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Abstract: The microwave absorption performance of high-entropy alloys (HEAs) can be improved by
reducing the reflection coefficient of electromagnetic waves and broadening the absorption frequency
band. The present work prepared flaky irregular-shaped Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO
alloy powders by mechanical alloying (MA) at different rotational speeds. It was found that the
addition of trace amounts of reduced graphene oxide (rGO) had a favorable effect on the impedance
matching, reflection loss (RL), and effective absorbing bandwidth (EAB) of the Al1.5Co4Fe2Cr@rGO
HEA composite powders. The EAB of the alloy powders prepared at 300 rpm increased from 2.58 GHz
to 4.62 GHz with the additive, and the RL increased by 2.56 dB. The results showed that the presence
of rGO modified the complex dielectric constant of HEA powders, thereby enhancing their dielectric
loss capability. Additionally, the presence of lamellar rGO intensified the interfacial reflections within
the absorber, facilitating the dissipation of electromagnetic waves. The effect of the ball milling speed
on the defect concentration of the alloy powders also affected its wave absorption performance. The
samples prepared at 350 rpm had the best wave absorption performance, with an RL of −16.23 and
−17.28 dB for a thickness of 1.6 mm and EAB of 5.77 GHz and 5.43 GHz, respectively.

Keywords: high-entropy alloys; reduced graphene oxide; microwave absorber; reflection loss;
effective absorbing bandwidth

1. Introduction

The rapid development of information technology has increased the complexity and
variability of the modern warfare environment [1], and radar detection has become the main
means of capturing information and detecting objects in modern information electronic
warfare [2,3]. In regard to achieving long-distance camouflage and concealment of weapons
and equipment, electromagnetic wave absorbing materials that offer protection against
radar detection play an increasingly important role [4]. These materials can substantially
absorb and weaken electromagnetic energy and convert it into thermal energy as an
effective solution against electromagnetic radiation [5]. Ideally, new absorbing materials for
practical applications must have the following characteristics: “thin thickness, light mass,
broadband, and strong absorption” to enable them to function in complex environments [6].

Dielectric and magnetic losses are known components of the microwave loss mech-
anism, and effective complementarity between these components is required to produce
excellent microwave absorbing materials [7]. In general, it is difficult for HEA absorbing
materials to have excellent dielectric loss capability and magnetic loss capability at the
same time. Therefore, it is an effective way to improve the microwave absorbing properties
of materials by compounding two materials together to improve the dielectric or mag-
netic loss capacity. By now, the research of carbon-based magnetic composites has made
great progress, and the absorbers prepared by combining ferromagnetic materials and
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one-dimensional carbon materials (carbon fiber, carbon nanotubes, and biomass-derived
carbon) have shown better absorption performance than single absorbers [8]. rGO is a new
carbon material that also has the potential for electromagnetic absorption. Wang et al. [9]
found that, in addition to enhancing impedance matching characteristics, residual defects
and groups also promoted the transition of adjacent states to the Fermi level and polariza-
tion relaxation, thus promoting the penetration and absorption of electromagnetic waves.
In addition, the two-dimensional structure of rGO has excellent physical properties, such
as being lightweight and having a large specific surface area, and having good thermal
conductivity, all of which are conducive to its application as a wave absorbing material.
However, graphene has problems such as poor dispersion [10], interface impedance mis-
match [11], and a single loss mechanism in the matrix. Therefore, it is necessary to combine
other materials capable of electromagnetic absorption into rGO for coupling to improve
the wave absorbing performance. Chen [12] prepared a composite material consisting of
rGO and carbonyl iron powders using the MA method, which optimized the dielectric and
magnetic losses of the carbonyl iron powders and significantly improved the wave absorp-
tion ability. RL reached −32.3 dB at a thickness of 2.0 mm for 50 wt% of rGO/FCI/epoxy
absorber. Liu [13] investigated the wave absorption performance of single- and double-
layer absorbers comprising Co0.2Ni0.4Zn0.4Fe2O4 and rGO composites and showed that
the maximum RL of the 2.5 mm double-layer absorber at 16.9 GHz reached −49.5 dB with
an effective bandwidth as high as 6.0 GHz below −10 dB. The rGO layer was shown to
have strong dielectric loss ability. Ding [14] synthesized CuFe2O4/rGO composites, and
the residual defects of rGO and defect polarization caused by oxygen-containing groups
improved the microwave absorption. EAB reached 5.2 GHz at a thickness of 1.85 mm, and
RL at 9.2 GHz at a thickness of 2.56 mm was −58.7 dB. These previous studies showed that
rGO doping can effectively improve the dielectric loss of ferromagnetic metal absorbing
materials and obtain better microwave absorption performance.

Recently, HEAs have gained wide attention in the field of electromagnetic wave ab-
sorption due to their excellent corrosion, high temperature, and oxidation resistance. There
are a variety of processing routes for the synthesis of HEAs, and MA is widely used because
of its high efficiency and cost-effectiveness. It can effectively achieve uniform mixing of
multiple metal elements, thus obtaining a more uniform HEA organizational structure
and excellent performance [15]. Duan [16,17] prepared FeCoNiSixAl and FeCoNiCuxAl
HEA powders by MA and studied the electromagnetic properties of the powders. The
results showed that the HEA had good soft magnetic properties and electrical conductivity,
which are highly potential wave absorbing materials. Yang [18] effectively regulated the
electromagnetic properties and improved the electromagnetic wave absorbing properties
by doping C into FeCoNiCu HEA powders. Wang et al. [19] used a cluster-based com-
positional design approach to obtain Al1.5Co4Fe2Cr HEAs, and the results showed that
these HEAs had excellent soft magnetic properties, with a high saturation magnetization
(Ms = 135.3 emu/g) and a low coercivity force (HC = 127.3 Oe). However, its electromag-
netic absorbing ability was not explored. Moreover, Tan [20] prepared FeCoNiAlx alloys
with close ferromagnetic element contents, and the comparison revealed that the BCC phase
had a higher MS compared with the FCC phase. Therefore, in this paper, Al1.5Co4Fe2Cr
HEA powders with BCC phase were prepared by MA, and their electromagnetic wave
absorbing abilities were investigated.

Al1.5Co4Fe2Cr HEA powders with rGO were prepared by MA at ball milling speeds of
300, 350, and 400 rpm, respectively. The effects of the ball milling speed and doping rGO on
the electromagnetic absorption ability of Al1.5Co4Fe2Cr were systematically studied. The
experimental results show that the doping of rGO was helpful in improving the impedance-
matching characteristics and dielectric loss of the alloy powder. In addition, the higher
milling speed made the powder more strongly impacted by the stainless-steel grinding ball,
which produced more defects and impurities, and changed the complex permittivity and
permeability of the material, which ultimately enabled the material to effectively absorb
and attenuate electromagnetic waves.
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2. Materials and Methods

The fabrication process of Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO HEA powders
is shown in Figure 1. High-purity (>99 wt.%, weight percent) Fe, Co, Al, Cr, and rGO
in powder form (particle size < 50 µm) were used as raw materials, and three kinds
of steel balls of 10 mm, 8 mm, and 5 mm were used as the milling medium, with the
mass ratio of 5:1:4. The mixed raw materials (30 g) were ground for 30 min, placed in
a vacuum ball-milling tank with 20 mL of absolute ethanol and 600 g of stainless steel
grinding balls, sealed and vacuumed. High-energy ball milling was performed using an
omnidirectional planetary ball mill (QM-3SP4), and the ball milling speeds were set to 300,
350, and 400 rpm, respectively. Intermittent milling was applied, viz. milling for 30 min
and then suspending for 4 min. Each sample was milled for a total of 100 h. After the first
ball mill, the powders were dried at 60 ◦C for 12 h under vacuum, and then ball milled
for 30 min at a speed of 200 rpm. The stainless-steel grinding balls were separated from
the powders using a 100 mesh standard inspection sieve to obtain HEA powders. The
powder samples were denoted as A300, A350, and A400 (Al1.5Co4Fe2Cr) and B300, B350, and
B400 (Al1.5Co4Fe2Cr@rGO), where the subscripts represent the ball milling speed at which
the powder samples were prepared.
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Figure 1. Schematic diagram of the preparation process.

The microstructures of the alloy powder samples were characterized with the aid
of X-ray diffraction (XRD, MinFlex600/600-C) in the 2θ scan range from 20◦ to 90◦ at
the operating voltage and tube current of 40 kV and 30 mA. The degree of defects and
molecular structure of the prepared powder samples were analyzed using a Raman spec-
trometer (Horiba Scientific LabRAM HR Evolution). The microscopic morphology and
element distribution of the powders were performed by a scanning electron microscope
(SEM, EM30AX+) with an energy dispersive spectrometer (EDS) detector. The particle size
distribution was measured using a laser-scattering particle size distribution analyzer. A
vibrating sample magnetometer (VSM, MPMS-3) was employed to investigate the mag-
netic properties, such as MS and HC, at a maximum applied field of 20,000 Oe at room
temperature. The alloy powders were uniformly mixed with paraffin wax at a weight ratio
of 7:3 to form a concentric ring with an inner diameter of 3.0 mm, an outer diameter of
7.0 mm, and a thickness of 2.0 mm. The complex permittivity and complex permeability
of the powder samples were measured in the frequency range of 2–18 GHz using a vector
network analyzer (Agilent E5071C) via a coaxial method.

3. Results and Discussion
3.1. Microstructure of Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO HEA Powders

Figure 2a shows the XRD patterns and crystal structure of Al1.5Co4Fe2Cr and
Al1.5Co4Fe2Cr@rGO alloy powder samples prepared by a high-energy ball milling process
at three different milling speeds. The cycle of cold welding and crushing during ball
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milling promoted the mutual dissolution of different elements [21]. These five elements
were not fully alloyed, instead forming solid solutions with a simple crystal structure in the
BCC phase (identified by peaks corresponding to the (110), (200), and (211)) and a small
percentage of residual undissolved Co atoms. This was mainly due to the large atomic size
difference between Co and other metal elements and its high content, leading to incomplete
dissolution. In addition, no characteristic rGO peaks were observed for B300, B350, or B400,
possibly due to their weak carbon peaks being overwhelmed by strong signals of the alloys.
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Figure 2. (a) XRD patterns of Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO HEA powders prepared at
different milling speeds and (b) Raman patterns of Al1.5Co4Fe2Cr@rGO HEA powders.

The microstructure of the Al1.5Co4Fe2Cr@rGO HEA powders was characterized by
Raman spectroscopy. Figure 2b shows the Raman spectra of Al1.5Co4Fe2Cr@rGO powder
samples prepared at different speeds in the range of 1000 to 2000 cm−1. The two dis-
tinct peaks near 1350 cm−1 and 1600 cm−1 were the D-band and G-band peaks of rGO,
respectively. The D-band peaks were generally the result of disordered carbon and other
defects at the edge, while the G-band peaks corresponded to the in-plane tensile vibration
of the sp2 hybridized C atoms and were the dominant characteristic peaks of graphene
materials [22]. The density of lattice defects in carbon materials is typically characterized
by the intensity ratio ID/IG. The larger the ID/IG value, the greater the number of lattice
defects [23]. The ID/IG values corresponding to the rotational speeds of 300, 350, and
400 rpm were 1.38, 1.075, and 1.105, respectively. The ID/IG ratio of the sample prepared
at 300 rpm was significantly higher than that of the samples prepared at 350 and 400 rpm.
This indicates that the sample prepared at 300 rpm had greater disorder and more lattice
defects. In contrast, the higher milling speed increased the stress experienced by the rGO,
thereby decreasing the average crystal domain size to form more sp2 hybrid domains. This
increased the intensity of the G peak and lowered the ID/IG ratio.

Figure 3 shows the SEM images of the Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO powder
samples prepared at different rotational speeds. The particles in the powder samples
had the shapes of irregular flakes, with particle sizes ranging from a few micrometers to
several hundred nanometers. According to previous studies, sheet materials with greater
anisotropy in shape will be more favorable for electromagnetic wave absorption [24,25].
The coexistence of fragmentation and cold welding during the ball milling process reduced
the size of some of the flakes, which were then pressed together to form a rough surface. The
enhanced surface roughness was more conducive to multiple reflections and the absorption
of electromagnetic waves. With the increased rotational speed, the stronger kinetic energy
broke the HEAs powder into smaller flake particles, which can be confirmed by the particle
size distribution in Figure 4a,b. The average particle size of Al1.5Co4Fe2Cr HEA powders
decreased from 23.63 to 6.43 um with the increase in milling speed from 300 rpm to 350 rpm.
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However, after subsequently increasing the rotational speed to 400 rpm, the average particle
size of the alloy powders increased to 8–11 um.
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The element distribution of samples is shown in Figure 5a–f. It was found that the
four component elements (Al, Co, Fe, and Cr) were relatively uniformly dispersed on the
samples without significant segregation. In the process of sample preparation, oxygen was
inevitably contacted, so the O element was found in the elemental distribution mapping.
Remarkably, C element was also found in the samples without added rGO, suggesting
the presence of carbon contamination in the powders. This may have been due to the
decomposition of anhydrous ethanol into carbides distributed in the powders during
ball milling (a similar situation occurred in the study of Duan et al. [26,27]). In addition,
relevant chemical composition information of samples that were characterized by EDS is
listed in Table 1. It can be seen that the increase in rotational speed increased the level of C
contamination in the samples.
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Table 1. Chemical composition of samples (wt. %).

Al Co Fe Cr C O

A300 8.28 50.98 24.96 12.40 1.36 2.02
A350 7.94 51.32 25.03 11.39 1.89 2.43
A400 7.21 49.26 26.21 12.68 2.04 2.60
B300 7.86 48.57 25.44 12.75 2.81 2.57
B350 8.43 50.20 24.09 11.96 2.97 2.35
B400 7.57 49.54 26.33 10.88 2.85 2.83

3.2. Magnetic Properties

Figure 6 shows the magnetic hysteresis loops of Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO
powder samples prepared at different rotational speeds in the presence of an applied
magnetic field (±20,000 Oe). All the samples presented a rather narrow hysteresis loop
with high MS and low Hc, which was consistent with the properties of soft magnetic
materials. Figure 7 depicts in detail the relationship between ball milling speed, rGO, and
MS intensity versus HC of HEAs. Because of the weak magnetism of rGO, MS of the three
samples decreased after adding rGO, and MS of B400 was 16.82 emu/g lower than that of
A400. MS of Al1.5Co4Fe2Cr increased slightly at a higher rotational speed. However, HC
exhibited an upward trend, attaining 82.08 Oe at 300 rpm and 155.04 Oe at 400 rpm. For
Al1.5Co4Fe2Cr@rGO, MS of the powder samples continued to decrease with increasing
speed from 300 to 400 rpm, reduced from 60.94 to 53.32 emu/g. Hc increased at first and
then decreased with the decrease in rotational speed. When the rotational speed increased
from 350 rpm to 400 rpm, Hc decreased from 136.80 to 91.20.

The MS of a material is primarily determined by the composition and microstructure
of the material, whereas the coercivity is primarily affected by the grain size and impu-
rities [28]. As shown in Figure 7a, the increase in rotational speed had little effect on MS
but caused the Al1.5Co4Fe2Cr HEA powders to collide more powerfully with the sphere
during ball milling, which provided plenty of defects and thus enhanced HC. As to MS, as
shown in Figure 7b, although the microstructure was not significantly altered, the increase
in non-magnetic components decreased the magnetization of Al1.5Co4Fe2Cr HEAs. Doping
with rGO also led to an increase in defect concentration, resulting in an increase in HC of
B300 and B350.
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3.3. Electromagnetic Parameters

The electromagnetic response of HEA powders in the frequency range of 2–18 GHz,
including complex permittivity and permeability, is shown in Figure 8. In general, the
real parts of complex permittivity (ε′) and permeability (µ′) are considered to evaluate the
capacity of electric and magnetic energy store, respectively. The imaginary parts (ε′′ and
µ′′) quantify electric and magnetic energy dissipation, respectively [29].

The results in Figure 8a show that the real part of the composite dielectric constant of
HEA powders increased and then decreased as the speed increased, and the ε′ values of the
two powders prepared at 350 rpm were higher than those of the other samples, exhibiting
a stronger storage capacity of electron energy. In addition, the conductivity characteristics
of rGO contributed to raising the conductivity and polarization processes of the powders
to which rGO had been added at the same ball milling speed, and the higher conductivity
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of the alloy powders increased the ε′ value. This can also be explained using the Debye
relaxation theory [30]:

ε′ =
σ

ω2τεo
+ε∞ (1)

ε′′ =
σ

ωεo
(2)

where σ is the conductivity, ω is the angular frequency (ω = 2πf), τ is the relaxation time of
the dipole, and ε0 and ε∞ are the dielectric constants at static and infinite frequencies, re-
spectively. A positive correlation exists between ε′ and ε′′ and σ, and a negative correlation
with ω.
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The electrical conductivity of the powders was enhanced by the addition of rGO,
which led to larger values of ε′. On the other hand, the addition of rGO powders enhanced
the interfacial polarization and defect-excited polarization of the alloy powders, which was
also the reason for the increase in the ε′ value of the powders. The increase in frequency
was followed by an increase in angular frequency, which led to a decrease in the ε′ value of
the powders with increasing frequency. As shown in Figure 8b, the ε′′ of the alloy powders
exhibited a complex trend with increasing frequency, the variation was smoother in the
2–8 GHz range, while it fluctuated more in the 10–18 GHz frequency range. Comparing
the ε′′ of the alloy powders, the results show that the addition of rGO helped to increase
the dielectric loss capacity of HEAs at the same rotational speed. In addition, the real
and imaginary parts of the complex permittivity curves of the powders showed multiple
resonance peaks in the frequency range of 2–18 GHz, and the dielectric resonance was
generally caused by electron polarization, ion polarization, or dipole polarization. Where
electron polarization and ion polarization were not applicable in the frequency range of
2–18 GHz, these dielectric resonances were caused by dipole polarization.

The curves of µ′ vs. frequency of all the alloy powder samples (Figure 8c,d) showed
a decreasing trend as the frequency increased, which conformed to the law of Snoek’s
limit [30]. Similarly, µ′′ also exhibited a decreasing trend against the frequency. This could
be explained by the initial penetration rate formula [31] and the eddy current formula [17]:

µi ≈ µ0M2
s

(K 1 +
3
2λsσ)β

1
3 δ

d

(3)

µ
′′
r = 3πµ0

(
µ′)2d2fσ (4)

where MS, k1, λs, σ, β, δ, and d represent saturation magnetization, magneto crystalline
anisotropy constant, magnetostriction coefficient constant, internal strain, impurity volume
concentration, domain wall thickness, and impurity diameter, respectively. Because µ′′

and µ′ were positively correlated, the curves of µ′′ and µ′ showed similar trends. It could
be observed that the µ′ value of B350 did not decrease due to the decrease in MS, which
was because the increase in coercivity led to a decrease in k1 and λs of the powders, thus
increasing the µ′ value. The µ′′ value of the powders increased and then decreased with
the increase in the ball milling speed, and the µ′′ value of the powders prepared at 350
rpm was the largest, which indicated that its magnetic dissipation ability was strong. In
addition, the resonance peak appeared in the µ′′ curve, which was known to originate from
natural resonance by analyzing the C0 curve of the material in Figure 9a. Eddy current
losses can be characterized as [32]:

C0 = µ′′
(
µ′)−2f−1 (5)

When C0 tended to be stable, eddy current loss dominated the magnetic loss. With the
increase infrequency, the C0 curve of all powders gradually tended to stabilize from decreas-
ing; the magnetic loss mode in the range of 2–10 GHz had natural resonance (Figure 9b)
and eddy current loss (Figure 9c), and, after 10 GHz, was mainly eddy current loss.

Based on the above complex permittivity and complex permeability, the values of the
dielectric and magnetic loss angle tangent of the alloy powder samples were obtained by
calculation, as shown in Figure 8e,f. These results show that, in the frequency range of
2–18 GHz, the value of tan δε was significantly smaller than that of tan δµ, indicating that
the alloy powders absorbed electromagnetic waves mainly via magnetic loss rather than
dielectric loss. Notably, the curves of tan δε and ε” followed a similar trend, and tan δµ had
an increasing trend between 6 and 15 GHz, indicative of the strong magnetic loss capability
at high frequencies. After doping rGO, tan δε increased and tan δµ decreased, which
indicates that the dielectric loss of HEA powders increased and the magnetic loss decreased.
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3.4. Electromagnetic Wave Absorption Performance

In addition to loss mechanism, impedance matching is the other main factor affecting
the absorption performance of a material. Impedance matching can be calculated using the
following equation [33]:

zr= zin/z0 =

√
ur

εr
·tanh(j

2πdf
c

√
urεr

)
(6)

where Zin, Z0, d, c, ur, and εr are the impedance of the incident wave, the intrinsic
impedance of free space, the thickness of the material, speed of light in free space, complex
permittivity, and complex permeability of the material, respectively. A material with supe-
rior impedance-matching characteristics has a Zin/Z0 ratio closer to 1, which implies that
electromagnetic wave incidents from the environment are not reflected from its surface, and
most of the electromagnetic waves transmitted to the inside of the absorber are converted
into absorbed internal energy [34]. Figure 10a–f show the impedance-matching diagrams
of Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO, respectively. A two-dimension color-filled plot
was used to describe the relationship between frequency, thickness, and Zr, where the
darker color represented that the Zr value was 1. Compared with A300 and A400, B300 and
B400 had a larger area of darker color in the 8–18 GHz range, meaning that their impedance
matching was optimized. However, there was a small deterioration in the impedance
matching of B350 compared with the A350 sample in Figure 10b, which was attributed to
the fact that the doping of rGO did not improve the complex permittivity and complex
permeability of A350. In addition, the impedance matching of HEA powders prepared
at different rotational speeds was also significantly different, with the best impedance
matching at a rotational speed of 350 rpm in comparison.

RL and EAB are two important parameters for measuring the absorption performance
of a material. The lower the value of RL and the larger the value of EAB, the stronger
the absorption ability and the wider the effective absorption frequency of the material.
Generally, an RL less than −10 dB indicates that more than 90% of the incident microwaves
can be absorbed, which is defined as the standard for effective microwave absorption [35].
According to the transmission line theory, the RL of the alloy powders can be calculated
using the following formula [36–39]:

RL(dB)= 20 log
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (7)
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where Zin is the impedance of the material and Z0 is the intrinsic impedance in free space.
Because both Zin and Z0 are positive real numbers, the calculated RL must be negative.
Therefore, the higher the absolute value of RL at a given frequency, the more effective the
wave absorption performance [40]. The plotted 3D RL curves in Figure 11a–c,g–i show that
the response frequency was concentrated in the medium and high-frequency ranges. The
two best-performing samples (A350 and B350) had a peak absorption matching thickness
of 1.6 mm and RLmin of −16.23 dB and −17.28 dB, respectively, and the absorption peaks
shifted toward the low-frequency region as the sample thickness increased. The addition
of defects introduced by rGO promoted the absorption of electromagnetic waves to a
certain extent; at the same time, the layered rGO structure dispersed inside the absorber
enhanced the interfacial reflection of electromagnetic waves, such that the RLmin of the alloy
powder samples prepared at speeds of 300 and 350 rpm was slightly increased. However,
as shown in Figure 11c,f, the RLmin and EAB of the alloy powders decreased at speeds up
to 400 rpm. The main reasons for this were that faster milling speeds transferred higher
kinetic energy to the powders, which introduced a variety of defects and impurities, and
excessive defects had a negative impact on the magnetic properties of the material. On
the other hand, the high rotational speed may have led to the destruction of the interlayer
structure of rGO, which could not be uniformly dispersed in the HEAs, resulting in the
reflection and scattering of electromagnetic waves, and thus leading to the reduction of
the wave absorbing properties of A400 and B400. The curves in Figure 11(d–f, j–l) show the
electromagnetic wave absorption frequency bandwidth of the powder samples. Similarly,
the A350 and B350 alloy powders prepared at a speed of 350 rpm had the best EAB, reaching
5.77 GHz and 5.43 GHz, respectively. The addition of rGO increased the EAB of the
sample at 300 and 400 rpm, however, it slightly decreased at 350 rpm. This may have been
due to the fact that the B350 powders obtained a larger coercivity after adding rGO ball
milling, which affected the complex permeability, and the impedance matching became
poor, resulting in a narrower EAB.
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Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO were compared to other types of alloy mi-
crowave absorbing materials, and the comparison results are shown in Figure 12. As shown
in Figure 12, Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO possessed excellent electromagnetic
wave absorption, and the EAB reached a high position.

To fully understand the effect of rGO on the electromagnetic wave absorption pro-
cess, the dissipation mechanism of electromagnetic waves in Al1.5Co4Fe2Cr@rGO HEA
was analyzed in detail. Incident electromagnetic waves would be reflected, absorbed, or
transmitted when the electromagnetic waves interacted with the absorbent, as shown in
Figure 13a. Due to the irregular distribution of the multilayer rGO, the electromagnetic
waves were reflected at multiple interfaces within the material, the propagation paths
became more complex, and the electromagnetic waves would interact more with molecules
and atoms in the wave absorbing material, thus increasing the energy loss and absorption.
(Figure 13b). Although most of the electromagnetic waves were absorbed, a small portion
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of the electromagnetic waves was still reflected and scattered, and, when the rotational
speed was increased, the interlayer structure of rGO was changed and the uniformity of
distribution deteriorated, which narrowed the effective bandwidth and reduced the RL
of the samples. On the other hand, the conduction loss occurring at the rGO surface also
contributed to the dielectric loss of the absorber (Figure 13c) [48], and the enhancement of
the complex dielectric constant by adding rGO also played an important role in optimizing
the impedance-matching characteristics [49]. Apart from this, since the defect-excited po-
larization mainly originated from the defect sites in the absorber, the defects introduced by
rGO could effectively promote defect polarization (Figure 13d). These defects were highly
susceptible to relaxation behavior under the influence of an electromagnetic field, and the
concentration of defects was positively correlated with the relaxation strength. These loss
behaviors were believed to have contributed to the enhanced microwave absorption of the
Al1.5Co4Fe2Cr@rGO HEA powders.
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Figure 13. (a) Illustration of the interaction process between microwaves and the absorbent, (b) demonstra-
tion of reflection behavior of microwave on rGO surface, (c) conduction loss, and (d) defect polarization.



Entropy 2024, 26, 60 14 of 16

4. Conclusions

Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO alloy powder samples were prepared by an
MA method at different ball milling speeds. The effects of the milling speed and the intro-
duction of rGO on the electromagnetic properties and electromagnetic wave absorption
performance of the alloy powders were investigated. It was important to keep the balance
between the composite permeability and the composite dielectric constant of the material
for improving the microwave absorption performance. The addition of rGO reduced the
difference between the values of these properties, optimized the impedance matching
characteristics, and increased the EAB of the B300 sample by 2.04 GHz compared with the
A300 sample, as well as the RLmin by 2.56 dB. The Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO
HEA powders prepared at 350rpm had the best performance, with RLmin of 16.23 and
17.28 dB at 17.3 GHz and EAB of 5.77 and 5.43 GHz at 1.6 mm, respectively, covering
the whole Ku band. Increasing the ball milling speed exerted a larger force on the alloy
powders and produced more lattice defects and impurities, and also destroyed the inter-
layer structure of rGO, all of which affected the magnetic properties of the alloy powders,
most noticeably after the addition of rGO. This was the main reason for the reduced wave
absorbing properties of A400 and B400. But, in general, rGO could improve the complex
dielectric constant of the Al1.5Co4Fe2Cr HEA powders and served to enhance and optimize
the impedance matching and wave absorption properties, and the rGO lamellae distributed
within the absorber would also enhance the interfacial reflection behavior of electromag-
netic waves; all these properties promoted the absorption of electromagnetic waves by
HEA wave absorbers.
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