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Abstract: We propose a secure user pairing (UP) and power allocation (PA) strategy for a downlink
Non-Orthogonal Multiple Access (NOMA) system when there exists an external eavesdropper. The
secure transmission of data through the downlink is constructed to optimize both UP and PA. This
optimization aims to maximize the achievable sum secrecy rate (ASSR) while adhering to a limit
on the rate for each user. However, this poses a challenge as it involves a mixed integer nonlinear
programming (MINLP) problem, which cannot be efficiently solved through direct search methods
due to its complexity. To handle this gracefully, we first divide the original problem into two smaller
issues, i.e., an optimal PA problem for two paired users and an optimal UP problem. Next, we
obtain the closed-form optimal solution for PA between two users and UP in a simplified NOMA
system involving four users. Finally, the result is extended to a general 2K-user NOMA system. The
proposed UP and PA method satisfies the minimum rate constraints with an optimal ASSR as shown
theoretically and as validated by numerical simulations. According to the results, the proposed
method outperforms random UP and that in a standard OMA system in terms of the ASSR and the
average ASSR. It is also interesting to find that increasing the number of user pairs will bring more
performance gain in terms of the average ASSR.
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1. Introduction

Over the past decade, NOMA has garnered considerable attention owning to its
possibility to enhance spectrum efficiency and capacity by serving a cluster of users over
the same resource block [1–5], and has been conceived as a technology with great promise,
facilitating fifth-generation (5G) wireless communication [6,7] and serving as a potential
foundation for the next generation of multiple access in 6G [8].

While NOMA can yield considerable performance improvements, it faces notable
challenges that jeopardize its secure transmission. Specifically, wiretapping is one of a
variety of security and confidentiality concerns because of the inherently broadcast nature
of the wireless communication and successive interference cancellation (SIC) adopted in
NOMA [9]. Therefore, the establishment of secure transmission in NOMA networks has
garnered significant interest from academic and industrial spheres alike.

To address these challenging security issues, the concept of physical layer security
(PLS) aims to safeguard authentic communication via leveraging the diversity present
in physical communication channels through an informational–theoretical lens [10], and
various PLS approaches have been proposed to guarantee secure transmission in NOMA
networks [11–15]. The work in [11] considered a cognitive radio network employing NOMA
with two cells and multiple inputs and outputs, and presented a sequential transmission
method employing zero-force beamforming to safeguard communications against potential
eavesdropping. The work in [12] proposed a beamforming scheme with the assistance
of artificial noise (AN) to maximize the secrecy sum rate (SSR) in an NOMA system.

Entropy 2024, 26, 64. https://doi.org/10.3390/e26010064 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26010064
https://doi.org/10.3390/e26010064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6094-4626
https://doi.org/10.3390/e26010064
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26010064?type=check_update&version=1


Entropy 2024, 26, 64 2 of 14

In [13], the proposed method employed unmanned aerial vehicle (UAV) assistance in
NOMA transmission to ensure secure downlink communication by employing artificial
jamming, and the exploration of the balance between jamming effectiveness and the total
data transmission rate was examined to optimize power distribution, user scheduling, and
the UAV’s path, aiming to achieve a trade-off that harmonizes security and transmission
efficiency. The work in [14] analyzed secure downlink transmission schemes in an NOMA
system with artificial-signal assistance and relay assistance and found equilibrium strategies
using game theory. Additionally, in recent years, intelligent reflecting surfaces (IRSs)
also show potential in enhancing the security of the foundational layer within wireless
networks. This was achieved via mitigating the reflected signal at potential eavesdroppers
while directing the beam towards authorized receivers through the adjustment of the IRS
reflecting elements [15].

Although numerous initial studies have delved into the security aspects of NOMA
networks through the lens of beamforming, artificial noise, UAV, IRS, etc., they mainly
focus on NOMA systems with two or more users sharing one resource block. However,
in future scenarios with massive connections, the decoding complexity and delay of the
proposed schemes in the existing literature will increase, and additional hardware resources
will be necessary [9,16]. Therefore, NOMA users should be categorized into distinct groups
to balance implementation complexity and resource utilization [17]. User pairing to satisfy
some system performance indicators, such as achievable sum rates and spectral efficiency,
has been investigated in works such as [18–21]. However, as far as we are aware, how to
improve secure performance gains via UP has not been investigated thoroughly, and this
motivated us to study the secure strategies combined with user pairing. We explore the
challenge of UP under the condition of a minimum rate constraint of each authorized user
to maximize the ASSR, which results in MINLP. Then, we decompose the MINLP problem
into two sub-problems, optimal UP and PA, and obtain an optimal solution for UP and PA
in a closed-form globally. Ultimately, through the comparison of the ASSR acquired using
the proposed method against those generated by the standard methods, the outcomes from
the simulation indicate that the suggested method surpasses both the randomly paired
approach with optimal power distribution and the Orthogonal Multiple Access (OMA)
configuration in identical channel conditions.

The rest of this paper is structured as follows. In Section 2, a downlink NOMA system
with an external eavesdropper is presented, and the joint optimization of an achievable
sum secrecy rate is formulated and decomposed into two sub-problems, optimal power
allocation and optimal user pairing. We investigate the two sub-problems and obtain
the closed-form solutions in Sections 3 and 4, respectively. Numerical simulations are
conducted and the outcomes are given in Section 5, followed by the conclusions, which are
outlined in Section 6.

2. System Model and Problem Formulation
2.1. System Model

We investigate a downlink NOMA system utilizing one base station (BS), N = 2K
legitimate users, and one external eavesdropper (E), as illustrated in Figure 1. We presume
that each node is equipped with a single antenna, as in [16,19,20,22], all wireless channels
include Rayleigh block fading [16,22,23], and the communication channel gains from the
base station to the legitimate user i (denoted by LUi) and the eavesdropper are denoted
by hi, (i = 1, 2, · · · , 2K), and he. Generally, we make the assumption that the channel gains
of 2K users adhere to the sequence |h1|2 ≤ |h2|2 ≤ · · · ≤ |hk|2 ≤ · · · ≤ |h2K|2. We also
presume that both users and the eavesdropper experience equivalent levels of noise power,
denoted as σ2.

In practice, 2K legitimate users are often grouped into K clusters, i.e., each cluster has
two users, aiming to minimize the computational complexity and mitigate delays caused
by the successive interference cancellation (SIC) being decoded at the receiver [17].
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Figure 1. Illustration of the considered system model.

For any pair with two users (users m and n) denoted by (m and n), a constant total
transmission power Ps is allocated by the BS. Without a loss of generality, we make the
assumption of |hm|2 ≥ |hn|2, i.e., the user m is a strong user in NOMA terminology. Then,
the superimposed signal transmitted by the BS is

s =
√

Psαmsm +
√

Psαnsn, (1)

where si and αi (i = m, n) denote the signal with E(|si|2) = 1 and the PA factor of user i
with αm + αn = 1.

The signals received by users m, n, and the eavesdropper E are
ym = hm(

√
Psαmsm +

√
Psαnsn) + nm,

yn = hn(
√

Psαmsm +
√

Psαnsn) + nn,
ye = he(

√
Psαmsm +

√
Psαnsn) + ne,

(2)

where ni represents the Gaussian noise that user i and eavesdropper E encounter, which
has a mean of zero and an average power of σ2.

Following the NOMA guideline, the strong user m exploits SIC to remove the interfer-
ence caused by the weak user n, while the weak user n treats the interference caused by the
user m as noise. Thus, the achievable rates of users m and n are provided as follows:

Rnn = log2

(
1 +

|hn|2αnγ

|hn|2αmγ + 1

)
, (3)

Rmn = log2

(
1 +

|hm|2αnγ

|hm|2αmγ + 1

)
, (4)

Rmm = log2

(
1 + |hm|2αmγ

)
, (5)

where Rnn is the achievable rate at which user n decodes its own message; Rmn and Rmm
are the rates at which user m decodes user n’s and its own messages, respectively; and
γ = Ps/σ2 represents the average transmitted signal-to-noise ratio (SNR) for the UP at the
BS.

Following [12,22], the eavesdropping rates for users m and n by E are

Rem = log2

(
1 + |he|2αmγ

)
(6)

and

Ren = log2

(
1 +

|he|2αnγ

|he|2αmγ + 1

)
= log2

(
|he|2γ + 1

|he|2αmγ + 1

)
. (7)
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The achievable secrecy rate (ASR) is established as the variance between the achievable
rate for the user and that of the eavesdropper. Thus, the ASR for users m and n in the same
group, denoted by (m, n), can be expressed as

C(m,n)
m = [Rmm − Rem]

+ =

[
log2

(
1 + |hm|2αmγ

1 + |he|2αmγ

)]+
(8)

and

C(m,n)
n = [Rnn − Ren]

+

=

log2

(
|hn|2γ + 1

)(
|he|2αmγ + 1

)
(
|hn|2αmγ + 1

)(
|he|2γ + 1

)
+, (9)

where [·]+ = max(·, 0). The ASSR of the pair (m, n) is

ASSR(m,n) = C(m,n)
m + C(m,n)

n . (10)

As a benchmark, following [16], the achievable rate for user i and the eavesdropper in
an OMA system with a similar setting can be, respectively, expressed as

R(OMA)
i =

1
2

log2(1 + |hi|2γ), (11)

R(OMA)
e = log2(1 + |he|2γ), (12)

where the multiplexing loss in the OMA system attributes to the fraction 1
2 in Formula (11).

The corresponding ASSR can be given by

ASSR(m,n)
OMA = [R(OMA)

m − 1
2

R(OMA)
e ]+ + [R(OMA)

n − 1
2

R(OMA)
e ]+. (13)

2.2. Problem Formulation

To secure a downlink NOMA system against external eavesdropping, in pursuit
of enhancing the ASSR, our focus lies in meticulously designing UP and PA. The co-
optimization problem of UP and PA can be formulated as

P1: Maximize
αm ,um,n

N−1

∑
n=1

N

∑
m=n+1

um,n · (C(m,n)
m + C(m,n)

n )

Subject to: C1: R(m,n)
m ≥ um,nR(OMA)

m ,

C2: R(m,n)
n ≥ um,nR(OMA)

n ,

C3: 0 ≤ αm ≤ 1, 1 ≤ m ≤ N,

C4: um,n ∈ {0, 1}, 1 ≤ m, n ≤ N,

C5: um,n = un,m, 1 ≤ m, n ≤ N,

C6:
N

∑
m=1

um,n = 1, 1 ≤ n ≤ N,

C7:
N

∑
n=1

um,n = 1, 1 ≤ m ≤ N,

where um,n is a binary variable that indicates that user m pairs with user n if um,n = 1,
otherwise um,n = 0; the constraints C1 and C2 guarantee the QoS for users m and n,
respectively, i.e., the requirement that the achievable rate should not be less than that in the
OMA system is considered in this paper; the constraint C3 insures an achievable power
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allocation between users m and n; and the constraints C4∼C7 imply the pairing relationship
among users, such that each user can pair with one and only one of the others.

Problem (P1) constitutes a non-convex and intricately interconnected mixed integer
nonlinear programming issue, posing an NP-hard complexity, and it is generally arduous
to search for globally optimal solutions directly. Additionally, in real situations, an eaves-
dropper usually acts passively. Therefore, we presume that the BS lacks access to precise
eavesdropper channel details, and we need to investigate the optimization problem based
on the quality of the eavesdropping channels, i.e., the worst quality (|he|2 ≤ |h1|2), the
medium quality (|h1|2 ≤ |he|2 ≤ |h2K|2), and the best quality (|he|2 ≥ |h2K|2).

Obviously, when the eavesdropping channel is superior over all the channels of
legitimate users, we have a zero ASSR according to the subsequent theorem.

Theorem 1. In an NOMA system involving 2K users (user 1, 2, · · · , 2K) and an external
eavesdropper (E) with |h1|2 ≤ |h2|2 ≤ · · · ≤ |h2K|2 ≤ |he|2, the ASSR is zero.

When |he|2 ≥ |h2K|2, i.e., |he|2 ≥ |hm|2 and |he|2 ≥ |hn|2, hold for any user pair (m, n),
it is easy to prove Rem ≥ Rmm and Ren ≥ Rnn according to Formulas (3) and (5)–(7), which,
consequently, results in C(m,n)

m = C(m,n)
n = 0 for any user pair (m, n) and ASSR = 0. The

proof is quite simple, and we omit the details here for simplicity. Thus, we only investigate
the problem with the worst and the medium eavesdropping channel, i.e., |he|2 ≤ |h2K|2, in
the following sections, respectively.

We initially partition the primary joint optimization problem encompassing UP and
PA (P1) into two subsidiary problems, i.e., the optimal PA between two users in one
pair (SP1) and the optimal UP problem (SP2), and we will discuss them in the following
two sections, respectively.

3. PA for NOMA Involving Two Paired Users

In sub-problem (SP1), an NOMA system involving two users (users m and n) in one
pair and an external eavesdropper (E) is considered. To maximize the ASSR, we formulate
the optimization of power allocation as

SP1: Maximize
αm

C(m,n)
m + C(m,n)

n

Subject to: C1: R(m,n)
m ≥ R(OMA)

m ,

C2: R(m,n)
n ≥ R(OMA)

n ,

C3: αm + αn = 1,

C4: 0 ≤ αm ≤ 1.

The subsequent theorem elucidates the optimal resolution to the aforementioned prob-
lem (SP1).

Theorem 2. In an NOMA system involving two users (users m and n) in one pair and an external
eavesdropper (E), the optimal coefficient for power splitting is

α
(m,n)
m =

√
1 + |hn|2γ − 1

|hn|2γ
. (14)

Proof. We prove this in the following two situations according to the quality of the eaves-
dropping channel, respectively.

(1) : |hm|2 ≥ |hn|2 ≥ |he|2
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Taking the derivative of the achievable sum secrecy rate (ASSR), Formula (10), with
regard to αm, we can obtain

d(ASSR)
d(αm)

=
1

ln 2
(|hm|2 − |hn|2)γ

(|hm|2αmγ + 1)(|hn|2αmγ + 1)
≥ 0,

which implies that the ASSR is a monotonically increasing function of αm in this situation.
Following similar steps to those in [16], we can obtain the range of αm from the

constraints C1 and C2 as√
1 + |hm|2γ − 1

|hm|2γ
≤ αm ≤

√
1 + |hn|2γ − 1

|hn|2γ
.

According to the monotonicity of the ASSR with respect to αm, we can reach the optimal
ASSR within the upper limit of the range, i.e.,

α
(m,n)
m =

√
1 + |hn|2γ − 1

|hn|2γ
.

(2): |hm|2 ≥ |he|2 ≥ |hn|2

When |hm|2 ≥ |he|2 ≥ |hn|2 holds, we can easily infer that C(m,n)
n = 0. Thus,

d(ASSR)
d(αm)

=
1

ln 2
(|hm|2 − |he|2)γ

(|hm|2αmγ + 1)(|he|2αmγ + 1)
≥ 0.

Similarly, the optimal PA to user m can be inferred as

α
(m,n)
m =

√
1 + |hn|2γ − 1

|hn|2γ
.

Combining the above two situations, we can prove Theorem 2.

It is worthy of note that the optimal PA is solely determined by the channel gain of the
weak user, and only allocates necessary power to satisfy the weak user’s QoS constraint C2.
Furthermore, we can check the fact that the obtained optimal allocation coefficient α

(m,n)
m

satisfies the constraint C4 of SP1.

4. Optimal User Pairing

In sub-problem (SP2), an NOMA system with N = 2K users and an external eaves-
dropper is considered, and we formulate the optimization of UP as SP2.

SP2: Maximize
um,n

N−1

∑
n=1

N

∑
m=n+1

um,n · (C(m,n)
m + C(m,n)

n )

Subject to: C1: umn ∈ {0, 1}, 1 ≤ m, n ≤ N,

C2: um,n = un,m, 1 ≤ m, n ≤ N,

C3:
N

∑
m=1

um,n = 1, 1 ≤ n ≤ N,

C4:
N

∑
n=1

um,n = 1, 1 ≤ m ≤ N.

To investigate the optimal UP problem for an NOMA involving 2K users, let us
commence from the simplest pairing case with the minimum number of users, i.e., with
four users, and then extend the obtained results to the general case.
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4.1. UP for NOMA Involving Four Users
4.1.1. Pairing Solutions

In an NOMA system involving four users (users 1, 2, 3, and 4), without a loss of
generality, and assuming |h1|2 ≤ |h2|2 ≤ |h3|2 ≤ |h4|2, there exist three user pairing
solutions, referring to Solution a, Solution b, and Solution c, respectively, in the following.

Solution a: User 1 pairs with user 2, and user 3 pairs with user 4, i.e., u1,2 = 1 and
u3,4 = 1. Thus, the ASSR can be expressed as

Ca = C(1,2)
1 + C(1,2)

2 + C(3,4)
3 + C(3,4)

4 . (15)

Solution b: User 1 pairs with user 3, and user 2 pairs with user 4, i.e., u1,3 = 1 and
u2,4 = 1. Thus, the ASSR can be expressed as

Cb = C(1,3)
1 + C(2,4)

2 + C(1,3)
3 + C(2,4)

4 . (16)

Solution c: User 1 pairs with user 4, and user 2 pairs with user 3, i.e., u1,4 = 1 and
u2,3 = 1. Thus, the ASSR can be expressed as

Cc = C(1,4)
1 + C(2,3)

2 + C(2,3)
3 + C(1,4)

4 . (17)

4.1.2. Optimal UP for NOMA with Four Users

After analyzing and comparing the ASSRs of three pairing solutions in detail, we
give the optimal UP solution of an NOMA system involving four users and an external
eavesdropper according to the theorem below.

Theorem 3. In an NOMA system involving four users (users 1, 2, 3, and 4) and an external
eavesdropper (E) with |h1|2 ≤ |h2|2 ≤ |h3|2 ≤ |h4|2, we have Ca ≤ Cb ≤ Cc, i.e., Solution c is
the optimal UP solution.

Proof. Based on the sequence of channel gains, there are four cases as below, and we will
prove Ca ≤ Cb ≤ Cc case by case.

Case 1: |he|2 ≤ |h1|2 ≤ |h2|2 ≤ |h3|2 ≤ |h4|2
Following Theorem 2, we have

α
(1,2)
2 = α

(1,3)
3 = α

(1,4)
4 =

√
1+|h1|2γ−1
|h1|2γ

≜ β1,

α
(2,3)
3 = α

(2,4)
4 =

√
1+|h2|2γ−1
|h2|2γ

≜ β2,

α
(3,4)
4 =

√
1+|h3|2γ−1
|h3|2γ

≜ β3.

(18)

On this basis, following (9), we can obtainC(1,2)
1 = C(1,3)

1 = C(1,4)
1 ,

C(2,3)
2 = C(2,4)

2 .
(19)

For the function f (x) =
√

1+x−1
x where (x > 0) monotonously decreases with the increase

of x and the presumption |h1|2 ≤ |h2|2 ≤ |h3|2, we have the sequence of βk (k = 1, 2, 3) as

β3 ≤ β2 ≤ β1 ≤ 1. (20)
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Then, we have

Cc − Cb =
(

C(1,4)
1 + C(2,3)

2 + C(2,3)
3 + C(1,4)

4

)
−
(

C(1,3)
1 + C(2,4)

2 + C(1,3)
3 + C(2,4)

4

)
= log2

(
1 + |h3|2β2γ

)(
1 + |h4|2β1γ

)
(

1 + |h3|2β1γ
)(

1 + |h4|2β2γ
)

= log2

1 +
(β1 − β2)

(
|h4|2 − |h3|2

)
γ(

1 + |h3|2β1γ
)(

1 + |h4|2β2γ
)
 ≥ 0,

and

Cb − Ca =
(

C(1,3)
1 + C(2,4)

2 + C(1,3)
3 + C(2,4)

4

)
−
(

C(1,2)
1 + C(1,2)

2 + C(3,4)
3 + C(3,4)

4

)
= log2

√
1 + |h2|2γ

(
1 + |h3|2β1γ

)(
1 + |h4|2β2γ

)
√

1 + |h3|2γ
(

1 + |h2|2β1γ
)(

1 + |h4|2β3γ
)

≥ log2

√
1 + |h2|2γ

(
1 + |h3|2β1γ

)
√

1 + |h3|2γ
(

1 + |h2|2β1γ
)

=
1
2

log2

(
1 + |h3|2β1γ

)2

1 + |h3|2γ
− log2

(
1 + |h2|2β1γ

)2

1 + |h2|2γ

.

We define g(x) = (1+β1x)2

1+x (x > 0) and it is readily apparent that g′(x) ≥ 0. Then, we have
Cb − Ca ≥ 0.

Thus, we have Ca ≤ Cb ≤ Cc in Case 1.
Case 2: |h1|2 ≤ |he|2 ≤ |h2|2 ≤ |h3|2 ≤ |h4|2
In this case, the ASSR in three UP solutions can be described as

Ca = C(1,2)
2 + C(3,4)

3 + C(3,4)
4

Cb = C(2,4)
2 + C(1,3)

3 + C(2,4)
4

Cc = C(2,3)
2 + C(2,3)

3 + C(1,4)
4

(21)

Cc − Cb = C(2,3)
3 − C(1,3)

3 + C(1,4)
4 − C(2,4)

4

= log2(1 +
(β1 − β2)(|h4|2 − |h3|2)γ

(1 + |h3|2β1γ)(1 + |h4|2β2γ)
) ≥ 0, (22)

Cb − Ca = C(2,4)
2 − C(1,2)

2 + C(1,3)
3 − C(3,4)

3 + C(2,4)
4 − C(3,4)

4

= log2[
(1 + |h2|2γ)(1 + |h3|2β1γ)

(1 + |h2|2β2γ)(1 + |h2|2β1γ)
· (1 + |h3|2β3γ)(1 + |h4|2β2γ)

(1 + |h3|2γ)(1 + |h4|2β3γ)
]

(18) log2

√
1 + |h2|2γ(1 + |h3|2β1γ)(1 + |h4|2β2γ)√
1 + |h3|2γ(1 + |h2|2β1γ)(1 + |h4|2β3γ)

≥ log2

√
1 + |h2|2γ(1 + |h3|2β1γ)√
1 + |h3|2γ(1 + |h2|2β1γ)

=
1
2
[log2

(1 + |h3|2β1γ)2

1 + |h3|2γ
− log2

(1 + |h2|2β1γ)2

1 + |h2|2γ
] ≥ 0, (23)
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where “(18)” indicates (18) is applied in this step. Thus, we have Ca ≤ Cb ≤ Cc in Case 2.
Case 3: |h1|2 ≤ |h2|2 ≤ |he|2 ≤ |h3|2 ≤ |h4|2
Similar to Case 2, we can obtain the ASSR in three UP solutions as

Ca = C(3,4)
3 + C(3,4)

4

Cb = C(1,3)
3 + C(2,4)

4

Cc = C(2,3)
3 + C(1,4)

4

(24)

Cc − Cb = C(2,3)
3 − C(1,3)

3 + C(1,4)
4 − C(2,4)

4

= log2[1 +
(β1 − β2)(|h4|2 − |h3|2)γ

(1 + |h3|2β1γ)(1 + |h4|2β2γ)
] ≥ 0,

Cb − Ca = C(1,3)
3 − C(3,4)

3 + C(2,4)
4 − C(3,4)

4

= log2[
(1 + |h3|2β1γ)(1 + |h3|2β3γ)

(1 + |h3|2γ)(1 + |h4|2β3γ)
· (1 + |h4|2β2γ)(1 + |he|2γ)

(1 + |he|2β1γ)(1 + |he|2β2γ)
] (25)

Let βe =

√
1+|he |2γ−1
|he |2γ

. We have

1 + |he|2βeγ =
√

1 + |he|2γ, (26)

and it is easy to prove that β1 ≥ β2 ≥ βe ≥ β3. Hence, taking (26) into (25), we have

Cb − Ca = log2

√
1 + |he|2γ(1 + |h3|2β1γ)√
1 + |h3|2γ(1 + |he|2β1γ)︸ ︷︷ ︸

A

+ log2
(1 + |he|2βeγ)(1 + |h4|2β2γ)

(1 + |he|2β2γ)(1 + |h4|2β3γ)︸ ︷︷ ︸
B

≥ 0,

for the reason that

A =
1
2
[log2

(1 + |h3|2β1γ)2

1 + |h3|2γ
− log2

(1 + |he|2β1γ)2

1 + |he|2γ
] ≥ 0,

B ≥ log2
(1 + |he|2β3γ)(1 + |h4|2β2γ)

(1 + |he|2β2γ)(1 + |he|2β3γ)

= log2[1 +
(|h4|2 − |he|2)(β2 − β3)γ

(1 + |he|2β2γ)(1 + |h4|2β3γ)
] ≥ 0.

Thus, we have Ca ≤ Cb ≤ Cc in Case 3.
Case 4: |h1|2 ≤ |h2|2 ≤ |h3|2 ≤ |he|2 ≤ |h4|2
Similar to Cases 2 and 3, we can obtain the ASSR in three UP solutions as

Ca = C(3,4)
4

Cb = C(2,4)
4

Cc = C(1,4)
4

, (27)

Cc − Cb = C(1,4)
4 − C(2,4)

4 = log2(1 +
(β1 − β2)(|h4|2 − |he|2)γ

(1 + |he|2β1γ)(1 + |h4|2β2γ)
) ≥ 0, (28)

Cb − Ca = C(2,4)
4 − C(3,4)

4 = log2(1 +
(β2 − β3)(|h4|2 − |he|2)γ

(1 + |he|2β2γ)(1 + |h4|2β3γ)
) ≥ 0. (29)

We can easily verify that Ca ≤ Cb ≤ Cc always holds in Case 4, and omit the detail here for
simplicity.

Combining the above four cases, we can prove Theorem 3.



Entropy 2024, 26, 64 10 of 14

4.2. UP for NOMA with 2K Users

We considered an NOMA system with two and four users in Sections 3 and 4.1, and
found the optimal PA and UP, respectively. We will give the extended solution to Problem
(SP2) using the subsequent theorem.

Theorem 4. In an NOMA system involving 2K users (user 1, 2, · · · , 2K) and an external
eavesdropper (E) with |he|2 ≤ |h2K|2, the optimal pairing solution is

um,n =

{
1, m + n = 2K + 1;
0, others.

(30)

In other words, any user k is paired with the user 2K − k + 1, i.e., uk,2K−k+1 = 1, for all k ∈ N
(1 ≤ k ≤ 2K).

Proof. When K = 1, there are only two users in the NOMA system, and they have no
choice but to pair with each other, which makes (30) hold. Thus, we first consider the case
when K = 2, which is a case we discussed in Section 4.1. Following Theorem 3, it is readily
verifiable that the optimal pairing strategy Case c satisfies (30).

Next, we prove (30) in the case when K > 2 using mathematical induction in the
following four steps.

(1) When k = 1, we need to prove u1,2K = 1, i.e., user 1 pairs with user 2K. We prove it
by contradiction. We assume user 1 is paired with user i (2 ≤ i ≤ 2K − 1) instead of
user 2K, and user 2K is paired with user j (2 ≤ j ≤ 2K − 1, j ̸= i) instead of user 1 in
the optimal user pairing solution. Following Theorem 3, we have

C(1,2K)
1 + C(1,2K)

2K + C(i,j)
i + C(i,j)

j ≥ C(1,i)
1 + C(1,i)

i + C(j,2K)
j + C(j,2K)

2K .

That is to say, we can re-pair users 1, i, j, and 2K to increase the ASSR, which contra-
dicts the statement that the original pairing solution is optimal. Thus, user 1 must be
paired with user 2K to increase the ASSR, i.e., u1,2K = 1.

(2) We assume uk,2K−k+1 = 1 holds when k = s, i.e., u1,2K = u2,2K−1 = · · · = us,2K−s+1 = 1.
(3) According to the principle of mathematical induction, we need to prove uk,2K−k+1 = 1

holds when k = s + 1, i.e., us+1,2K−s = 1 holds, and we also prove it by contradiction.
We assume that user s + 1 is paired with user i (s + 2 ≤ i ≤ 2K − s − 1) and user
2K − s is paired with user j (s + 2 ≤ j ≤ 2K − s − 1, j ̸= i). Following Theorem 3, we
have

C(s+1,2K−s)
s+1 + C(s+1,2K−s)

2K−s + C(i,j)
i + C(i,j)

j ≥(s+1,i)
s+1 +C(s+1,i)

i + C(j,2K−s)
j + C(j,2K−s)

2K−s ,

which contradicts the assumption. Thus, user s + 1 must pair with user 2K − s, i.e.,
us+1,2K−s = 1, to achieve a higher ASSR.

(4) In conclusion, we can conclude that uk,2K−k+1 = 1 holds for all k ∈ N (1 ≤ k ≤ 2K),
and we complete the proof.

4.3. Computational Complexity

As mentioned above, the proposed scheme can be implemented in two consecutive
steps, the optimal UP and the optimal PA. We analyze the computational complexity of the
two parts, respectively.

In the first part, the optimal UP is determined based on Theorem 4, once the order
of channel gains is given. Thus, the calculation of channel gain constitutes the primary
computational complexity of the first part, such as QuickSort, which runs in O(N2) time in
the worst case, and in expected O(NlogN) time [24], where N is the quantity of numbers
to be sorted, that is, the number of users in this paper. Although the exhausted searching
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method can also find the optimal UP scheme, it runs in O(N!) time [16], which is much
higher than that in the proposed scheme.

In the second part, we calculate the PA coefficient according to (14) for each user pair,
and there are N/2 user pairs in all. Therefore, the computational complexity of the second
part is O(N).

5. Simulation and Discussion

The security performance regarding the ASSR of downlink NOMA against external
eavesdropping scenarios was investigated with numerical simulations. The simulations
involve N = 2K users, distributed evenly across a disk with radius r = 500 m, and
the path-loss coefficient α = 2. The height of the BS is assumed to be H = 50 m. Two
benchmark schemes, termed random UP with optimal PA (simply denoted as “random”) and
the standard OMA setup, were utilized to enhance the performance of the proposed scheme.
The performance was averaged on 103 user distributions and 103 channel realizations for
each user distribution. Furthermore, 103 random user pairings were conducted for each
user distribution and channel realization in the random scheme.

Figure 2 shows a performance comparison of the ASSRs between an NOMA with
the proposed UP and PA scheme (proposed), and the two benchmark schemes, randomly
paired NOMA with optimal PA and standard OMA, with different numbers of user pairs
where P/σ2 = 20 dB. From Figure 2, it can be inferred that averaged performance of the
ASSRs in the NOMA scheme (both optimal pairing and random pairing) outperformed
that in the OMA scheme, and the ASSR was a function of the quantity of user pairs. When
K was small, the performance difference of the ASSR was not obvious between the NOMA
scheme with optimal pairing and that with random pairing. However, with the increase in
K, the ASSR of the proposed scheme gradually exceeded that of the rival method owing to
the optimality we reached.

8 16 24 32 40 48 56 64
0

50

100

150

200
proposed
random
OMA

Figure 2. Comparison of ASSRs among NOMA employing optimal pairing, randomly paired NOMA,
and OMA using different pair quantities, with parameters set at P/σ2 = 20 dB and r = 500 m.

In Figure 3, a comparison of the ASSRs among an NOMA employing the proposed
optimal UP and PA scheme (proposed), a randomly paired NOMA with an optimal PA, and
an OMA are shown in different colors and markers, with varying signal–noise ratios (SNRs)
for different numbers of user pairs. It can be observed that with the rise in the SNR, the
ASSR proportionally improved. At low SNR values, the difference in the ASSR performance
between the NOMA scheme with optimal pairing and that with random pairing was not
significant. However, as the SNR escalated, the superiority of our method’s ASSR became
more evident. Furthermore, as the quantity of user pairs (K) grew, the superiority of the
ASSRs over the other two schemes became increasingly apparent.
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Figure 3. Comparison of ASSRs among NOMA employing optimal pairing, randomly paired NOMA,
and OMA with different signal–noise ratio, with parameters set at r = 500 m.

Figure 4 illustrates the average ASSRs (average ASSRs per user, i.e., ASSR/N) em-
ploying our proposed Optimal UP and PA scheme. The data points are represented using
various colors and markers, indicating different signal–noise ratios (SNRs) for varying
numbers of user pairs. From Figure 4, we can see the following three aspects. Initially,
as the SNR rose, the average ASSR followed a corresponding increase. Secondly, our
method outperformed competitors in terms of the average ASSR. Lastly, enhancing the
number of pairs (K) resulted in even greater performance improvements in the average
ASSR. Compared to Figure 3, as the quantity of user pairs (K) grew, the improvement in
the performance of the average ASSR became more significant than that of the ASSR.

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

Figure 4. Comparison of average ASSRs among NOMA employing optimal pairing, randomly paired
NOMA, and OMA with different signal–noise ratios, with parameters set at r = 500 m.

6. Conclusions

In the manuscript, we explore the optimal UP and PA for secure downlink NOMA
against external eavesdropping. To maximize the achievable sum secrecy rate, we formulate
a joint optimization problem of UP and PA, which is an MINLP problem which is hard to
solve. We break down the original problem into two subordinate problems, i.e., an optimal
PA problem for two paired users and an optimal UP problem. Then, the optimal solution
for a universal NOMA with 2K users is obtained. We validate the theoretical discoveries
with simulation discoveries that demonstrate that the proposed scheme outperforms those
obtained by the alternative methods in both achievable sum secrecy rate and average
secrecy rate performances.
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PLS Physical Layer Security
MIMO Multiple Input–Multiple Output
CRN Cognitive Radio Network
AN Artificial Noise
SSR Secrecy Sum Rate
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