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Abstract: An effective post-processing algorithm is essential for achieving high rates of secret key
generation in quantum key distribution. This work introduces an approach to quantum key distribu-
tion post-processing by integrating the three main steps into a unified procedure: syndrome-based
error estimation, rate-adaptive reconciliation, and subblock confirmation. The proposed scheme
employs low-density parity-check codes to estimate the quantum bit error rate using the syndrome
information, and to optimize the channel coding rates based on the Slepian–Wolf coding scheme for
the rate-adaptive method. Additionally, this scheme incorporates polynomial-based hash verification
in the subblock confirmation process. The numerical results show that the syndrome-based estimation
significantly enhances the accuracy and consistency of the estimated quantum bit error rate, enabling
effective code rate optimization for rate-adaptive reconciliation. The unified approach, which in-
tegrates rate-adaptive reconciliation with syndrome-based estimation and subblock confirmation,
exhibits superior efficiency, minimizes practical information leakage, reduces communication rounds,
and guarantees convergence to the identical key. Furthermore, the simulations indicate that the secret
key throughput of this approach achieves the theoretical limit in the context of a BB84 quantum key
distribution system.

Keywords: quantum key distribution; post-processing; low-density parity-check codes; rate-adaptive
information reconciliation; syndrome-based error estimation; subblock confirmation

1. Introduction

Cryptography is a well-known technique for achieving communication secrecy, but
practical key generation and distribution schemes remain one of the toughest challenges
in modern cryptography. The common key distribution protocols [1–3] rely on symmetric
and asymmetric encryption algorithms, which offer computational security based on
the complexity of mathematical problems. However, the security of these protocols could
potentially be compromised by the advent of powerful computing devices, such as quantum
computers [4,5].

Fortunately, quantum key distribution (QKD) [6] utilizes the properties of quantum
mechanics, thereby enabling two legitimate parties (Alice and Bob) to generate a secret key
based on information-theoretic security principles [7]. Basically, the QKD protocol consists
of six steps:

(1) Distribution of quantum information: In the BB84 protocol [6], Alice encodes ran-
dom bits into the polarization states of single photons, which are then transmitted
to Bob over the quantum channel. Bob subsequently randomly selects measurement
bases to measure the polarization of a received photon and obtains classical measure-
ment bits. After this step, both parties have a record of binary information, known
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as the raw key. Upon accumulating a sufficient amount of raw key, they perform
the following post-processing steps [8,9], using the authenticated classical channel to
distill secure secret keys.

(2) Sifting: Alice and Bob communicate and compare their encoding and measurement
bases. Then, any bits in raw key with non-matching bases are discarded, allowing
both parties (Alice and Bob) to obtain correlated classical bits with the same length,
called the sifted key.

(3) Channel error estimation: Alice and Bob typically estimate the quantum bit error rate
(QBER) by using random key sampling. If the estimated QBER exceeds a predeter-
mined threshold value, both parties must abort the QKD protocol to prevent potential
security breaches.

(4) Information reconciliation: Alice and Bob correct the discrepancies between their
sifted keys using error-correction algorithms to produce the reconciled key.

(5) Confirmation: Alice and Bob utilize a universal hash function to verify whether their
reconciled keys are identical. If the hash values from Alice and Bob do not match, they
can return to the information reconciliation step or abort the QKD protocol.

(6) Privacy amplification: To eliminate any partial information eavesdropped by Eve
through both the quantum and classical channels, Alice and Bob compress their identi-
cal keys using universal hashing. The resulting shortened keys, known as the secret
keys, are statistically independent of Eve’s information and are identical between Alice
and Bob.

Although there have been breakthroughs in QKD, the achievable secret key rates
remain inadequate for high-speed industrial applications. One of the primary bottlenecks
is the efficiency of classical post-processing algorithms. To address this limitation, this work
investigates the effective algorithms for error estimation, information reconciliation, and
confirmation steps, aiming to enhance the efficiency of classical post-processing.

In QKD post-processing, information reconciliation is typically implemented using
interactive protocols such as Cascade [10], which uses a combination of random shuffling
and dichotomic search algorithms to identify and correct error positions using subblock
parities. Cascade is generally a simple and efficient error-correction protocol. However, its
speed is fundamentally limited by its high interactivity. Several modified versions of Cas-
cade have been proposed to improve its speed in parallel operations [11], and to optimize
the parameters for optimal implementation [12]. An alternative protocol is Winnow [13],
which employs the syndrome from a Hamming code, a type of forward error correction, to
reconcile errors in a set of sifted keys while requiring less interactive communication. How-
ever, its performance is constrained by the error-correction capabilities of the Hamming
code. Additionally, other forward error correction applications, such as Bose–Chaudhuri–
Hocquenghem (BCH) [14,15] and low-density parity-check (LDPC) [16,17] codes, have
been proposed for the information reconciliation protocol by selecting the appropriate
channel coding rates based on a priori QBER estimation. By utilizing irregular LDPC
codes and syndrome decoding based on the belief propagation algorithm, the interactive
blind reconciliation method [18] can operate without a priori estimation of QBER. This
approach relies on interactive communications and continues the reconciliation process
until successful decoding is achieved. The technique of blind reconciliation was further
adapted with variable step sizes [19] and transformed into a symmetric operation [20],
potentially improving efficiency and reducing the required interactivity.

Considering the importance of channel error estimation, the accuracy of a priori error
estimation significantly influences the performance of information reconciliation based
on LDPC codes. In particular, the value of the estimated QBER is crucial for choosing the
optimal LDPC coding rate, which can improve blind reconciliation scenarios by reducing
the necessity for additional interactive communications. In [21], the QBER value was
estimated using the syndrome information from LDPC codes within a rate-adaptive recon-
ciliation scheme. This syndrome-based QBER estimation approach was further extended
in [22] by employing irregular LDPC codes with punctured or shortened bits. Furthermore,
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the multiple syndrome information obtained from multi-LDPC codes was proposed for
error estimation and information reconciliation [23]. In [24], an asymmetric approach to
rate-adaptive and blind reconciliation was proposed with a priori error rate estimation
based on the exponential moving average of QBER from the previously corrected frames.

Generally, information reconciliation schemes based on LDPC codes cannot always
guarantee the exact identity of the reconciled keys due to potential failures in LDPC de-
coding. These failures can be caused by several factors, such as an insufficient number of
iterations during decoding or an inaccurate QBER estimation. Therefore, a confirmation
step is necessary to verify the identical key between the two parties. In [25], a confirmation
method using a universal hash function was combined with the blind reconciliation. How-
ever, this method discards subblocks with mismatched hash values, ensuring only verified
identical keys progress to the subsequent step.

Despite considerable progress in information reconciliation based on LDPC codes,
most existing methodologies primarily focus on simulations, either as standalone pro-
cesses [17–20] or in combination with channel error estimation [21–24]. To further advance
this work, a unified approach is investigated by integrating three main effective algorithms
for error estimation, information reconciliation, and confirmation steps. Firstly, the syn-
drome information generated from the maximum code rate of irregular LDPC codes is
employed to determine the QBER value, leveraging the maximum likelihood estimator to
cover the potential errors in a QKD system. Then, the estimated QBER value is utilized to
the rate-adaptive reconciliation scheme to optimize the appropriate channel coding rate of
irregular LDPC codes through puncturing and shortening techniques. Finally, the subblock
confirmation using hash verification is seamlessly incorporated with the rate-adaptive rec-
onciliation. This step divides the reconciled keys into subblocks and verifies their identities
with a polynomial-based hash function [26]. In contrast to [25], which discards subblocks
with mismatched hash values, this approach subjects unverified subblocks to an iterative
process of error estimation and information reconciliation. This process continues until all
subblocks are successfully verified, thereby guaranteeing that both parties obtain identi-
cal keys and avoiding any key discarding. Moreover, the performance of the integrated
approach is characterized by various aspects, including the accuracy and the variability
in syndrome-based QBER estimation, the information leakage and its correlation with the
efficiency metric of information reconciliation, the number of interactive communications,
and the success rate of obtaining the identical key. The proposed scheme significantly
enhances the efficiency of classical post-processing—achieving a secret key throughput
approaching the theoretical limit—compared to other schemes.

The rest of this article is organized as follows. Section 2 reviews the fundamental
concepts of information reconciliation and its construction into rate-adaptive reconciliation
for QKD post-processing. In Section 3, the efficient integration of syndrome-based error
estimation, rate-adaptive reconciliation, and subblock confirmation is presented as a unified
procedure. Section 4 presents the comprehensive performance evaluation of the proposed
method. Finally, the conclusions and discussions are presented in Section 5.

2. Information Reconciliation in QKD Post-Processing

Information reconciliation is a fundamental technique employed in key agreement
protocols, involving the extraction of shared information through a public discussion
between two correlated sources of random variables. In the context of QKD post-processing,
the concepts of channel coding are leveraged to address the information reconciliation
problem, based on the Slepian–Wolf coding scheme.

2.1. Information Reconciliation Based on Channel Coding Theorem

In the field of communication over classical channels, the channel coding theorem [27]
aims to optimize the transmission rate while ensuring reliable communication in the
presence of channel noise.
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In this section, the problem of information reconciliation is addressed by the concept
of the channel coding theorem, as illustrated in Figure 1. Let C represent a linear code
that contains a parity-check matrix H of size M × N, defined over GF(2) (GF refers to a
Galois field). The inputs of the two legitimate parties (Alice and Bob) are random binary
key strings X = {x1, . . ., xn} and Y = {y1, . . ., yn}, respectively. These inputs, X and Y, are
distributed according to a joint probability distribution PXY (x, y), where x ∈ X and y ∈ Y.
In the context of a QKD system, PXY (x, y) can be utilized to determine the discrepancy
between X and Y, which is known as the quantum bit error rate (QBER) value. The simple
information reconciliation protocol, which is based on channel coding, enables one-way
communication from Alice to Bob over a classical channel. The protocol can be summarized
in the following two main steps:

(1) Encoding: Alice performs the encoding function of the linear code C to generate
the syndrome SA, where SA = X·HT. The syndrome SA is then transmitted over the
classical channel to Bob.

(2) Decoding: Upon receiving the syndrome SA, Bob computes ê using the decoding
function of C, denoted by decH, where ê = decH(Y, SA). The value of ê indicates the
error position in Y, and Bob calculates the output value X′ by performing X′ = Y ⊕ ê.
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The effectiveness of the information reconciliation protocol based on channel coding
relies on the capability of the syndrome decoding process to generate an output syndrome
SB = X′·HT that matches the received syndrome SA from Alice (SA = SB). If the decod-
ing process fails, the system must be aborted or reprocessed until successful decoding
is achieved.

In this system, the cardinality of SA, denoted as |SA|, represents the information
leakage, which depends on the correlation of channel capacity in the channel coding
scheme. The minimum theoretical information leakage of information reconciliation based
on channel coding, represented as min(|SA|), can be calculated as

min (|SA|)
N

= H(X|Y), (1)

where N is the size of input X, and H(X|Y) denotes the conditional entropy of X given Y.
However, Eve can obtain information leakage when communication occurs over a public
channel. Importantly, |SA| is a fundamental parameter for evaluating the efficiency of the
information reconciliation protocol based on channel coding.

2.2. Application of Slepian–Wolf Coding to Information Reconciliation Based on Channel Coding

The Slepian–Wolf theorem [28] is a fundamental principle in information theory that
addresses the task of conducting effective lossless compression of two correlated data
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sources. This theorem has significant applications for resolving issues of information
reconciliation through channel coding scenarios. In the context of QKD post-processing,
the sifted keys of Alice and Bob are not perfectly correlated; they are represented as binary
random variables X and Y, respectively.

In general, a binary symmetric channel (BSC) is a simplified model that is commonly
used to characterize transmission errors in the context of discrete-variable quantum key dis-
tribution (DV-QKD) protocols. Therefore, the framework of the information reconciliation
protocol based on the channel coding scheme, as illustrated in Figure 1, can be employed
within the system of Slepian–Wolf coding. The objective of this framework is to transform
the sifted keys Y and X into a pair of identical keys, such that the reconciled key X′ of Bob is
identical to X with probability equal to one, denoted as P[X′ = X] = 1. To achieve this goal,
Bob requires a certain minimum quantity of syndrome |SX| from Alice. This requirement
is defined by the Slepian–Wolf lower bound on the compression rate RS, which must be at
least equal to the conditional entropy H(X|Y), denoted as RS ≥ H(X|Y).

In Figure 2, a simple Tanner graph is shown; it corresponds to a binary linear block
code C with a parity-check matrix H of size M × N. Generally, the syndrome S can be
calculated by compressing the main information X, where S = X·HT. Correspondingly in
Slepian–Wolf coding, the compression rate of the syndrome is represented as RS = M

N . This
rate is equivalent to the channel coding rate of the linear code C, expressed as RC = N−M

N .
Therefore, the relationship between Slepian–Wolf compression rate RS and channel coding
rate RC can be expressed as:

RS = 1− RC (2)
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To achieve efficient information reconciliation, the channel coding rate RC must be
optimized to satisfy the Slepian–Wolf lower bound, which is RS ≥ H(X|Y). Then, it can be
rewritten as:

1− RC ≥ H(X|Y) and H(X|Y) = H(q) , (3)

where q is the cross-over probability distribution between X and Y over BSC. In the context
of a QKD system, q corresponds to the quantum bit error rate (QBER), which quantifies the
joint probability distribution among the correlated information from Alice, Bob, and Eve.
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2.3. Rate-Adaptive LDPC Codes and Efficiency Metric of Information Reconciliation

Low-density parity-check (LDPC) codes [29] are a class of linear block code character-
ized by their sparse parity-check matrix. Typically, LDPC codes utilize iterative algorithms
such as the bit-flipping algorithm, belief propagation algorithm, and min-sum algorithm
for the decoding process. According to their structures, LDPC codes can be broadly cate-
gorized into regular LDPC codes and irregular LDPC codes. For the regular LDPC codes,
each variable node connects to a fixed number of check nodes, which ensures a consistent
and fixed number of non-zero entries in each row and column of the parity-check matrix,
leading to a uniform degree distribution. Conversely, for the irregular LDPC codes with a
non-uniform degree distribution, specific variable nodes can connect to varying numbers
of check nodes. The degree distribution of these irregular LDPC codes is designed for
specific applications such as wireless communications, digital television broadcasting, and
satellite communications. These codes exhibit superior error-correcting capabilities when
compared to conventional regular LDPC codes.

For information reconciliation with irregular LDPC codes, a prior error estimation is
essential to optimize the channel coding rates, which significantly enhances the efficiency
of rate-adaptive information reconciliation. Consider an irregular LDPC code with a
parity-check matrix H of size M × N. The mother code rate, denoted as R 0

C , is defined
by R 0

C = N−M
N . To fine-tune the LDPC’s mother code rate, puncturing and shortening

techniques [30,31] are employed to modulate the optimal coding rate, represented as R (opt)
C .

In this context, np and ns represent the number of punctured and shortened bits within

block length N, respectively. The equation for R (opt)
C is given by:

R(opt)
C =

N −M− ns

N − np − ns
. (4)

The theoretically secret key rate after QKD post-processing, denoted as rth, can be
expressed by rth = H(X|Z) H(X|Y). Within the QKD context, X and Y correspond to the
sifted key of Alice and Bob, respectively, and Z represents the information that Eve extracts
from the quantum channel. The conditional entropy H(X|Z) measures the uncertainty
associated with Eve’s knowledge about Alice’s sifted key. H(X|Y) represents the theoretical
information leakage during the information reconciliation phase, which depends on the
minimal number of syndrome bits min(|SX|), as expressed in Equation (1). However,
the number of syndrome bits, which corresponds to the Slepian–Wolf compression rate
RS, must exceed the quantity of theoretical information leakage H(X|Y). Therefore, the
evaluation of information reconciliation is determined by the ratio of practical information
leakage to the theoretical limit, as expressed in the following:

η IR =
RS

H(X|Y) =
M

N · H(q)
≥ 1, (5)

where ηIR denotes the efficiency metric of information reconciliation, and H(q) represents the
binary entropy function of QBER, which can be calculated as H(q)= qlog2 q (1 q)log2 (1 q).
Considering the lower bound of the Slepian–Wolf compression rate, represented as RS
= H(X|Y), it is noted that ηIR must be equal to one to achieve min(|SA|). Notably, the
maximum tolerable QBER to ensure information-theoretic security is 11% [32].

For the rate-adaptive reconciliation, the optimal coding rate for LDPC codes R(opt)
C

is modulated using puncturing and shortening techniques, as derived from Equation (4).
Therefore, the efficiency of rate-adaptive reconciliation can be determined as a function of
the a priori QBER estimation qest, as follows:

η IR =
1− R(opt)

C
H(qest)

=
M− np

(N − np − nS) · H(qest)
. (6)
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Furthermore, the secret key throughput (τSK) can be used to evaluate the perfor-
mance of QKD post-processing by considering the inherent parameters of a BB84 QKD
system [33–35]. It is defined as follows:

τSK = pexp · εBB84 · fclk · (1− FER) · rreal , (7)

where:

• pexp is the total detection rate for events where photons are transmitted from Alice
to Bob.

• εBB84 is the theoretical efficiency of the BB84 protocol.
• fclk is the operational clock rate of QKD devices.
• FER is the frame error rate, indicating the failure probability of decoding, which affects

the likelihood of non-identical reconciled keys for Alice and Bob.
• rreal is the actual secret key rate, depending on ηIR from Equation (6), which can be

defined as rreal = H(X|Z) ηIR· H(X|Y).

3. Rate-Adaptive LDPC Codes for Information Reconciliation: Integrating Syndrome-
Based Error Estimation and Subblock Confirmation

In this section, the proposed rate-adaptive LDPC codes are introduced for an informa-
tion reconciliation protocol and its integration with effective algorithms in channel error
estimation and confirmation steps. In the context of QKD post-processing, the proposed
scheme commences after the quantum information distribution and sifting steps of the
discrete-variable quantum key distribution (DV-QKD) protocol. At this stage, Alice and
Bob obtain correlated sifted keys of the same length, which then proceed to the subsequent
steps of the proposed syndrome-based error estimation, rate-adaptive reconciliation, and
polynomial-based hash subblock confirmation.

Firstly, the syndrome-based error estimation provides the value of the estimated QBER
by utilizing the maximum likelihood estimator, which is based on the syndrome encoding
of sifted keys between Alice and Bob using the maximum code rate R (max)

C of irregular
LDPC codes. The estimated QBER is subsequently used to adjust the optimal channel
coding rate R (opt)

C of irregular LDPC codes. The aim of this adjustment is to optimize R (opt)
C

by determining the number of puncturing bits np, and the number of shortening bits ns for
the rate-adaptive reconciliation scheme. After completing the information reconciliation
steps, the reconciled keys are segmented into subblocks. A specific polynomial-based
hash function is then randomly generated and subsequently employed for key identity
verification within each subblock. If certain subblocks fail verification, the keys from
these unverified subblocks are subjected to additional rounds of syndrome-based error
estimation and rate-adaptive reconciliation by using irregular LDPC codes with block
lengths that match the sizes of the subblocks. This process is repeated until all subblocks
achieve successful verification during the confirmation step, which effectively prevents
key discarding in QKD post-processing. Figure 3 illustrates the flowchart of the proposed
scheme, which includes syndrome-based error estimation, rate-adaptive reconciliation, and
polynomial-based hash subblock confirmation. This flowchart is described by the following
four main steps:
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(1) Initialization of LDPC code parameters: Alice and Bob mutually agree on two sets of
irregular LDPC codes with block lengths N and Nsb. Specifically, N corresponds to
the size of the sifted key in the primary round of each post-processing cycle, and Nsb
pertains to the size of the subblock in the additional round, employed only after a
failure of the confirmation step. Each of these two irregular LDPC codes includes a
set of mother code rates, as follows:

R =
{

R0
C1

, R0
C2

, . . . , R0
Cn

}
. (8)

These rates are fine-tuned using puncturing and shortening techniques to select the
appropriate code rate for the rate-adaptive information reconciliation step.

(2) Syndrome-based QBER estimation: This step utilizes the properties of a maximum
likelihood estimator based on the syndrome information of LDPC codes to estimate
QBER over the possible ranges of errors in a QKD system. The process consists of the
following subsequent steps:

(2.1) Syndrome encoding: Alice and Bob generate their syndrome information, de-
noted as SA and SB, by encoding their sifted keys K A

sifted and KB
sifted, respectively.

Both parties employ the syndrome encoding formula S(A / B) = K(A / B)
sifted ·HT

R(max)
C

,

where HT
R(max)

C

is the transpose of the parity-check matrix associated with the

maximum code rate R(max)
C with block length N. Then, Alice transmits SA to

Bob over the authenticated classical channel.
(2.2) Calculation of syndrome discrepancy: On Bob’s side, the syndrome discrep-

ancy, denoted as Sdis, is determined by calculating the difference between the
syndrome information SA and SB. Specifically, Sdis = SA ⊕ SB, where⊕ signifies
the bitwise XOR operation.

(2.3) QBER estimation: Bob computes the initial estimate of QBER (qest) using a
maximum likelihood estimator (MLE) based on Sdis [21–23]. The estimation is
determined as follows:

qest = argmax
q∈[0, qthreshold ]

L(q|Sdis), (9)

where L(q | Sdis) is the likelihood function for estimating the value of QBER q
based on Sdis, and qthreshold is the maximum QBER threshold that ensures the
security of the QKD system. Within this context, each ith syndrome bit is prob-
abilistically determined by a Bernoulli distribution. The explicit expression for
L(q | Sdis) is given as follows:

L(q|Sdis) =
m

∏
i, j= 1

{
p(q, d(i)c ) if Sdis[i] = 1

1− p(q, d(j)
c ) if Sdis[j] = 0

, (10)

where Pr(Sdis[i] = 1) = p(q, d(i)c ), Pr(Sdis[j] = 0) = 1 − p(q, d(j)
c ), and

d (i)
c denotes the number of 1s in the ith row of the parity-check matrix H for

irregular LDPC codes. Specifically, when the syndrome bits originate from a
mother code with its maximum rate R (max)

C , the likelihood function L(q | Sdis)
can be reformulated as follows:

L(q|Sdis) =
m

∏
i=1

(
1− Sdis[i] + (2 · Sdis[i]− 1) · p(q, d(i)c )

)
, (11)
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where the function p
(

q, d (i)
c

)
, which signifies the probability that Sdis[i] = 1, is

defined as:

p(q, d(i)c ) =
d(i)c

∑
k = 1

k mod 2 = 1

(
d(i)c
k

)
qk(1− q)d(i)c − k. (12)

Furthermore, the syndrome bits are generated from the parity-check matrix,
which is affected by the puncturing and shortening positions, denoted as p
and s, respectively. For accurate QBER estimation, it is essential to use only
syndrome bits that reflect QBER influences, excluding those adjusted by p and
s at the position Sdis[i]. In this context, ωi denotes the set of positions with en-
tries of 1 in the ith row of the parity-check matrix H, and essentially identifies
the position Sdis [ i ]. To mitigate the effects of punctured and shortening, it is
necessary to ensure that ωi ∩ p = ∅. The count of bit positions in the ith row of
matrix H corresponding to ωi is then defined as d (i)

C = dC−
∣∣ωi ∩ s

∣∣ [22]. Conse-
quently, the likelihood function L(q | Sdis) in Equation (11) can be reformulated
as follows:

L(q|Sdis) =
m

∏
i = 1

ωi ∩ p = ∅

(
1− Sdis[i] + (2 · Sdis[i]− 1) · p(q, d(i)c )

)
. (13)

In the syndrome-based QBER estimation, the source of the syndrome informa-
tion determines the selected likelihood function. If the syndrome information
is derived from the original matrix H of the mother code R 0

C , the likelihood
function L(q | Sdis), as given in Equation (11), is employed. Conversely, when
the syndrome information is generated based on the matrix H that incorporates
both puncturing and shortening, the likelihood function L(q | Sdis) specified in
Equation (13) is considered as the appropriate approach for syndrome-based
QBER estimation. After this step, Bob obtains the value of the estimated QBER
(qest). This value is then communicated to Alice and is subsequently used to
determine the optimal coding rate R (opt)

C in the information reconciliation step.
If qest exceeds the maximum tolerable QBER of 11% [32], the system is required
to abort, thereby preventing the use of these sifted keys in subsequent steps to
ensure security.

(3) Rate-adaptive information reconciliation: In this step, Alice and Bob employ the

value of the estimated QBER (qest) to optimize the initial coding rate (R (opt)
C ). This

optimization requires setting up the baseline efficiency metric for information recon-
ciliation (η(base)

IR ), which is used to calculate the number of puncturing bits (np) and
shortening bits (ns) based on qest, as defined in Equation (6). This metric ensures
that Alice can generate sufficient syndrome information, allowing Bob to decode and
correct errors within his sifted key. It is essential to note that η

(base)
IR is obtained from

the performance evaluation when deploying the specific irregular LDPC codes in the
experimental settings. This process comprises the following subsequent steps:

(3.1) Code rate optimization: Alice and Bob collaboratively select a set of mother
code ratesR, associated with the block length N. They also agree on the base-
line efficiency metric for information reconciliation (η(base)

IR ), which is employed

to calculate the optimal coding rate (R(opt)
C ) based on the entropy function of

the estimated QBER (H(qest)). In this scenario, the mother code rate ( R 0
C
)

is
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selected fromR such that its value is closest to the calculated R (opt)
C . According

to Equation (6), R (opt)
C is derived using:

R(opt)
C = 1− [η IR · H(qest)]. (14)

To identify the desired R 0
C from the setR, the selection criteria is determined by

R0
C = argmin

R∈R

∣∣∣R− R(opt)
C

∣∣∣, (15)

where R 0
C = N−M

N . After selection, R 0
C is then adapted to attain the value of

R (opt)
C by adjusting the parameters of np and ns, given as Equation (4). Impor-

tantly, the relationship between the puncturing and shortening parameters is
defined by nd = np + ns, where nd is the total number of punctured and short-
ened bits used to determine the values for np and ns. Consequently, both np

and ns can be derived from Equation (6) by considering η
(base)
IR and H(qest), as

np =
⌈

M− [(N − nd) · η
(base)
IR · H(qest)]

⌉
; ns = nd − np, (16)

where d. . .e is the ceiling function rounding np up to the nearest integer, and
both np and ns must be the positive value. If either np or ns is calculated to be
negative, the selection of the mother code rate is decreased to the next available
R 0

C in the setR. The values of np and ns are then recalculated using this newly
selected R 0

C according to Equation (16), ensuring both np and ns are positive.
After successfully determining np and ns, specific positions for puncturing (p)
and shortening (s) are identified and used to modify the original parity-check
matrix H of the selected R 0

C . The modified matrix (Hnp,s ) is then employed in
subsequent syndrome encoding and decoding processes.

(3.2) Syndrome encoding: Alice and Bob employ the modified matrix (Hnp,s ) of

R (opt)
C to encode their sifted keys K A

sifted and KB
sifted, respectively. Both parties

apply the syndrome encoding S(A / B) = K(A / B)
sifted ·Hnp,s to produce the appro-

priate amount of syndrome information based on qest. Subsequently, Alice
sends SA to Bob through the authenticated classical channel.

(3.3) Syndrome decoding and verification: In the syndrome decoding step, Bob
utilizes the syndrome information SA received from Alice and his syndrome
SB to compute the discrepancy syndrome Sdis = SA ⊕ SB. The decoding pro-
cess is performed by the belief propagation algorithm, which employs the
log-likelihood ratios to identify the error pattern ê within the sifted key KB

sifted.
This algorithm operates with the modified parity-check matrix (Hnp,s ), which
corresponds to the specific positions of puncturing p and shortening s. Within
this context, the value of QBER estimation (qest) is utilized to model the trans-
mission errors as the crossover probability in a binary symmetric channel
(BSC). The simplified decoding function for determining the error pattern ê is
expressed as:

ê = Dec(Hnp, s , KB
si f ted, Sdis, qest). (17)

Then, Bob uses ê to update KB
sifted, resulting in KB

correct = KB
sifted ⊕ ê. To verify the

success of syndrome decoding, the proposed scheme introduces a step that re-
checks the syndrome discrepancy. By employing the same parity-check matrix
Hnp,s , Bob computes the new syndrome S (new)

B and then calculates the new

syndrome discrepancy with SA, expressed as S (new)
dis = SA ⊕ S(new)

B . If S (new)
dis =

{0}, it confirms successful decoding between Alice and Bob. Otherwise, a
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decoding failure feedback is announced, and the protocol returns to step 3.1 to
adjust the new code rate (R (new)

C ). In this case, the initial metric for information

reconciliation is incremented by the factor δ, expressed as η
(updated)
IR = η

(base)
IR + δ.

This updated η
(updated)
IR is subsequently employed to determine the new values

for np and ns with respect to R (new)
C . The adjusted rate R (new)

C is then applied
in the re-processing of syndrome encoding and decoding. After the successful
decoding, both Alice and Bob exclude the bit positions that are affected by
puncturing and shortening, as represented by p ∪ s.

(4) Polynomial-based hash subblock confirmation: In the confirmation step, a
polynomial-based hash function [26], a form of universal hashing, is employed to
verify the equality of Alice and Bob’s reconciled keys KA

rec and KB
rec. To mitigate the

risk of discarding the entire key due to a confirmation failure, both parties adopt a
subblock verification approach by partitioning the reconciled keys into subblocks of
size Nsb. Subsequently, a polynomial hash value is generated for each subblock to
verify its integrity. This process is divided into the following steps:

(4.1) Dividing the reconciled keys into subblocks: Alice and Bob update the sizes
of their reconciled keys Nrec and then divide KA

rec and KB
rec into subblocks of

size Nsb. Each subblock is referred to as the ith subblock, where i ranges from 1
to m, and m = N/ Nsb. The partition of the reconciled keys in each subblock
of Alice and Bob (SB(A/B)

i ) is defined as:

SB(A/B)
i =

{
k(A/B)
(i−1) × Nsb+1, k(A/B)

(i−1) × Nsb+2, . . . , k(A/B)
i × Nsb

}
. (18)

Afterward, Alice and Bob have corresponding subblocks of their reconciled
keys, denoted as SB A

i and SB B
i , respectively.

(4.2) Generation of polynomial hash function and hash values calculation: To
generate the polynomial hash function, Alice first defines the hash value length
( lhash) and then randomly selects the parameters of the polynomial base α and
the prime modulus ρ. Specifically, α is chosen from the set α ∈ {2, 3, . . ., ρ−2},
and ρ is a prime number constrained by ρ<2lhash . Subsequently, the polynomial
hash function is applied to calculate the hash values of the reconciled keys in
each subblock SB A

i . This can be mathematically represented as

h PolyR(SBA
i ) =

(
kA

0 + kA
1 · α + kA

2 · α2 + · · · + kA
Nsb−1 · αNsb−1

)
mod ρ, (19)

Following this calculation, Alice transmits the resulting hash values for each
subblock hPolyR

(
SB A

i ) to Bob. This transmission corresponds to the parameters
of the polynomial hash function α and ρ, which were previously chosen by
Alice.

(4.3) Hash verification and result confirmation: On Bob’s side, he uses the re-
ceived parameters α and ρ to generate the polynomial hash function and
computes the corresponding hash values for his reconciled keys in each sub-
block hPolyR (SB B

i ), as defined in Equation (19). To verify the identical keys,
Bob compares hPolyR (SB B

i ) with the received hPolyR (SB A
i ) for each subblock.

This step is considered successfully completed if the hash values match for all
subblocks from 1 to m, which is expressed as:

∀i ∈ {1 , 2 , . . . , m} : hPolyR(SBA
i ) = hPolyR(SBB

i ). (20)

Otherwise, Bob sends feedback to Alice indicating the confirmation failure
and identifying the mismatched ith subblock. Then, only the reconciled keys
from the mismatched subblocks are reprocessed, and the procedure returns to
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the steps of syndrome-based error estimation and rate-adaptive reconciliation
in the additional round. During this round, specific irregular LDPC codes
with block lengths Nsb are employed to estimate QBER, optimize the code
rate, and correct errors using the same procedure. The process continues
until the subblocks are successfully verified using polynomial-based hashing.
Ultimately, Alice and Bob obtain the identical keys, denoted as KA

iden and KB
iden,

respectively.

4. Simulation and Results

In this section, the simulation approach of this work is presented to evaluate the
efficiency of the three main schemes: syndrome-based error estimation, rate-adaptive
information reconciliation, and polynomial-based hash subblock confirmation. All the
initial sifted keys used in this experiment were generated by a pseudo-random number
generator (PRNG) based on the observed error rates in a QKD system. The parameters
employed for the proposed schemes in this approach are presented in Table 1.

Table 1. Parameter setup for the experimental approach used in the proposed schemes: syndrome-
based error estimation, rate-adaptive information reconciliation, and subblock confirmation.

Procedure Step Parameter Value

Syndrome-based
error estimation

Sifted key size
(primary/additional round) [bit] 64,800/16,200

Maximum code rate (R (max)
C )

9/10 for block length N
8/9 for block length Nsb

Maximum QBER threshold (qthreshold) 0.25

Rate-adaptive
information
reconciliation

Block length of LDPC codes:
N for primary round/
Nsb for additional round [bit]

N = 64,800/Nsb = 16,200

Set of mother code rates (R)

For block length N:
{9/10, 8/9, 154/180, 5/6, 4/5, 7/9,
3/4, 22/30, 128/180, 25/36, 2/3,
116/180, 28/45, 3/5, 26/45, 11/20,
96/180, 1/2} [36,37]

For block length Nsb:
{8/9, 5/6, 4/5, 3/4, 32/45, 2/3, 3/5,
26/45, 8/15, 1/2} [36,37]

Baseline metric (η(base)
IR ) 1.08

Total number of punctured and
shortened bits (nd) [bit]

3200 for block length N
1200 for block length Nsb

Maximum number of decoding
iterations [iteration] 100

Increment factor for updating
the efficiency metric (δ) 0.2

Subblock
confirmation

Subblock size (Nsb ) [bit] 16,200

Number of subblocks (m) 4

Hash value length ( lhash) [bit /byte] 64/8

First, the performance of the syndrome-based QBER estimation is presented to demon-
strate its efficiency in channel error estimation. In this step, the syndrome informa-
tion from both legitimate parties is derived using the maximum code rate R (max)

C . This
rate signifies the highest value within the set of mother code rates R. In the proposed
scheme, the irregular LDPC codes with two specific block lengths were implemented for
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syndrome-based QBER estimation. Specifically, the primary round used the block length of
N = 64,800 bits with R (max)

C = 9/10, while the additional rounds employed the block length

of Nsb = 16,200 bits with R (max)
C = 8/9. Notably, the syndrome information was generated

from the sifted keys of both Alice and Bob using the original parity-check H of irregular
LDPC codes. This syndrome encoding was operated without any adjustments to the code
rate, effectively bypassing the puncturing and shortening bits. Consequently, the value of
the quantum bit error rate (QBER) was estimated by the maximum-likelihood estimator, as
defined in Equation (11). Based on this parameter setup, Figure 4 presents the comparison
results of the proposed syndrome-based QBER estimation and the traditional key sampling
method with 5% and 10% sampling rates of the sifted keys for QBER estimation. These
numerical results are depicted in box plots, which are derived from 2000 iterations, with the
observed QBER set at four distinct values: 2%, 4%, 7%, and 10%. The specific values from
these box plots are elaborated in Table 2, which details the performance and underlying
statistical distribution of each QBER estimation method.

Table 2. Numerical results of random key sampling with 5% and 10% sampling rates and the syndrome

estimation using N = 64,800 bits with R(max)
C = 9/10 and Nsb = 16,200 bits with R(max)

C = 8/9. The results
are presented for the observed QBER values: (a) 2%, (b) 4%, (c) 7%, and (d) 10%.

QBER Estimation Methods 5% Random
Key Sampling

10% Random Key
Sampling

Syndrome est.
(N = 64,800

bits/R (max)
C = 9/10)

Syndrome est.
(Nsb = 16,200

Bits/R (max)
C = 8/9)

(a) Observed QBER: 2%

Mean accuracy (%) 99.8092 99.8685 99.9545 99.9035
Mean estimated QBER (qest) 0.019962 0.020019 0.019994 0.020039
Mean squared error (MSE) 5.7996 × 10−6 2.7454 × 10−6 3.2805 × 10−7 1.4677 × 10−6

Median 0.020062 0.020062 0.019988 0.019978
Interquartile range (IQR) 0.003395 0.002315 0.001104 0.002225
Mean number of outliers 0.0090 0.0070 0.0065 0.0085

(b) Observed QBER: 4%

Mean accuracy (%) 99.7352 99.8195 99.9220 99.8443
Mean estimated QBER (qest) 0.040069 0.040069 0.039987 0.040081
Mean squared error (MSE) 1.1270 × 10−5 5.1504 × 10−6 9.6916 × 10−7 3.8172 × 10−6

Median 0.040123 0.039969 0.039984 0.040027
Interquartile range (IQR) 0.004630 0.003241 0.001599 0.003413
Mean number of outliers 0.0115 0.0085 0.0120 0.0050

(c) Observed QBER: 7%

Mean accuracy (%) 99.6501 99.7682 99.8574 99.7451
Mean estimated QBER (qest) 0.070037 0.070037 0.070031 0.070105
Mean squared error (MSE) 1.9198 × 10−5 8.4687 × 10−6 3.1647 × 10−6 1.0266 × 10−5

Median 0.070062 0.070062 0.069934 0.070078
Interquartile range (IQR) 0.006173 0.003858 0.002734 0.005078
Mean number of outliers 0.0060 0.0125 0.0080 0.0060

(d) Observed QBER: 10%

Mean accuracy (%) 99.5781 99.7186 99.7808 99.6005
Mean estimated QBER (qest) 0.100013 0.099960 0.100085 0.100068
Mean squared error (MSE) 2.7643 × 10−5 1.2399 × 10−5 7.6506 × 10−6 2.4914 × 10−5

Median 0.100000 0.100000 0.100027 0.099976
Interquartile range (IQR) 0.007407 0.005093 0.003965 0.007457
Mean number of outliers 0.0070 0.0070 0.0120 0.0050
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Figure 4. Comparison of QBER estimation methods: random key sampling with 5% and 10% sampling
rates from the sifted keys and the syndrome estimation using a block length of N = 64,800 bits with

R(max)
C = 9/10 and Nsb = 16,200 bits with R(max)

C = 8/9. These results are presented using box plots at
four distinct observed QBER values: (a) 2%, (b) 4%, (c) 7%, and (d) 10%. For each observed QBER
value, the results of all QBER estimation methods were derived from 2000 iterations.

In Table 2, the mean squared error (MSE) for all observed QBER values (qobs) are
calculated using:

Mean accuracy (%) =
1
n

n

∑
i=1

[(1−
∣∣qest i − qobs i

∣∣) × 100], (21)

and

Mean squared error (MSE) =
1
n

n

∑
i=1

( qest i − qobs i
) 2, (22)

where n denotes the number of iterations.
Based on the performance and statistical metrics presented in Figure 4 and Table 2, the

proposed syndrome-based QBER estimation with N = 64,800 bits demonstrates the highest
accuracy and the smallest mean squared error (MSE) for all observed QBER values (qobs).
Additionally, it exhibits the smallest interquartile range (IQR), with the outlier points closer
to the mean value, outperforming the traditional key sampling method. This indicates
its ability to handle consistent data distributions, ensuring a compact spread around the
median of the estimated QBER results.

In a practical QKD system, even in the absence of an eavesdropper (Eve) on the
quantum channel, the observed QBER after quantum information distribution is not a
consistent value. In this case, the error estimation method must achieve high accuracy to
ensure reliable operations, even with varying observed error rates in each QKD cycle.

Figure 5 and Table 3 present the corresponding performance of various QBER estima-
tion methods by considering the variability of a QKD system over three observed QBER
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ranges—low (1.00–3.50%), middle (3.51–7.00%), and high (7.01–11.00%) error
rates—averaged over 2000 iterations. The proposed syndrome-based QBER estimation
with a block length of N = 64,800 bits consistently performs better than the random key
sampling methods over the observed QBER ranges from low to high error rates. As illus-
trated in Figure 5 and Table 3, this approach achieves the highest mean accuracy (%) and
the lowest variability of estimated QBER, as evidenced by its minimal standard deviation
(SD). Moreover, its low mean squared error (MSE) further indicates a superior correspon-
dence between the observed and estimated QBER values. While traditional random key
sampling serves as a practical and straightforward method for channel error estimation, it
must discard a portion of the sifted key that is disclosed for QBER estimation, depending
on the sampling rate. In contrast, the syndrome-based QBER estimation method avoids
discarding sample keys, thereby preserving the entire size of the sifted keys after channel
error estimation for inputting to the subsequent information reconciliation step. However,
the amount of syndrome information revealed during the syndrome-based estimation
constitutes a portion of the information leakages. This portion is also considered a subset
of the syndrome information used in the proposed rate-adaptive reconciliation. These
leakages are subsequently mitigated during the privacy amplification step.

Table 3. Simulation results of random key sampling with 5% and 10% rates, compared with the syndrome

estimation using N = 64,800 bits with R(max)
C = 9/10 and Nsb = 16,200 bits with R(max)

C = 8/9 in three
observed QBER ranges: (a) low error range of 1.00–3.50%, (b) moderate error range of 3.51–7.00%,
and (c) high error range of 7.01–11.00%.

QBER Estimation Methods 5% Random
Key Sampling

10% Random Key
Sampling

Syndrome est.
(N = 64,800/

R (max)
C = 9/10)

Syndrome est.
(Nsb =16,200/
R (max)

C = 8/9)

(a) Low error range: observed QBER 1.00–3.50%

Mean accuracy (%) 99.7985 99.8618 99.9498 99.9006
Standard deviation (SD) 0.1589 0.1050 0.0417 0.0803
Lower error bar (mean—SD) (%) 99.6396 99.7568 99.9081 99.8203
Upper error bar (mean + SD) (%) 99.9574 99.9668 99.9915 99.9809
Mean squared error (MSE) 6.5846 × 10−6 3.0130 × 10−6 4.2539 × 10−7 1.6325 × 10−6

(b) Middle error range: observed QBER 3.51–7.00%

Mean accuracy (%) 99.6941 99.7939 99.8984 99.8025
Standard deviation (SD) 0.2342 0.1609 0.0807 0.1545
Lower error bar (mean—SD) (%) 99.4599 99.6330 99.8177 99.6480
Upper error bar (mean + SD) (%) 99.9283 99.9548 99.9791 99.9570
Mean squared error (MSE) 1.4840 × 10−5 6.8321 × 10−6 1.6833 × 10−6 6.2887 × 10−6

(c) High error range: observed QBER 7.01–11.00%

Mean accuracy (%) 99.6168 99.7283 99.8092 99.6556
Standard deviation (SD) 0.2935 0.2003 0.1490 0.2698
Lower error bar (mean—SD) (%) 99.3233 99.5280 99.6602 99.3858
Upper error bar (mean + SD) (%) 99.9103 99.9286 99.9582 99.9254
Mean squared error (MSE) 2.3293 × 10−5 1.1395 × 10−5 5.8601 × 10−6 1.9135 × 10−5

Sifted key size after channel error estimation (bits)

N = 64,800/Nsb = 16,200 bits
(100% sifted key)

61,560/15,390
(95%)

58,320/14,580
(90%)

64,800
(100%)

16,200
(100%)
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Figure 5. Comparison of various QBER estimation methods in terms of the mean accuracy (%) and
the mean squared error (MSE) of estimated QBER (qest) from 2000 iterations. The comparison of QBER
estimation methods encompasses random key sampling with 5% and 10% sampling rates, as well as
the syndrome estimation with a block length of N = 64,800 bits and Nsb = 16,200 bits. These results
are obtained from simulations over three observed QBER ranges: (a) low error rates of 1.00–3.50%,
(b) middle error rates of 3.51–7.00%, and (c) high error rates of 7.01–11%.

Although the syndrome-based QBER estimation using the subblock length of
Nsb = 16,200 bits does not outperform the 10% random key estimation in terms of mean
accuracy and MSE within the high error range of 7.01–11.00%, as shown in Figure 5 and
Table 3, it still achieves notable efficacy with a mean accuracy of 99.6556% and relatively low
MSE of 1.9135 × 10−5. These results affirm its capability for accurate error estimation in the
variability of observed error rates. Crucially, the maximum QBER threshold qthreshold for the
syndrome-based estimation was set at 0.25. This threshold corresponds to the maximum
QBER typically encountered during an intercept-and-resend attack in the BB84 QKD pro-
tocol. Additionally, this experimental setting ensures that the estimated QBER maintains
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an accuracy above 95%. Specifically, at the observed QBER of 0.25, the syndrome-based
estimation with N = 64,800 and Nsb = 16,200 bits achieves mean accuracies of 95.1979%
and 95.1631%, respectively. However, if the estimated value of QBER exceeds 11% [32]
or cannot be determined within qthreshold, the set of sifted keys from this post-processing
cycle must be aborted to ensure information-theoretic security in the QKD system. For
implementation, the proposed syndrome-based estimation, employing N = 64,800 bits and
R (max)

C = 9/10, is appropriate for the primary round. Meanwhile, Nsb = 16,200 bits with

R (max)
C = 8/9 can be utilized in the occasional additional rounds.

To analyze the efficiency of the proposed rate-adaptive reconciliation integrated with
syndrome-based QBER estimation and subblock confirmation, the number of information
leakages during the information reconciliation step (Lrec) is considered to evaluate the
efficiency metric of information reconciliation (ηIR). According to Equation (6), ηIR can be
reformulated in terms of Lrec, expressed as follows:

ηIR =
Lrec

H(qest) · N
, (23)

where N represents the sifted key size. For the proposed scheme, the number of information
leakages is quantified by the total amount of syndrome information that Alice transmits to
Bob during the syndrome-based estimation and rate-adaptive reconciliation steps, which
consists of two parts. Firstly, it includes the syndrome information derived from the
primary round, which handles the full size of the sifted key at N = 64,800 bits for the
LDPC’s block length. The second part consists of the syndrome information generated
during the additional rounds, which were conducted specifically in response to failures
in the subblock confirmation step. Each of these unsuccessful subblocks was processed
using the specific LDPC codes with block lengths of Nsb = 16,200 bits for syndrome-based
estimation and rate-adaptive reconciliation. Therefore, the information leakages of the
proposed scheme (Lrec) can be formulated by:

Lrec =

[
M

R(max)
C

+ (R(max)
C − R(opt)

C ) · N
]

+
m f ail

∑
i=1

[
M

sbi , R(max)
C

+ (R(max)
C, sbi

− R(opt)
C, sbi

) · Nsb

]
. (24)

In Equation (24),M
R(max)

C
represents the number of check nodes in the parity-check

matrix H
R(max)

C
associated with the maximum code rate R (max)

C for syndrome-based estima-

tion. Additionally, R (opt)
C denotes the calculated optimal coding rate based on the number

of puncturing bits np and shortening bits ns for rate-adaptive reconciliation used in the
primary round, as detailed in Equations (14)–(16). Meanwhile, the unverified subblocks
from i to mfai are processed in the additional rounds. In this context, M

sbi , R(max)
C

denotes the

number of check nodes in H
R(max)

C
associated with subblock lengths Nsb of R (max)

C, sbi
, which is

used for syndrome-based estimation; the calculated optimal coding rate R (opt)
C, sbi

is used for
rate-adaptive reconciliation. In the case of a successful confirmation within the primary
round, Lrec relies exclusively on the syndrome information obtained from the primary
round. Consequently, additional rounds become unnecessary, and mfail = 0.

In Figure 6, the performance of the proposed rate-adaptive reconciliation, integrated
with syndrome-based QBER estimation and subblock confirmation, is compared against
the existing methods. These methods include Cascade with a frame length of 104 bits [12],
blind reconciliation using LDPC codes with a block length of 104 bits [18], and symmetric
blind reconciliation with LDPC block lengths of 4 × 103 bits [20]. The comparisons are
conducted based on three important evaluation parameters: the number of information
leakages Lrec (%), the efficiency metric of information reconciliation ηIR, and the number of
communication rounds required during the information reconciliation step.
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Figure 6. Performance comparison of (a) the number of information leakages (Lrec), represented as
a percentage; (b) the efficiency metric of information reconciliation ( ηIR); and (c) the number of
communication rounds during the information reconciliation step. In these simulations, the proposed
rate-adaptive reconciliation with syndrome-based QBER estimation and subblock confirmation is
evaluated and compared to other methods, including Cascade, blind, and symmetric blind. The
simulation results are obtained from an average of 2000 iterations for every observed QBER point.

For every observed QBER value, the proposed scheme generates the total amount
of syndrome information in both the primary and additional rounds, leading to minimal
practical information leakages Lrec during the information reconciliation step. As depicted
in Figure 6a, Lrec of the proposed scheme closely approaches the theoretical limit. These
information leakages influence the efficiency metric of information reconciliation (ηIR),
as detailed in Equation (23). The proposed scheme also achieves an efficiency metric
ηIR closer to the perfect information reconciliation (ηIR = 1) than the other methods, as
illustrated in Figure 6b. Due to the superior accuracy and minimal variability in QBER
estimation with the syndrome-based method, the proposed scheme effectively determines
and adapts the optimal code rate R (opt)

C . Consequently, it requires fewer communication
rounds during both the syndrome-based estimation and the rate-adaptive reconciliation
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processes, compared to both blind and symmetric blind reconciliation methods, as depicted
in Figure 6c. However, the interactive reconciliation in both blind and symmetric blind
methods, which can operate without a priori QBER estimation, typically require more
communication rounds to ensure successful decoding. In the case of Cascade, an average
of more than 40 communication rounds are required for a sifted key frame of 104 bits [12]
to reconcile the error bits using the dichotomic search algorithm.

Figure 7 presents the success rate and frame error rate (FER) of the proposed scheme,
based on the simulation results of 2000 iterations for each observed QBER point. In the
primary round (which adopts LDPC codes with block lengths of 64,800 bits), the rate-
adaptive reconciliation achieves an average success rate of approximately 99.93% and
exhibits an average FER of 7.25 × 10–4 for the entire observed QBER range. However,
relying solely on the primary round of the rate-adaptive reconciliation does not guarantee
the integrity of the identical key between the two legitimate parties. Consequently, the
proposed scheme integrated rate-adaptive reconciliation with the subblock confirmation,
where the reconciled key from the primary round was divided into subblocks of size
Nsb = 16,200 bits. Subsequently, polynomial-based hashing was employed to detect unver-

ified subblocks, which were then processed in the additional rounds using the syndrome-
based estimation and rate-adaptive reconciliation with LDPC codes of block length Nsb.
After the completion of the primary and additional rounds, the simulation results of the pro-
posed scheme demonstrate a 100% success rate with an FER of zero for the 2000 iterations,
as illustrated in Figure 7. These results guarantee a 100% convergence probability when the
proposed rate-adaptive reconciliation is integrated with syndrome-based error estimation
and subblock confirmation within this unified procedure. Given this setup, the bound on
the collision probability (PCollision) for subblock confirmation with a hash value length lhash
of 64 bits and a subblock Nsb of 16,200 bits is PCollision ≤ 7.11 × 10−12 per subblock.
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Figure 7. Comparison of (a) the success rate (%) and (b) the frame error rate (FER) between the
proposed rate-adaptive reconciliation performed solely in the primary round, and its integration
with subblock confirmation through an iterative process in the additional rounds. These simulation
results are obtained from 2000 iterations for every observed QBER value.

In Figure 8, the performance of the proposed rate-adaptive reconciliation with
syndrome-based QBER estimation and subblock confirmation is presented by simulat-
ing (a) the secret key rate as a function of the quantum bit error rate (QBER) and (b) the
secret key throughput as a function of the distance (km) over the quantum channel for
a QKD system operating at a 1 GHz clock rate. These results incorporate the inherent
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properties of the single photon source and detection, as well as the optical fiber losses of
the quantum channel for a BB84 QKD protocol, using the parameters listed in Table 4. The
proposed scheme achieves the secret key rate and throughput, approaching the theoretical
limit of the perfect information reconciliation, where ηIR = 1 and FER = 0. It outperforms
other methods, such as Cascade, blind reconciliation, and symmetric blind reconciliation.
The curve representing perfect information reconciliation, as depicted in Figure 8b, indi-
cates a drop in secret key throughput to 1 Kbps at a transmission distance of approximately
49.85 km. In comparison, the curve for the proposed rate-adaptive reconciliation with
integrated syndrome-based estimation and subblock confirmation achieves a throughput of
1 Kbps at a distance of approximately 49.10 km, closely approaching the ideal perfor-
mance of perfect information reconciliation. Meanwhile, symmetric blind reconciliation,
Cascade, and blind reconciliation reach their maximum distances for a throughput of
1 Kbps at approximately 48.70 km, 48.50 km, and 47.15 km, respectively. From these perfor-
mance evaluations, the unified approach of the proposed scheme significantly improves
the achievability of higher secret key throughput over longer transmission distances.
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Figure 8. Comparison of (a) the secret key rate as a function of the quantum bit error rate (QBER)
and (b) the secret key throughput as a function of the distance over the quantum channel (km) with a
QKD system operating at 1 GHz clock rate, utilizing the parameters of a BB84 QKD system as defined
in Table 4. In these simulations, the proposed rate-adaptive reconciliation with syndrome-based
estimation and subblock confirmation is evaluated and compared with Cascade, blind, and symmetric
blind reconciliation.
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Table 4. Parameters of a BB84 QKD setup based on the inherent properties of the single photon
source and detection, as well as the optical fiber losses of the quantum channel.

Parameter Efficiency of BB84
Protocol (εBB84)

Efficiency of
Single-Photon

Detector (εdetect)

Dark Count Probability
of Single-Photon
Detector (pdark)

Optical Fiber
Losses (dB/km)

Value 0.5 0.1 10−5 0.2

5. Conclusions and Discussions

This work investigates an effective approach to QKD post-processing algorithms by
focusing on rate-adaptive reconciliation and its integration with syndrome-based error
estimation and polynomial-based hash subblock confirmation. By utilizing syndrome-
based estimation, this approach significantly improves the accuracy and minimizes the
variability of the estimated QBER value. It enables rate-adaptive reconciliation to effectively
determine the optimal code rate, consequently reducing the number of communication
rounds in practice. Simulation results demonstrate that this unified approach requires
fewer information leakages, improves the reconciliation efficiency, and ensures the integrity
of identical keys. These findings clearly indicate that the proposed approach can greatly
enhance the efficiency of classical post-processing, achieving higher secret key throughput
over longer transmission distances.

In QKD post-processing, the amount of information leakage during information recon-
ciliation significantly influences the efficiency of classical post-processing. These leakages
are subsequently eliminated in the privacy amplification, which directly reduces the final
secret key size, according to the information-theoretic security principles. Efficient informa-
tion reconciliation based on irregular LDPC codes with large block lengths of up to 105 bits
offers superior error-correction capability. This allows for setting the baseline efficiency
metric close to the theoretical limit, thereby minimizing the generation of syndrome in-
formation, which constitutes the information leakage in practice. Furthermore, the use
of an extensive amount of punctured and shortened bits can degrade the error-correction
capability of the original code design. To address this issue, this work employs the standard
LDPC codes from [36,37] for a set of original code rates, arranged in a sequence from a
high to low rate, with each rate closely spaced. This approach minimized the total number
of puncturing and shortening bits, enabling efficient adaptation of the original code rate
while maintaining robust error-correction capability for realizing the optimal efficiency of
classical post-processing.

In future work, the unified approach of the proposed schemes will be analyzed within
the context of finite key security to comprehensively assess the overall security parameters.
Additionally, this approach will be applied to practical QKD systems, enabling higher-speed
QKD applications.
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