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Abstract: Topological data analysis (TDA) is a recent approach for analyzing and interpreting complex
data sets based on ideas a branch of mathematics called algebraic topology. TDA has proven useful
to disentangle non-trivial data structures in a broad range of data analytics problems including the
study of cardiovascular signals. Here, we aim to provide an overview of the application of TDA
to cardiovascular signals and its potential to enhance the understanding of cardiovascular diseases
and their treatment in the form of a literature or narrative review. We first introduce the concept
of TDA and its key techniques, including persistent homology, Mapper, and multidimensional
scaling. We then discuss the use of TDA in analyzing various cardiovascular signals, including
electrocardiography, photoplethysmography, and arterial stiffness. We also discuss the potential of
TDA to improve the diagnosis and prognosis of cardiovascular diseases, as well as its limitations
and challenges. Finally, we outline future directions for the use of TDA in cardiovascular signal
analysis and its potential impact on clinical practice. Overall, TDA shows great promise as a powerful
tool for the analysis of complex cardiovascular signals and may offer significant insights into the
understanding and management of cardiovascular diseases.

Keywords: topological data analysis; cardiovascular signals; alegbraic topology; persistent homology;
mapper algorithm

1. Introduction: Data Analytics in Modern Cardiology

Cardiovascular diseases (CVDs) have been, for a long time, a major global health
problem that has caused more deaths than any form of cancer or respiratory disease
combined. The detection and prediction of CVDs is made difficult by the numerous
etiological factors, complex disease pathways, and diverse clinical presentations [1,2].
However, with the advent of an enhanced capability for the generation of complex high-
dimensional data from electronic medical records, mobile health devices, and imaging
data, one is presented with both challenges and opportunities for data-driven discovery
and research. While traditional statistical approaches for risk stratification have been
broadly developed, leading to important improvements of diagnosis, prognosis and in
some cases therapeutics, most of these models have limitations in terms of individualized
risk prediction. Recently, data analytics, artificial intelligence and machine learning have
emerged as potential solutions for overcoming the limitations of traditional approaches in
the field of CVD research.

Advance analytics algorithms can have a major impact on cardiovascular disease
prediction and diagnosis. CVD data, however, remain challenging for common machine
learning and data analytics approaches due to the wide variety and large heterogeneity of
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the diverse cardiovascular signals currently being probed [3,4]. Among the several different
approaches that are arising to cope with such disparate data, one that results particularly
outstanding for its generality and its ability to handle data integrating diverse dynamic
ranges and scales is topological data analysis [5,6].

Topological data analysis (TDA) is, in short, a family of analytic methods that has
been gaining relevance and recognition to model, predict and understand the behavior of
complex biomedical data. TDA is founded on the tenets of algebraic topology, a mathe-
matical field that deals with the shape of data and has a set of methods for studying it [7].
In this review article, we want to present the fundamentals of TDA and its applications
in the analysis of cardiovascular signals. We aim to make these techniques accessible to
non-experts by explaining their theoretical foundations and surveying their use in compu-
tational cardiology. We also discuss the limitations of these methods and suggest possible
ways to incorporate them into clinical care and biomedical informatics in the context of
cardiovascular diseases.

Figure 1 presents a graphic overview of the main ideas, starting with one or several
data sources on cardiovascular signals coming from medical devices, wearables, clinical
monitors, electronic health records and so on. Data are used to generate data clouds that
are turned into Metric data sets that are then processed and analyzed with the tools of
topological data analysis (see below) to generate homology groups, persistence diagrams
and signatures useful to classify signals for a deeper understanding of their phenomenology.

Figure 1. Topological Data Analysis in cardiology. Starting from diverse sources of cardiovascular
signals, topological data analytics allowed a systematic study and categorization leading to a better
understanding of the underlying phenomena, thus providing clues for clinicians and basic scien-
tists. Figure generated with BioRender.com, central panel is taken from Larrysong, CC BY-SA 4.0
https://creativecommons.org/licenses/by-sa/4.0 (accessed on 4 June 2023), via Wikimedia Commons.

https://creativecommons.org/licenses/by-sa/4.0


Entropy 2024, 26, 67 3 of 21

2. Fundamentals of Topological Data Analysis

Topology is a branch of mathematics that deals with the shapes of objects. It provides
a framework for understanding how objects can be deformed and still retain their essential
properties. For example, a circular rubber band can be stretched into an oval, but a segment
of string cannot. Topologists study the connectedness of objects by counting their number
of pieces and holes, and use this information to classify objects into different categories.

A related field, algebraic topology, provides a framework for describing the global
structure of a space in a precise and quantitative way. It uses methods that take into account
the entire space and its objects rather than just local information. Algebraic topology uses
the concept of homology to classify objects based on their number and type of holes, and
topological spaces, which consist of points and neighborhoods that satisfy certain conditions
to do so. The notion of a topological space allows for flexibility in using topological tools in
various applications, as it does not rely on numerical values to determine the proximity of
points, but rather whether their neighborhoods overlap.

More formally, an Homology is a set of topological invariants represented by homology
groups Hk(X) that describe k-dimensional holes in topological space X. The rank of Hk(X)
(known as the kth Betti number), is analogous to the dimension of a vector space and indi-
cates the number of k-dimensional holes. For example, H0 corresponds to zero-dimensional
features or connected components, H1 corresponds to one-dimensional features or cycles,
and H2 corresponds to two-dimensional features or cavities. It is also possible to study Hk
for larger values of k, but it becomes more difficult to visualize the associated features.

At this stage, homology seems to be a rather abstract concept; however, it can be
connected in a straightforward manner to data analytics once we recognize one quite
important property of data points: their shape as a set, that is, the way in which data points
are distributed in the feature’s space. One can obtain an approximation to this shape by
looking at how holes are distributed in the data space. Our understanding of why points
accumulate in one region of the data space and are missing in other regions is a powerful
tool to look for trends in the data. In order to understand the topological shape of a data set
and identify its holes, it is useful to assign a topological structure to the data and calculate
topological invariants. Homology groups are useful for this purpose because there are
efficient algorithms for computing some of the more relevant of these invariants in the
context of TDA [8].

Homology groups are hence used to classify topological spaces based on the topologi-
cal features of their shape, such as connectedness, loops, and voids. Homology groups of a
topological space are invariant under continuous deformations, meaning that if two spaces
have different homology groups, then they cannot be continuously deformed into one another
and are therefore topologically distinct. Homology can thus be used to distinguish between
spaces that may appear to be the same from other perspectives, such as those that have the
same dimension or the same symmetries.

In the context of topological data analysis (TDA), the interpretation of topological
features like connectedness, loops, holes, and voids involves understanding the geometric
and structural properties of the data that these features represent. Let us briefly review
some of these ideas.

Connectedness: Connectedness refers to the property of data points or regions being
connected in a topological space. In TDA, connectedness typically corresponds to the
number of connected components in a data set. The number of connected components can
provide insights into the overall structure of the data. High connectedness implies that the
data are relatively well-connected, while low connectedness may indicate separate clusters
or isolated data points.

Loops: Loops represent closed paths or cycles in the data. They can occur when points
or regions in the data form closed curves or circles. Loops can capture repetitive or periodic
patterns in the data. They are often associated with cyclic structures or data points arranged
in circular or ring-like formations.
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Holes: Holes correspond to empty spaces or voids in the data where there are no data
points. These voids can take various shapes, including spherical voids, tunnel-like voids,
or irregular voids. The presence and characteristics of holes provide information about
data emptiness. They can indicate the absence of data in specific regions or reveal patterns
in data distribution, such as clustering around voids.

Voids: Voids are regions of space that lack data points. They are similar to holes but
can be more generalized and may not necessarily be enclosed by data. Voids are often
used to study the spatial distribution and density of data points. Large, persistent voids
may suggest regions where data are scarce, while small, transient voids may highlight
local fluctuations.

To interpret these topological features effectively, TDA often employs persistence
diagrams or barcode diagrams. These diagrams summarize the births and deaths of topo-
logical features across a range of spatial scales, providing a quantitative way to assess the
significance and persistence of these features. Here is how persistence diagrams relate to
the interpretation of topological features:

Connectedness: The number of connected components is quantified by points in the
persistence diagram. Longer persistence (vertical distance from birth to death) indicates
more robust connected components.

Loops: Loops are associated with features in the persistence diagram. Longer loops
correspond to more persistent cyclic patterns in the data.

Holes and Voids: Holes and voids are represented by clusters of points in the per-
sistence diagram. The position of points in the diagram indicates the spatial scale and
persistence of these features.

In summary, interpreting topological features in TDA involves understanding the
presence, size, and persistence of connectedness, loops, holes, and voids in user data.
Persistence diagrams provide a concise visual representation of these features and their
characteristics across different scales, aiding in the exploration and analysis of complex
data sets. A more formal explanation of these concepts is discussed in Section 2.1.

2.1. Persistent Homology

We discuss some of the main homology groups used for data analytics. We start by
presenting the Persistent Homology Group or Persistent Homology, PH.

PH identifies topological features of a space at different scales. Features that are
consistently detected across a broad range of scales are considered more likely to be true
features of the space rather than being influenced by factors such as sampling errors or
noise. To use persistent homology, the space must be represented as a simplicial complex (i.e.,
a set of polytopes, like points, line segments, triangles, tetrahedra and so on) and a filtration,
or a nested sequence of increasing subsets, must be defined using a distance function on
the space.

To clarify such abstract concepts as simplicial complex and filtration, let us consider a
set of measurements of some property (or properties) of interest in terms of the associated
features for each point (see Figure 2A). We customarily call this set a point cloud; this
represents the data. Point clouds, which, as we said, are simply collections of points, do not
have many interesting topological properties per se. However, we can analyze their topology
by placing a ball of radius ϵ around each point. This method (called filtration) allows for us
to encode geometric information by increasing the value of ϵ, which determines how much
the boundaries of the shape blur and expand. As ϵ increases (Figure 2B–E), points that
were initially distinct may begin to overlap, altering the concept of proximity. Essentially,
this process involves taking, let us say, an impressionist painting (when we partially close
our eyes to reveal details, like we do to appreciate a picture from Claude Monet) looking at
the point cloud to offer it a more defined shape.
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Figure 2. Persistent homology via FSC. Panel (A) presents a set of data points in feature space. In
panel (B), we put a ball of radius ϵ around each data point. In panels (B–E), we increase radius ϵ.
Neighborhoods start to overlap, giving rise to the establishment of a filtered simplicial complex.

A bit more formally, a simplicial complex is a collection of finite sets of points, called
vertices, that are connected by edges, line segments connecting two vertices, and faces,
which are polygons with three or more edges. The vertices, edges, and faces of a simplicial
complex must satisfy certain conditions:

1. Every face of the complex must be a simplex, that is, a triangle or a higher-dimensional
analogue of a triangle.

2. Every face of the complex must be a subset of one of the vertices of the complex.
3. If a face of the complex is a subset of another face, then the larger face must be a subset

of one of the vertices of the complex.

Once we learn to build a simplicial complex for a given scale (value of ϵ) by changing
the value of ϵ, what we do is create a filtered simplicial complex (FSC). Every topological
property (such as the homologies Hk) that persists through the FSC is a PH. Intuitively,
different phenomena under study give rise to different point clouds that, when analyzed
via an FSC, have different PHs.

2.1.1. Building the FSC

By building the PH to a given point cloud, one aims to create a complex that ap-
proximates the original manifold using the given points. To achieve this, connections are
established between points by adding edges between pairs of points; faces between triples
of points; and so on. To determine which connections to create, we introduce a parameter
called the filtration value (the ϵ we already mentioned), which limits the maximum length
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of the edges that can be included in our simplices. We vary ϵ and build the complex at each
value, calculating the homology of the complex at each step.

There are three main strategies for using ϵ to assign simplices: the Vietoris–Rips strategy,
the witness strategy, and the lazy-witness strategy [9]. The Vietoris–Rips strategy adds an
edge between two points if their distance is less than ϵ, a face between three points if their
pairwise distance is less than ϵ, and so on. This approach is accurate but computationally
expensive. The witness strategy uses two sets of points, called landmark points and witness
points, to create the complex. Landmark points are used as vertices and edges are added
between two landmark points if there is a witness point within distance ϵ of both points,
faces are added if there is a witness point within ϵ of all three points, and so on. The
lazy-witness strategy is similar to the witness strategy in terms of how edges are assigned,
but simplices of higher order are added anywhere there are n points that are all connected
by edges.

2.1.2. Calculating the PH

Once we choose a filtration, it is possible to calculate the homology groups (the Hk’s)
of each space in the filtration. Homology groups are a way of describing the topological
features of a space, such as connected components, holes, and voids. Depending on the
particular task, we may choose a maximum value of k to build the first k homology groups.
Then, we can use these homology groups to create a barcode or persistence diagram, which
shows how the topological features of the space change as the scale changes [9].

To calculate persistent homology, it is possible to use a variety of algorithms, such as
the already mentioned Vietoris–Rips complex, the Čech complex, or the alpha complex.
These algorithms construct a simplicial complex from the data, which can then be used to
calculate the homology groups of the space.

Calculating persistent homology and interpreting the results is a non-trivial task.
Several issues need to be considered and decisions need to be taken in every step of the
process. We can summarize the process as follows:

1. Simplicial Complex Construction: Begin by constructing a simplicial complex from
your data. This complex can be based on various covering maps, such as the Vietoris–
Rips complex, yhe Čech complex, or the alpha complex, depending on the chosen
strategy (see Sections 2.4 and 2.5, as well as Table 1 below).
The simplicial complex consists of vertices (0—simplices), edges (1—simplices), tri-
angles (2—simplices), and higher-dimensional simplices. The choice of the complex
depends on user data and the topological features of interest.

2. Filtration: Introduce a filtration parameter (often denoted as ϵ) that varies over a
range of values. This parameter controls which simplices are included in the complex
based on some criterion (e.g., distance threshold).
As ϵ increases, more simplices are added to the complex, and the complex evolves.
The filtration process captures the topological changes as ϵ varies.

3. Boundary Matrix: For each value of ϵ in the filtration, compute the boundary matrix
(also called the boundary operator) of the simplicial complex. This matrix encodes
the relations between simplices.
Each row of the boundary matrix corresponds to a (k − 1)-dimensional simplex, and
each column corresponds to a k-dimensional simplex. The entries indicate how many
times a (k − 1)-dimensional simplex is a face of a k-dimensional simplex.

4. Persistent Homology Calculation: Perform a sequence of matrix reductions (e.g.,
Gaussian elimination) to identify the cycles and boundaries in the boundary matrix.
A cycle is a collection of simplices whose boundaries sum to zero, while a boundary
is the boundary of another simplex.
Persistent homology focuses on tracking the birth and death of cycles across different
values of ϵ. These births and deaths are recorded in a persistence diagram or a barcode.
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5. Persistence Diagram or Barcode: The persistence diagram is a graphical representa-
tion of the births and deaths of topological features (connected components, loops,
voids) as ϵ varies.
Each point in the diagram represents a topological feature and is plotted at birth
(x-coordinate) and death (y-coordinate).
Interpretation:
A point in the upper-left quadrant represents a long-lived feature that persists across
a wide range of ϵ values.
A point in the lower-right quadrant represents a short-lived feature that exists only
for a narrow range of ϵ values.
The diagonal represents features that are consistently present throughout the entire
range of ϵ values.
The distance between the birth and death of a point in the diagram quantifies the fea-
ture’s persistence or lifetime. Longer persistence indicates a more stable and significant
feature.

6. Topological Summaries: By examining the persistence diagram or a barcode, infor-
mation can be extracted about the prominent topological features in a user data set.
Features with longer persistence are considered more robust and significant.
The number of connected components, loops, and voids can be quantified by counting
points in specific regions of the diagram.

2.2. The Mapper Algorithm

Mapper is a recently developed algorithm that provides a reliable tool for topological
data analysis. Mapper allows for researchers to identify and visualize the structure of a
data set by creating a graph representation of the data [10].

The Mapper algorithm consists in the following steps [11] (see Figure 3):

1. Covering the data set: The original data set (Figure 3a) is partitioned into a number of
overlapping subsets called nodes (Figure 3b). This is accomplished using a function
called the covering map. The covering map assigns each point in the data set to a
node. Since the nodes are allowed to overlap, every point potentially belongs to
multiple nodes.
There are several different ways to define a covering map. The choice of a covering
map, however, can significantly affect the resulting Mapper graph. Some common
approaches to define a covering map include:

(a) Filtering: The data set is partitioned based on the values of one or more
variables. A data set may, for instance, be partitioned based on the values of a
categorical variable, such as gender or race.

(b) Projection: Data set partitioning is performed by calculating the distance
between points in the data set and using it as a membership criteria. This
can be achieved using a distance function such as Euclidean distance or
cosine similarity.

(c) Overlapping intervals: The data set is partitioned into overlapping intervals,
such as bins or quantiles. This can be useful for data sets that are evenly
distributed or those having a known underlying distribution.

The choice of covering map depends on the characteristics of the data set and the
research question being addressed. It is important to choose a covering map that is
appropriate for the data set and that will yield meaningful results.

2. Clustering the nodes: The nodes are then clustered using a clustering algorithm, such
as k-means or single-linkage clustering. The resulting clusters (Figure 3c) represent
the topological features of the data set, and the edges between the clusters represent
the relationships between the features.
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Figure 3. The steps of the Mapper algorithm. (a) The data, a cloud of points. (b) The projection of the
data into a lower dimension space. (c) The preimage is clustered and (d) a graph is built based on the
clustered groups. See text.

The resulting graph (Figure 3d), called a Mapper graph, can be used to identify pat-
terns and relationships in the data set that may not be apparent from other forms of
visualization [12].

2.3. Multidimensional Scaling

In the context of topological data analysis, multidimensional scaling (MDS) is a method
to visualize the relationships between a set of complex objects as projected in a lower-
dimensional space. MDS is a versatile technique used in various fields for analyzing and
visualizing relationships between objects. It can be used both in classic data analysis ap-
proaches and in conjunction with TDA methods. MDS works by creating a map of the
objects in which the distance between said objects reflects (to a certain point) the dissimilar-
ity between them [13]. MDS is often used along other techniques, like clustering, to analyze
patterns in data sets that have a large number of variables. Multidimensional scaling can
help identify relationships between objects that are not immediately apparent; hence, it is
useful to visually explore complex data sets [14]. There are several different algorithms for
performing MDS, including classical MDS, nonmetric MDS, and metric MDS.

Classical MDS is the most common method (see Figure 4). In a nutshell, we start
with a set of n points in a space of high dimension (m), then we introduce a measure
of similarity (or dissimilarity), for instance, a distance (such as the Euclidean distance),
then we have a square symmetric matrix with n × n pairwise distances, and MDS is
attained by performing Principal Coordinate Analysis (i.e., eigenvalue decomposition)
of such matrix. The result is a set of lower-dimensional coordinates for n points. Hence,
classic MDS is based on the idea of preserving the pairwise distances between objects in
the projected low-dimensional map. Classical MDS finds the map that best preserves the
distances between objects using an optimization algorithm. The Nonmetric MDS method is
similar to classical MDS, but it does not assume that the dissimilarities between objects are
metric—i.e., represented by a continuous scale; instead, it preserves the rank order of the
dissimilarities between objects, instead of the absolute values. Metric MDS, conversely, is a
variant of classical MDS based on stress minimization, that is, by considering the difference
between the distances in the low-dimensional map and the dissimilarities in the data set.
This method is used when the dissimilarities between objects can be represented by a
continuous scale.
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Figure 4. Classic multidimensional scaling.

In general, classical MDS is the most widely used method, but nonmetric MDS and
metric MDS may be more appropriate in certain situations.

How to Determine the Scaling Approach?

The choice between classical MDS, nonmetric MDS, and metric MDS depends ulti-
mately on the characteristics of the data and the specific research question. Some general
guidelines are as follows:

1. Classical MDS:

- When to Use: Classical MDS is suitable when using metric (distance) data that
accurately represent the pairwise dissimilarities between objects. In classical MDS,
the goal is to find a configuration of points in a lower-dimensional space (usually
2D or 3D) that best approximates the given distance matrix.

- Pros: It preserves the actual distances between data points in lower-dimensional
representation.
It provides a faithful representation when the input distances are accurate.
It is well-suited for situations where the metric properties of the data are crucial.

- Cons: It assumes that the input distances are accurate and may not work well with
noisy or unreliable distance data.
It may not capture the underlying structure of the data if the metric assumption
is violated.

2. Nonmetric MDS:

- When to Use: Nonmetric MDS is appropriate when using ordinal or rank-order
data, where the exact distances between data points are not known, but their relative
dissimilarities or rankings are available. Nonmetric MDS finds a configuration that
best preserves the order of dissimilarities.

- Pros: It is more flexible than classical MDS and can be used with ordinal data.
It can handle situations where the exact distances are uncertain or difficult to obtain.

- Cons: It does not preserve the actual distances between data points, so the resulting
configuration is only an ordinal representation.
The choice of a monotonic transformation function to convert ordinal data into
dissimilarity values can affect the results.

3. Metric MDS:

- When to Use: Metric MDS can be used when using data that are inherently non-
metric, but it is believed that transforming it into a metric space could reveal
meaningful patterns. Metric MDS aims to find a metric configuration that best
approximates the non-metric dissimilarities.

- Pros: It provides a way to convert non-metric data into a metric representation for
visualization or analysis.
It can help identify relationships in the data that may not be apparent in the original
non-metric space.
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- Cons: The success of metric MDS depends on the choice of the transformation
function to convert non-metric data into metric distances.
It may not work well if the non-metric relationships in the data are too complex or
cannot be adequately approximated by a metric space.

In summary, the choice between classical, nonmetric, and metric MDS depends on the
nature of user data and the goals of analysis. If metric data are accurate and preservation
of the actual distances is desired, classical MDS is appropriate. If data are ordinal or dissim-
ilarity measures are uncertain, nonmetric MDS may be more suitable. Metric MDS can be
considered when it is desired to convert non-metric data into a metric space for visualization
or analysis, but it requires careful consideration of the transformation function.

2.4. Choosing the Covering Map

When choosing a covering map in TDA, there are several characteristics of the data
sets which are relevant to consider; among these, we can mention the following:

1. Data Dimensionality: The dimensionality of the data under consideration is crucial.
Covering maps should be chosen to preserve the relevant topological information in
the data. For high-dimensional data, dimension reduction techniques may be applied
before selecting a covering map.

2. Noise and Outliers: The presence of noise and outliers in the data can affect the
choice of a covering map. Robust covering maps can help mitigate the influence of
noise and outliers on the topological analysis.

3. Data Density: The distribution of data points in the feature space matters. A covering
map should be chosen to account for variations in data density, especially if there are
regions of high density and regions with sparse data.

4. Topological Features of Interest: It is important to consider the specific topological
features one is interested in analyzing. Different covering maps may emphasize
different aspects of data topology, such as connected components, loops, or voids.
The election of a covering map should align with particular research objectives.

5. Computational Efficiency: The computational complexity of calculating the covering
map should also be taken into account. Some covering maps may be computationally
expensive, which can be a limiting factor for large data sets.

6. Continuous vs. Discrete Data: It should be determined whether the data under
analysis are continuous or discrete. The choice of a covering map may differ based on
the nature of the data.

7. Metric or Non-Metric Data: Some covering maps are designed for metric spaces,
where distances between data points are well defined, while others may work better
for non-metric or qualitative data.

8. Geometric and Topological Considerations: The geometric and topological char-
acteristics of user data should be considered. Certain covering maps may be more
suitable for capturing specific geometric or topological properties, such as persistence
diagrams or Betti numbers.

9. Domain Knowledge: Domain-specific knowledge should be incorporated into user
choice of a covering map. Understanding the underlying structure of the data can
guide the user in selecting an appropriate covering map.

10. Robustness and Stability: The robustness and stability of the chosen covering map
shpuld be assessed. TDA techniques should ideally produce consistent results under
small perturbations of the data or variations in sampling.

In practice, there are various covering maps and TDA algorithms available, such as
Vietoris–Rips complexes, Čech complexes, and alpha complexes. The choice of covering
map should be guided by a combination of these factors, tailored to the specific characteris-
tics and goals of user data analysis. It may also involve some experimentation to determine
which covering map best captures the desired topological features.
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Table 1. Some types of covering maps and their main applications.

Covering Map Type of Data Brief Description

Vietoris–Rips Complex
Point cloud data, particularly when dealing with metric spaces.
It is often used in applications like sensor networks, molecular

chemistry, and computer graphics

The Vietoris–Rips complex connects points
in the data if they are within a certain distance
(the radius parameter) of each other, forming
simplices (e.g., edges, triangles, tetrahedra)

based on pairwise distances

Čech Complex Similar to the Vietoris–Rips complex,
Čech complexes are used for point cloud data in metric spaces

The Čech complex connects points if they
belong to the same open ball of a specified radius.
It can capture similar topological features as the
Vietoris–Rips complex but may have a different

geometric structure

Alpha Complex
Alpha complexes are useful for point cloud data in metric

spaces and provide an alternative representation of the
topological structure

The alpha complex connects points with a Delaunay
triangulation, considering balls whose radii can vary

at each point to ensure that the complex is a
subcomplex of the Vietoris–Rips complex

Witness Complex

Witness complexes are used for point cloud data
but are particularly useful when dealing with data

that may not be uniformly sampled or when dealing
with non-metric or qualitative data

Witness complexes are constructed by selecting a
subset of witness points from the data. Each witness

point witnesses the presence of other data points within
a specified distance. This can be used to capture

topological features in a more robust way, especially
when data is irregular

Mapper
Mapper is a flexible approach that can be applied to

various types of data, including both metric and
non-metric spaces

Mapper is not a traditional covering map but rather
a method for creating a topological summary of data
by combining clustering and graph theory. It can be

adapted to different data types and is useful for
exploratory data analysis

Rips Filtration and Čech Filtration
These are extensions of the Vietoris–Rips and

Čech complexes, respectively, that allow for the
analysis of topological features at different scales

By varying the radius parameter continuously, Rips filtration and
Čech filtration produce a sequence of simplicial complexes.

This can be useful for capturing topological features at different
levels of detail and studying persistence diagrams
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Different types of covering maps are thus best suited for different kinds of data. Some
of the main covering maps used in TDA are presented in Table 1.

Ultimately, the choice of covering map depends on the specific characteristics of user
data, such as dimensionality, metric properties, and the topological features of interest. It is
often beneficial to experiment with different covering maps and parameters to determine
which one best captures the desired topological information for a particular data set.
Additionally, combining multiple covering maps and TDA techniques can provide a more
comprehensive understanding of complex data sets.

2.5. Different Strategies for Topological Feature Selection

The Vietoris–Rips strategy, the witness strategy, and the lazy-witness strategy are some
of the best-known TDA methods to capture and analyze the topological features of data
sets. Each of these strategies has its own advantages and disadvantages.

2.5.1. Vietoris–Rips (VR) Strategy

The main advantage of the VR strategy is its simplicity, since the VR complex is rela-
tively easy to understand and implement. It connects data points based on a fixed distance
threshold, which is quite intuitive. Another advantage of the VR lies on its widespread
use, for there is a significant body of literature and software implementations available. It
works well with data in metric spaces where distances between points are well defined.

One of the disadvantages is that VR is quite sensitive to certain parameters; the
choice of distance threshold (radius parameter) can significantly impact the topology of the
resulting complex. Selecting an appropriate threshold can be challenging and may require
prior knowledge of the data. VR can be also challenging for its computational burden:
constructing the VR complex can be computationally expensive, especially for large data
sets or high-dimensional data. VR is also limited in terms of robustness: the VR complex is
sensitive to noise and outliers, and small perturbations in the data can lead to significant
changes in complex topology.

2.5.2. Witness Strategy (WS)

The witness strategy (WS), in turn, is more robust to noise and outliers compared to
the VR complex. It selects a subset of witness points that can capture the topology of the
data more effectively. WS is more flexible; witness complexes can be applied to both metric
and non-metric data, making them versatile for various data types and able to handle data
with varying sampling densities; this, they are suitable for irregularly sampled data sets.

Implementation of WS, however, can be more involved than that of the VR complex,
as it requires selecting witness points and computing their witness neighborhoods. Also,
while witness complexes are more robust, they still depend on parameters like the number
of witness points and the witness radius. Choosing appropriate parameters can indeed be
a non-trivial task.

2.5.3. Lazy-Witness Strategy (LW)

The LW strategy is an optimization of the witness strategy that reduces computational
cost. It constructs witness complex on-the-fly as needed, potentially saving memory and
computation time. Like WS, the LW strategy is robust to noise and outliers.

In spite of these advantages, there are also shortcomings. Implementing the LW
strategy can be more complex than implementing the basic witness strategy, as it requires
careful management of data structures and computational resources. While it can be more
memory efficient than precomputing a full witness complex, the LW strategy still consumes
memory as it constructs the complex in real time. This may still be a limitation for very
large data sets.

In summary, the choice between the Vietoris–Rips strategy, witness strategy, and
lazy-witness strategy depends on the specific characteristics of user data and the compu-
tational resources available. The Vietoris–Rips complex is straightforward but sensitive
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to parameter choice and noise. The witness strategy offers improved robustness but may
require more effort in parameter tuning. The lazy-witness strategy combines robustness
with some memory and computation efficiency, making it a good choice for large data sets.
Experimentation and a deep understanding of user data characteristics are essential when
selecting the most appropriate strategy for user TDA analysis.

3. Applications of TDA to Analyze Cardiovascular Signals
3.1. General Features

Aljanobi and Lee [5] recently applied the Mapper algorithm to predict heart disease.
They selected nine significant features in each of the two UCI heart disease data sets
(Cleveland and Statlog). The authors then used a tri-dimensional SVD filter to improve the
filtering process. As a result, they observed an accuracy of 99.32% in the Cleveland data set
and 99.62% in the Statlog data set in predicting heart disease.

Though not precisely signals but rather contextual string corpora (i.e., texts), TDA has
also been applied to the analysis of structured and unstructured text in EHRs and clinical
notes. This is achieved by first converting textual data into a suitable format for analysis.
This can involve techniques such as tokenization, stemming, and removing stop words.
Afterwards, one needs to represent the text as numerical vectors using methods like Term
Frequency-Inverse Document Frequency (TF-IDF) or word embeddings (Word2Vec, GloVe).
Once data are vectorized and tokenized, TDA can be applied. Lopez and coworkers [15],
for instance, used the Mapper algorithm to classify distinctive subsets of patients receiving
optimal treatments post-acute myocardial infarction (AMI) in order to identify high-risk
subgroups of patients for having a future adverse event (AE) such as death, heart failure
hospitalization, or recurrent myocardial infarction. A retrospective analysis of 31 clinical
variables from the EHR of 798 AMI subjects was conducted at a single center. The subjects
were divided into high- and low-risk groups based on their probability of survival without
AEs at 1 year. TDA identified six subgroups of patients. Four of these subgroups, totaling
597 subjects, had a probability of survival without AEs that was greater than a one-fold
change, and were considered low risk. The other two subgroups, totaling 344 subjects,
had a probability of survival without AEs that was less than a one-fold change, and
were considered high risk. However, 143 subjects (18% of the total) were classified as
intermediate risk because they belonged to both high- and low-risk subgroups. TDA was
also able to significantly stratify AMI patients into three subgroups with distinctive rates
of AEs up to 3 years after AMI. This approach to EHR-based risk stratification does not
require additional patient interaction and is not dependent on prior knowledge, but more
studies are needed before it can be used in clinical practice.

3.2. ECG Data and Heart Rate Signals

In another recent study, Yan and coworkers [16] explored the use of topological
data analysis to classify electrocardiographic signals and detect arrhythmias. Cardiac
arrhythmias are abnormal heart rhythms or irregularities in the heartbeat that may be too
fast (tachycardia), too slow (bradycardia), or irregular. Arrhythmias may originate from
problems with the heart’s electrical system, damage to the heart muscle, or other medical
conditions. The most common types of arrhythmias are Atrial Fibrillation (AF) defined
as an irregular and often rapid heartbeat that can lead to stroke and other heart-related
complications; Atrial Flutter which is similar to AF, is characterized by a rapid, regular
heartbeat originating in the atria; Supraventricular Tachycardia is characterized by episodes
of rapid heart rate originating above the heart’s ventricles; Ventricular Tachycardia, a fast,
regular beating of the heart’s lower chambers (ventricles) that can be life-threatening;
Ventricular Fibrillation (VF) which is a chaotic, rapid heartbeat that can be life-threatening
and requires immediate medical attention; and finally Bradycardia, a slower than normal
heart rate, often caused by issues with the heart’s natural pacemaker.

In the particular case of reference [16], phase space reconstruction was used to convert
the signals into point clouds, which were then analyzed using topological techniques to
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extract persistence landscapes as features for the classification task. The authors found that
the proposed method was effective, with a normal heartbeat class recognition rate of 100%
when using just 20% of the training set, and recognition rates of 97.13% for ventricular beats,
94.27% for supraventricular beats, and 94.27% for fusion beats. This ability to maintain
high performance with a small training sample space makes TDA particularly suitable for
personalized analysis.

One particularly difficult problem in cardiovascular disease diagnostics with important
implications for therapy is the evolution of atrial fibrillation [17]. Indeed, the progression
of AF from paroxysmal to persistent or permanent forms has become a significant issue in
cardiovascular disorders. Information about the pattern of presentation of AF (paroxysmal,
persistent, or permanent) is useful in the management of algorithms for each category,
which aims to reduce symptoms and prevent severe problems associated with AF. Until
now, AF classification has been based on the duration and number of episodes. In particular,
changes in complexity of Heart Rate Variation (HRV) may contain clinically relevant signals
of impending systemic dysregulation. HRV measures the fluctuations in the time intervals
between consecutive heartbeats, providing insights into the autonomic nervous system’s
activity, particularly the balance between its sympathetic and parasympathetic branches. A
number of nonlinear methods based on phase space and topological properties can provide
further insight into HRV abnormalities such as fibrillation. In an effort to provide a tool
for the qualitative classification of AF stages, Safarbaly and Golpayegani [18] proposed
two geometrical indices (fractal dimension and persistent homology) based on HRV phase
space, which were able to successfully replicate the changes in AF progression.

Their studied population included 38 lone AF patients and 20 normal subjects, whose
data were collected from the Physio-Bank database [19]. “Time of Life (TOL)” was proposed
as a new feature based on the initial and final Čech radius in the persistent homology
diagram. A neural network was implemented to demonstrate the effectiveness of both
TOL and fractal dimension as classification features, resulting in a classification accuracy
of 93%. The proposed indices thus provide a signal representation framework useful for
understanding the dynamic changes in AF cardiac patterns but also for classifying normal
and pathological rhythms.

PH was also used by Graff et al. to study HRV [20]; the authors suggested the use
of persistent homology for the analysis of HRV, relying on some topological descriptors
previously used in the literature and introducing new ones that are specific to HRV, later
discussing their relationship to standard HRV measures. The authors showed that this
novel approach produces a set of indices that may be as useful as classical parameters in
distinguishing between series of beat-to-beat intervals (RR-intervals) in healthy individuals
as well as in patients who have experienced a stroke.

Also in the context of fibrillation (this time for the prediction of early ventricular
fibrillation), Ling and coworkers [21] proposed a novel feature based on topological data
analysis to increase the accuracy of early VF prediction. In their work, the heart activity
was first treated as a cardiac dynamical system, which was described through phase space
reconstruction. The topological structure of the phase space was then characterized using
persistent homology, and statistical features of the topological structure were extracted
and defined as TDA features. To validate the prediction performance of the proposed
method, 60 subjects (30 VF, 30 healthy) from three public ECG databases were used. The
TDA features showed a superior accuracy of 91.7% compared to heart rate variability
features and box-counting features. When all three types of features were combined as
fusion features, the optimal accuracy of 95.0% was achieved. The fusion features were then
ranked, and the first seven components were all from TDA features. The proposed features
may have a significant effect on improving the predictive performance of early VF.

A similar approach was taken by Mjahad, et al. [22], who applied TDA to generate
novel features contributing to improve both detection and classification performance of
cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT).
The electrocardiographic (ECG) signals used for this evaluation were obtained from the
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standard MIT-BIH and AHA databases. The authors evaluated two types of input data
for classification: TDA features and the so-called Persistence Diagram Image (PDI). When
using the reduced TDA-derived features, a high average accuracy of nearly 99% was ob-
served to discriminate between four types of rhythms (98.68% for VF; 99.05% for VT; 98.76%
for normal sinus; and 99.09% for other rhythms), with specificity values higher than 97.16%
in all cases. In addition, a higher accuracy of 99.51% was obtained when discriminating
between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and 99.67%
specificity). These results show that the use of TDA-derived geometric features, combined
with the k-Nearest Neighbor (kNN) classifier, significantly improves classification perfor-
mance compared to previous works. These results were achieved without pre-selection of
ECG episodes, suggesting that these features may be successfully used in Automated Exter-
nal Defibrillation (AED) [23,24] and Implantable Cardioverter Defibrillation (ICD) [25,26]
therapies.

Jiang and collaborators studied non-invasive atrial fibrillation using TDA on ballis-
tocardiographic (BCG) data [27]. BCG refers to the measurement and recording of the
ballistic forces generated by the ejection of blood from the heart during each cardiac cycle.
These forces produce subtle vibrations and movements in the body, particularly in the chest
and torso. Ballistocardiography is a non-invasive technique used to capture and analyze
these mechanical movements, providing valuable information about cardiac function and
hemodynamics. In this research, BCG series was transformed into a high-dimensional
point cloud in order to capture more rhythmic information. These point clouds were then
analyzed using TDA, resulting in persistent homology barcodes. The statistics of these
barcodes were extracted as nine persistent homology features to quantitatively describe the
barcodes. In order to test the effectiveness of this method for detecting atrial fibrillation
(AF), the researchers collected BCG data from 73 subjects with both AF and non-AF seg-
ments, and applied six machine learning classifiers. The combination of these 9 features
with 17 previously proposed features resulted in a 6.17% increase in accuracy compared
to using 17 features alone (p < 0.001), with an overall accuracy of 94.50%. By selecting
the most effective features using feature selection, the researchers were able to achieve a
classification accuracy of 93.50%. According to the authors, these results suggest that the
proposed features can improve AF detection performance when applied to a large amount
of BCG data with diverse pathological information and individual differences.

TDA can also be combined with other data analytics/Ml approaches such as random
forests (RF). Ignacio and collaborators developed a topological method to inform RF-based
ECG classifiers [28]. In brief, in this approach, a two-level random forest model is trained
to classify 12-lead ECGs using mathematically computable topological signatures as proxy
for features informed by medical expertise. ECGs are treated as multivariate time series
data and transformed into point cloud embeddings that capture both local and global
structures and encode periodic information as attractor cycles in a high-dimensional space.
Topological data analysis is then used to extract topological features from these embeddings,
and these features are combined with demographic data and statistical moments of RR
intervals calculated using the Pan–Tompkins algorithm for each lead to train the classifier.
This multi-class classification task aims to leverage the medical expertise represented in the
topological signatures to accurately classify ECGs.

The same group combined TDA and ML approaches to study atrial fibrillation in
ECGs [29], showing that topological features can be used to accurately classify single-lead
ECGs by applying delay embeddings to map ECGs onto high-dimensional point clouds,
which convert periodic signals into algebraically computable topological signatures, thus
allowing them the use of these topological features to classify ECGs.

A similar approach coupling TDA with Deep Learning to study ECGs has been recently
developed [30]. Training deep learning models on time series data such as ECG poses some
challenges such as lack of labeled data and class imbalance [31,32]. The authors used TDA
to improve the performance of deep learning models on this type of data. The authors
found that using TDA as a time-series embedding method for input to deep learning
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models resulted more effective than training these models directly on raw data. TDA in
this context serves as a generic, low-level feature extractor that can capture common signal
patterns and improve performance with limited training data. Experiments on public
human physiological biosignal data sets showed that this approach leads to improved
accuracy, particularly for imbalanced classes with only a few training instances compared
to the full data set.

Conventional TDA of ECG time series can be further improved by considering the time
delay structure to generate higher dimensional mappings of the original series [33] able to
be analyzed via TDA. This was the approach taken by Fraser and coworkers [34], who found
that TDA visualizations are able top unveil ectopic and other abnormal occurrences in long
signals, indicating a promising direction for the study of longitudinal physiological signals.

A different approach to deal with ECG time series using TDA makes use of optimal
representative cycles. In reference [35], the authors applied a topological data-analytic
method to identify parts of an electrocardiogram (ECG) signal that are representative of
specific topological features and proposed that these parts correspond to the P, Q, S, and
T-waves in the ECG signal. They then used information about these parts of the signal,
identified as P, Q, S, and T-waves, to measure PR-interval, QT-interval, ST-segment, QRS-
duration, P-wave duration, and T-wave duration. The method was tested on simulated
and real Lead II ECG data, demonstrating its potential use in analyzing the morphology of
the signal over time and in arrhythmia detection algorithms.

3.3. Stenosis and Vascular Data

TDA has also been used to study stenosis, an abnormal narrowing or constriction of
blood vessels. In the cardiovascular system, arterial stenosis can be particularly significant.
Atherosclerosis, a condition characterized by the buildup of plaque on the inner walls of
arteries, is a common cause of arterial stenosis. Nicponski and collaborators [36] demon-
strated the use of persistent homology to assess the severity of stenosis in different types
of stenotic vessels. They introduced the concept of critical failure value, which applies one-
dimensional homology to these vessels as a way to quantify the degree of stenosis. They
also presented the spherical projection method, which could potentially be used to classify
various types and levels of stenosis, and showed that the two-dimensional homology of
the spherical projection can serve as a new index for characterizing blood vessels. It is
worth noticing that, as in many other instances in data analytics, data pre-processing often
represents a crucial stage [37].

3.4. TDA in Echocardiography

Applications of TDA to echocardiographic data have also been developed. Such is
the case of the work the group of Tokodi [38,39] who analyzed a cohort of 1334 patients
to identify similarities among patients based on several echocardiographic measures of
left ventricular function. Echocardiography, a medical imaging technique that uses sound
waves to create detailed images of the heart, generates 2D and 3D maps of vascular
structure. However, accurate image reconstruction is far from trivial, in particular for
small convoluted cavities. A network was developed in reference [38] to represent these
similarities, and a group classifier was used to predict the location of 96 patients with two
consecutive echocardiograms in this network. The analysis revealed four distinct regions
in the network, each with significant differences in the rate of major adverse cardiovascular
event (MACE) rehospitalization. Patients in the fourth region had more than two times
the risk of MACE rehospitalization compared to those in the other regions. Improvement
or stability in Regions I and II was associated with lower MACE rehospitalization rates
compared to worsening or stability Regions III and IV. The authors concluded that TDA-
driven patient similarity analysis may improve the precision of phenotyping and aid in the
prognosis of patients by tracking changes in cardiac function over time.
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4. Conclusions

We showed that within the realm of cardiovascular signal analysis, the utilization of
Topological Data Analysis (TDA) displayed remarkable promise across diverse applications
(see Table 2). As we mentioned, Aljanobi and Lee applied the Mapper algorithm to predict
heart disease with exceptional accuracy, achieving 99.32% accuracy in the Cleveland data set
and 99.62% in the Statlog data set. This underscores the effectiveness of TDA in identifying
significant features for disease prediction. Moving beyond disease prediction, TDA proved
invaluable in the risk stratification of patients post-acute myocardial infarction (AMI).
Lopez and colleagues employed the Mapper algorithm on Electronic Health Records (EHR),
successfully classifying distinct subsets of AMI patients. The insights gained into high-risk
subgroups and their susceptibility to adverse events up to 3 years post AMI showcase the
potential of TDA in personalized patient care.

The application of TDA to electrocardiographic (ECG) signal classification yielded
notable outcomes. Yan and Ling explored TDA for arrhythmia detection and early ventric-
ular fibrillation prediction, respectively. Yan’s use of persistent homology achieved high
recognition rates, while Ling’s approach demonstrated superior accuracy compared to tra-
ditional features, indicating the robustness of TDA in diverse ECG applications. Safarbaly
and Golpayegani delved into the progression of atrial fibrillation (AF) using persistent ho-
mology. Their novel geometric indices, based on HRV phase space, successfully replicated
changes in AF stages, attaining a classification accuracy of 93%. This not only sheds light
on AF dynamics, but also presents a potential tool for qualitative AF classification.

The synergy of TDA with machine learning was evident in Mjahad’s work, where
TDA-derived geometric features significantly improved the classification of cardiac arrhyth-
mias. The application extended to non-invasive atrial fibrillation detection by Jiang and
collaborators, showcasing an enhanced accuracy compared to traditional features alone.
Byers and team explored the integration of TDA with deep learning for ECG classification.
Using TDA as a time-series embedding method for deep learning models resulted in im-
proved accuracy, particularly for imbalanced classes, addressing challenges in classification
tasks with limited training data. TDA’s versatility extended to stenosis severity assessment
in various vessels, as demonstrated by Nicponski and collaborators. The critical failure
value and spherical projection methods provided quantifiable measures, highlighting the
potential of TDA in characterizing blood vessels. Lastly, TDA was applied to echocardio-
graphic data by Tokodi and team for patient similarity analysis. The Mapper algorithm
revealed distinct regions in a network representing similarities among patients based on
echocardiographic measures. The identified regions were associated with significant dif-
ferences in major adverse cardiovascular events (MACE) rehospitalization rates, offering
insights into patient prognosis.

In conclusion, the diverse applications of TDA in cardiovascular signal analysis un-
derscore its effectiveness in disease prediction, risk stratification, signal classification, and
patient similarity analysis. The integration of TDA with machine learning and deep learn-
ing techniques presents exciting avenues for advancing our understanding of complex
cardiovascular patterns and improving clinical outcomes (for software implementations
see Table A1). However, further research and validation are essential to solidify the clinical
applicability of these TDA-based approaches.
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Table 2. Comparison of TDA Models in Cardiovascular Signal Applications.

Study Model Used Application Data Set Features/Methods Accuracy/Performance

Aljanobi and Lee [5] Mapper Algorithm Heart Disease Prediction UCI Heart Disease Data sets
(Cleveland, Statlog)

Nine significant features,
tri-dimensional SVD filter

Cleveland: 99.32%,
Statlog: 99.62%

Lopez et al. [15] Mapper Algorithm Risk Stratification of
AMI Patients EHR of 798 AMI subjects Clinical variables from EHR,

Mapper algorithm 3-year AE rates stratification

Yan et al. [16] Persistent Homology Arrhythmia Detection ECG Signals Phase space reconstruction,
persistence landscapes

Normal: 100%, Ventricular:
97.13%, Supraventricular: 94.27%

Safarbaly and Golpayegani [18] Persistent Homology AF Progression Physio-Bank Database Fractal dimension,
persistent homology Classification accuracy: 93%

Graff et al. [20] Persistent Homology HRV Analysis Healthy individuals and
post-stroke patients

Topological descriptors,
comparison with standard

HRV measures
Distinction between RR-intervals

Ling et al. [21] Persistent Homology Early Ventricular
Fibrillation Prediction Public ECG Databases

Phase space reconstruction,
persistent homology,

statistical features
Accuracy: 95.0%

Mjahad et al. [22] Persistent Homology Arrhythmia Classification MIT-BIH and AHA Databases TDA features and Persistence
Diagram Image (PDI)

Accuracy: 99%, Sensitivity:
99.03%, Specificity: 99.67%

Jiang et al. [27] Persistent Homology Non-invasive AF Detection BCG Data from 73 subjects with
AF and non-AF segments

TDA on BCG data, machine
learning classifiers Classification accuracy: 94.50%

Ignacio et al. [28] TDA (Informed Random Forests) ECG Classification 12-lead ECGs Topological signatures,
random forests Not specified

Ignacio et al. [29] TDA (Informed Random Forests) Atrial Fibrillation Classification Single-lead ECGs Delay embeddings,
topological features Not specified

Byers et al. [30] TDA combined with Deep
Learning ECG Classification Public human physiological

biosignal data sets
TDA as time-series embedding

for deep learning models
Improved accuracy for

imbalanced classes

Fraser et al. [34] TDA with Time Delay Structure ECG Visualization Longitudinal
physiological signals

Time delay structure,
TDA visualizations Unveiling abnormal occurrences

Dlugas et al. [35] TDA with Optimal
Representative Cycles

ECG Signal
Morphology Analysis

Simulated and real Lead II
ECG data

Identification of P, Q, S, T-waves,
measurement of intervals Not specified

Nicponski et al. [36] Persistent Homology Stenosis Severity Assessment Various types of stenotic vessels Critical failure value, spherical
projection, 2D homology

Quantification of
stenosis severity

Tokodi et al. [38] Mapper Algorithm Patient Similarity Analysis Echocardiographic measures of
left ventricular function

Network representation,
group classifier Prognosis of patients
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Perspectives and Limitations

We presented a panoramic (and by necessity incomplete) view of the applications of
topological data analysis to the study of cardiovascular signals. We must, however, stress
that, as every analytic technique, TDA has a set of limitations and a range of applicability.
Among its limitations, we can include its inherent complexity both to implement the
analyses and to interpret the results. Also relevant is TDA’s sensitivity to noise and reliance
on assumptions of the data distribution (for instance, one assumes that filtration can be
carried out unambiguously). Another aspect to consider is that topological data analysis
can be computationally intensive, particularly for large or complex data sets. This, along
potential biases in noisy signals, may preclude the accurate identification of the topological
features of certain data sets, especially if the data are of low quality. As we said, topological
data analysis relies on assumptions about the data set, for instance, the existence of a natural
distance measure. This condition may not hold in all cases. This may potentially limit
its applicability. Additionally, the results of topological data analysis can be difficult to
interpret, particularly for non-experts, a fact that can make challenging to communicate
the results of a topological analysis to a general audience. However, even in light of these
limitations, TDA is a quite powerful approach that (perhaps in combination with other
data analytic approaches) may result very useful for the study of complex biosignals, such
as those arising in cardiology.
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Appendix A. Computational Tools

In Table A1, we present some commonly used algorithms used to perform topological
data analysis calculations implemented in libraries for common programming languages.
Implementations vary in their capabilities, computational complexity and depth of doc-
umentation. These are, however, well documented enough, so that most people with
scientific programming expertise may find them fairly usable and reliable. Where applica-
ble, references to the underlying algorithms used are included.

Table A1. Computational tools for topological data analysis. All links were accesed on 4 June 2023.

Tool Language URL Reference

TDA R https://cran.r-project.org/web/packages/TDA/index.html [40,41]

TDAstats R https://cran.r-project.org/web/packages/TDAstats/index.html [42]

TDApplied R https://cran.r-project.org/web/packages/TDApplied/index.html

tdaverse R https://github.com/tdaverse/tdaverse

PHAT Python https://bitbucket.org/phat-code/phat/src/master/ [43]

Dionysus 2 C++/Python https://mrzv.org/software/dionysus2/

GUDHI C++/Python https://gudhi.inria.fr/

TTK C++/Python https://topology-tool-kit.github.io/

DIPHA C++/Matlab https://github.com/DIPHA/dipha [44]

https://cran.r-project.org/web/packages/TDA/index.html
https://cran.r-project.org/web/packages/TDAstats/index.html
https://cran.r-project.org/web/packages/TDApplied/index.html
https://github.com/tdaverse/tdaverse
https://bitbucket.org/phat-code/phat/src/master/
https://mrzv.org/software/dionysus2/
https://gudhi.inria.fr/
https://topology-tool-kit.github.io/
https://github.com/DIPHA/dipha
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Table A1. Cont.

Tool Language URL Reference

Giotto-tda Python https://giotto-ai.github.io/gtda-docs/latest/library.html

Jplex Java https://www.math.colostate.edu/~adams/jplex/index.html

Ripser C++ https://github.com/Ripser/ripser

Ripser++ C++ CUDA https://github.com/simonzhang00/ripser-plusplus [45]

HERA C++/Python https://bitbucket.org/grey_narn/hera/src/master/ [46]

EIRENE Julia https://github.com/Eetion/Eirene.jl

sklearn-tda Python https://github.com/MathieuCarriere/sklearn-tda

Scikit-TDA Python https://github.com/scikit-tda
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