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Abstract: Parameter estimation is an important component of statistical inference, and how to improve
the accuracy of parameter estimation is a key issue in research. This paper proposes a linear Bayesian
estimation for estimating parameters in a misrecorded Poisson distribution. The linear Bayesian
estimation method not only adopts prior information but also avoids the cumbersome calculation
of posterior expectations. On the premise of ensuring the accuracy and stability of computational
results, we derived the explicit solution of the linear Bayesian estimation. Its superiority was verified
through numerical simulations and illustrative examples.
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1. Introduction

Count data, which are typically characterized as data points that cannot be collected
consecutively or are represented as 0 or natural numbers like 1, 2, 3, etc., are commonly
encountered in various aspects of daily life. These data points are often effectively approx-
imated by binomial or Poisson distributions. However, certain challenges may emerge
during the actual counting process. When determining the number of defects per unit
or item, there is a possibility that the recorder may inaccurately classify some units that
actually contain one defect as perfect or defect-free while accurately recording other values.
More specifically, some observations with a value of 1 are misclassified and reported as 0,
while others, such as 2, 3, and 4, are correctly recorded. For this type of data containing
erroneous records, direct modeling with a Poisson distribution is not appropriate. Instead,
it can be approximated using a misrecorded Poisson distribution.

The misrecorded Poisson distribution, first proposed by Cohen [1], is often denoted
as the Cohen–Poisson (CP) or MSR-Poisson distribution. Since then, many authors have
studied this distribution and its various forms. For surveys, Dorris and Foote [2] provided
a comprehensive survey and analysis of the impact of inspection errors on statistical quality
control procedures. They discuss their effects on various aspects of statistical quality control
procedures, including control charts, sample size, and inspection efficiency. Subsequently,
the article introduces methods for estimating error probabilities and adjusting parameters
in Poisson distributions, along with strategies for designing compensatory plans to mitigate
the impact of inspection errors. All these efforts are grounded in Cohen’s seminal work,
which developed multiple estimators for error probability assessment and parameter recal-
ibration in Poisson distributions, thereby establishing a significant theoretical framework.
Gupta et al. [3] studied when the observed frequency of zeros is significantly higher or
lower than predicted by the model; the adjusted random variable can be described as a
mixture of two Poisson distributions. This distribution can be regarded as a mixture of two
distributions, one of which is degenerate at zero. Zhang et al. [4] study the zero-and-one
inflated Poisson (ZOIP) distribution, develop likelihood-based inference methods, and
provide simulations and real data examples to illustrate the proposed methods. The key
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properties of the ZOIP distribution are established, including five equivalent stochastic
representations and other important distributional properties. Maximum likelihood esti-
mates of parameters are obtained through Fisher scoring and the expectation–maximization
algorithm, and bootstrap confidence intervals and hypothesis testing methods are pro-
vided for parameters in large samples. Liu [5] et al. introduce a new multivariate ZAP
distribution, building on the traditional multivariate Poisson distribution. A key feature of
this distribution is its ability to model count vectors that are zero-truncated, zero-deflated,
or zero-inflated with a more flexible dependency structure. This means that correlation
coefficients between components can be both positive and negative. They introduce an
expectation–maximization (EM) algorithm for calculating the maximum likelihood esti-
mates (MLEs) and posterior modes of parameters. Bagui and Mehra [6] gave a historical
background for the Poisson distribution and also described some of its applications in the
early days and more. Additionally, they introduced a new ratio method that demonstrates
convergence to the normal distribution, which may attract attention. In the context of
Poisson processes, considering the swift progress in current industrial and technological
spheres, statistical models must advance to keep up with the times, adapting to handle
data with higher frequencies and greater complexity.

The Hawkes process model, noted for its self-excitation and time-dependence, serves
as an extension to the Poisson process. This extension offers more sophisticated and
adaptable tools for analyzing and forecasting error patterns in ever-changing environments.
For relevant research results, refer to Zhang et al. [7] and Wang and Zhang [8]. Lamprinakou
et al. [9] proposed a new epidemiological model using the Hawkes process to study the
spread of COVID-19. It focuses on estimating unobserved infection cases, offering insights
into the disease’s transmission dynamics.

Furthermore, numerous monographs and doctoral dissertations have investigated
the misrecorded Poisson distribution and its various forms. Xu [10] studied the statistical
properties of a Poisson generalized inverse Gaussian distribution, a negative binomial
distribution, a Poisson inverse Gaussian distribution, and a Poisson inverse gamma distri-
bution. The model they studied is similar to the model studied in this article, which is very
helpful for the study of properties and parameter derivation methods in this article. John-
son [11] has effectively synthesized the findings from various studies on the misrecorded
Poisson distribution and its parameter estimation, encompassing research conducted by
Cohen as well as contributions from other researchers in the field. Djuraš [12] discussed the
one-displaced misrecorded Poisson and size-biased misrecorded Poisson distributions, de-
riving their parameter estimators. Tuwei [13] derived the probability density function from
the probability generating function and provided expressions for the mean, the variance,
and the relationship between parameters based on this probability density function.

While the majority of previous studies have focused on classical estimation methods,
Angers and Biswas [14] employ Bayesian methods for parameter estimation and prediction.
Specifically, they contemplate a zero-inflated generalized Poisson model, which encom-
passes three parameters: the zero-inflation parameter, the dispersion parameter of the
generalized Poisson distribution, and the mean parameter. For the purpose of Bayesian
estimation, the article utilizes appropriate prior distributions and employs a Monte Carlo
integration technique via importance sampling to obtain the posterior distributions. Sub-
sequently, the expected values of the posterior distributions are computed, serving as the
Bayesian estimates of the parameters. Rodrigues [15] studied the zero-inflated distributions
from a Bayesian point of view using a data augmentation algorithm. Wang [16] consid-
ered a 0–1 expansion Poisson regression model with covariates and proposed a Bayesian
estimation of the model parameters.

Compared to traditional Bayesian estimation methods, it is worth noting that the linear
Bayesian method, initially proposed by Hartigan [17], has gained popularity as a simple
Bayesian approach for parameter estimation. Rao [18] studied the linear Bayesian method
from the perspective of linear optimization and argued that this method better considers
the prior uncertainty and uses this “incomplete” information to construct linear Bayesian
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parameter estimates. LaMotte [19] introduced a linear Bayesian estimator that has the
smallest total mean square error among all linear estimators. Hesselager [20] demonstrated
that if the average risk of an empirical linear Bayesian estimate converges to the risk of
the corresponding linear Bayesian estimate, then it is asymptotically optimal in the usual
sense. Goldstein [21] adeptly modified the linear Bayesian estimator, specifically designed
for estimating the mean of a distribution whose form is unknown, by incorporating the use
of an estimate derived from sample variance. Hoffmann [22] applied the linear Bayesian
method to estimate an unknown parameter vector in the linear regression model with
ellipsoidal parameter constraints. The conditions under which certain linear empirical
Bayesian estimators are superior to the standard estimator for an arbitrary k ≥ 1 are given
by Samaniego and Vestrup [23]. Wei and Zhang [24] verified under the Predictive Pitman
Closeness criterion and Posterior Pitman Closeness that the linear Bayesian method out-
performs the generalized least squares method for linear models. More recently, Lin [25]
employed Monte Carlo simulations and empirical computations to compare the outcomes
of constrained least-squares estimation and constrained linear Bayesian estimation, as well
as their distances from the Bayesian estimates. This approach serves to validate the superi-
ority of constrained linear Bayesian estimation over constrained least-squares estimation.
Tao [26] provided an empirical linear Bayesian approach, conducting an empirical analysis
using a Bayesian model for multiple insurance contracts with Pareto distributions. This
method does not rely on any prior distribution information. Liu [27] studied the parameter
estimation problem of singular linear models with equality constraints and concluded that
the higher the degree of singularity of the model, the more obvious the superiority of the
best homogeneous linear Bayesian unbiased estimation over the least-squares estimation.
Chen [28] introduces a linear Bayesian method for estimating parameters in extreme value
distributions from Type II censored samples. This approach, which combines Bayesian and
optimization techniques, offers a straightforward and practical solution, overcoming the
complexity often associated with classical Bayesian estimation. The method’s advantages,
particularly for small or heavily censored samples, are validated through numerical ex-
periments, demonstrating its effectiveness when compared to maximum likelihood and
unbiased estimations. The models, parameter estimation methods, and criteria for assess-
ing their effectiveness used in the aforementioned work have significantly contributed to
the research presented in this paper. These models, encompassing a range of statistical,
probabilistic, and computational approaches, form the fundamental basis of our analysis.
They provide a structured and systematic framework that aids in the coherent understand-
ing and interpretation of the complex data sets we are dealing with. The selection of a
particular model is heavily dependent on the specific nature of the data under study and
the overarching research question, with each model introducing its own set of assumptions
and perspectives to the analysis.

Parameter estimation methods are a key component in refining and fine-tuning these
models. These methods are instrumental in extracting significant insights from the data, as
they focus on determining the values of the model parameters that most accurately repre-
sent the observed data. Depending on the model’s nature and the data’s characteristics, var-
ious techniques like maximum likelihood estimation, Bayesian inference, or least-squares
fitting are utilized. The precision and reliability of these methods are paramount, as they
have a direct bearing on the validity and credibility of our research findings. Therefore, the
judicious selection and application of these methods are critical.

Given the notable advantages of linear Bayesian estimators, this paper specifically
focuses on parameter estimation for the misrecorded Poisson distribution using linear func-
tions derived from sample data. We employ the criterion of minimizing the mean square
error to formulate linear Bayesian estimation expressions for the distribution’s parameters.
To our knowledge, no existing studies have explored linear Bayesian estimation specifically
for parameters within the misrecorded Poisson distribution. Traditional methods often
fall short in addressing the unique challenges posed by misrecorded data, such as biased
estimates or increased error variance. Therefore, our method fills a significant gap in
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the statistical methodology by providing a tailored solution for this specific distribution.
Furthermore, we use the criterion of minimizing the mean square error to formulate linear
Bayesian estimation expressions for the distribution’s parameters. This criterion ensures
that the estimations are not only accurate but also consistent by minimizing the average of
the squares of the errors—the difference between the estimator and what is estimated. This
approach optimizes the balance between bias and variance in the estimations, leading to
more reliable results.

Our work stands out not only for its innovative approach to handling the misrecorded
Poisson distribution but also for its potential wide-ranging applications in various fields.
In areas where misrecorded count data are common, such as epidemiology, environmental
studies, and quality control in manufacturing, the implications of this research are sub-
stantial. By introducing new insights and techniques for managing such distributions,
our study promises to enhance the accuracy and reliability of data analysis in these fields,
leading to more informed and dependable conclusions. This could mark a significant
advancement in statistical methods, opening doors to more robust and sophisticated data
analysis techniques in these critical areas of study.

The rest of this paper is structured as follows: Section 2 offers a detailed examination of
the misrecorded Poisson distribution and delves into its maximum likelihood estimation. In
Section 3, we introduce and elaborate on a linear Bayesian estimation method, highlighting
its superior estimation results, primarily based on the principle of the mean square error
matrix. Section 4 presents numerical simulations and example analyses. Lastly, in Section 5,
we summarize the entire study, provide our conclusions, point out the shortcomings of the
article, and suggest future research directions

2. Misrecorded Poisson Distribution

The probability mass function of the misrecorded Poisson distribution is

P(X = x) =


e−λ(1 + λϕ) x = 0
e−λλ(1 − ϕ) x = 1
e−λ λx

x! x = 2, 3, . . .
, (1)

where λ > 0, 0 < ϕ < 1. ϕ is the probability of misclassification or the proportion of ones
that are reported as zeros. The misrecorded Poisson distribution is reduced to a Poisson
distribution when ϕ = 0. Also, all the observations falling in class one will be reported
as zero when ϕ = 1; thus, it is a zero–one modified distribution. We can say that the
misrecorded Poisson distribution is zero-inflated (there is an excess of zeros) and one-
deflated (there are fewer ones than expected). If ϕ0 = λϕe−λ > 0, then the Poisson’s zero
probability is increased (zero inflation), while the Poisson’s one probability is decreased for
ϕ1 = −λϕe−λ < 0.

The corresponding probability generating function, the mean, the variance, and the
second, third, and fourth moments are given as, respectively,

GX(s) = e−λ(1 + λϕ) + λe−λ(1 − ϕ)s +
∞

∑
x=2

(λs)xe−λ

x!

= e−λ(1 + λϕ) + λse−λ(1 − ϕ) +
{

e−λ(s−1) − λse−λ − e−λ
}

= e−λ + λϕe−λ + λse−λ − λϕse−λ + e−λ(s−1) − λse−λ − e−λ

= λϕe−λ − λϕse−λ + e−λ(s−1),

E(X) = µ = λ(1 − ϕe−λ),

Var(X) = C2(0) = σ2
X = λ2 + (1 + ϕe−λ)(1 − λ(ϕe−λ)),

E(X2) = µ(0) = λ2 + λ(1 − ϕe−λ),



Entropy 2024, 26, 62 5 of 13

E(X3) = µ(0,0) = λ3 + 3λ2 + (1 − ϕe−λ),

E(X4) = µ(0,0,0) = λ4 + 6λ3 + 7λ2 + (1 − ϕe−λ).

assuming that the random variables x1, x2, . . . . . . , xN are samples consisting of N obser-
vations from the misrecorded Poisson distribution, with n0 denoting the number of zero
observations and n1 denoting the number of one observations. The likelihood function is

L(x1, x2, · · ·xN ; λ, ϕ) = [e−λ(1 + ϕλ)]
n0 [(1 − ϕ)λe−λ]

n1∏ ∗e−λλxi /xi

= e−Nλ(1 + ϕλ)n0(1 − ϕ)n1 λ

N
∑

i=1
xi[

∏ ∗xi!
]−1, (2)

where ∏ ∗ is the product of x1, x2, . . . . . . , xN that are neither zero nor one. Taking the
logarithms of Equation (2) and letting its partial derivatives with respect to λ and ϕ,
respectively, equal zero, we obtain the following equation:

∂ log L/∂λ = −N + n0ϕ/(1 + ϕλ)+
N

∑
i=1

xi/λ = 0.

∂ log L/∂ϕ = n0λ(1 + ϕλ)− n1/(1 − ϕ) = 0,

and then we have:
λ2 − (x − 1 + n0/N)λ − (x − n1/N) = 0, (3)

ϕ = [n0 − n1/λ]/(n0 + n1), (4)

where x =
N
∑

i=1
xi/N is the mean of the sample. Solving the above equation yields the

maximum likelihood estimates λ̂MLE and ϕ̂MLE for λ and ϕ:

λ̂MLE =

[
(x − 1 + n0/N) +

√
(x − 1 + n0/N)2 + 4(x − n1/N)

]
/2, (5)

ϕ̂MLE =
(
n0 − n1/λ̂MLE

)
/(n0 + n1). (6)

Translating the solution of this estimate into matrix form to express it, we have

θ̂MLE = (λ̂MLE, ϕ̂MLE)
′ =

(
1/2 0

0 1
n0+n1

)(
t1
t2

)
≜ AT, (7)

where

A =

(
1/2 0

0 1
n0+n1

)
, T =

(
t1
t2

)
. (8)

3. Linear Bayesian Estimation
3.1. The Expressions of Linear Bayesian Estimation

Definition 1. Assume that the prior distribution function, π(θ) of θ = (λ, ϕ)′, satisfies the family
of prior distributions:

ξ =
{

π(θ) : E∥θ∥2 < ∞
}

. (9)

Let θ̂LB = BT + b be a linear estimate of the parameter θ under the statistic T, in which
B and b are 2 × 2- and 2 × 1-dimensional unknown matrices, respectively. Then, θ̂LB is
called the linear Bayesian estimate of θ if θ̂LB satisfies the following conditions:

E(T,θ)(θ̂LB − θ) = 0, (10)
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R(θ̂LB, θ) = min
B,b

E(T,θ)L(θ̂ − θ), (11)

where E(T,θ) denotes the expectation of the joint distribution of T and θ.
The function

L(θ̂LB, θ) = (θ̂LB, θ)′D(θ̂LB, θ), (12)

where D is a 2 × 2 positive definite matrix, is called the squared loss function. Minimiz-
ing the squared loss, we can obtain the expressions of B and b, which are given in the
following theorem.

Theorem 1. Suppose that the prior distribution, π(θ), of the parameter vector θ = (λ, φ)′ in the
misrecorded Poisson distribution (1) satisfies the family of prior distributions (9). Then, under the
squared loss function, the linear Bayesian estimate, θ̂LB, of θ is

θ̂LB = (A − AWM)T + AWMA−1Eθ, (13)

b = (I − B)E(θ) = (I − B)µ, (14)

where
W = E[Cov(T, θ)], (15)

M =
[
W + A−1Cov(θ)(A−1)′

]−1
. (16)

Proof.
According to the condition in Equation (10), we have

0 = E[E(θ̂LB − θ
∣∣θ)] = E[E(BT + b)− θ],

so
BE(T,θ)(T) + b = Eθ,

b = Eθ − BA−1Eθ. (17)

According to the condition in Equation (11), we have

E(T,θ)L(θ̂, θ) = E(Y,θ)
{
[BT + b − θ]′D[BT + b − θ]

}
= E(T,θ)L(θ̂, θ)

= E(T,θ)

{
[BT + Eθ − BA−1Eθ − θ]′D[BT + Eθ − BA−1Eθ − θ]

}
.

E(T,θ)

{
tr(D[BT + Eθ − BA−1Eθ − θ][BT + Eθ − BA−1Eθ − θ]′)

}
= E(T,θ)

{
tr(D[B(T − A−1Eθ)− (θ − Eθ)][B(T − A−1Eθ)− (θ − Eθ)]′)

}
= tr(DE(T,θ)

{
[B(T − A−1Eθ)− (θ − Eθ)][B(T − A−1Eθ)− (θ − Eθ)]′

}
)

= tr(DE(T,θ)

{
B(T − A−1Eθ)(T − A−1Eθ)′B′ − B(T − A−1Eθ)(θ − Eθ)′

−(θ − Eθ)(T − A−1Eθ)′B′ + (θ − Eθ)(θ − Eθ)′
}
)

= tr(BDE(T,θ)[(T − A−1Eθ)(T − A−1Eθ)′]B′)− tr(DBA−1Cov(θ))

−tr(DCov(θ)(A−1)′B′) + tr(DCov(θ)). (18)

In the above equation,

E(T,θ)[(T − A−1Eθ)(T − A−1Eθ)′]
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= E(T,θ)[TT′ − T(A−1Eθ)′ − A−1EθT′ + A−1Eθ(A−1Eθ)′]

= E(T,θ)TT′ + A−1Eθ(A−1Eθ)′ − E(T,θ)T(A−1Eθ)′ − (A−1Eθ)E(T,θ)T
′]

= E(T,θ)TT′ + A−1Eθ(A−1Eθ)′ − A−1Eθ(A−1Eθ)′ − A−1Eθ(A−1Eθ)′

= E(T,θ)TT′ − A−1Eθ(A−1Eθ)′

= E[E(TT′
∣∣∣θ)]− A−1Eθ(A−1Eθ)′

= E
{

E[(T − A−1θ + A−1θ)(T − A−1θ + A−1θ)′
∣∣∣θ]}− A−1Eθ(A−1Eθ)′

= E
{

E[A−1θ(A−1θ)′ + (T − A−1θ)(T − A−1θ)′ + (T − A−1θ)(A−1θ)′

+(A−1θ)(T − A−1θ)′
∣∣∣θ]}− A−1Eθ(A−1Eθ)′

= E
{

A−1θ(A−1θ)′ + E[(T − A−1θ)(T − A−1θ)′] + E
[
(T − A−1θ)(A−1θ)′

]
= E[A−1θ(A−1θ)′ + E((T − A−1θ)(T − A−1θ)′)]− A−1Eθ(A−1Eθ)′

+E(A−1θ(A−1θ)′)
}
− A−1Eθ(A−1Eθ)′

= E[A−1θ(A−1θ)′] + E(Cov(T
∣∣∣θ))− A−1Eθ(A−1Eθ)′

= E(Cov(T
∣∣∣θ)) + A−1[E(θθ′)− E(θ)E(θ)′](A−1)

= W + A−1Cov(θ)(A−1)′.

Therefore,

E(T,θ)L(θ̂, θ) = tr(DB(W + A−1Cov(θ)(A−1)′)B′)− tr(DBA−1Cov(θ))

−tr(DCov(θ)(A−1)′B′) + tr(DCov(θ)).

By taking a partial derivative of the matrix B in the above equation, we have

∂R(θ̂, θ)

∂B
= 2DB[W + A−1Cov(θ)(A−1)′]− 2DCov(θ)(A−1) = 0,

B = A − AW[W + A−1Cov(θ)(A−1)′]
−1

= A − AWM, (19)

where
W = E[Cov(T, θ)]

= E[(T − A−1θ)(T − A−1θ)′
∣∣∣θ]

= E

{
E

[(
t1
t2

)
−
(

2 0
0 1

n0+n1

)(
λ
ϕ

)][(
t1
t2

)
−
(

2 0
0 1

n0+n1

)(
λ
ϕ

)]′
|θ
}

=

[
E(t1 − 2λ)2 0

0 E(t2 − (n0 + n1)λ)
2

]

=

[
Var(t1) 0

0 Var(t2)

]
. (20)

Theorem 1 proved. □
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An expression for linear Bayesian estimation, as detailed in the previously stated
Theorem 1, has been constructed. This expression is derived while adhering to the con-
straints of unbiasedness and focused on the minimization of risk.

3.2. The Superiority of Linear Bayesian Estimation

In this subsection, we focus on examining the superiority of linear Bayesian estimation.
To evaluate the effectiveness of this estimator, we utilize the mean square error (MSE), a
well-regarded measure for assessing how closely an estimator approximates the actual
parameter it seeks to estimate. Additionally, for a more careful comparison, we also
consider the mean square error matrix (MSEM). To assess the superiority of θ̂LB according
to the MSEM criterion, let us start by defining the MSEM.

Definition 2. Let θ̂ be an estimator of the parameter vector θ. The MSE of θ̂ is defined as

MSE(θ) = E[(θ̂ − θ)′(θ̂ − θ)], (21)

and the MSEM of θ̂ is defined as

MSEM(θ) = E[(θ̂ − θ)(θ̂ − θ)′]. (22)

Let the parameter vector θ be estimated in two different ways as θ̂1 and θ̂2. If

MSEM(θ̂2)− MSEM(θ̂1) ≥ 0,

or
(MSEM(θ̂2)− MSEM(θ̂1) ≥ 0), (23)

then θ̂1 is said to be better than θ̂2 under the MSEM or MSE criterion, and it is clear that the
MSEM criterion is stronger than the MSE criterion.

From the previous section, the maximum likelihood estimation, θ̂MLE, can be expressed
as the product of the statistic T and the matrix A, and the linear Bayesian estimation, θ̂LB,
is also constructed from the statistic T. Therefore, in this section, the MSEM criterion is
applied to compare θ̂LB and θ̂MLE.

Theorem 2. The linear Bayesian estimation, θ̂LB, defined in (7) is preferred to the maximum
likelihood estimation, θ̂MLE, defined in (13) under the MSEM criterion, i.e.,

MSEM(θ̂LB) ≤ MSEM(θ̂MLE)

Proof.
MSEM(θ̂LB) = E(T,θ)[(θ̂LB − θ)(θ̂LB − θ)′]

= E[Cov(θ̂LB − θ
∣∣θ)] + Cov[E(θ̂LB − θ

∣∣θ)]
= E[Cov(θ̂LB

∣∣θ)] + Cov[E(θ̂LB − θ
∣∣θ)]

= E[Cov(A − AWM)T + AWMA−1Eθ
∣∣∣θ)]

+Cov[E(AT − AWM(T − A−1Eθ
)
− θ
∣∣∣θ)]

= (A − AWM)E(Cov(T
∣∣θ)(A − AWM)′)

+Cov[E(AT
∣∣∣θ)− E(AWM(T − A−1Eθ

∣∣∣θ)− θ)]

= (A − AWM)W(A − AWM)′ + Cov(−AWME(T − A−1Eθ
∣∣∣θ))

= (A − AWM)W(A − AWM)′ + Cov(AWMA−1E[AT − Eθ
∣∣∣θ])
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= A[(I − WM)W(I − WM) + WMA−1Cov(θ)(A−1)′MW]A′

= A[W − 2WMW + WM(W + A−1Cov(θ)(A−1)′)MW]A′

= A[W − WMW]A′.

However,
MSEM(θ̂MLE) = E(T,θ)[(θ̂ − θ)(θ̂ − θ)′]

= E
{

E[(θ̂ − θ)(θ̂ − θ)′
∣∣θ]}

= E
{

E[(AT − θ)(AT − θ)′
∣∣θ]}

= AWA′.

According to the defining equation of W, we can easily find that W is positive and
definite, and because of the definition of the matrix M, both A−1 and (A−1)′ are positive
definite matrices. Thus, Theorem 2 is proved. □

4. Numerical Simulation and Empirical Application
4.1. Numerical Simulation

In this section, we evaluate the performance superiority of classical and linear Bayesian
estimation methods for the misrecorded Poisson distribution using numerical simulations.
By choosing a range of different parameter values, we compute the mean square error
(MSE) for both classical and linear Bayesian estimations relative to these values. A smaller
error indicates a more accurate estimation. The procedures for these numerical simulations
are detailed in the following steps.

1. Generate a dataset that accurately follows the characteristics of the misrecorded
Poisson distribution, ensuring to use the predefined true parameter values as a foundational
reference.

2. Proceed to calculate and derive parameter estimates, utilizing and comparing
different established estimation methods for the analysis.

3. Calculate the mean and variance of the statistic T defined in Equation (20) using the
bootstrap sampling method, and then use these values in the computation.

4. Repeat the above steps J times to obtain the mean of the estimate and give the MSE.
We set the sample size to N = 200 and 800 and set the parameters in the misrecorded

Poisson distribution (1) to very between λ = 0.7 and ϕ = 0.7; λ = 0.7 and ϕ = 0.9;
λ = 0.9 and ϕ = 0.7; and λ = 0.9 and ϕ = 0.9. All the simulations are performed via
J = 100 repetitions. The results are listed in Tables 1 and 2. In these two tables, λ̂LB and
ϕ̂LB represent the linear Bayesian estimates of λ and ϕ, θ̂MLEMSE denotes the MSE for the
maximum likelihood estimation, θ̂LBMSE denotes the MSE of the linear Bayesian estimation,
and ∥θ̂MLEMSE − θ̂LBMSE∥2 is the Euclidean distance between θ̂MLEMSE and θ̂LBMSE.

Table 1. Estimation results.

λ ϕ λ̂MLE ϕ̂MLE λ̂LB ϕ̂LB

N = 200
0.7

0.7 0.704053 0.694272 0.703608 0.694273
0.9 0.712559 0.893031 0.711961 0.893031

0.9
0.7 0.89567 0.692927 0.895587 0.692927
0.9 0.897774 0.89222 0.897602 0.89222

N = 800
0.7

0.7 0.702591 0.699152 0.702557 0.699152
0.9 0.69286 0.89726 0.692883 0.89726

0.3 0.8 0.294824 0.795203 0.294818 0.795203
0.8 0.3 0.794149 0.294536 0.794162 0.294536



Entropy 2024, 26, 62 10 of 13

Table 2. The MSE and distance from the true value.

λ ϕ θ̂MLEMSE θ̂LBMSE ∥θ̂MLEMSE−θ̂LBMSE∥2

N = 200 0.7 0.7 0.007665 0.007364 0.001971974
0.9 0.00576 0.005474 0.002007057

0.9 0.7 0.005215 0.005035 0.001461555
0.9 0.006006 0.005752 0.001724022

N = 800 0.7 0.7 0.00149 0.001474 0.000222702
0.9 0.001428 0.001411 0.000225155

0.3 0.8 0.001506 0.001492 0.000243135
0.8 0.3 0.003181 0.003162 0.000233711

From Table 1, we can see that all the estimates are close to the true values regardless
of the values of λ and ϕ. Importantly, our analysis reveals a key trend: as the sample
size increases, all the estimates progressively converge towards their true values. This
pattern is evident for both the maximum likelihood estimation and the linear Bayesian
estimation, underscoring their consistency as estimators. The reliability of these approaches
is evidenced in Table 2, which presents a noteworthy distinction in the mean square error
(MSE) values between them. Specifically, the MSE for the linear Bayesian estimation is
lower than that for maximum likelihood estimation. Remarkably, the Euclidean distance
between θ̂MLEMSE and θ̂LBMSE diminishes as the sample size increases, suggesting that the
advantage of linear Bayesian estimation becomes more pronounced in smaller sample sizes.

4.2. Empirical Application

In this section, we illustrate our proposed method using two sets of real data.

4.2.1. Empirical Application 1

The first dataset for our research originates from Ladislaus Bortkiewicz’s acclaimed
book ‘Das Gesetz der Kleinen Zahlen’, published in 1898 [29]. This particular data set gained
historical significance when Cohen introduced the misrecorded Poisson distribution model
for the first time. It comprises a collection of statistical records detailing the annual fatalities
among Prussian soldiers due to horse-related incidents from 1875 to 1884. The data
encompass detailed records from 14 distinct regiments and one guard unit, providing a
diverse and comprehensive dataset for the analysis. The nature of these incidents inherently
suggests the suitability of a Poisson distribution for modeling the frequency and patterns
of these rare events. In an effort to validate and corroborate the findings discussed in
this paper, we undertook some modifications to the original dataset. Specifically, we
adjusted 20 entries that were originally noted as having a value of 1, revising them to 0.
This adjustment is carefully documented in Table 3, allowing for a more accurate analysis
in line with our study objectives.

Table 3. Soldiers who were kicked to death by horses between 1875 and 1984.

Number per Deaths of Army
Corps per Year

Number of Observations
Original Data Altered Data

0 109 129
1 65 45
2 22 22
3 3 3
4 1 1
5 0 0

We now fit a misrecorded Poisson distribution to this modified dataset using both max-
imum likelihood estimation and linear Bayesian estimation. From Table 3, we have N = 200,
n0 = 129, n1 = 45, x = 102/200 = 0.51, n0/N = 0.645, and n1/N = 0.225. Substituting
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these values into the maximum likelihood estimation, as shown in Equations (5) and (6),
we have

λ̂MLE =

[
(x − 1 + n0/N) +

√
(x − 1 + n0/N)2 + 4(x − n1/N)

]
/2

=

[
(0.51 − 1 + 0.645) +

√
(0.51 − 1 + 0.645)2 + 4 × (0.51 − 0.225)

]
/2

= 0.61695.

ϕ̂MLE =
(
n0 − n1/λ̂

)
/(n0 + n1)

=
(
(129 − 45)/λ̂

)
/(129 + 45)

= 0.322187.

From the unchanged raw data [29], we have that λ = 0.610 and φ = 20/65 = 0.308,
which is the proportion of ones that were misclassified in the process of altering the original
data for this illustration. The specific proof process can be found in Appendix A. Uti-
lizing linear Bayesian estimation (13), we obtain λ̂LB = 0.6167831 and φ̂LB = 0.3221758.
Subsequently, we can compute the MSE by comparing the true values of the two pa-
rameters with the combined estimations from above: MSE(θ̂MLE) = 0.0001247861 and
MSE(θ̂LB) = 0.0001235136, so MSE(θ̂LB) ≤ MSE(θ̂MLE). This indicates that the linear
Bayesian estimation has better performance than the maximum likelihood estimation.

4.2.2. Empirical Application 2

The second dataset for our research, originating from Yang [30], is presented in Table 4.
The frequent occurrence of accidents at intersections in the area increases the probability
of traffic accidents due to the vehicle type, traffic volume, and linear congestion. People
can analyze data to discover the changes and distribution patterns of traffic volume over
time and space. These findings help develop effective traffic control measures and reduce
accident rates under different traffic conditions.

Table 4. Traffic volume at intersection C.

The Number of Passes for
Small-Sized Cars

Number of Observations
Original Data Altered Data

0 15 18
1 5 2
2 9 9
3 6 6
4 7 7
5 1 1
6 2 2

The investigation was conducted at the T-shaped intersection of West Ring Road
outside the University City and Xingguang Road under the University City in Guangzhou
Province. The survey focuses on the traffic volume of motor vehicles at this intersection,
which was collected through manual monitoring.

According to Table 4, we can calculate from the original data that λ = 1.911 and
ϕ = 3/5 = 0.6. Substituting these values into the maximum likelihood estimation, as
shown in Equations (5) and (6), we have λ̂MLE = 2.101127 and ϕ̂MLE = 0.8524065. Uti-
lizing linear Bayesian estimation (13), we obtain λ̂LB = 1.817069 and ϕ̂LB = 0.852164.
Therefore, similarly to the previous example, we can obtain MSE(θ̂MLE) = 0.7400561,
MSE(θ̂LB) =0.4422734, and MSE(θ̂LB) ≤ MSE(θ̂MLE). This still indicates that the linear
Bayesian estimation is superior to the maximum likelihood estimation.
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5. Conclusions

This research study primarily focuses on an in-depth examination of the unique char-
acteristics and distinct properties of linear Bayesian estimation, specifically applied to the
misrecorded Poisson distribution. A key aspect of this study is providing robust empirical
evidence that demonstrates the enhanced performance of linear Bayesian estimation when
compared to maximum likelihood estimation, particularly within the framework of this
distribution. Moreover, to reinforce these theoretical insights, the study employs a com-
prehensive approach, encompassing both rigorous validation through a series of detailed
numerical simulations and the use of illustrative examples to further elucidate these find-
ings. This multifaceted approach not only solidifies the theoretical underpinnings but also
showcases the practical applicability of linear Bayesian estimation in real-world scenarios.

The method employed in this paper may not capture all dynamic characteristics
when dealing with complex real-world situations. Due to the development of big data
and advanced statistical methods and the need for more complex models in recent years,
we consider extending the traditional framework of the Poisson distribution with the
Hawkes process, thereby providing more effective tools and methodologies for solving
practical problems.
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Appendix A

1. Proof process in Empirical Application 1
According to Definition 1, θ = (λ, ϕ)′, we define MES(θ̂MLE) = 1

2 ((λ̂MLE − λ)
2
+

(ϕ̂MLE − ϕ)
2
) and MES(θ̂LB) =

1
2 ((λ̂LB − λ)

2
+ (ϕ̂LB − ϕ)

2
) to represent the mean square

errors of the population for both parameters in the two estimation methods. The true values
in this example are λ = 0.610 and ϕ = 0.308, where λ = ∑ (xi× fi)

N . fi represents the observed
frequency of each event occurrence and ϕ is the probability of misclassification or the pro-
portion of ones that are reported as zeros. The estimated values calculated based on the max-
imum likelihood estimation are λ̂MLE =0.61695 and ϕ̂MLE = 0.322187, and those obtained
from the linear Bayesian estimation are λ̂LB = 0.6167831 and ϕ̂LB = 0.3221758. Hence,
we have two parameters with the combined estimations MSE(θ̂MLE) = 0.0001247861
and MSE(θ̂LB) = 0.0001235136. Therefore, it follows that MSE(θ̂LB) ≤ MSE(θ̂MLE).
Proof completed.
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