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Abstract: This paper aims to contribute to refining the e-values for testing precise hypotheses, espe-
cially when dealing with nuisance parameters, leveraging the effectiveness of asymptotic expansions
of the posterior. The proposed approach offers the advantage of bypassing the need for elicitation of
priors and reference functions for the nuisance parameters and the multidimensional integration step.
For this purpose, starting from a Laplace approximation, a posterior distribution for the parameter
of interest is only considered and then a suitable objective matching prior is introduced, ensuring
that the posterior mode aligns with an equivariant frequentist estimator. Consequently, both Highest
Probability Density credible sets and the e-value remain invariant. Some targeted and challenging
examples are discussed.

Keywords: asymptotic expansions; adjusted score function; bias reduction; evidence; Full Bayesian
Significance Test; higher-order asymptotics; matching priors; median bias reduction

1. Introduction

In this article, we discuss an objective matching prior that maintains the invariance of
the posterior mode when testing specific hypotheses for parametric models, especially in
the presence of nuisance parameters. These parameters are often introduced to establish
flexible and realistic models, although the primary focus of inference is typically limited to a
parameter of interest. The proposed approach offers the advantage of eliminating the need
for eliciting information on the nuisance components and for conducting multidimensional
integration, and it produces invariant e-values in the presence of nuisance parameters.

The parametric framework that we consider can be described as follows. Consider a
random sample y = (y1, . . . , yn) of size n from a random variable Y with parametric model
f (y; θ), indexed by a paramater θ, with θ ∈ Θ ⊆ IRd. Given a prior π(θ) on θ, Bayesian
inference for θ is based on the posterior density

π(θ|y) ∝ π(θ)L(θ), (1)

where L(θ) represents the likelihood function based on f (y; θ). Interest is, in particular,
in the situation in which θ = (ψ, λ), where ψ is a scalar parameter for which inference
is required, and λ represents the remaining (d − 1) nuisance parameters. In such case,
Bayesian inference for ψ is based on the marginal posterior density

πm(ψ|y) =
∫

π(ψ, λ|y) dλ ∝
∫

π(ψ, λ)L(ψ, λ) dλ, (2)

which for its computation requires both elicitation on the nuisance parameter λ and multi-
dimensional integration.

Asymptotic arguments are widely used in Bayesian inference through (1) and (2),
based on developments of so-called higher-order asymptotics (see, e.g., [1–3]). Indeed,
the theory of asymptotic expansions provides very accurate approximations to posterior
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distributions, and to various summary quantities of interest, including tail areas, credible
regions and for the Full Bayesian Significance Test (see, e.g., [4,5]). Moreover, they are
particularly useful for sensitivity analyses (see [6,7]) and also for the derivation of matching
priors (see [8], and references therein). For instance, focusing on the presence of nuisance
parameters, the Laplace approximation to (2) provides

πm(ψ|y) =̈
1√
2π

|jp(ψ̂)|1/2 exp{ℓp(ψ)− ℓp(ψ̂)}
|jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2

π(ψ, λ̂ψ)

π(ψ̂, λ̂)
, (3)

where ℓp(ψ) = log Lp(ψ) = log L(ψ, λ̂ψ) is the profile log-likelihood for ψ, with λ̂ψ the
constrained maximum likelihood estimate (MLE) of λ given ψ, (ψ̂, λ̂) is the full MLE, and
jp(ψ) = −∂2ℓp(ψ)/∂ψ2 is the profile observed information. Moreover, jλλ(ψ, λ) is the
(λ, λ)-block of the observed information from the full log-likelihood ℓ(ψ, λ) = log L(ψ, λ),
and the notation =̈ indicates that the approximation is accurate to order O(n−3/2) in
moderate deviation regions (see, e.g., [9], Chapter 2). One appealing feature of higher-order
approximations like (3) is that they may routinely be applied in practical Bayesian inference,
since they require little more than standard likelihood quantities for their implementation,
and hence, they may be available at little additional computational cost over simple first-
order approximations.

In the presence of nuisance parameters, starting from approximation (3), it is possible
to define a general posterior distribution for ψ of the form

π∗(ψ|y) ∝ π∗(ψ)Lp(ψ), (4)

where π∗(ψ) is now a prior distribution on ψ only. Bayesian inference based on pseudo-
likelihood functions—i.e., functions of ψ only and of the data y with properties similar to
those of a genuine likelihood function, such as the profile likelihood—have been widely
used and discussed in the recent statistical literature. Moreover, it has been theoretically
motivated in several papers (see, for instance, [10–12], and references therein), also focusing
on the derivation of suitable objective priors. Especially when the dimension of λ is large,
there are two advantages in using (4) instead of the marginal posterior distribution (2).
First, the elicitation over λ is not necessary, and second, the computation of the integrals in
(2) is circumvented.

Focusing on (4), in this paper, it is of interest to test the precise (or sharp) null hypothesis

H0 : ψ = ψ0 against H1 : ψ ̸= ψ0 (5)

using the measure of evidence for the Full Bayesian Significance Test (see, e.g., [4,5]). The
Full Bayesian Significance Test (FBST) quantifies evidence by considering the posterior
probability associated with the least probable points in the parameter space under H0.
Higher-order asymptotic computation of the FBST for precise null hypotheses in the
presence of nuisance parameters has been discussed in [13].

The original measure of evidence for the FBST is not invariant under suitable transfor-
mations of the parameter, a property which has, however, been reached in the more recent
definition of the e-value (see [14,15], and references therein). Neverthless, when working
on a scalar parameter of interest, in the presence of nuisance parameters, the e-value is not
invariant with respect to marginalizations of the nuisance parameter, and it must be used
in the full dimensionality of the parameter space. This requires elicitation on the complete
parameters, numerical optimization and numerical integration, that can be computationally
heavy, especially when the dimension of λ is large.

The aim of this paper is to consider the e-value in the context of the pseudo-posterior
distribution π∗(ψ|y), suggesting in this respect a suitable objective prior π∗(ψ) to be used
in (4). More precisely, focus is on a particular matching prior, which ensures the invariance
of the posterior mode of the pseudo-posterior distribution. As a consequence, Highest
Probability Density credible (HPD) sets are also invariant, as well as the e-value.
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This paper is organized as follows. Section 2 provides a short review on the FBST
for testing precise null hypotheses and also illustrates asymptotic approximations for
the e-value, extending results of [13]. Section 3 discusses the derivation of the objective
matching prior for the parameter of interest only, called median matching prior, that
produces invariant e-values. Also, several targeted and challenging examples are discussed.
Finally, Section 4 closes with some concluding remarks.

2. The FBST Measure of Evidence

Suppose that we need to decide between two hypotheses: the null H0 and the alterna-
tive H1. The usual Bayesian testing procedure is based on the well-known Bayes factor (BF),
defined as the ratio of the posterior odds to the prior odds in favor of the null hypothesis.
A high BF or its logarithm suggests evidence in favor of H0. However, it is well known that,
when improper priors are used, the BF can be undetermined, and when the null hypothesis
is precise (as specified in (5)), the BF can lead to the so-called Jeffreys–Lindley’s paradox
(see, e.g., [16]). Moreover, the BF is not calibrated, i.e., its finite sampling distribution is
unknown and it may depend on the nuisance parameter.

To avoid these drawbacks, in recent years, an alternative Bayesian procedure, called
FBST, has been introduced by [5] in case of sharp hypothesis H0 identified by the null set
Θ0, a submanifold of Θ of lower dimension. The FBST quantifies evidence by considering
the posterior probability associated with the least probable points in the parameter space
Θ0. When this probability is high, it favors the null hypothesis, providing a clear and
interpretable measure of support for H0 (see, e.g., [4,15,17], and references therein). The
FBST is based on a specific loss function, and thus, the decision made under this procedure
is the action that minimizes the corresponding posterior risk.

The FBST operates by determining the e-value, a representation of Bayesian evidence
associated to H0. To construct the e-value, the authors introduced the posterior surprise
function and its supremum given, respectively, by

πs(θ|y) =
π(θ|y)

r(θ)
and s∗ = πs(θ

∗|y) = sup
θ∈Θ0

πs(θ|y),

where r(θ) is a suitable reference function to be chosen. The surprise function was introduced
in the context of statistical inference also by [18] (see [15], and references therein). Then,
they introduce the tangential set Ty(θ∗) defined as the set of parameter values for which the
posterior surprise function exceeds the supremum s∗, that is

Ty(θ
∗) = {θ ∈ Θ : πs(θ|y) > s∗}.

This set, often referred to as the Highest Relative Surprise Set, includes parameter values
with higher surprise than those within the null set Θ0. The e-value is then computed as

ev = 1 −
∫

Ty(θ∗)
πs(θ|y) dθ,

and H0 is rejected for small values of ev.
The original FBST, as proposed by [5,19], relies on a flat reference function r(θ) ∝ 1,

so that this first version involved the determination of the tangential set Ty(θ) starting
only from the posterior distribution π(θ|y). However, this initial version lacked invariance
under reparameterizations. Subsequent refinements of the FBST introduced the importance
of reference density functions, making the e-value explicitly invariant under appropriate
transformations of the parameter. Common choices for the reference function include
uninformative priors, like the uniform distribution, maximum entropy densities, or Jeffreys’
invariant prior. In [20], the use of the Jeffreys’ prior, π(θ) ∝ |i(θ)|1/2, where i(θ) is the
Fisher information derived from L(θ), is discussed as the reference function to derive
invariant HPD sets and Maximum A Posteriori (MAP) estimators that are invariant under
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reparameterizations. Note that the ev uses the full dimensionality of the parameter space.
Moreover, this measure is not invariant with respect to transformations of the nuisance
parameters, and the use of high posterior densities to construct credible sets may produce
inconsistencies.

Concerning the asymptotic behavior of the ev, it can be proven that, under suitable
regularity conditions as the sample size increases, with θ0 representing the true parameter
value (see [15]), it holds:

• If H0 is false, i.e., θ0 /∈ H0 , then ev converges in probability to 1.
• If H0 is true, i.e., θ0 ∈ H0 , then, denoting by V(c) = Pr(ev ≤ c) the cumulative dis-

tribution function of ev, we have that V(c) ≈ Q(d − h, Q−1(d, c)), with d = dim(Θ),
h = dim(Θ0) and Q(k, x) the cumulative chi-square distribution with k degrees
of freedom.

In practice, the computation of ev is performed in two steps: (a) a numerical optimiza-
tion and (b) a numerical integration. The numerical optimization step consists of finding
the maximizer θ∗ of πs(θ|y) under the null hypothesis. The numerical integration step
consists of integrating the posterior surprise function over the region where it is greater
than πs(θ∗|y), to obtain the e-value. These computational steps make the FBST a compu-
tationally intensive procedure. Despite efficient computational algorithms for local and
global optimization, as well as numerical integration, obtaining precise results for hypothe-
ses like (5) is highly demanding, especially with large nuisance parameter dimensions.
Numerical integration can be tackled by resorting to higher-order tail area approximations,
as reviewed in the Bayesian framework in [3]. An application of asymptotic approximation
to the FBST in its first formulation, i.e., with reference function r(θ) ∝ 1, has been discussed
in [13].

Asymptotic Approximations for the e-Value

A first-order approximation for the e-value, when testing (5), is simply given by (see,
e.g., [21,22])

ev =̇ 2


1 − Φ



∣∣∣∣∣∣

ψ0 − ψ̂√
jp(ψ̂)−1

∣∣∣∣∣∣




, (6)

where the symbol “=̇” indicates that the approximation is accurate to O(n−1/2), and Φ(·)
is the standard normal distribution function. Thus, to first-order, ev agrees with the p-value
based on the profile Wald statistic

wp(ψ) =
(ψ̂ − ψ0)√

jp(ψ̂)−1
. (7)

In practice, the approximation (6) of ev may be inaccurate, in particular when the dimension
of λ is large with respect to the sample size, because it forces the marginal posterior
distribution to be symmetric.

The practical computation of ev requires the evaluation of integrals of the marginal
posterior distribution. In order to have more accurate evaluations of ev, it may be useful to
resort to higher-order asymptotics based on tail area approximations (see, e.g., [2,3], and
references therein). Indeed, the measure of evidence involves integrals of the marginal
surprise posterior density πms(ψ|y). In particular, extending the application of the tail area
argument to the marginal surprise posterior density, we can derive a O(n−3/2) approxima-
tion to the marginal surprise posterior tail area probability, given by

∫ ∞

ψ0

πms(ψ|y) dψ =̈ Φ(r∗B(ψ0)), (8)
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where

r∗B(ψ) = rp(ψ) +
1

rp(ψ)
log

qB(ψ)

rp(ψ)
,

with
rp(ψ) = sign(ψ̂ − ψ)[2(ℓp(ψ̂)− ℓp(ψ))]

1/2

profile likelihood root and

qB(ψ) = ℓ′p(ψ)|jp(ψ̂)|−1/2 |jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2

π(ψ̂, λ̂)

π(ψ, λ̂ψ)

r(ψ, λ̂ψ)

r(ψ̂, λ̂)
.

In the expression of qB(ψ), ℓ′p(ψ) = ∂ℓp(ψ)/∂ψ is the profile score function.
Using the tail area approximation (8), a third-order approximation of the measure of

evidence ev can be derived. The approximation, assuming without loss of generality that
ψ0 is smaller than the MAP of πms(ψ|y), is given by

ev(ψ) =̈ 1 − Φ(r∗B(ψ0)) + Φ(r∗B(ψ
∗
0 )), (9)

with ψ∗
0 the value of the parameter such that πms(ψ∗

0 |y) = πms(ψ0|y). Note that

Φ(r∗B(ψ0))− Φ(r∗B(ψ
∗
0 )) =̈

∫ ψ0

ψ∗
0

πms(ψ|y) dψ = 1 − ev

in (9) gives the posterior probability of the HPD credible interval (ψ0, ψ∗
0 ). Note also that

the higher-order approximation (9) does not call for any condition on the prior π(ψ, λ),
i.e., it can be also improper. Finally, when πms(ψ|y) is symmetric, Equation (9) reduces to
ev =̈ 2(1 − Φ(r∗B(ψ0))).

While tail area approximations require little more than standard likelihood quantities
for their implementation and, in this respect, they are available at little additional compu-
tational cost over the first-order approximation, they require elicitation on the complete
parameter θ and to choose the reference function r(θ).

3. An Invariant Objective Prior

The aim of this section is to derive a default prior π∗(ψ) to be used in (4). To this end,
following [8], we use the shrinkage argument, which is a crucial procedure in the develop-
ment of matching priors, i.e., priors that ensure, up to the desired order of asymptotics, an
agreement between Bayesian and frequentist procedures. Examples of matching priors are
(see [8]) for posterior quantiles, for credible regions and for prediction. Here, we focus on a
specific matching prior that ensures the invariance of the posterior mode in the posterior
distribution (4). As a consequence, the invariance extends to HPDs, as well as the e-value,
achieved incorporating the reference function within the prior.

The proposed choice of the prior π∗(ψ), which makes the MAP and thus also HPDs
and the e-value invariant under 1-1 reparameterization, will depend on the log-likelihood
ℓ(θ) and on its derivatives. In regular parametric estimation problems, both the MLE and
the score-estimating function exhibit an asymptotically symmetric distribution centered at
the true parameter value and at zero, respectively. However, these asymptotic behaviors
may poorly reflect exact sampling distributions, particularly in cases with small or mod-
erate sample information, sparse data, or complex models. Several proposals have been
developed to correct the estimate or the estimating function. Most available methods are
aimed at approximate bias adjustment, either of the MLE or of the profile score function,
also when nuisance parameters are present (see [23] for a review of bias reduction for the
MLE and [24] and subsequent literature for bias correction of the profile score). Lack of
equivariance impacts the so-called implicit bias reduction methods, which achieve first-
order bias correction by modifying the score equation (see [23,25]). To avoid this drawback,
in this paper we focus on the median modification of the score, or profile score equation,
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whose solution respects equivariance under monotone reparameterizations ([26]). Similar
to Firth’s implicit method ([25]), the median modification of the score, or profile score, does
not rely on finiteness of the MLE, thereby effectively preventing infinite estimates.

In practice, to derive the median matching prior π∗(ψ), we impose that the MAP
of π∗(ψ|y) coincides with a refined version of the MLE, obtained as the solution of the
median modified score function ([26]). To introduce this new invariant prior, we initially
explore the scenario without nuisance parameters and then the situation in which nuisance
parameters are present.

3.1. No Nuisance Parameters

Let us explore first the scenario where θ is scalar. In order to obtain median bias
reduction of the MLE, it is possible to resort to a modified version of the score function of
the form

t(θ) = ℓθ(θ) + m(θ), (10)

where ℓθ(θ) = ℓθ(θ; y) = ∂ℓ(θ; y)/∂θ is the score function, and m(θ) is a suitable correction
term of order O(1). In particular, the median modified score function assumes for m(θ)
the expression

m(θ) = −E(ℓθ(θ)
3)

6 i(θ)
.

The solution θ̃ to the equation t(θ) = 0 not only upholds equivariance under component-
wise monotone reparameterizations, but also approximates median unbiasedness ([26]).
Note that likelihood inference based on (10) does not depend explicitely on the MLE. In-
deed, the modified score function has been found to overcome infinite estimate problems.
Likewise, the MLE and also θ̃ is asymptotically N(θ, i(θ)−1), so that the Wald-type statistics
only differ in location.

Since Bayes’ theorem is a statement of adittivity on the log scale log π(θ|y) = log π(θ)+
log L(θ)+ constant, we observe that in the Bayesian framework, m(θ) can be interpreted
as the derivative of the logarithm of a prior, that is, m(θ) = ∂ log π(θ)/∂θ. We are thus
looking for a matching prior π∗(θ) such that

∂ log π∗(θ)
∂θ

= −E(ℓθ(θ)
3)

6 i(θ)
.

In the scalar parameter case, it is straightforward to show that the proposed median matching
prior takes the form

π∗(θ) ∝ exp
(
−1

6

∫
i(θ)−1E(ℓθ(θ)

3) dθ

)

∝ exp
(

1
6

∫
i(θ)−1(3E(ℓθθ(θ)ℓθ(θ)) + E(ℓθθθ(θ))) dθ

)
,

with ℓθθ(θ) = ∂ℓθ(θ)/∂θ and ℓθθθ(θ) = ∂ℓθθ(θ)/∂θ, where the second expression for π∗(θ)
follows from the Bartlett’s identities. The posterior based on the median matching prior
is thus

π∗(θ|y) ∝ exp
(
ℓ(θ)− 1

6

∫
i(θ)−1E(ℓθ(θ)

3) dθ

)
.

A first-order approximation for the e-value, when testing H0 : θ = θ0, is simply
given by

ev =̇ 2

(
1 − Φ

(∣∣∣∣∣
θ0 − θ̃√
i(θ0)−1

∣∣∣∣∣

))
, (11)



Entropy 2024, 26, 58 7 of 15

which differs in location with respect to the classical first-order approximation for the
e-value based on the MLE. A second approximation for the e-value, when testing H0 : θ = θ0,
can be obtained from the asymptotic distribution of the modified score function (10), that is

ev =̇ 2

(
1 − Φ

(∣∣∣∣∣
t(θ0)√

i(θ0)

∣∣∣∣∣

))
. (12)

Although the first-order equivalence between (11) and (12), note that (11) is based on
an easily understandable comparison between estimated value and hypothetical value,
taking estimation error into account, and is widely used in applications but does not
satisfy the principle of parameterization invariance. On the other hand, t(θ)/

√
i(θ) is

parameterization invariant.
Note that, when using a predictive matching prior, i.e., a prior ensuring asymptotic

equivalence of higher-order frequentist and Bayesian predictive densities (see, e.g., [8]), the
term m(θ) in (10) corresponds to the Firth’s adjustment ([25])

mF(θ) = − (E(ℓθ(θ)
3) + E(ℓθθ(θ)ℓθ(θ)))

2i(θ)
.

In view of this, for general regular models, Firth’s estimate coincides with the mode
of the posterior distribution obtained using the default predictive matching prior. How-
ever, lack of invariance affects this kind of adjustment ([23]), unless dealing with
linear transformations.

Example 1 (One parameter exponential family). For a one-parameter exponential family with
canonical parameter θ, i.e., with density

f (y; θ) = exp{θa(y)− K(θ)}b(y),

the median modified score function has the form

t(θ) = ℓθ(θ) +
Kθθθ

6Kθθ
,

where Kθθθ = ∂3K(θ)/∂θ3 and Kθθ = ∂2K(θ)/∂θ2 = i(θ). In this parameterization, t(θ) can be
seen as the first derivative of the log-posterior

log π(θ|y) = ℓ(θ) + log i(θ)/6.

On the other hand, Firth’s modified score takes the form tF(θ) = ℓθ(θ) + Kθθθ/(2Kθθ). The effect
of the median modification is to consider the median matching prior π∗(θ) ∝ i(θ)1/6, while tF(θ)
implies a Jeffreys’ prior πJ(θ) ∝ i(θ)1/2. Note that, for a one-parameter exponential family with
canonical parameter θ, both π∗(θ) and πJ(θ) belong to the family of invariant priors discussed
in [27,28].

Example 2 (Scale model). Consider the scale model f (y; θ) = (1/θ)p0(y/θ), where p0(·) is a
given function. Let g(·) = − log p0(·). We have E(ℓ3

θ) = c1/θ3, E(ℓ3
θℓθ) = c2/θ3 and i(θ) =

c3/θ2, with c1 =
∫
(y3g′′′(y)+ 6y2g′′(y)+ 6yg′(y)− 2)p0(y)dy, c2 =

∫
(3yg′(y)+ y2g′′(y)−

2y2g′(y)2 − y3g′(y)g′′(y)− 1)p0(y)dy and c3 =
∫
(2yg′(y) + y2g′′(y)− 1)p0(y)dy. The me-

dian matching prior is thus π∗(θ) ∝ θ−c1/6c3 , while the Jeffreys’ prior for a one-parameter scale
model is πJ(θ) ∝ θ−1 and the prior associated to the Firth’s adjustment is πF(θ) ∝ θ−(c1+c2)/2c3 .

Example 3 (Skew–normal distribution). Consider a skew-normal distribution with shape
parameter θ ∈ IR, with density f (y; θ) = 2ϕ(y)Φ(yθ), where ϕ(·) is the standard normal density
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function. The median correction term for the score function associated to the median matching prior
is (see [26,29])

m(θ) =
E(y3ϕ(yθ)3/Φ(yθ)3)

6E(y2ϕ(yθ)2/Φ(yθ)2)
.

Numerical integration must be performed to obtain the expected values involved in m(θ).
In order to illustrate the proposed prior, we consider draws from the skew–normal model with

true parameter θ0 = 3 and increasing sample sizes n = 20, 30, 50, 200 (Figure 1). The posterior
distributions are obtained with the method by [30], i.e., drawing 105 values and accepting the best
5%. The e-values associated to the null (true) hypothesis H0 : θ = 3 and the (false) hypothesis
H0 : θ = 4 are reported in Table 1. For comparison, the Jeffreys’ prior ([31]), the predictive matching
prior ([29]) and the flat prior, with uniform reference function, are also considered. Progressive
agreement among evidence values obtained with the proposed median matching prior and the other
priors for larger sample size is shown. Also, as expected, when progressively increasing n, the
evidence values indicate agreement with the true hypothesis H0 : θ0 = 3 and disagreement with
H0 : θ0 = 4 for all the priors used. Anyway, note that the posterior distribution obtained with
a flat prior and a uniform reference function is proportional to the likelihood function that can be
monotone. In view of this, while the MAPs of the posterior based on the default priors are always
finite, in some samples the MAP of the posterior with the non-informative prior may be infinite. An
example of this effect is illustrated in Figure 2.
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Figure 1. Inference for the scalar parameter θ of the skew-normal model with sample sizes n =

20, 30, 50, 200 (top-left, top-right, bottom-left and bottom-right panels, respectively). The red line is
used for the posterior obtained from the median matching prior, the green one for the predictive
matching prior, the violet one for the Jeffreys’ prior and the blue one from an improper flat prior. The
horizontal lines identify the corresponding tangential sets associated to the hypothesis H0 : θ = 3.

density function. The median correction term for the score function associated to the
median matching prior is (see [37] and [18])

m(θ) =
E(y3φ(yθ)3/Φ(yθ)3)

6E(y2φ(yθ)2/Φ(yθ)2)
.

Numerical integration must be performed to obtain the expected values involved in m(θ). 234

Table 1. Skew-normal: e−values associated to the hypotheses H0 : θ = 3 and H0 : θ = 4.

hypothesis
H0

n Flat prior
Median

matching
prior

Predictive
matching

prior

Jeffreys’
prior

θ = 3 20 0.59 0.62 0.56 0.65
30 0.65 0.70 0.73 0.64
50 0.81 0.84 0.82 0.91

200 0.79 0.79 0.81 0.82
θ = 4 20 0.82 0.91 0.98 0.84

30 0.17 0.22 0.22 0.22
50 0.20 0.20 0.20 0.21

200 0.07 0.08 0.08 0.09

In order to illustrate the proposed prior, we consider draws from the skew-normal 235

model with true parameter θ0 = 3 and increasing sample sizes n = 20, 30, 50, 200 (Figure 236

1). The posterior distributions are obtained with the method by [36], i.e. drawing 105
237

values and accepting the best 5%. The e−values associated to the null (true) hypothesis 238

Figure 1. Inference for the scalar parameter θ of the skew-normal model with sample sizes
n = 20, 30, 50, 200 (top-left, top-right, bottom-left and bottom-right panels, respectively). The
red line is used for the posterior obtained from the median matching prior, the green one for the
predictive matching prior, the violet one for the Jeffreys’ prior and the blue one from an improper flat
prior. The horizontal lines identify the corresponding tangential sets associated to the hypothesis
H0 : θ = 3.
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Table 1. Skew-normal: e-values associated to the hypotheses H0 : θ = 3 and H0 : θ = 4.

Hypothesis H0 n Flat Prior Median
Matching Prior

Predictive
Matching Prior Jeffreys’ Prior

θ = 3 20 0.59 0.62 0.56 0.65
30 0.65 0.70 0.73 0.64
50 0.81 0.84 0.82 0.91
200 0.79 0.79 0.81 0.82

θ = 4 20 0.82 0.91 0.98 0.84
30 0.17 0.22 0.22 0.22
50 0.20 0.20 0.20 0.21
200 0.07 0.08 0.08 0.09
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Figure 2. Skew-normal model: An example of ∂ log π(θ|y)/∂θ (estimating equation) with a flat prior
(blue line), the median matching prior (red line) the predictive matching prior (green line) and the
Jeffreys’ prior (violet line) in a sample where all the observations are positive.

H0 : θ = 3 and the (false) hypothesis H0 : θ = 4 are reported in Table 1. For comparison, 239

also the Jeffreys’ prior ([24]), the predictive matching prior ([37]) and the flat prior, with 240

uniform reference function, are considered. Progressive agreement among evidence values 241

obtained with the proposed median matching prior and the other priors for larger sample 242

size is shown. Also, as expected, progressively increasing n, the evidence values indicate 243

agreement with the true hypothesis H0 : θ0 = 3 and disagreement with H0 : θ0 = 4 for all 244

the priors used. Anyway, note that the posterior distribution obtained with a flat prior, 245

and a uniform reference function, is proportional to the likelihood function that can be 246

monotone. In view of this, while the MAPs of the posterior based on the default priors are 247

always finite, in some samples the MAP of the posterior with the non-informative prior 248

may be infinite. An example of this effect is illustrated in Figure 2. 249

The properties of first-order approximations of the e−values have been investigated 250

by a simulation study, with sample sizes n = 20, 30, 50, 200. Results are displayed in 251

Figure 3. Distributions of the e−value from the posterior based on the median matching 252

prior are better, both for small and moderate sample sizes, in terms of convergence to 253

the Uniform distribution. Moreover, score-type e−values (12) are also preferable than 254

Wald-type e−values (11). For the results with the posterior distribution obtained with a flat 255

prior we found 4.3%, 4.2%, 0.9%, 0% of infinite estimates for the sample sizes considered in 256

the simulation study, and in these cases the e−value was considered as 0. 257

3.2. Presence of nuisance parameters 258

In the presence of nuisance parameters, in order to obtain median bias reduction of the 259

MLE, it is possible to resort to a modified version of the profile score function of the form 260

tp(ψ) = `′p(ψ) + m(ψ, λ̂ψ), (13)

Figure 2. Skew-normal model: An example of ∂ log π(θ|y)/∂θ (estimating equation) with a flat prior
(blue line), the median matching prior (red line) the predictive matching prior (green line) and the
Jeffreys’ prior (violet line) in a sample where all the observations are positive.

The properties of first-order approximations of the e-values have been investigated by a simula-
tion study, with sample sizes n = 20, 30, 50, 200. Results are displayed in Figure 3. Distributions
of the e-value from the posterior based on the median matching prior are better, both for small and
moderate sample sizes, in terms of convergence to the uniform distribution. Moreover, score-type
e-values (12) are also preferable over Wald-type e-values (11). For the results with the posterior
distribution obtained with a flat prior, we found 4.3%, 4.2%, 0.9%, 0% of infinite estimates for the
sample sizes considered in the simulation study, and in these cases the e-value was considered as 0.
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Figure 3. Skew-normal model: Distributions of e−values from a simulation study under the null
hypothesis H0 : θ = 3, using a flat prior (blue line), the median matching prior (red line), the
predictive matching prior (green line), and the Jeffreys’ prior (violet line). The darker line is used for
the approximation (11) while the lighter for that based on (12).

where m(ψ, λ) a suitable correction term of order O(1). In particular, for the median
modified profile score function, the adjustment m(ψ, λ) assumes the expression

m(ψ, λ) = −κ1ψ +
κ3ψ

6κ2ψ
,

where κ1ψ, κ2ψ and κ3ψ are the first three cumulants of `′p(ψ) (see [18], Section 2.2, for their 261

expression). For the estimator ψ̃p, defined as the solution of tp(ψ) = 0, parameterization 262

equivariance holds under interest respecting reparameterizations ([18]). 263

Note that, also in the context of nuisance parameters, we are in the situation in which 264

the proposed prior π∗(ψ) is known through its first derivative; this is typically the situation 265

with matching priors (see, e.g., [8]). Since the parameter of interest is scalar, the posterior 266

based on the median matching prior can be written as 267

π∗(ψ|y) ∝ exp
(
`p(ψ) +

∫
m(ψ, λ̂ψ) dψ

)
. (14)

A simple analytical way of approximating to first-order the posterior distribution (14) 268

based on the median matching prior is to resort to a quadratic form of tp(ψ). In particular, 269

the approximate posterior distribution for ψ takes the form 270

π∗(ψ|y) ∝̇ exp
(
−1

2
sp(ψ; y)

)
, (15)

Figure 3. Skew-normal model: Distributions of e-values from a simulation study under the null
hypothesis H0 : θ = 3, using a flat prior (blue line), the median matching prior (red line), the
predictive matching prior (green line), and the Jeffreys’ prior (violet line). The darker line is used for
the approximation (11), while the lighter is for that based on (12).

3.2. Presence of Nuisance Parameters

In the presence of nuisance parameters, in order to obtain median bias reduction of the
MLE, it is possible to resort to a modified version of the profile score function of the form

tp(ψ) = ℓ′p(ψ) + m(ψ, λ̂ψ), (13)

where m(ψ, λ) is a suitable correction term of order O(1). In particular, for the median
modified profile score function, the adjustment m(ψ, λ) assumes the expression

m(ψ, λ) = −κ1ψ +
κ3ψ

6κ2ψ
,

where κ1ψ, κ2ψ and κ3ψ are the first three cumulants of ℓ′p(ψ) (see [26], Section 2.2, for their
expression). For the estimator ψ̃p, defined as the solution of tp(ψ) = 0, parameterization
equivariance holds under interest respecting reparameterizations ([26]).

Note that, also in the context of nuisance parameters, we are in the situation in which
the proposed prior π∗(ψ) is known through its first derivative; this is typically the situation
with matching priors (see, e.g., [8]). Since the parameter of interest is scalar, the posterior
based on the median matching prior can be written as

π∗(ψ|y) ∝ exp
(
ℓp(ψ) +

∫
m(ψ, λ̂ψ) dψ

)
. (14)
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A simple analytical way of approximating to first-order the posterior distribution (14)
based on the median matching prior is to resort to a quadratic form of tp(ψ). In particular,
the approximate posterior distribution for ψ takes the form

π∗(ψ|y) ∝̇ exp
(
−1

2
sp(ψ; y)

)
, (15)

where sp(ψ) = tp(ψ)2 jp(ψ)−1 is a Rao score-type statistic based on (13), and the symbol “∝̇”
means asymptotic proportionality to first-order. In this case, a first-order approximation of
the e-value, when testing H0 : ψ = ψ0, is given by

ev =̇ 2


1 − Φ



∣∣∣∣∣∣

tp(ψ0)√
jp(ψ0)

∣∣∣∣∣∣




. (16)

In this case, an higher-order approximation via (3) would be impractical since a closed-form
prior is not available. As an alternative, simulation-based approaches may be used to
derive the implied posterior distribution (14) based on the median matching prior. The
first one relies on Approximate Bayesian Computation (ABC) techniques, using ψ̃p or the
modified profile score function tp(ψ) as summary statistics; see [32] for the modification of
the algorithm of [30] by using a profile estimating equation. This first method introduces
an approximation at the level of the posterior estimation. The second one still relies on (13)
but considers use of Manifold MCMC methods (see, e.g., [33]) to conditioning exactly on
the profile equation and not up to a tolerance level, as in ABC (see [34,35]). The algorithm
moves on the constrained space {(y, ψ) ∈ Y × ⊖|tp(ψ̃p) = 0}, where ψ̃p is the solution
of the estimating equation on the original data. For the latter method, we need minimal
regularity assumptions on m(ψ, λ), which is assumed to be continuous, differentiable and
available in closed form expression. Note, for instance, that in the skew-normal example in
Section 3.1 these conditions are not met.

Example 4 (Exponential family). If f (y; θ) is an exponential family of order d with canonical
parameter (ψ, λ), i.e., f (y; ψ, λ) = exp{ψt(y) + λTs(y)− K(ψ, λ)}h(y), quantities involved
in m(ψ, λ) are simply obtained from derivatives of K(ψ, λ) ([26]). Note that, in this framework,
ℓ′p(ψ)− κ1ψ is an approximation with error of order O(n−1) of the score for ψ in the conditional
model given s(y) (see e.g., [36], Section 10.2). Then, in the continuous case, the MAP ψ̃p is an
approximation of the optimal conditional median unbiased estimator, and π∗(ψ|y) is related to
the conditional likelihood for ψ given by Lc(ψ) = exp(ψt(y)− Ks(ψ)); see [37] for a Bayesian
interpretation of such pseudo-likelihoods.

Example 5 (Multivariate regression model). Consider a regression model of the form

Yij = β0 + β1xi1 + β2xi2 + ϵij, i = 1, . . . , n, j = 1, 2,

where it is assumed that ϵi ∼ N2(0, Σ), with Σ = σ2
(

1 ρ
ρ 1

)
positive definite matrix, and

(β0, β1, β2, σ2, ρ) are unknown parameters. This model is widely used for instance in time series
analysis, in which as regression covariates the past of the observables y are used. We focus on the
problem of testing hypothesis on the correlation coefficient ρ.

Consider a draw with true parameter ρ0 = 0.95 and n = 20. For obtaining the proposed
posterior (14) for ρ, we first compute the MAPs with the median matching prior and also, for
comparison, with the predictive matching prior, which are, respectively, 0.953 and 0.92. Note that
the expression of the predictive matching prior for (ψ, λ) corresponds to the Firth’s adjustment to
the score function. The expressions of the modified profile estimating functions tp(ψ) and tF(ψ)
are obtained from [38] and are available in closed form expressions. Hence, the Manifold MCMC



Entropy 2024, 26, 58 12 of 15

method can be used to obtain the implied posteriors, whose approximation is comparable to that of
any MCMC sampler. In particular we used 20,000 iterations.

We compare the posterior distribution based on the proposed median matching prior, with those
obtained with the predictive matching prior and with an inverse-Wishart prior for the covariance
matrix Σ with one degree of freedom and identity position, and uniform prior on the regression
parameters. The posterior distributions are displayed in Figure 4. The hypothesis of interest is
H0 : ρ = 0.9, and a smaller e-value indicating disagreement with the hypothesis should be preferable.
The e-values are 0.25 with the median matching prior, 0.36 for the predictive matching prior and 0.60
with the inverse-Wishart prior. Note that the e-value based on the inverse-Wishart prior involves
the constrained maximization and multidimensional integration and thus is not directly readable in
Figure 4. Indeed, one crucial difference is that the original e-value formulation links the evidence of
the null hypothesis to the evidence of a more refined hypothesis, choosing the MAP under the null
hypothesis for all the nuisance parameters, while in the alternative (tangential) set, all values are
used, and integration is performed on the full dimensionality of the space. On the contrary, in the
proposed posterior based on the median matching prior, the maximizer of nuisance parameters are
taken both in the null and non-null sets.

Finally, for the posterior based on the inverse-Wishart prior, we also computed the e-value
based on the high-order tail area approximation (9) of the marginal surprise posterior, which is equal
to 0.27. This procedure still avoids the multidimensional integration, but the result is not invariant
to changes in parametrization.

Version January 2, 2024 submitted to Entropy 12 of 15

0

5

10

15

0.7 0.8 0.9 1.0
ρ

 

method

Median matching prior

Predictive matching prior

Wishart prior
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Example 6 (Logistic regression model). Let yi, i = 1, . . . , n, be independent realizations
of binary random variables with probability πi, where log(πi/(1 − πi)) = ηi = xiβ and
xi = (xi1, . . . , xip) is a row vector of covariates. We assume that a generic scalar component
of β is of interest, and we treat the remaining components as nuisance parameters.

As an example, we consider the endometrial cancer grade dataset analyzed, among oth-
ers, in [39]. The aim of the clinical study was to evaluate the relationship between the histol-
ogy of the endometrium (HG), the binary response variable, of n = 79 patients and three risk
factors: 1. Neovascularization (NV), that indicates the presence or extent of new blood vessel
formation; 2. Pulsatility Index (PI), that measures blood flow resistance in the endometrium;
3. Endometrium Height (EH), that indicates the thickness or height of the endometrium. A logistic
model for HG, including an intercept and using all the covariates (NV, PI, EH), has been fitted,
but a maximum likelihood leads to the infinite MLE of the coefficient β2 related to NV, due to
quasi-complete separation. This phenomenon prohibits the use of diffuse priors for β2, since the
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corresponding posterior would not concentrate. Moreover, the e-value with non-informative priors
cannot be obtained also for any hypothesis concerning parameters different from β2.

If we consider β2 as the parameter of interest, while the remaining regression coefficients are
treated as nuisance parameters, the analysis with the median matching prior allows us to obtain a
global proper posterior, with MAP equal to 3.86, open to interpretation both in the original scale
and in terms of odds ratios. Similarly, the posterior based on the predictive matching prior, which in
this model coincides with Jeffreys’ prior π(β) ∝ |i(β)|1/2 is proper, with the MAP set at 2.92. The
latter suffers from a lack of interpretability on different scales, since a different parametrization in
the estimation phase would affect the results.

If we consider β3 as the parameter of interest, related to the risk factor PI, the MAPs are
−0.038 when using the median matching prior and −0.035 when using the predictive matching
prior. The e-values for the hypothesis H0 : β3 = 0 are 0.60 and 0.55, respectively (see Figure 5).
Likewise, the interpretation of e-values remains consistent and independent of parametrization solely
in the first case.
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4. Conclusions

Although (14) cannot always be considered as orthodox in a Bayesian setting, the
use of alternative likelihoods is nowadays widely shared, and several papers focus on the
Bayesian application of some well-known pseudo-likelihoods. In particular, the proposed
posterior π∗(ψ|y) has the advantages of avoiding the elicitation on the nuisance parameter
λ and of the computation of multidimensional integrations. Moreover, it provides invariant
MAPs, HPDs and e-values, without the adoption of a reference function. Finally, we remark
that frequentist properties of the MAP of the posterior based off the proposed median
matching prior in comparison with the MAP of the posterior based of the predictive
matching prior have been investigated in [26,38] for some of the examples discussed in
this paper.

For inference on a full vector parameter θ, with d > 1 components, a direct extension
of the rationale leading to (10) does not seem to be practicable due to lack of a manageable
definition of the multivariate median. Actually, in [26,40], it is shown how the method can
be extended to a vector parameter of interest in the presence of nuisance parameters by
simultaneously solving median bias-corrected score equations for all parameter compo-
nents. This leads to componentwise third-order median unbiasedness and parameterization
equivariance. Moreover, the use of default priors involving all parameter components, also
the nuisance, becomes necessary to regularize likelihoods in case of monotonicity. We note
that among the possible objective priors that ensures invariance of the posterior, we did not
focus on the Jeffreys’ in the multidimensional case, since it often exhibits poor convergence
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properties. Conversely, the default matching priors considered in this paper are easily
generalizable to the multidimensional case [40] preserving good convergence properties.

As a final remark, we highlight that this paper opens several topics of future research.
In particular, from a computational point of view, it could be of interest:

• To develop a library of computational routines exploring the methods proposed in
this paper for a wide range of statistical models of interest;

• To develop semi-automated procedures for further expanding this library, as is done
for point estimation for Generalized Linear Models in the R package brglm2 [41].

Moreover, from a theoretical point of view, it could be of interest:

• To further explore the theoretical connections between the e-value invariance proper-
ties and matching priors;

• To explore the existence of similar connections in other classes of pseudo-likelihoods,
in particular in the context of empirical and profile empirical likelihoods, with a large
number of nuisance parameters ([42]),

• To apply and extend the methodology to consider other objective priors used in
Bayesian inference, such as those obtained from scoring rules, as proposed in [10], that
are expressed as solutions of differential equations.
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