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Abstract: In this investigation, a synthesis of Convolutional Neural Networks (CNNs) and Bayesian
inference is presented, leading to a novel approach to the problem of Multiple Hypothesis Testing
(MHT). Diverging from traditional paradigms, this study introduces a sequence-based uncalibrated
Bayes factor approach to test many hypotheses using the same family of sampling parametric models.
A two-step methodology is employed: initially, a learning phase is conducted utilizing simulated
datasets encompassing a wide spectrum of null and alternative hypotheses, followed by a transfer
phase applying this fitted model to real-world experimental sequences. The outcome is a CNN
model capable of navigating the complex domain of MHT with improved precision over traditional
methods, also demonstrating robustness under varying conditions, including the number of true
nulls and dependencies between tests. Although indications of empirical evaluations are presented
and show that the methodology will prove useful, more work is required to provide a full evaluation
from a theoretical perspective. The potential of this innovative approach is further illustrated within
the critical domain of genomics. Although formal proof of the consistency of the model remains
elusive due to the inherent complexity of the algorithms, this paper also provides some theoretical
insights and advocates for continued exploration of this methodology.

Keywords: bayes factors; deep learning; improper priors; objective bayesian inference; random
sequences; RNA-seq experiments

MSC: 62F15

1. Introduction

Multiple hypothesis testing (MHT) is a collection of statistical methods that are used to
perform more than one statistical test simultaneously. Specifically, if there are m statistical
tests to be performed, these methods aim to categorize these m tests into two groups: m0
tests where the null hypothesis is true, indicated as H0, and m1 = m −m0 tests where the al-
ternative hypothesis is true, indicated as H1. This categorization is conducted in a way that
controls the maximum allowable value of some error. MHT methods are particularly useful
in applied statistics because they can handle large datasets, such as Big Data, where the real
problem at hand often involves testing multiple scientific hypotheses simultaneously. One
of the pioneering applications for MHT methods is in Genome-Wide Association Studies
(GWASs) using RNA-seq technology. In this context, m represents the number of gene
abundance tests for an Expression Sequence Tag (EST) in a given biological sample. These
abundance counts are then compared across two different biological populations to test m
hypotheses about comparisons and identify genes associated with a specific characteristic
or phenotype related to the two biological populations.

Because it is not feasible to model all tests together using a single comprehensive
sampling model, each test (each gene) is modeled independently. These individual models
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are combined in an MHT procedure. The MHT procedure takes the marginal evidence
from each test as input and outputs the joint evidence in all tests for a given threshold t
in all tests which leads to a separation between tests supposed to be under H0 from those
under H1. The primary goal of using an MHT procedure is to control certain types of
errors. On the one side those related to the number of errors in declaring tests as coming
from H1 when they are actually from H0: these are the False Positive Rate (FPR(t)) the
proportion of false rejections among all rejections and the False Discovery Rate (FDR),
which is the expectation over the random sample of FPR(t), it is the proportion of those
rejections that should not have been rejected; while on the other side, we wish to control
the proportion of missed rejections (declaring tests as coming from the H0 when they are
from H1) overall rejection, the False Nonrejection Proportion (FNP(t)) and its expectation
False Non-rejection Rate (FNR). An MHT procedure aims to generate a Receiver Operating
Characteristic (ROC) curve: 1 − FPR(t) versus FPR(t) so that the Area Under the Curve
(AUC) approaches 1. This happens when FPR(t) → 0 for all thresholds t and considering
the expectation referred to above, this is equivalent to having a FDR → 0. In this sense,
we consider equivalent controlling FPR and FDR, although they are not exactly the same.
This occurs, for example, for the well-known Benjamini–Hochberg (BH) procedure [1] for
m → ∞ under assumptions untestable on a given sample [2]. These assumptions generally
relate to the dependencies between the tests and the marginal sampling distributions of the
test statistics [3], which are represented by the p-values pv1, . . . , pvm.

The most common MHT methods usually rely on p-values generated by statistical
tests. Because p-values can be derived from a wide range of statistical models, from simple
to complex models such as Bayesian models with intractable likelihoods [4], they are often
the go-to choice in MHT. In ideal conditions where the null hypothesis is simple or the
test statistic is ancillary to the nuisance parameters, the p-values are uniformly distributed
between 0 and 1. Such p-values are referred to as calibrated, making constructing reliable
MHT procedures straightforward.

However, these ideal conditions are rare. In many practical cases, the p-values deviate
from the uniform distribution, making them unreliable for controlling the FDR [3].

This problem has led researchers to create adaptive MHT methods that estimate the
true distribution of p-values [5–7]. There is also growing interest in using additional
samples to recalibrate existing MHT methods [7,8]. We propose a contemporary approach
that utilizes deep learning techniques for this recalibration. The way we use this technique
is also known as transfer learning in the machine learning language. Transfer learning
is meant as a statistical technique in machine learning where a model developed for a
particular task (i.e., analyzing an MHT problem where the truth is known) is reused as
the starting point for a model on a second task (i.e., analyzing an MHT problem where
the true is unknown). It is an optimization that allows for rapid progress or improved
performance when modeling the second task. In the context of neural networks, this
involves transferring the weights and learned features from a pre-trained neural network
to a new neural network being trained for a different, but related, task.

Here, to work around the difficulties of using p-values that are often uncalibrated, we
call for a Bayesian approach using Bayes factors (BF) for testing. BFs are the ratio between
the marginal probability of the sample under the alternative hypothesis and the null.
Individual test evidence from a BF strongly depends on the prior evidence for the unknown
parameters in the composite null hypotheses. These are parameters that are not common to
all hypotheses, and the prior distribution affects the marginal of the data and hence the BFs.
Then the BFs could be arbitrarily driven by the prior rather than by the data. In contrast,
for MHT, it has been shown in [9] that it is possible to use the so-called uncalibrated BF, Bi,
from cB1, . . . , cBm, where cBi is the ith full BF of the alternative hypothesis against the null
in test i, and c > 0, is the ratio between the two prior normalization constants for the null
and alternative hypotheses. Bi is not a BF as it misses the prior normalizing constants c
which is why it is referred to as uncalibrated, i.e., its interpretation is not that of the relative
evidence between two hypotheses. Suppose that many tests involve models with one or
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more nuisance parameters (composite null hypotheses). In this case, an expert would need
to elicit a prior distribution of unknowns in each test, which is unfeasible given the large
value of m. Therefore, substituting the presence of an expert by employing formal rules in
the prior definition leads to two usually vague or improper priors that must be employed
for the alternative and null models. Therefore, the BF for the single hypothesis test is not
determined due to the ratio between the prior pseudo-constants c = c1/c0, where c0 and c1
are the unbounded prior normalization constants for the parameters of the null hypothesis,
H0 and the alternative H1, respectively (see [9,10]). Furthermore, in [9,10], it is shown that
the use of proper well-calibrated priors, leading to fully defined and interpretable BFs
cBi, is not necessary in MHT. Uncalibrated BFs, Bi in MHT avoids employing nonscalable
computational techniques to obtain a properly defined BF cBi for each test.

Although a comprehensive overview of the literature on Multiple Hypotheses Testing
(MHT) is beyond the scope of this article, readers are encouraged to consult seminal review
articles such as [11–13] for insights specifically relevant to Genome-wide Association
Studies (GWAS).

The crucial insight to highlight is that all MHT methodologies essentially rely on an
ordered sequence of test statistics, and the order is sample-dependent, and thus per se
random. This is typically presented as pv1 ≥ pv2 ≥ · · · ≥ pvi · · · ≥ pvm in conventional
methods or as cB1 ≤ cB2 ≤ · · · ≤ cBi · · · ≤ cBm in the BF approach [9,10], in which it is
clear that c > 0 does not alter the order. These ordered sequences serve as the output of
various statistical tests and the input of MHT and the methodology proposed in this article.
The sequences are valuable for segregating the tests that fall under the null hypothesis from
those that fall under the alternative hypothesis.

The core concept is that the same sampling models used for obtaining p-values or
BFs can also produce a training set of either p-values or BFs. The labels for the null and
alternative hypotheses under which p-values or BFs are generated are already known in
this training set. This training set can then be used to fit a classification model during a
learning phase. In this light, the problem of MHT becomes one of classifying subsequences
of p-values or BFs originating from either the null or alternative hypotheses.

Today, the problem of classifying subsequences is very well handled using complicated
functions known as Neural Networks (NN), for instance, the one-channel convolutional NN
(CNN). CNN is a specific class of NN suitable for analyzing structured (e.g., dependent)
samples as images [14] with the general purpose of classifying them to obtain, for example,
a medical diagnosis [15]. Furthermore, for our purposes, it is worth stressing that there
is evidence that CNNs are very useful for analyzing Time Series [16] better than other
architectures such as NN recurrent and long-short-term memory [17]. The architecture of
a CNN is based on a connecting set of neurons (mathematical operations on some input)
that are supposed to be trained to recognize relevant features in the observed sequence to
achieve the minimum classification error, and thus the minimum FPR and FNP.

In the following sections, we limit our discussion to those aspects of CNNs directly
relevant to their application in MHT. We refer the reader to existing reviews or books on
the subject for a more comprehensive understanding, such as [14]. The rest of this paper
provides the actual code (based on Keras and Tensorflow) used to construct and train CNN.
Detailed technical information is available there, and we conclude by emphasizing that
all computations were performed on a standard laptop, negating the need for specialized
hardware. The accompanying R code is accessible at: 14 December 2023 https://colab.
research.google.com/drive/1TdM1FSVKm1GI55riUXoLbzcEcM3FeoNg?usp=sharing.

The remainder of this paper is structured as follows. Initially, Section 2 outlines the
MHT approach that we propose, with particular emphasis on estimating the probabil-
ity, denoted p̂, that a hypothesis is part of the alternative set. Subsequently, Section 2.1
demonstrates this framework through a simulation study based on a parametric example.
Subsequently, Section 4 delves into more intricate models by revisiting two RNA-seq ex-
periments, where we contrast the evidence derived from BF and conventional p-values.

https://colab.research.google.com/drive/1TdM1FSVKm1GI55riUXoLbzcEcM3FeoNg?usp=sharing
https://colab.research.google.com/drive/1TdM1FSVKm1GI55riUXoLbzcEcM3FeoNg?usp=sharing
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Concluding thoughts with an exposition of the limitations of this approach and additional
comments are reserved for Section 5.

2. Convolutional Neural Network for Multiple Testing Arising from Uncalibrated
Bayes Factors

The MHT methodology elaborated in this study is based on a sequence of ordered BFs,
cBi, i = 1, . . . , m, ranging from the weakest to the strongest evidence of some common alter-
native hypothesis (to m) against a common null hypothesis. This empirically determined
sequence serves as the classification subject for CNN.

To be precise, consider cB0 = cB1 ≤ cB2 ≤ . . . ≤ cBm as an ordered set of m + 1 BFs,
where cB0 is only introduced for notational convenience. We define the relative weights of
the evidence among the m alternative hypotheses as

W = {Wi = log(cBi/cBi−1), for i = 2, . . . , m},

with W1 = 1. This set W represents the differential evidence that favors each alternative
hypothesis relative to its predecessor.

The ordered sequence of interest is w = (w1, . . . , wm), where each wi corresponds to
a BF cBi. Tests appearing earlier in this sequence are supposed to originate from the null
hypothesis, while those appearing later are more likely from the alternative. In particular,
although the individual cBi may not be interpretable due to the unknown scaling factor c,
the relative evidence Wi remains meaningful [9].

Let the original set of hypotheses, denoted as H, be partitioned into two supposed
nonempty sets H1 and H0, representing true alternative and true null hypotheses, respec-
tively. To estimate H1 with an ordered sequence of W, it would suffice to estimate its size
m1, subject to 1 ≤ m1 ≤ m. As discussed in Section 3, this can often, but not necessarily, be
accomplished by estimating the position î ∈ (1, . . . m) of a change point in the sequence w.

To elucidate, Figure 1 shows a simulated example with tests m = 10,000 and m1 = 1000,
detailing how this methodology works in practice.
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Figure 1. (top) A graphical representation of the sequence W1, . . . , Wm (vertical) along ordered
tests (horizontal) used for training the CNN for subsequent predictions concerning H1 and H0.
(bottom) Corresponding p-values (vertical) along ordered tests (horizontal) from t-Student tests with
Welch’s correction.
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Figure 1 also reports the already mentioned training set for CNN that will be applied
later in real-world scenarios where H1 and H0 are unknown.

The efficacy of using this particular CNN formulates the crux of our argument, affirm-
ing that the method’s robustness is not heavily dependent on various unknowns such as
the number of tests under the null, m0, data signal strength (i.e., sharp or no sharp evidence
from tests), test dependencies, and sampling distributions, among others.

2.1. Sequence of the Relative Weights of Evidence

This section introduces a generalized definition of W customized later for specific para-
metric model environments. Consider a vector of experimental outcomes, x = (x1, . . . , xm),
each featuring m distinct attributes such as gene abundance levels measured by RNA-seq
counts. The vector xi includes ni replications for the ith feature, with i ∈ (1, . . . m).

The MHT issue can be framed as a Bayesian multiple model selection problem, where
each test i compares the evidence supporting the alternative hypothesis Hi1 against the
null hypothesis Hi0, which have the same prior probabilities (i.e., P(Hi1) = P(Hi0) = 1/2)
as follows:

Hi0 : fi0(xi | θi0), πi0(θi0), θi0 ∈ Θi0,

Hi1 : fi1(xi | θi1), πi1(θi1), θi1 ∈ Θi1,
i = 1, . . . , m. (1)

Here, πi0(θi0) and πi1(θi1) are typically default and often improper prior distribu-
tions on the unknown model parameters. The sets {Θi0, Θi1} are a of partition Θi ⊂ ℜK,
where K ≥ 1.

Prior distributions are assumed to be the same across all tests (as the sampling model
in each test) and are derived from a standard formal rule applied to each fik(· | ·) for
k = 0, 1. Such rules include but are not limited to, Jeffreys, Intrinsic, Reference, Matching,
Nonlocal priors, or Conventional priors [18–23].

Consequently, for all i:

πi0(θi0) = π0(θ0) ∝ c0g0(θ0),

πi1(θi1) = π1(θ1) ∝ c1g1(θ1),
(2)

where g0 and g1 are two positive functions (not necessarily measurable) and c0 and c1 act
as normalizing pseudoconstants.

We assume the existence of prior predictive distributions for both the null and alterna-
tive hypotheses.

mik(xi) =
∫

θk∈Θk

fk(xi | θk)πk(θk)dθk, for k = 0, 1, i = 1, . . . , m. (3)

The BF of Hi1 against Hi0 can then be formulated as:

cBi =
mi1(xi)

mi0(xi)
=

c1

c0
·
∫

θ1∈Θ1
g1(θ1) f1(xi | θ1)dθ1∫

θ0∈Θ0
g0(θ0) f0(xi | θ0)dθ0

, (4)

This calibrated BF, in the sense that it reports the posterior relative evidence of Hi1
against Hi0 according to the Jeffreys interpretation, is practically unscaled due to the
arbitrarily low ratio c = c1/c0 > 0. We then define the uncalibrated or unscaled BF
as follows:

Bi =

∫
θ1∈Θ1

g1(θ1) f1(xi | θ1)dθ1∫
θ0∈Θ0

g0(θ0) f0(xi | θ0)dθ0
. (5)

Although Bi lacks standalone interpretability, it serves as a comparative measure [9,10].
For example, if exp(Wi) =

Bi
Bi′

> 1 for all i, i′, then the evidence supporting Hi1 over Hi0 is
stronger than that for Hi′1 over Hi′0, regardless of c.

In summary, even if the priors are specified as vague or improper, their normalizing
constants are effectively simplified in the sequence of Ws. This does not imply that priors
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are irrelevant in MHT, but their impact, specifically that of the constants c0 and c1, is
mitigated in the collective evidence derived from the tests.

2.2. Convolutional Neural Network on the Sequence of Relative Weights of Evidence

A one-dimensional CNN is fitted to the observed sequence w. The loss function used
is the binary cross-entropy, which is the logarithmic representation of the Bernoulli density:
∑m

i=1 log( p̂Hi
i (1 − p̂i)

1−Hi , where Hi = 1 (Hi = 0) if the test i has been observed under
the alternative (null) in the training set. This function minimizes the classification error,
and thus the FPR and FNP. For each test i, the fitted CNN produces a point estimate of the
probability, p̂i, that it belongs to H1. The decision about the set of observed tests from the
alternative is formulated as

Ĥ1 = {i : p̂i > 1 − q},

where q is the FDR level (or the averaged FPR) that we want to control when testing the
hypotheses. It can be argued that p̂i is the maximum a posteriori probability that the test i
is observed under the alternative given the set of m tests and the priors of the underlying
Gaussian process prior to the NN weights [24].

Using CNN, we establish a complicated function CNN : w 7→ p̂ = ( p̂1, . . . p̂m) that
accounts for the dependencies among the W’s. This is how the m tests are jointly considered
to control the FDR at level q, as will be discussed in the next Section 3.

The assumption of exchangeability between the training (simulated) sample and the
observed sample of W’s is understood within the context of the sampling model induced by
the fitted CNN. The existence of untestable assumptions needed when using the usual MHT
has to be compared with the possibility of assessing the goodness-of-fit of a trained CNN.
This can be conducted using routine analyses typical of the machine learning literature
by assessing performance on test sets, which can also be simulated. This is exactly what
is conducted in Section 4.2. In general, the fact that in Section 4.2 the sampling model for
individual tests differs from the one used in the training set lends reliability to the estimates
p̂ even if CNN was fitted only to a simulated data set of m = 10,000, w∗, as shown at the
top of Figure 1. For this purpose, it is crucial to note that we trained only one CNN in
w∗ in Figure 1 for all subsequent analyses in this paper. In the training sample, we have
m = 10,000 values of w∗ simulated from independent tests on the mean of two independent
normal populations with equal but unknown unit variances, as detailed in Section 4.2.
In w∗, we have m1 = 1000 tests simulated from H1 with a mean 3 in one population and
the rest from H0 with both populations with zero mean.

Understanding CNN from the MHT perspective is important for confidence in the
proposed method. A CNN is an NN where (deterministic) nodes are functions of inputs
and are connected according to a specific structure. Nodes are typically operations with
weights that are set to minimize the global error in classifying the results of tests in H1
(or H0) when they come from H0 (or H1). In a CNN, we have two types of nodes:

1. Feature detection nodes. They have as input the subsequences of w,

w̃i,k = (wi, wi+1, . . . , wi+k−1),

where k ≥ 2 is known as the kernel size. These subsequences of a minimum length
of w bear local information about the random sequence of W’s. Such nodes return
subsequences of w̃’s all of the same size k, in which relevant features are detected
through the so-called filters. Filter functions are defined on sets of weights and are
devoted to detecting locally features on each w̃i,k. The systematic application of the
same filter across the w̃ sequences is useful for our problem. Each filter, that is, each
set of weights, detects a specific behavior in the series w, especially near the separation
point Wî, mentioned above. The problem is that we do not know the relevant behavior
to be detected and where it should be expected in the W’ s sequence. Therefore,
all filters are applied to all sequences w̃, along the entire observed sequence of W’s.
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This filtering process allows CNN to discover what and where the behavior of W is
expected to estimate p̂ correctly. We know, for example, that it should be important
to analyze the behavior around Wî where î can be anywhere between 1 and m. This
capability is commonly referred to as the translation invariance of a CNN. Fortunately,
and contrary to the usual interpretation of NN as black boxes, it is possible to show the
features detected by each filter, as shown in Figure 2, which reports the CNN weight
values for the first convolution layer, which has 64 filters and thus weights 64 × m.
From Figure 2, it is possible to appreciate a change of activation around position 9001,
which is the actual î point mentioned above.
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Figure 2. Feature map induced by the first convolution layer, which has 64 filters (rows) on all tests
(columns) for the CNN fitted on the sequence of W’s in Figure 1. The higher the activation, the darker
the cell. Estimated point î is around 9001 as m0 = 9000.

2. Pooling nodes. These nodes connect all filters through the pooling function. The filter
is just a dot product of the input, w̃i,k, using a set of weights. The output of such a
product is the input of the pooling function that leads to a result of a dimension less
than k, for example, considering the maximum output resulting from a filtered w̃k,i.
The set of pooling nodes is also called the feature map because it gives a map of the
relevant filters along the sequence of W’s for classifying tests.
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The architecture of the CNN captures three vital characteristics when modeling w:

• Localized Feature Detection: Kernels of small sizes are employed to focus on local
features in the series of w’s. This contributes to sparse modeling of the sequence and
enables the capture of intricate dependencies between tests.

• Parameter Efficiency: To achieve parsimonious modeling, the same set of weights
(i.e., model parameters) are reused throughout the sequence w. This design leverages
the power of shared evidence for NN parameters, offering a more accurate weight
estimation based on multiple samples.

• Robust Feature Recognition: The CNN is equipped to identify critical features in the data
sequence, invariant to factors such as location, scale, position of the separation point î,
and test dependencies. This robustness potentially uncovers features to be described
that are instrumental in estimating the sets H0 and H1. For example, the translation
invariance property mentioned above is not shared by common change point detection
techniques [25], such as the cumulative sum control chart (CUSUM) [26].

Further details about the specific CNN architecture used in this study are provided
in Appendix B. Although we do not insist that this architecture is universally optimal for
MHT, it has been proven effective for the illustrative purposes of this paper.

To reiterate, we trained a single CNN model using the simulated set of m tests dis-
played in Figure 1. Subsequent results validate CNN’s capability for MHT, demonstrating
its proficiency in classifying tests. For other practical scenarios, CNN could be trained
using the results of a calibration experiment—assuming that such data are available and
the ground truth is known—instead of relying on simulated data as in Figure 1.

3. Sketch of the Theory

The objective of this section is not to provide rigorous proof of the method’s consis-
tency but to offer theoretical insights supporting its asymptotic behavior, as observed in
the simulation studies. Specifically, our objective is to theoretically substantiate that the
proposed method demonstrates asymptotic consistency with respect to both the sample
size n and the number of tests m, as evidenced by negligible FDR and FNR for sufficiently
large values of n and m.

First, at a specific separation point î in the sequence of ordered Bayes factors Bi,
the corresponding Wî is defined as:

Wî = log

(
Pr(Test at î ∈ H1|W)

1 − Pr(Test at î ∈ H1|W)

)
− log

(
Pr(Test at î − 1 ∈ H1|W)

1 − Pr(Test at î − 1 ∈ H1|W)

)
,

where Pr(Test at î ∈ H1|W) indicates the marginal probability of observing the evidence
of test î in the alternative set, which is the numerator of BF cBî.

The proposition guarantees the asymptotic existence of this separation point î in the
sequence of W’s.

Proposition 1. For n → ∞ then Wî → ∞.

Proof. The proof relies on the well-known consistency of BF (see, e.g., [27]) for every
0 < c < ∞, that is, for n → ∞ and i ̸= î, we have cBi → 0 (for i < î) or cBi → ∞ (for
i > î) and thus Wi → 0 for i ̸= î. At the separation point î we have cBî → ∞ as î ∈ H1 and
cBî−1 → 0 as the test î − 1 ∈ H0, therefore, Wî = cBî/cBî−1 → ∞.

Second, the objective of the paper is to present evidence supporting the asymptotic
consistency of the CNN estimator p̂ as m → ∞. Previous work [28,29], has established
the consistency of feedforward NNs in distance L2, which can, in principle, be applied to
CNNs, although there is no specific literature on CNN consistency [30,31]. Define h0(W) as
a CNN oracle such that h0(wi) = 1 if you test i ∈ H1 and 0 otherwise. The CNN adjusted
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to the tests of m is denoted by ĥ(W). According to the aforementioned literature [28,29,32],
the distance L2 between these CNNs vanishes asymptotically as m → ∞:∫ (

h0(W)− ĥ(W)
)2

dW → 0.

Furthermore, we argue that h0(wi) → j is as n → ∞ for each i ∈ Hj, where j ∈ {0, 1}.
This is a less restrictive condition than assuming the same stochastic process generating the
observable variables, and thus the BFs. It is well known that the asymptotic consistency
of the BFs can be achieved in the true model, but as n increases, the BF favors the model
(although not the true one), minimizing the Kullback–Leibler (KL) divergence, making the
model closest (to the true one) increasingly probable. CNN learns this characteristic of BF
as illustrated in Figure 2, where CNN successfully identifies the characteristics around the
discrimination point î.

In this framework, the CNN can accurately classify the tests i < î as belonging to
H0 and the rest to H1. The method offers bounded FDR and FNR as n and m grow.
As mentioned above, the joint control of FDR and FNR suggests that the area under the
ROC curve is AUC → 1.

Empirical validation supports AUC → 1, which confirms the robustness and effective-
ness of the model.

We also applied the transfer learning approach to the p-values by repeating the same
analysis on BFs, but we do not have evidence of high AUC as in the case of BFs.

4. Simulations and Real Examples
4.1. Training Dataset

The data set shown in Figure 1 is generated to address the classical statistical prob-
lem of testing the equivalence of means between two independent normal populations
subject to heteroskedasticity. Specifically, we consider two independent populations,
X ∼ Normal(µX, σ2

X) and Y ∼ Normal(µY, σ2
Y), each with sample sizes nx and ny, re-

spectively. This example has been extensively detailed in [9,10], and additional information
on computing the unscaled Bayes factor, Bi, is provided in Appendix A.

Figure 1 illustrates a sequence of Ws generated with parameters nx = ny = 10,
m = 10,000, m0/m = 0.9, m1 = 1000, and distribution parameters set as specified. CNN
underwent 30 optimization epochs, with the training result presented in Figure 3.

The trained CNN achieves an accuracy slightly exceeding 96%, indicating that fewer
than 4% of the tests are misclassified relative to H0 and H1 in this large sample.

Furthermore, to assess the advantage of using Ws over p-values for better hypothesis
testing representation, as discussed in [9,10], we also trained the CNN on an ordered
sequence of p-values, achieving comparable accuracy levels as shown in Figure 3.

In subsequent sections, we juxtapose our CNN-based approach with traditional meth-
ods commonly used in medical research. We compare the evidence derived from ordered
p-values, obtained using Student’s t-test with Welch’s correction, to that obtained through
our CNN model. These p-values are further adjusted using the BH FDR procedure, serving
as our benchmark in the actual practice of MHT. Other procedures could have been consid-
ered [13,33,34], but keep in mind that, for instance, the BH procedure is also considered
the limiting procedure of other approaches to MHT as the q-values when m → ∞ [35].
Therefore, other approaches would not have added much to the exposed results.

We then evaluate these methods using the ROC curve to account for various ex-
perimental conditions in which different types of error may be of differing importance.
The AUC serves as a summary metric to evaluate the precision in classifying the null and
alternative hypothesis sets, H0 and H1, thus controlling the corresponding FDR and FNR.
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Figure 3. Evolution of error (top-vertical) and accuracy (bottom-vertical) for the CNN across the
optimization epochs (horizontal), trained on the W sequence shown in Figure 1.

4.2. Simulation Study

Employing the pre-trained CNN with varying input features—specifically Ws, p-values,
and p-values adjusted according to the Benjamini–Hochberg (BH) scale—we systematically
evaluate the average AUC through 1000 replications of the AUC. These replications are ob-
tained under a composite set of scenarios designed to mirror various real-world conditions
encountered in GWAS. The scenarios are delineated as follows.

• Signal Variation for Alternatives: The means for the alternative hypotheses, µYi , are
set to values in the set {1, 2, 3, 4} for i ∈ H1.

• Sample Size and Asymptotic Behavior: Both nx and ny are set to the value n, which
ranges from 3 to 10.

• Heteroscedasticity: The standard deviations σXi and σYi for i = 1, . . . , m and i ∈ H1
vary in the set {1, 2, 3}.

• Proportion of True Alternatives: The ratio m0/m is adjusted to one of the following:
0.9, 0.95, or 0.99.

• Asymptotic Number of Tests: The total number of tests, m, is set to 1000 or 10,000.
• Test Dependence: Two schemes are considered, one with all independent tests and

another with block-dependent tests. In block-dependent tests, there are tests belonging
to a set that are dependent on them and independent of the others, and there are also
different sets. These tests induced a block-diagonal correlation matrix among the
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test statistics (see [36]). In the block-dependent case, variable blocks Xi, Yi of sizes
2, 5, and 10 are formed, and their correlations are drawn randomly from a uniform
distribution between −1 and 1, subject to the constraint of a positive semidefinite
correlation matrix.

Figures 4 and 5 present the statistical evaluation of the average AUC along with its
99.9% confidence intervals. These metrics are computed across 1000 replications and under
various simulation scenarios explicitly enumerated in each figure’s axis labels and captions.
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Figure 4. This figure illustrates the average AUC (depicted on the vertical axis) complemented
by the corresponding 99.9% confidence intervals (barely visible as the average is over more than
1000 replications). These statistics are derived from independent tests under varying simulation
conditions, such as sample sizes n, total number of tests m, and the proportion m0/m of null tests
(denoted on the horizontal axis). Additionally, the mean of Y for tests under the alternative is
represented on the right vertical axis. The average AUCs for the BH procedure (in red), the CNN
based on p-values (in green), and the proposed CNN based on Ws (in blue) are presented.

Consider the top-left panel of Figure 4 for illustrative purposes. It shows the average
AUC and associated confidence intervals, conditioned on independent tests with parame-
ters m = 1000, m0/m = 0.9, µYi = 1 for i ∈ H1 and n ranging from 3 to 10. Color-coded
markers represent the BH procedure (in red), CNN applied to Ws (in blue), and CNN also
applied to p-values (in green). The results in this panel are marginal outcomes aggregated
over 1000 replications and for all combinations of σXi and σYi . Figure 5 extends this analysis
to include block-dependent tests, which are also conditioned on the sizes of these blocks.
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Figure 5. Similar to Figure 4, this figure portrays the average AUC and its 99.9% confidence intervals
but for block-dependent tests. The averages are conditioned to: sample sizes n, total number of tests
m, proportion m0/m of null tests (horizontal axis), and the mean of Y under the alternative and block
sizes (denoted on the right vertical axis). The average AUCs for the BH procedure (in red) and the
proposed CNN based on Ws (in blue) are exhibited.

The results of our simulation study provide compelling evidence that the proposed
CNN demonstrates robust control over FDR and FNR in a diverse range of conditions.
Remarkably, these performance metrics are better than those achieved using BH procedures.
Furthermore, CNN’s efficacy is noticeably higher when trained on test statistics W than
when trained on classical p-values.

The distinctive advantages of the proposed methodology become more pronounced
in scenarios with weaker signals, characterized by lower means (µY), greater variances,
or smaller sample sizes (n). These disparities can be attributed to the fact that the p-
values are calibrated asymptotically in n, and the number of samples is often limited,
especially given the high costs associated with replications of RNA sequences. Interestingly,
the selected range of m has a negligible impact on CNN performance. On the contrary,
traditional MHT procedures, such as the BH method, control FDR asymptotically in m,
which is evident through slight improvements in the ROC curve at higher values of m.
In summary, the increased dependencies among tests further accentuate the benefits of
employing the CNN-based approach over traditional methods.
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4.3. Example RNA-Seq 1: Squamous Cell Carcinomas versus Matched Normal Tissue

We examine RNA-seq count data from a paired design study focusing on oral squa-
mous cell carcinomas and the corresponding normal tissue samples from six patients [37].

The primary objective of the analysis is to identify genes that exhibit differential
expression between tumor and normal tissue samples. To account for patient-specific
variations, we employ a mixed-effects Bayesian Poisson regression model with flat improper
priors for the Poisson regression coefficients. Additionally, an exceedingly vague prior
is utilized for the logarithm of the random effects variance (refer to the Appendix C for
complete details). It should be noted that the analytical framework employed here is
substantially more flexible than the conventional negative binomial regression commonly
used in RNA-seq count data analysis [37]. Furthermore, it diverges from the t test-based
analysis that generated the training sample depicted in Figure 1.

In this experiment, we consider m = 10,512 genes and only nx = ny = 3 patients under
each condition, making a total of six patients. For every gene i, the unscaled Bayes factor,
Bi, is computed separately to evaluate the model incorporating tissue effects against the
null model devoid of such effects. Both models incorporate patient-specific random effects.
Using the trained Convolutional Neural Network (CNN) based on the data shown in
Figure 1, we report in Table 1 the probabilities and genes that could be linked to carcinoma
tissue. These results are presented in conjunction with the results obtained by the BH
procedure, which tests the significance of the tissue effect coefficient.

Table 1. Probability of genes associated with Squamous cell carcinomas according to the CNN trained
with W in Figure 1 and the BH procedure.

Gene: TTN KRT13 SPRR3 NEB KRT4 ITGB4 PLEC

CNN, p̂: 0.999 0.890 0.813 0.788 0.762 0.700 0.582

Gene: PTHLH PTHLH PTHLH PTHLH COL4A6 PTGFR PTGFR

BH: 8 · 10−17 1 · 10−16 1 · 10−16 2 · 10−16 8 · 10−15 5 · 10−15 4 · 10−15

Most of the remaining genes exhibit a probability of less than 50% of relevance to the
condition under study. In particular, 658 genes produced adjusted p-values less than 0.001
according to the BH procedure, which is a very noisy result.

Interestingly, according to the proposed procedure, only the TTN and KRT genes had
previously been identified in the study by [37]. Other genes such as SPRR [38], NEB [39],
ITGB [40], and PLEC [41] have been subsequently associated with tumor conditions in the
cited literature. This observation underscores the valuable insights that could be gleaned
from the data if analyzed using our proposed approach. In contrast, genes highlighted
by the BH method, such as PTHLH, COL4A6, and PTGFR, have only tangential asso-
ciations with tumors. For example, PTHLH has been discussed in the context of cow
tumors [42], again suggesting that the BH method may produce noisy results compared to
the proposed one.

Unlike the situation described in Section 4.2, the ground truth in this case is unknown.
However, our objective is to demonstrate that the proposed CNN methodology outper-
forms the BH approach. This is particularly noteworthy given that the Bayesian Poisson
sampling model (see Appendix C) diverges substantially from the model used to gener-
ate Figure 1. This argument is further substantiated by an additional simulation study
detailed in Appendix D. The suboptimal performance of the BH method is attributable to
the misspecification of the negative binomial model [37] due to the inclusion of patient-
specific random effects. Furthermore, the presence of a nuisance dispersion parameter
adversely affects the reliability of p-values, since these are no longer calibrated with respect
to the U(0, 1) distribution, thus compromising the efficacy of multiple hypothesis testing
procedures such as BH [3].
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4.4. Example RNA-Seq 2: Normal vs. Tumor Tissue

We reviewed the RNA-Seq data of Arabidopsis thaliana as discussed in [43]. The data
set focuses on the plant’s response to the bacterium Pseudomonas syringae, a model
organism for studying plant-pathogen interactions. The purpose of the analysis is to
identify differentially expressed genes that illuminate how plants defend themselves against
such pathogens.

Three Arabidopsis plants, each six weeks old, were treated with Pseudomonas sy-
ringae, while control plants were given a mock pathogen. Subsequently, total RNA was
extracted from the leaves, resulting in three independent biological replicates. Each set,
comprising nx = ny = 3 RNA samples, was sequenced and RNA-Seq counts were collected
for m = 13, 930 genes. Samples are not independent, and this requires an adjustment for
time-dependent effects.

The Bayesian regression model used is analogous to the one described in Section 4.3.
However, an additional layer of complexity is introduced by incorporating a first-order autore-
gressive process to account for temporal random effects (see Section 2.2 of the Appendix E).
As before, the BFs are unscaled due to improper priors on the model coefficients.

Our results, detailed in Table A1 of the Appendix F, highlight only 31 genes with a
probability greater than 0.5 of having an interaction effect with Pseudomonas syringae.
This contrasts starkly with the 387 genes identified in the original study by [43], which
employed the q-values [33] to control FDR at 5%. The BH method identified as many as
1805 genes, reinforcing the notion of an inflated Type I error because of maybe-dependent
tests. In particular, the FDR control using q-values has been shown to converge to the BH
control [33] asymptotically, validating our use of the BH method as a benchmark. Inter-
estingly, all but two of the 31 genes were previously reported in [43]. The two exceptions,
AT4G12800 and AT1G54410, have been implicated in the response of the pathogen in
subsequent studies [44,45].

5. Remarks

We alert the reader to three critical limitations associated with the use of CNNs, which
also constitute the main theoretical drawbacks of this study: (i) The output of the neural
network does not come with associated uncertainty measures; (ii) Due to its complex
architecture and predictive focus, an exact interpretation of the trained CNN is elusive,
although some insights can still be gleaned; (iii) Like any statistical model, the efficacy of
an NN rests on the (untestable) assumption on the sampling model for tests that makes the
training and testing samples exchangeable.

Looking at the usage of BFs in this work, we may think that there always exist proper
priors that make cBi, a proper BF for test i interpretable in the sense of providing the
evidence for test i as suggested by Jeffreys, which is true but at the cost of introducing
arbitrary c in the term. Then cBi is interpretable, but it is also arbitrarily interpretable as a
measure of evidence due to the presence of c. In contrast, in the definition of W, based on
the proper BFs cBi, c simplifies and the same occurs when ordering tests according to the
BFs cBi. The problem of finding a cutoff on cBi is exactly that of fitting a CNN that allows
one to fix a cutoff on the scale of p̂ that considers the multiplicity of tests, as do some MHT
procedures with adjusted p-values. We claim that the proposed scale on which p̂ lies is
much more interpretable as the direct probability that the test is observed under the null or
alternative given the evidence from all tests.

The current methodology can also be implemented without explicit Bayesian computa-
tions. In particular, BFs, denoted B1, . . . , Bm, can be substitute calibrated p values according
to the lower bound of the BF as elaborated in [46,47]. Specifically, for all pvi < exp(−1),
the infimum of the BF for the ith test can be expressed as

cBi ≥ Bi =

{
[−epvi ln(pvi)]

−1, for pvi < exp(−1)
1, otherwise

, (6)
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where c symbolizes the calibration constant for the unknown true BF cBi. This uncalibrated
BF can then be utilized in our method after scaling the computed p-values by Equation (5).
In the end, this allows us to generally extend the use of the proposed method to statistical
analyses that are not per se Bayesian.

Our strategy relies on a singularly trained CNN. Future work could explore alternative
architectures, such as bidirectional CNNs [48]. However, our existing CNN demonstrates re-
markable performance in various settings, almost achieving an AUC close to 1, irrespective
of the underlying sampling model specifically considered.

This innovative application of transfer learning [49] to MHT serves as the cornerstone
of this study. The approach draws parallels with classical statistical techniques like the use
of the Central Limit Theorem but within a computational context. The primary advantage
lies in reusing CNN weights trained on one dataset (simulated and observed from cali-
bration studies), as seen in Figure 1, to analyze different MHT problems. This approach
essentially mirrors the untestable assumptions used in the BH procedure, such as positive
regression dependence [1,50].

In summary, our results are promising for broader adoption of CNN-based strategies
in MHT, especially given that the network performs consistently across divergent testing
frameworks (e.g., t-tests, mixed-effect models, dependent/independent tests).
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Appendix A. The Unscaled Bayes Factor for Testing Two Normal Means

Suppose the usual two-group model with m features and denote by xm×nx the outcome
in group X with nx replications and ym×ny the outcome in group Y with ny replications. Let
Xi ∼ N(µXi , σ2

Xi
) and Yi ∼ N(µYi , σ2

Yi
) for i = 1, 2, . . . , m. The set of hypotheses for σ2

Xi
> 0,

σ2
Yi
> 0 unknown, is the following, for i = 1, . . . , m:

H0i : µXi = µYi = µi versus H1i : µXi ̸= µYi , ∀σ2
Xi

> 0, ∀σ2
Yi
> 0.

https://colab.research.google.com/drive/1TdM1FSVKm1GI55riUXoLbzcEcM3FeoNg?usp=sharing
https://colab.research.google.com/drive/1TdM1FSVKm1GI55riUXoLbzcEcM3FeoNg?usp=sharing
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With the usual default priors:

π0(µi, σ2
Xi

, σ2
Yi
) ∝ σ−2

Xi
σ−2

Yi
· 1R×R+×R+(µi, σ2

Xi
, σ2

Yi
),

π1(µXi , µYi , σ2
Xi

, σ2
Yi
) ∝ σ−2

Xi
σ−2

Yi
· 1R×R×R+×R+(µXi , µYi , σ2

Xi
, σ2

Yi
),

the unscaled BF for H1i versus H0i is (see [9,10] for further details).

Bi =
Beta( nx−1

2 , 1
2 )Beta( ny−1

2 , 1
2 )
√

S2
Xi

S2
Yi∫

µi∈R

(
1 + (Xi − µi)2/S2

Xi

)− 1
2 nx(

1 + (Yi − µi)2/S2
Yi

)− 1
2 ny

dµi

, (A1)

where Beta(a, b) is the beta function evaluated in a, b and Xi, Yi, S2
Xi

, S2
Yi

are sample means
and variances for group X and Y, respectively. The Beta() functions comes by the ratio of
corresponding Gamma functions that arises after integrating the two variances σ2

Xi
, σ2

Yi
and

the common mean µi under H0i.

Appendix B. Architecture of the Actual CNN

CNN used in the paper is made up of the following layers of nodes indicated in the
order from the input nodes to the output node:

1. the input node of the sequences Ws of length ten tests (we have m/10 training
samples). The length of these sequences, also known as the batch size affects mainly
the fitting process rather than the final performance in the classification tests. This is so,
although it is worth noting that smaller batch sizes often lead to better generalization
on unseen tests. This is in part due to the fact that smaller batches introduce more noise
during training, which acts as a form of regularization of the classification model.

2. Two sets of convolution layers with kernels of size k = 4. The first has 64 filters,
and the second has 32. With only one convolutional layer before pooling, the network
captures the basic features of the test sequence, such as the eventual dependency
on the sequence and the differences between W under the null and under the alter-
native. These features are typically more generalized and less refined. However,
two convolutional layers allow the network to learn more complex and abstract fea-
tures, especially around the separation point î.

3. One max-pooling node, which returns the maximum of the input coming from the
feature map every two features. These nodes implement the translation invariance
property mentioned in Section 2.2, but aggregate and give weights to all the features
captured in the above layers that are relevant to determine whether Ws have been
observed before or after the separation point î. This node implements the hierarchy of
collected features in the above nodes, mimicking the hierarchical modeling approach
typical in Bayesian statistics.

4. One set of 36 dense layers (e.g., all connected nodes). While convolutional and pooling
layers are adept at local randomness behavior in the sequence of tests represented
by Ws, dense layers help to make sense of the estimated complex patterns and
relationships among local behaviors to be used for classifying tests.

5. The output node, which is the logistic function that returns the probability p̂ for each
test to belong to the alternative. This node is needed to have an estimation of the
probability that a test comes from the null or alternative hypothesis.

To summarize the above architecture, Figure A1 reports it.
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Figure A1. Schematic representation of the used CNN architecture by means of the sequence of layers
and their type.

All nodes, except the last one, use the rectified linear unit activation function, which
returns the input if positive and zeros otherwise. The loss function is the binary cross-
entropy (e.g., the log density of a Bernoulli distribution), and the optimizer is the Adam one.
This optimizer is an extension of the stochastic gradient descent algorithm embedded in
the backpropagation algorithm used to optimize the weights of the NN [14]. There are a
total of 10,921 parameters (i.e., weights) to train, and most of them will be just zeros, as the
CNN-induced model is far too complex to be learned with the proposed values of m.
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Appendix C. Poisson Regression with Random Effects

Let Yjr be the observed counts/abundance of RNA sequences for a given gene in
the patient r at measurement/replication j. The Bayesian model is the standard Poisson
regression with normal random effects for patients:

Yjr|β, ur, Xj ∼ Poisson(λ(β, ur, Xj))

log(λ(β, ur, Xj)) = βTXj + ur

β ∼ π(β) ∝ 1, for β ∈ Rcol(Xj)

ur|τ ∼ Normal(0, τ)

τ ∼ Gamma(1, 0.00005),

where Poisson(λ) is the Poisson distribution with mean λ and Gamma(a, b) is the Gamma
distribution with mean a/b. The design matrix X includes the intercept column and the
tissue column only in model H1. For comparison of the two models H0 (not including the
tissue effect in the design matrix) and H1, the BF is unscaled due to a flat improper prior
on the vector of coefficients β. The model has been fitted using INLA [51]. INLA returns
the marginal approximations under the alternative and the null model, mi1(·) and mi0(·),
respectively. Thus, the relationship between these two numbers gives the unscaled BF, cBi.

Appendix D. Comparison of CNN versus BH in Poisson Regression Random Effects

Let β be the coefficient of the effect of the treatment/tissue under test according
to the model described in Appendix C. We simulate 100 MHT experiments, each with
m = 1000 tests, for each combination of

• different signals in the tests from the alternative: βi = 0.5, 1, 2 for i ∈ H1 and βi = 0
for i ∈ H0;

• sample sizes n for balanced by subjects/patients designs, with two subjects/patients:
n = 6, 8, 10, 20 (where n/2 samples are from each subject).

In each test, patients’ random effects are drawn from a standard normal distribution;
specifically, there are two draws for each test since there are only two subjects.

The results are analyzed with the model detailed in Appendix C and with the Negative
Binomial regression. In both cases, the tests refer to the tissue coefficient. The results of
the BFs of the model in Appendix C are analyzed with the CNN already fitted to the
training sample in Figure 1. Finally, the BH procedure is applied to the p-values from the
likelihood ratio tests of the binomial regression model (that is, the alternative model has
the tissue effect and the null has only the intercept). This model is a reference for these
types of experiments.

Figure A2 reports the average AUC over 100 replications along with 99.9% confi-
dence intervals.

We can see that the proposed CNN procedure performs better than the BH one even
if the model in Appendix C radically differs from that used to produce Figure 1. The BH
performs poorly as the negative binomial model [37] is a misspecified model due to the
patient’s random effects. This case is an example in which the values p are not calibrated,
which affects the MHT procedure as the BH procedure [3].
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Figure A2. For 100 MHT simulations under the Poisson model with random effect and a given
configuration, we consider the average area under the ROC curve (vertical) along with 99.9% con-
fidence intervals for independent tests, under different simulations scenarios varying according to
the samples sizes n, proportion m0/m of tests under the null (horizontal) and the Poisson regression
coefficient of the effect under the alternative (right vertical scale). Averages are reported for the BH
procedure on p-values from likelihood ration tests (red) and the proposed CNN on W (blue).

Appendix E. Poisson Regression with Autoregressive Random Effects

Let Yjr be the observed counts/abundance of RNA sequences for a given gene at time
r at measurement/replication j. The Bayesian model is the Poisson regression with time
autoregressive random effects of order 1:

Yjr|β, ur, Xj ∼ Poisson(λ(β, ur, Xj))

log(λ(β, ur, Xj)) = βTXj + ur

β ∼ π(β) ∝ 1, for β ∈ Rcol(Xj)

u1|τ, ρ ∼ Normal(0, τ(1 − ρ2))

ur|ur−1τ, ρ ∼ Normal(ρur−1, τ), for r > 1

τ(1 − ρ2) ∼ Gamma(1, 0.00005)

log
(

1 + ρ

1 − ρ

)
∼ Normal(0, 0.15)
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where Poisson(λ) is the Poisson distribution with mean λ and Gamma(a, b) is the Gamma
distribution with mean a/b. In this τ(1 − ρ2) is the marginal precision which is gamma
distributed to explode the semi-conjugacy with the normality of us. Parameter log

(
1+ρ
1−ρ

)
recalls the usual logarithmic odds on which a normal prior distribution is usually employed
because a posterior kernel made of normal density is much more conveniently approxi-
mated under the INLA approach. The design matrix X includes only the intercept and
pathogen columns in the model H1. To compare the two models H0 (without pathogen
column) and H1, the BF is not scaled due to an improper flat prior on the coefficient vector
β. The model was fitted using INLA.

Appendix F. Genes Related to the Reaction to Pseudomonas Syringae

According to the CNN fitted on the training sample in Figure 1 and applied to the
sequence of W induced by Bi of the model illustrated in Section 4.4, the genes reported in
Table A1 have more than 50% probability of being related to the defense of Arabidopsis
plants against Pseudomonas syringae.

Table A1. Probability of genes associated with defending Arabidopsis plants to Pseudomonas
syringae according to the CNN trained with W in Figure 1. Genes with ∗ have not been reported
in [43] but in other studies.

Gene p̂ Gene p̂

AT1G76930 1.00 AT5G13220 0.75
AT4G22470 0.99 AT5G37600 0.74
AT4G12500 0.94 AT3G22120 0.74
AT2G45180 0.86 AT4G30190 0.73
AT5G64120 0.85 AT3G63160 0.72
AT2G43620 0.82 AT1G02930 0.70
AT4G38770 0.80 AT1G65845 0.69
AT5G54160 0.80 AT1G02920 0.69
AT2G10940 0.80 AT4G12470 0.68
AT1G67090 0.80 AT4G12480 0.67
*AT1G54410 0.80 AT3G46280 0.65
AT2G39200 0.79 AT4G10340 0.63
AT1G29930 0.77 *AT4G12800 0.63
AT4G12490 0.76 AT3G26740 0.58
AT5G54770 0.76 AT1G09560 0.56
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