equation (37)
depends only on the sequence length N.

We conduct the previous analysis for different values of N. The resulting plot of the
aggregate bias B of the entropy estimator as a function of the sequence length is shown in
Figure 2. In this figure, we can see that the CC estimator gives the best performance for
small values of N, except for N = 2, where the CWJ estimator has the lowest aggregated
bias. However, from N = 7 it is the CMM estimator which outperforms the rest. The poor
performance of this estimator for low values of N is due to the fact that this estimator,
in contrast to the others, requires estimating the transition probabilities, as well as the
stationary probabilities, and therefore more data are needed. As expected, all the estimators
yield an aggregated bias that vanishes as N increases.

In the colour map of Figure 3, we perform a similar analysis for the standard deviation
σ. In the figure, we find that all ten estimators show a similar structure in the sense that
the regions of lowest and highest σ are alike. The smallest deviation is mostly located
near the left bottom corner of the colour maps and the largest deviation occurs around
the regions (0.65 ≲ p00 ≲ 0.9, 0 ≲ p11 ≲ 1) and (0 ≲ p00 ≲ 1, 0.65 ≲ p11 ≲ 0.9) (green
areas in the figures). Of course, the values of σ inside these regions vary for each estimator
but they all share this similar feature. In this case, by just looking at the colour maps, it is
easy to see that BHM (panel f) and NSB (panel c) estimators are the ones with the lowest
standard deviation.
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Figure 2. Aggregated bias of the entropy estimators for Markovian binary sequences as a function of
the sequence size N.
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Figure 3. Colour maps representing the standard deviation of the nine entropy estimators reviewed in
Section 2 for Markovian binary sequences of length N = 4. The values of the transition probabilities
p(0|0) and p(1|1) vary from 0.01 to 0.99 with step ∆p = 0.02. (a) MLE [Equation (12)], (b) Miller–
Madow [48], (c) Nemenman et al. [54], (d) Chao–Shen [18], (e) Grassberger [36], (f) Bonachela
et al. [37], (g) Shrinkage [20], (h) Chao et al. [62], (i) correlation coverage-adjusted [27], (j) corrected
Miller–Madow [Equation (34)].

The aggregated standard deviation σ, defined in a similar way to the aggregated bias,

σ = (∆p)2 ∑
p00,p11

σ(p00, p11), (38)

is plotted in Figure 4 as a function of the sequence size N. In agreement with the previous
visual test, the BHM and NSB estimators clearly outperform the rest, even though their
advantage is less significant as N increases.

Finally, for every particular N, we compute the mean squared error of the entropy
estimators, Equation (4), as a function of p00 and p11. Its aggregated value

MSE = (∆p)2 ∑
p00,p11

MSE(p00, p11), (39)

is plotted as a function of N in Figure 5. Even though the CC and CMM estimators
outperform the others when considering only the bias, their large dispersion dominates
the mean squared error. Overall, it can be seen that the BHM and NSB estimators surpass
the rest when both the bias and standard deviation are considered although, again, their
advantage becomes less significant as N increases.
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Figure 4. Aggregated standard deviation of the entropy estimators for Markovian binary sequences
as a function of the sequence size N.
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Figure 5. Aggregated mean squared error of the entropy estimators for Markovian binary sequences
as a function of the sequence size N.

3.2. Undersampled Regime: Block Entropy

Consider a sequence S = X1, . . . , XN , where each Xi = 0, 1 is a binary variable, with
probabilities P(Xi = 1) = p, P(Xi = 0) = 1 − p. We group the sequence in blocks of size
n, such that the jth-block is Bj = (Xj, . . . , Xj+n−1). We denote by {bi}i=1,...,2n the set of all
possible blocks. The total number of (overlapping) blocks that can be constructed out of
a series of N elements is Nn = N − n + 1, whereas the total number of possible blocks is
L = 2n. Hence, depending on the values of n and N, the sequence formed by the Nn blocks,
Sn = B1, . . . , BNn , will be in an undersampled regime whenever Nn ≪ 2n.
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The block entropy Hn is defined by

Hn = −
2n

∑
i=1

p(bi) ln(p(bi)), (40)

where p(bi) is the probability of observing the block bi. The important thing to notice here
is that, even if the different outcomes X1, . . . , XN of the binary variable X are independent,
the block sequence B1, . . . , BNn obeys a Markov process for n ≥ 2.

This Markovian property can be easily established by noticing that the block
Bj = (Xj, . . . , Xj+n−1) can only be followed by the block Bj+1 = (Xj+1, . . . , Xj+n−1, 1)
with probability p or by the block Bj+1 = (Xj+1, . . . , Xj+n−1, 0) with probability 1 − p.
Therefore, the probability of Bj+1 depends only on the value of block Bj. In Appendix B
we show that the dynamics of block sequences in the case that Xi are i.i.d. is equivalent
to that of a new stochastic variable Z that can take any of L = 2n possible outcomes,
zi = 0, 1, . . . , 2n − 1, with the following transition probabilities for each state z:

p(zk|zi) =


1 − p, if zk = 2zi (mod 2n),
p, if zk = 2zi (mod 2n) + 1,
0, otherwise.

(41)

These types of Markovian systems have been related to Linguistics and Zipf’s law [25].
The previous result can be generalized. If the original sequence X1, . . . , XN is Marko-

vian of order m ≥ 1, then the dynamics of the block sequences B1, . . . , BNn are also Marko-
vian of order 1, for n ≥ m.

It is well known [5] that the block entropy, when the original sequence S is constructed
out of i.i.d. binary variables, obeys

Hn = nH1, (42)

where H1 can be calculated using Equation (35) with p(1) = p and p(0) = 1 − p. Therefore,
the entropy rate is constant.

We want to compare now the performance of the different estimators defined before
when computing the block entropy. In this case, we cannot use an expression equivalent
to Equation (5), summing over all sequences Sn, since the number of possible sequences
is (2n)Nn , and it is not possible to enumerate all the sequences even for relatively small
values of n and Nn. As an example, we employ in our numerical study Nn = 20 and n = 6,
for which the total number of possible sequences is 2120. Therefore, we use the sample
mean µM[Ĥn] and the sample variance s2

M[Ĥn] as unbiased estimators to the expected value
⟨Ĥn⟩ and the variance σ2[Ĥn], respectively. After generating a sample of M independent
sequences Si

n, i = 1, . . . , M, and computing the estimator Ĥn(Si
n) for each of the sequences,

those statistics are computed as

µM[Ĥn] =
1
M

M

∑
i=1

Ĥn(Si
n),

s2
M[Ĥn] =

1
M − 1

M

∑
i=1

(Ĥn(Si
n)− µM[Ĥn])

2.

(43)

Using Equations (42) and (43) we can calculate the bias Bn = µM[Ĥn]− Hn, the standard
deviation sM[Ĥn], and the mean squared error s2

M[Ĥn] + B2
n. In the following, we set

M = 104 for our simulations.
In Figure 6, we show plots of Bn and sM[Ĥn] as a function of p ranging from 0.02 to 0.5

with step ∆p = 0.02, for Nn = 20. We find that the CC estimator performs remarkably well
in terms of bias and we highlight its robustness. Unlike the other estimators, which display
significant variations in their bias as p changes, the CC estimator remains approximately
constant at a low value. However, the CC estimator presents a high standard deviation,
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whereas the MLE and MM exhibit the lowest standard deviation. For the majority of
estimators considered, we observe that the ones with higher bias are the ones with lower
deviation. An exception is the HS estimator.
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Figure 6. Bias (top) and standard deviation (bottom) of the entropy estimators, when applied to
Markovian sequences of length N = 20 and L = 26, generated from the transition probabilities given
by Equation (41), as functions of p, which vary from 0.02 to 0.5 with step ∆p = 0.02. By construction,
the plot is symmetric around p = 0.5.

To analyze the changes in the overall performances of the estimators with different
values of N, we calculated the aggregated bias as

Bn = ∆p ∑
p
|Bn(p)|. (44)

Similarly, we calculated the aggregated standard deviation as

sn = ∆p ∑
p

sM[Ĥn](p), (45)
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and the aggregated mean squared error as

MSEn = ∆p ∑
p
(s2

M[Ĥn](p) + Bn(p)2). (46)

The resulting plots are shown in Figures 7–9, respectively.
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Figure 7. Aggregated bias of the entropy estimators for Markovian sequences in the undersampled
regime with L = 26, generated from the transition probabilities given by Equation (41), as a function
of the sequence size N.
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Figure 8. Aggregated standard deviation of the entropy estimators for Markovian sequences in the
undersampled regime with L = 26, generated from the transition probabilities given by Equation (41),
as a function of the sequence size N.
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Figure 9. Aggregated mean squared error of the entropy estimators for Markovian sequences in the
undersampled regime with L = 26, generated from the transition probabilities given by Equation (41),
as a function of the sequence size N.

It was expected that the total bias of the estimators would decrease by increasing
N, and in Figure 7 it can be seen that this is indeed the case for all estimators except for
the BHM estimator. Surprisingly, the bias of this estimator follows a typical pattern of
decreasing as the sample size increases, just like the other estimators. However, it takes an
unexpected turn starting at N = 20, as it begins to increase once more. A possible reason
for this behaviour is that the BHM estimator is designed to minimize the MSE.

Similarly to the results obtained for the binary Markovian case, the CC estimator
demonstrates in Figure 7 excellent performance when solely evaluating bias. Even though
its performance for a data size of N = 5 is not outstanding, it begins to outperform all but
the CS, CWJ, and HS estimators starting at N = 10, and from that point onward, the CC
estimator consistently ranks among the top-performing estimators, together with the NSB
and CWJ estimators.

By comparing Figures 7 and 8, it can be seen that there is a certain balance: an estimator
with a higher bias usually has a lower deviation when compared to others. This is clearly
the case for the MLE and MM estimators, as they are the two with the worst performances
in terms of bias, but they have the lowest aggregated standard deviation for most of the
data sizes considered.

In this interplay between bias and standard deviation observed for most of the entropy
estimators considered here, the NSB estimator is the one that presents the best performance
when considering both statistics. From Figure 9, it is clear that this estimator shows the
lowest aggregated mean squared error, although just from N = 20 the difference with other
estimators like the CC or the G becomes vanishingly small.

It can be seen in Figures 7–9 that the performance of the CMM estimator is very
similar to MM’s performance, especially for large values of N. This suggests that for
Markovian systems defined by the transition probabilities given by Equation (41), the
correction introduced in Equation (34) is not significant, particularly in the limit of large N.

4. Discussion

We have made a detailed comparison of nine of the most widely used entropy es-
timators when applied to Markovian sequences. We have also included in this analysis
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a new proposed estimator, motivated by the results presented in ref. [34]. One crucial
difference in the way these estimators are constructed is that only the correlation coverage-
adjusted estimator [27] and the corrected Miller–Madow estimator take into account the
order in which the elements appear in the sequence. To calculate the CC estimator, it is
necessary to know the entire history of the sequence, and the computation of the CMM
estimator requires the calculation of the transition probabilities. On the contrary, for all
other estimators, it is sufficient to know the number of times that each element is present
in the sequence, independently of the position in which they appear. Remarkably, this
novel approach to the issue of entropy estimation allows us to reduce the bias, even in
undersampled regimes. Unfortunately, both of these estimators present large dispersion,
which reduces their overall quality.

We have found that, when dealing with Markovian sequences, on average, the
Nemenman–Shafee–Bialek estimator [54–56] outperforms the rest when taking into account
both the bias and the standard deviation for both analyzed cases, namely, binary sequences
and an undersampled regime. Ref. [16] presented a similar analysis but for uniformly
distributed sequences of bytes and bites, and concluded that the estimator with the lowest
mean squared error was the Shrinkage estimator [20]. Hence, when choosing a reliable
estimator, it is not only important to consider the amount of data available, but also whether
correlations might be present in the sequence.

Further analyses should consider Markovian sequences of higher order [63,64]. An-
other interesting topic would be systems described with continuous variables [65,66], where
the presence of noise is particularly important. Finally, we stress that there are alternative
entropies not considered here [67], for which the existence of accurate estimators is still an
open question. Finally, an exciting possibility would be a comparative study of estimators
valid for more than one random variable or probability distributions, leading, respectively,
to mutual information [68,69] and relative entropy [47,70,71].
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Appendix A

In Appendix A, we introduce a new estimator ĥ0 of −p ln(p) based on the number of
observations made prior to the occurrence of the result x with probability p. We improve
this estimator by including all contributions resulting from the shuffling of the original
series. Additionally, we show that this improved estimator ĥ has been used as a starting
point to construct different estimators proposed in the literature.

Let x be a possible value, with probability p, of a random variable X. We make
independent repetitions of X and define a new random variable K as the number of
repetitions until the result x occurs for the first time. This random variable follows a
geometric distribution: P(K = k) = p(1 − p)k−1, k ≥ 1. Let us consider the following
random variable

R =

0 if K = 1,
1

K − 1
if K ≥ 2.

(A1)
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The average value of R is

⟨R⟩ =
∞

∑
k=2

p(1 − p)k−1

k − 1
= −p ln(p), (A2)

where we have used a known series expansion of the logarithm function. Hence, R is
an unbiased estimator of −p ln(p) [72]. By adding similar random variables Ri for each
possible result xi, i = 1, . . . , L, we can obtain a random variable whose average value is
Shannon’s entropy. This is not a contradiction with the statement that there is no known
unbiased estimator of the entropy for a series of finite length, as a proper evaluation of
this estimator requires the possibility of repeating infinite times the random variable. If
the maximum allowed number of repetitions is N, we must modify the definition of the
random variable as

RN =

0 if K = 1, or K > N
1

K − 1
if 2 ≤ K ≤ N.

(A3)

It turns out that RN is negatively biased because

⟨RN ⟩ =
N

∑
k=2

p(1 − p)k−1

k − 1
= −p log(p)− p(1 − p)NΦ(1 − p, 1, N), (A4)

where Φ(z, 1, N) = ∑∞
k=0

zk

N + k
is Lerch’s transcendent function.

Based on this result, we introduce the following estimator ĥ0 for −p log(p): given a
series S = X1, . . . , XN in which the symbol x appears n times, we count the set of distances
(k1, k2, . . . , kn) between successive appearances of the symbol x and then define:

ĥ0(S) =
1
n

n

∑
j=1

Θ(k j − 1)
k j − 1

. (A5)

The Θ function implements the condition k j ≥ 2 and the condition k j ≤ N appears naturally
because of the number of data in the series. As the different points in the series are the
results of independent repetitions of the random variable X, it is possible to reshuffle
all points and still obtain a representative series of the process, whereas the usual MLE
estimator is insensitive to this reshuffling, as it only depends on the number of appearances
n, the estimator ĥ0(S) does depend on the order of the sequence. Therefore, it is possible
to improve the statistics of this estimator by including all contributions of the N! possible
permutations of the N terms of the original series. If (k(i)1 , . . . , k(i)n ) is the set of distances
between successive appearances of the x symbol in the i-th permutation, then we define
the improved estimator

ĥ(S) =
1

N! ∑
i

1
n

n

∑
j=1

Θ(k(i)j − 1)

k(i)j − 1
, (A6)

where the sum over i runs over all possible permutations of the original sequence. Our
main result is to prove that this estimator can be written in terms only of n and N, namely

ĥ(S) =
n
N

N

∑
k=n+1

1
k − 1

=
n
N
(ψ(N)− ψ(n)), (A7)

where ψ(z) is the digamma function, the logarithmic derivative of the gamma function.
See proof in Appendix A.1 of Appendix A.
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The average value of ĥ(S) is given by

⟨ĥ⟩ =
N

∑
n=0

P(n)
n
N
(ψ(N)− ψ(n)) (A8)

where

P(n) =
(

N
n

)
pn(1 − p)N−n, (A9)

is the probability that the element x appears n times in a sequence of length N. As proven
in Appendix A.2, the average value is

⟨ĥ⟩ = −p log(p)− p(1 − p)NΦ(1 − p, 1, N), (A10)

which proves that ĥ is an unbiased estimator of ⟨RN ⟩.
Repeating this same procedure for every xi in the sequence with ni > 0, we arrive at

the entropy estimator

ĤR =
L

∑
i=1

ni
N
(ψ(N)− ψ(ni)), (A11)

whose bias is the sum of the biases associated with each value of the random variable

B[ĤR] = −
L

∑
i=1

p(xi)(1 − p(xi))
NΦ(1 − p(xi), 1, N). (A12)

As proven in the supplementary material of [62], ĥ(S) has been used as a starting point
to construct the estimators CWJ amongst others [41,42,49,62]. For example, ref. [42] pro-
poses to correct ĤR in Equation (A11) by subtracting to this definition the bias in Equa-
tion (A12), replacing the values of the unknown probabilities by their estimated frequencies,

p(xi) →
ni
N

. In [41], the correcting bias subtraction is estimated using a Bayesian approach.
Finally, in [62], the authors recognized that the greatest contribution to the bias must come
from the outcomes that do not appear in the sequence. Hence, they propose to correct ĤR

by using an improved Good–Turing formula [73] to account for the missing elements in the
sequence, leading to the estimator given by Equation (24).

The novel strategy presented here to introduce the estimator ĤR emphasizes its relation
with the geometric distribution and provides further insight into its significance.

Appendix A.1. Proof of Equation (A7)

Proof. We prove it in three steps:

Step 1: Note that not all permutations give a different set (k(i)1 , . . . , k(i)n ). There are, in

fact, only (N
n ) permutations that differ in the value of the sequence (k(i)1 , . . . , k(i)n ),

corresponding to the selection of the n locations of the x symbol in the sequence.
Therefore, we can simplify the expression for the estimator as

ĥ(S) =
1
n

1

(N
n )

(N
n )

∑
i=1

n

∑
j=1

Θ(k(i)j − 1)

k(i)j − 1
, (A13)

where the sum over i now runs over the permutations that give rise to a different
set of numbers (k(i)1 , . . . , k(i)n ).

Step 2: We show that the double sum in Equation (A13) can be written as a function of n
and N only,

(N
n )

∑
i=1

n

∑
j=1

Θ(k(i)j − 1)

k(i)j − 1
≡ R(n, N). (A14)
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where

R(n, N) = n
N−n+1

∑
k=2

(
N − k
n − 1

)
1

k − 1
. (A15)

We prove this relation by mathematical induction. Consider the case n = 1. The N
permutations that differ in the value of k correspond to the appearance of the symbol
x in the first term of the series (k = 1), the second term of the series (k = 2), and so
on up to the N-th term (k = N). The sum in the left-hand-side of Equation (A14) is

N

∑
k=2

1
k − 1

, (A16)

which coincides with R(1, N), defined in Equation (A15).

Assume now that Equation (A15) is valid up to 1 ≤ n ≤ N − 1, and let us evaluate
R(n + 1, N). Consider all possible permutations in a sequence of length N that start with
(x, . . .). The total contribution of these sequences to the value of R(n + 1, N) is the same as
having all permutations of a sequence of length N − 1 with n occurrences of x (notice that
the contribution of the first appearance of x is equal to 0).

We then consider all (N−2
n ) permutations that start with (0, x, . . .), where with "0" we

indicate any value which is not equal to x. That first appearance of x will contribute with
a term equal to 1 for each of the permutations, and the rest will contribute the same as
having all permutations of a sequence of length N − 2 with n occurrences of x. Following
this procedure, we have that

R(n + 1, N) = R(n, N − 1) +
(

N − 2
n

)
1

2 − 1
+ R(n, N − 2) + . . . +

1
(N − n)− 1

+ R(n, n), (A17)

where the last two terms correspond to the contribution of the permutation that has all
n + 1 occurrences of x at the end.

Given that we are assuming that Equation (A15) holds for n, we can write
Equation (A17) as

R(n + 1, N) =
N−n−1

∑
k=2

(
N − k

n

)
1

k − 1
+

1
N − n − 1

+ n
N−n

∑
k=2

(
N − k − 1

n − 1

)
1

k − 1

+ n
N−n−1

∑
j=2

N−j−n+1

∑
k=2

(
N − j − k

n − 1

)
1

k − 1
.

(A18)

Changing the order of summation of the last term in Equation (A18), we can write it as

N−n−1

∑
k=2

1
k − 1

N−k−n+1

∑
j=2

(
N − j − k

n − 1

)
=

N−n−1

∑
k=2

1
k − 1

N−k−n−1

∑
u=0

(
u + n − 1

n − 1

)

=
N−n−1

∑
k=2

1
k − 1

(
N − k − 1

n

)
,

(A19)

where the last equality is due to Fermat’s combinatorial identity (mostly known as the
hockey-stick identity). Hence, Equation (A18) can be written as
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R(n + 1, N) =
N−n−1

∑
k=2

(
N − k

n

)
1

k − 1
+

1
N − n − 1

+ n
N−n

∑
k=2

(
N − k − 1

n − 1

)
1

k − 1

+ n
N−n−1

∑
k=2

(
N − k − 1

n

)
1

k − 1
=

N−n−1

∑
k=2

(
N − k

n

)
1

k − 1
+ (n + 1)

1
N − n − 1

+ n
N−n−1

∑
k=2

((
N − k − 1

n

)
+

(
N − k − 1

n − 1

))
1

k − 1
.

(A20)

Using Pascal’s identity (
N − k − 1

n

)
+

(
N − k − 1

n − 1

)
=

(
N − k

n

)
. (A21)

we obtain,

R(n + 1, N) = (n + 1)
1

N − n − 1
+ (n + 1)

N−n−1

∑
k=2

(
N − k

n

)
1

k − 1

= (n + 1)
N−n

∑
k=2

(
N − k

n

)
1

k − 1
,

(A22)

which proves Equation (A15) for 1 ≤ n ≤ N.

Step 3: We show that ĥ can finally be written as

ĥ =
1
n

1

(N
n )

R(n, N) =
n
N

N

∑
k=n+1

1
k − 1

=
n
N
(ψ(N)− ψ(n)), (A23)

where ψ is the digamma function.

The proof again uses mathematical induction. Consider first the case n = 1. From
Equations (A6)–(A14), we derive

1

(N
1 )

R(1, N) =
1
N

N

∑
k=2

1
k − 1

=
1
N
(ψ(N)− ψ(1)), (A24)

where the last equality is a known identity of the Harmonic numbers.
Consider now that Equation (A23) holds for 1 ≤ n ≤ N − 1. Let us evaluate the case

n + 1:

1
n + 1

1

( N
n+1)

R(n + 1, N) =
1

( N
n+1)

N−n

∑
k=2

(
N − k

n

)
1

k − 1

=
n + 1

N
1

(N−1
n )

N−n

∑
k=2

N − k
n

(
N − k − 1

n − 1

)
1

k − 1

=
n + 1

N
1

(N−1
n )

N − 1
n

N−n

∑
k=2

(
N − 1 − k

n − 1

)
1

k − 1

− n + 1
N

1

(N−1
n )

1
n

N−n

∑
k=2

(
N − k − 1

n − 1

)
.

(A25)

Notice that, given our induction hypothesis,

1

(N−1
n )

N−n

∑
k=2

(
N − 1 − k

n − 1

)
1

k − 1
=

1
n

1

(N−1
n )

R(n, N − 1) =
n

N − 1
(ψ(N − 1)− ψ(n)). (A26)
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Hence,

1
n + 1

1

( N
n+1)

R(n + 1, N) =
n + 1

N

(
ψ(N − 1)− ψ(n)− 1

(N−1
n )

1
n

N−n−2

∑
j=0

(
j + n − 1

n − 1

))

=
n + 1

N

(
ψ(N − 1)− ψ(n)− 1

(N−1
n )

1
n

(
N − 2

n

))

=
n + 1

N

(
ψ(N − 1)− ψ(n)− 1

n
+

1
N − 1

)
=

n + 1
N

(ψ(N)− ψ(n + 1)),

(A27)

where for the last equality we have used the known property of the digamma function:
ψ(z + 1) = ψ(z) + 1/z.

Appendix A.2. Calculation of the Average ⟨ĥ(S)⟩
The average value of the estimator ĥ is

⟨ĥ⟩ =
N

∑
n=0

P(n)
1
n

1

(N
n )

R(n, N) (A28)

where P(n) is given in Equation (A9) and we will use the expression given in Equation (A15)
for R(n, N). Hence,

⟨ĥ⟩ =
N−1

∑
n=1

(
N
n

)
pn(1 − p)N−n

N−n+1

∑
k=2

1

(N
n )

(
N − k
n − 1

)
1

k − 1

=
N−2

∑
n=0

N−n

∑
k=2

1
k − 1

pn+1(1 − p)N−n−1
(

N − k
n

)
,

(A29)

changing the order of summation we have,

⟨ĥ⟩ =
N

∑
k=2

N−k

∑
n=0

1
k − 1

pn+1(1 − p)N−n−1
(

N − k
n

)

=
N

∑
k=2

1
k − 1

p(1 − p)k−1
N−k

∑
n=0

(
N − k

n

)
pn(1 − p)N−k−n,

(A30)

the second sum of the equation above is just the binomial expansion of (p + 1 − p)N−k

which is equal to 1. Then,

⟨ĥ⟩ =
N

∑
k=2

1
k − 1

p(1 − p)k−1 = −p log(p)− p(1 − p)NΦ(1 − p, 1, N). (A31)

Appendix B

Consider a Markovian sequence with L = 2n possible outcomes, zi = 0, 1, . . . , 2n − 1,
defined by the following transition probabilities:

p(zk|zi) =


1 − p, if zk = 2zi (mod 2n),
p, if zk = 2zi + 1 (mod 2n),
0, otherwise.

(A32)
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We can write any zi in base 2 as

zi = X12n−1 + X22n−2 + . . . + Xn, (A33)

where each Xj is either 0 or 1. Then, we can represent the state zi as a binary string of size
n: zi ≡ (X1, . . . , Xn). Hence,

2zi = X12n + X22n−1 + . . . + Xn2. (A34)

Reducing the modulo 2n Equation (A34), we have

2zi (mod 2n) = X22n−1 + . . . + Xn2 + 0 ≡ (X2, . . . , Xn, 0) (A35)

and
2zi (mod 2n) + 1 = X22n−1 + . . . + Xn2 + 1 ≡ (X2, . . . , Xn, 1) (A36)

Hence, the dynamics of this system are equivalent to a block sequence in which the block
(X1, . . . , Xn) can only be followed by the block (X2, . . . , Xn, 0) with probability 1 − p or by
(X2, . . . , Xn, 1) with probability p, coincident with Equation (A32).
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