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Abstract: This article is devoted to developing an approach for manipulating the von Neumann
entropy S(ρ(t)) of an open two-qubit system with coherent control and incoherent control inducing
time-dependent decoherence rates. The following goals are considered: (a) minimizing or maximiz-
ing the final entropy S(ρ(T)); (b) steering S(ρ(T)) to a given target value; (c) steering S(ρ(T)) to
a target value and satisfying the pointwise state constraint S(ρ(t)) ≤ S for a given S; (d) keeping
S(ρ(t)) constant at a given time interval. Under the Markovian dynamics determined by a Gorini–
Kossakowski–Sudarshan–Lindblad type master equation, which contains coherent and incoherent
controls, one- and two-step gradient projection methods and genetic algorithm have been adapted,
taking into account the specifics of the objective functionals. The corresponding numerical results are
provided and discussed.

Keywords: quantum control; von Neumann entropy; quantum thermodynamics; open quantum
system; coherent control; incoherent control; optimization methods; two-qubit system

1. Introduction

The theory of (optimal) control of quantum systems (atoms, molecules, etc.) is im-
portant for developing quantum technologies [1–20]. Modeling of control problems for
quantum systems is based on various quantum mechanical equations with Markovian
or non-Markovian dynamics, e.g., the Schrödinger, von Neumann, Gorini–Kossakowski–
Sudarshan–Lindblad (GKSL) equations, and various objective functionals to be minimized
or maximized. In practical applications, often the controlled quantum system is open,
i.e., interacting with its environment, and this environment is considered as an obstacle for
controlling the system. However, in some cases, one can use the environment as a useful
control resource, such as, for example, in the incoherent control approach [21,22], where the
spectral, generally time-dependent and non-equilibrium density of incoherent photons is
used as a control function jointly with the coherent control via lasers to manipulate such
a quantum system dynamics. Following this approach, various types and aspects of optimal
control problems for one- and two-qubit systems were analyzed [23–28].

One particularly important class of quantum control objectives includes thermody-
namic quantities and entropy of the quantum system. Properties of the von Neumann
entropy in general are discussed, e.g., in [29–33]. The von Neumann entropy appears in
various applied aspects of quantum theory, has applications in quantum communication
and statistical physics [34–37], or even in cross-linguistic comparisons of language net-
works [38]. The von Neumann entropy of reduced density matrices of a bipartite quantum
system provides a good measure of entanglement. It appears in various thermodynamic
quantities, such as Helmholtz free energy, can serve as a degree of purity of a quantum
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state, etc. The system–bath interaction can play a crucial role in the emergence of the laws
of thermodynamics from quantum consideration [39]. The control of dissipative quantum
systems, which changes entropy of the quantum state, has been studied in various works.
In particular, an analytical solution for the optimal control of a quantum dissipative three-
level system leading to the decrease in entropy was provided [40]. Entropy production
for controlled Markovian evolution was studied in [41]. The von Neumann entropy and
Rényi entropy changes for the laser cooling of molecules were investigated [42]. A detailed
study of entropy changing control targets is explored in [43], when the external drive influ-
ences not only the primary system but also the dissipation induced by the environment.
Similar to the control of entropy is the state-to-state control between two Gibbs states,
which is used to accelerate thermalization and cool for an open system [44]. The effects
of the population decay, leading to the reduction of entropy, in a two-level Markovian
dissipative system were considered in [45]. Reference [46] considers entanglement entropy
maximization for the Lipkin–Meshkov–Glick model operating with N = 50 spins and the
subsystem with L = N/2 spins using the free-gradient chopped random basis (CRAB)
ansatz. Non-Markovian regimes can also be effective, e.g., for quantum battery and heat ma-
chines [47]. Reference [48] considers a stochastic master equation with a finite-dimensional
measurement-based quantum feedback control and linear entropy. Reference [49] considers
an open four-level atomic system and analyzes coherent control for the von Neumann
entropy (total and reduced versions) via quantum interference. In [50–52], a controller
design approach for a closed quantum system described by the Scrödinger equation in
terms of the von Neumann/Shannon entropy was proposed. Reference [53] considers the
spatial control of entropy for a three-level ladder-type atomic system that interacts with
optical laser fields and an incoherent pumping field.

Reference [54] provides the formulation and analysis of control objectives describing
optimization of thermodynamic quantities of the form ⟨O⟩ − β−1S(ρ(T)), where O is
some quantum observable (e.g., energy with Hamiltonian H), β is inverse temperature,
and S(ρ(T)) is some concave type of entropy, e.g., the von Neumann entropy, of an open
quantum system density matrix at the final time T. The system evolution was considered
as driven by some coherent and/or incoherent controls, including Markovian and non-
Markovian cases, particularly the cases of master equations with coherent and incoherent
controls [21]. The objective was expressed as a Mayer-type functional determined by the
final state ρ(T) (ρ̂ f at the final time t f in the notations of [54]). The applied control c = (u, n)
(note that in [54] this most general combination of coherent and incoherent controls was
denoted by symbol u, which in the present work denotes only coherent control, whereas the
combination of controls here we denote by c) directs the evolution of the system from the
initial state to the final state and specifies the value of the objective which depends, through
ρ(T), on the control c. A specific important example of such an objective is Helmholtz
free energy, which corresponds to O = H. In the case of trivial observable O = const · I,
the objective is reduced to the entropic form and differs from the entropy by a non-essential
for the optimization constant term. Based on this objective and Reference [54], we define
below several other control problems involving entropy.

The entropy of a quantum state was introduced by L. Landau to describe states of
composite quantum systems [55], which is related to using entropy as a measure of entan-
glement, and by J. von Neumann to describe the thermodynamic properties of quantum
systems [56]. This provides the motivation to introduce control problems focused on steer-
ing and maintaining the von Neumann entropy of system states. Objectives of forms (4)–(8)
serve as examples of naturally extending problems related to maximizing or minimizing
quantities involving entropy to controlling their behavior over a certain time range. Such a
natural extension, in general, can include (but is not limited to) the following:

• Control the behavior of thermodynamic quantities, such as Helmholtz free energy, not
only at the final time instant but over some time range;

• Control of the degree of entanglement of a bipartite system over time;
• To not only maximize or minimize but rather control the rate of entropy production.
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The basic task for all these problems is to manipulate entropy over a given time range
which, including optimization methods, we consider in this work.

In general, quantum (open-loop) control, both for closed and open quantum systems,
various types of optimization tools are used:

• For infinite-dimensional optimization, e.g., the Pontryagin maximum principle
(PMP) [20,57,58], Krotov-type methods ([24,59,60], [19], § 16.2.2, [61], pp. 253–259),
one- and two-step gradient projection methods (GPM-1, GPM-2) [23,24,28], etc.;

• For finite-dimensional optimization under various classes of parameterized con-
trols, e.g., gradient ascent pulse engineering (GRAPE)-type methods (e.g., [25–27],
Section 3, [62]) (GRAPE-type methods operate with piecewise-constant controls, matrix
exponentials, and gradients), CRAB ansatz [46,63] (coherent control is considered in
terms of sine, cosine, etc.), genetic algorithm (GA) [21,64,65], dual annealing [24], etc.

In this article, we develop an approach for (open loop) control of the von Neumann
entropy for open quantum systems driven by simultaneous coherent and incoherent con-
trols. For such a system, we study control objectives based on the von Neumann entropy of
the system states:

S(ρ(t)) = −Tr(ρ(t) log ρ(t)) = − ∑
λi(t) ̸=0

λi(t) log λi(t), (1)

where log denotes the natural matrix logarithm and λi(t) are eigenvalues of ρ(t). For the
initial time t = 0 and final time t = T, we consider, correspondingly, S(ρ0) and S(ρ(T)).
The approach is based on using bounded coherent and incoherent controls to manipulate
the von Neumann entropy. Since the control of the entropy requires, in general, changing
the degree of purity of the system density matrix, it requires the ability to generate a given
non-unitary dynamics. For this, the combination of coherent and incoherent controls
introduced in [21] makes a suitable tool.

To achieve these goals, we formulate the corresponding objective functionals. These
functionals contain either differentiable or non-differentiable forms. For the differentiable
cases, both for the objective functionals of the Mayer and Mayer–Bolza types, we de-
velop the one- and two-step GPMs for piecewise continuous controls based on deriving
gradients of the objective functionals and the corresponding adjoint systems. For the non-
differentiable cases, piecewise linear controls are considered instead, and finite-dimensional
optimization is performed using GA. Moreover, various forms of regularization in controls
are provided.

The structure of the article is the following. In Section 2, we briefly outline the
incoherent control approach. In Section 3, the objective functionals involving entropy for the
described above problems are defined. In Section 4, we consider—as an example—an open
two-qubit system whose dynamics are determined by a GKSL-type master equation, which
contains coherent and incoherent controls. Section 5 describes the optimization approaches.
Section 6 provides and discusses the analytical and numerical results. Conclusions Section 7
resumes the article.

2. Incoherent Control and Time-Dependent Decoherence Rates

The idea of incoherent control is to consider the environment as a useful resource for
manipulating quantum systems. There are various approaches to using the environment
as a control. We exploit the idea proposed and developed for generic quantum systems
in [21,22]. In this approach, the state of the environment is used as a control. Usually, the
state of the environment is considered as the Gibbs (thermal) state with some temperature.
However, the state of the environment can be a more general non-thermal non-equilibrium
state. If the environment consists of photons, which is one of the most typical physical
examples of the environment, its more general non-equilibrium state at some time instant
t is characterized by the distribution nk,α(t) of photons in momenta k and polarization α.
Moreover, this state and, hence, this distribution can evolve with time. Non-thermal distri-
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butions for photons are relatively easy to generate, so that it is a physical and technically
possible way of control. In this work, we neglect polarization and directional dependence
so that, here, the control is the distribution of photons only in frequency ω and time, nω(t).
In the most general consideration, polarization and directional selectivity can be taken into
account for the control.

A time-evolving distribution of photons induced generally time-dependent deco-
herence rates of the system, which is immersed in this photonic environment, so that
under certain approximations, the master equation for the system density matrix can be
considered as

dρ(t)
dt

= Lu,n
t (ρ(t)) := −i[Hu,n

t , ρ(t)] + ε ∑
k

γk(t)Dk(ρ(t))︸ ︷︷ ︸
Dn

t (ρ(t))

, ρ(0) = ρ0, t ∈ [0, T]. (2)

Here, both Markovian and non-Markovian cases can be included. The general formula-
tion below is performed for both Markovian and non-Markovian cases, while only the
Markovian case is explicitly analyzed. In [21], the dissipators Dk corresponding to the weak
coupling and low-density limits in the theory of open quantum systems were explicitly con-
sidered. In general, other regimes, e.g., the ultrastrong coupling and the strong-decoherence
limits [66,67], or weakly damped quantum systems in various regimes [68], can be con-
sidered as well. For the weak coupling limit case, the decoherence rate for the transition
between system states |i⟩ and |j⟩ with transition frequency ωij = Ej − Ei (here, Ei is the
energy of the system state |i⟩) were considered in [21] as

γij(t) = π
∫

δ(ωij − ωk)|g(k)|2(nωij(t) + κij)dk, i, j = 1, . . . , N.

Here, κij = 1 for i > j and κij = 0; otherwise, ωk is the dispersion law for the bath (e.g.,
ω = |k|c for photons, where k denotes photon momentum, c denotes the speed of light),
and g(k) describes the coupling of the system to the k-th mode of the photonic reservoir.
For i > j, the summand κij = 1 describes spontaneous emission and γij determines the rate
of both spontaneous and induced emissions between levels i and j. For i < j, γij determines
the rate of induced absorption. These decoherence rates appear in (2), where k = (i, j)
is multi-indexed.

Such incoherent control appears to be rich enough to approximately generate, when
combined with fast coherent control, arbitrary density matrices of generic quantum systems
within the scheme proposed in [22]. Hence, it can approximately realize the strongest
possible degree of quantum state control—controllability of open quantum systems in
the set of all density matrices. This scheme has several important features. (1) It was
obtained for a physical class of dissipators Dk known in the weak coupling limit. (2) It
was obtained for generic quantum systems of an arbitrary dimension and for almost all
values of the system parameters. (3) A simple explicit analytic solution for incoherent
control was obtained. (4) The control scheme is robust to variations of the initial state—the
optimal control steers simultaneously all initial states into the target state, thereby physically
realizing all-to-one Kraus maps theoretically exploited for quantum control in [69] and
recently experimentally for an open single qubit in [70]. In [22], coherent and incoherent
controls were separated in time (first coherent control, followed by incoherent) and were
applied to the system on different time scales determined by the parameters of the system.
Incoherent control was applied on a time scale slower than coherent control. When coherent
and incoherent controls are applied simultaneously, such a difference in time scales may
lead to bounds on variations of incoherent control, considering that incoherent control
should be varied slowly compared to coherent control. In the analysis below, Equation (12)
is used to take into account such bounds on variations of the incoherent control. To shorten
the incoherent control time scale, the first stage of the incoherent control scheme proposed
in [22] was further modified for a two-level system in [27], significantly reducing the
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control time scale. Such an incoherent control can be technically implemented, e.g., as it
was done for controlling multi-species atomic and molecular systems with Gd2O2S :Er3+

(6%) samples [71].

3. Control Objective Functionals Involving Entropy

In this section, we define control objective functionals, describing various problems
involving entropy including both Markovian and non-Markovian cases.

Fixing T, ρ0, control c = (u, n), ε, and so on, one solves the initial problem (2) with
the initial condition ρ(0) = ρ0 to find the corresponding solution ρ, a matrix function
defined at [0, T]. For each state ρ(t), consider its von Neumann entropy S(ρ(t)). Using
this standard notion of the von Neumann entropy, we formulate below several objective
functionals based on the following objective functional for minimizing or maximizing the
von Neumann entropy as considered in [54].

• Minimizing or maximizing the von Neumann entropy, or more general thermodynamic
quantities (O is a Hermitian observable, for example, the Hamiltonian of the system,
in this case, it is Helmholtz free energy) at a final time, as defined in [54]:

JO(c) = ⟨O⟩ − 1
β

S(ρ(T)) → inf / sup, β > 0. (3)

Case O = 0 corresponds to the minimization or maximization of the entropy itself.
Based on this objective, one can define the problem of keeping the thermodynamic
observable invariant at the whole time range, steering the entropy to a given target
level, making it follow a predefined trajectory, etc.

• For the problem of keeping the required invariant S(ρ(t)) ≡ S(ρ0) at the whole time
range [0, T], we consider

J1(c) = (S(ρ(T))− S(ρ0))
2 + P

T∫
0

(S(ρ(t))− S(ρ0))
2dt → inf, (4)

where the penalty coefficient P > 0 and the final time T are fixed. Although one can
expect such a case that making the integral close to zero does not provide S(ρ(t)) ≈
S(ρ0) at the whole [0, T]; however, (4) is of interest, because, first, it can be useful and,
second, it is appropriate for the described below gradient approach (GPMs). Moreover,
as a variant, one can formulate the problem

J2(c) = max
{t1>0, ..., tk , ..., tM=T}

|S(ρ(tk))− S(ρ0)| → inf, (5)

which is considered below together with piecewise linear controls and GA.
• For the problem of steering the von Neumann entropy to a given target value Star,

we consider

J3(c) = (S(ρ(T))− Star)
2 → inf, Star ̸= S(ρ0), (6)

where T is fixed, as necessary for the considered GPMs. In extension, one can analyze
a series of such steering problems for various values T and look for such an approxi-
mately minimal T for which the required value Star is reached.

• In addition to the steering problem with J3, we consider the pointwise state constraint
S(ρ(t)) ≤ S for a given S > S(ρ0) at the whole [0, T] by adding to J3 the integral term,
taking into account the constraint:

J4(c) = (S(ρ(T))− Star)
2 + P

T∫
0

(max{S(ρ(t))− S, 0})2dt → inf, P > 0. (7)
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Here, the final time T and the penalty coefficient P > 0 are fixed. Moreover, as a variant,
one can consider non-fixed T and take into account the state constraint as follows:

J5(c, T) = |S(ρ(T))− Star|
+ P max

{t1>0, ..., tk , ..., tM=T}

(
max{S(ρ(tk))− S, 0}

)
→ inf, P > 0, (8)

where T is considered free at a given range [T1, T2]. As for J2, we consider J5 for
piecewise linear controls and perform finite-dimensional optimization using GA.

For the objective functionals J1(c), J3(c), J4(c), below the GPM-1 and GPM-2 are
formulated for the class of bounded piecewise continuous controls. For a unified description
of the GPMs for these three optimal control problems, we use the following notation:

Φ(c) is J1(c) or J3(c) or J4(c),

F(ρ) =

{
(S(ρ)− S(ρ0))

2, if J1 is used,
(S(ρ)− Star)2, if J3 or J4 is used,

(9)

g(ρ) =


0, if J3 is used,
(S(ρ)− S(ρ0))

2, if J1 is used,
(max{S(ρ)− S, 0})2, if J4 is used.

(10)

The objective functionals J2(c), J5(c, T), as it is noted above, we consider with
piecewise linear controls. Such a control c is determined by control parameters cor-
responding to a set of nodes at [0, T]. For example, one can consider a uniform grid
{t1 = 0, . . . , ts, . . . , tN = T} with the step ∆t = T/N and the representation

u(t) = us + (t − ts)(us+1 − us)/∆t, nj(t) = ns
j + (t − ts)(ns+1

j − ns
j )/∆t, j = 1, 2

that allows introducing the vector of parameters,

a = (ai)
3N
i=1 = (u1, . . . , uN , n1

1, . . . , nN
1 , n1

2, . . . , nN
2 ),

satisfying the constraints |us| ≤ umax, ns
j ∈ [0, nmax] for j = 1, 2 and s = 1, . . . , N, and

defining such controls u, n1, n2. Moreover, as we show below, it can be useful to define
a more sophisticated class of controls by defining c as piecewise linear at a subset of [0, T]
and setting constant (zero) for other times; in such a way, c is defined not only by a. Anyway,
we have deal with finite-dimensional optimization, where J2(c), J5(c, T) are represented
by the corresponding objective functions q2(a) and q5(a, T) to be minimized. Moreover,
for these objective functions, one can decide to add regularization in controls, e.g., for J5,
as follows:

q5(a, T; γ) = q5(a, T) + γu max
1≤s≤N

{|us|}+ γn

(
max

1≤s≤N
{ns

1}+ max
1≤s≤N

{ns
2}
)
→ inf, (11)

where the coefficients γu, γn ≥ 0. Moreover, as a variant, for the parameters, which
represent incoherent controls, consider the inequality constraints |ns+1

j − ns
j | ≤ δ

j
n, s =

1, . . . , N − 1, j = 1, 2, where the largest allowed jumps δ
j
n > 0, j = 1, 2 are predefined,

and taking into account these constraints. E.g., for J2(c) and q2(a), consider

q2(a; γ) = q2(a) + γu max
1≤s≤N

{|us|}

+ γn

2

∑
j=1

max
{

max
1≤s≤N−1

{
|ns+1

j − ns
j | − δ

j
n, 0
}}

→ inf . (12)
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This equation is used to take into account possible bounds on variations of the incoher-
ent control.

For the objectives, for which GPMs are used below, e.g., for J3(c), one can add the
following regularization term (like to [24], p. 14):

R(c; γ) =

T∫
0

(
γuu2(t) + γn(n1(t) + n2(t))

)
dt, γu, γn ≥ 0. (13)

4. Markovian Two-Qubit System

As in [23,24], consider, as a particular case for (2), an open two-qubit system whose
dynamics are determined by a GKSL-type master equation which contains coherent and
incoherent controls and Hu,n

t = HS + Hc(t). Here, we deal with the following:

• The system state ρ(t) : H → H as a 4 × 4 density matrix (positive semi-definite,
ρ(t) ≥ 0, with unit trace, Trρ(t) = 1) and a given initial density matrix ρ0;

• Scalar coherent control u, vector incoherent control n = (n1, n2), and the correspond-
ing vector control c = (u, n) considered in this work, in general, as piecewise continu-
ous functions on [0, T];

• HS being the free Hamiltonian defined below;
• The controlled Hamiltonian Hc(t) = εHeff,n(t) + Hu(t), consisting of the effective Hamil-

tonian Heff,n(t), which represents the Lamb shift and depends on n(t), and of the
Hamiltonian Hu(t) = Vu(t), which describes interaction of the system with u(t) and
contains a Hermitian matrix V specified below as in [24];

• Dn
t being the controlled superoperator of dissipation, where we consider a special

form of a Lindblad superoperator known in the weak coupling limit (see [21], etc.);
• The parameter ε > 0 describing the coupling strength between the system and the

environment;
• The system of units with the Planck constant h̄ = 1.

The following detailed forms of the Hamiltonians are considered:

HS = HS,1 + HS,2, HS,j =
ωj

2
Wj, W1 := σz ⊗ I2, W2 := I2 ⊗ σz, (14)

Heff,n(t) =
2

∑
j=1

Heff,nj(t), Heff,nj(t) = ΛjWjnj(t), (15)

Hu(t) = Vu(t), V = Q1 ⊗ I2 + I2 ⊗ Q2, (16)

Qj = ∑
α=x,y,z

λ
j
ασα = sin θj cos φjσx + sin θj sin φjσy + cos θjσz, (17)

where j = 1, 2. Here σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
are the X, Y, and Z

Pauli matrices. The free Hamiltonian HS,j contains the transition frequency ωj of the jth
qubit. The effective Hamiltonian Heff,n(t) represents the Lamb shift which describes shifts
in transition frequencies of the qubits under the influence of the environment. The coef-
ficients Λj > 0, j = 1, 2 together with nj(t) describe the influence of the environment on

the Lamb shift. In Hu(t), the unit vectors λj := (λ
j
x, λ

j
y, λ

j
z) ∈ R3, j = 1, 2. Physically, the

Hamiltonian can describe either a pair of two-level atoms in electric fields polarized along
the directions λj := (λ

j
x, λ

j
y, λ

j
z) ∈ R3, j = 1, 2, or two particles with spin 1/2 in magnetic

fields along the directions λj. In this model, the qubits independently interact with the
coherent controls of the same intensity but with different directions determined by vectors
λj, so that the interaction Hamiltonian V is the sum of two terms. In [23], in addition to
this form, the case when coherent control induces interaction between the qubits was also
considered. In contrast to [24], and this work, the articles [23] consider only the case where
Q1 = Q2 = σx, i.e., in the present terms, θj = π/2 and φj = 0, j = 1, 2.
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As in [23,24], consider the following two-qubit superoperator of dissipation:

Dn
t (ρ(t)) = Dn(t),1(ρ(t)) +Dn(t),2(ρ(t)), (18)

Dn(t),j(ρ(t)) = Ωj(nj(t) + 1)
(

2σ−
j ρσ+

j − σ+
j σ−

j ρ − ρσ+
j σ−

j

)
+ Ωjnj(t)

(
2σ+

j ρσ−
j − σ−

j σ+
j ρ − ρσ−

j σ+
j

)
, j = 1, 2. (19)

The coefficients Ωj > 0, j = 1, 2 are determined by the system–environment microscopic
interaction. The matrices σ±

j are

σ±
1 = σ± ⊗ I2, σ±

2 = I2 ⊗ σ± with σ+ =

(
0 0
1 0

)
, σ− =

(
0 1
0 0

)
. (20)

Incoherent control n has the physical meaning of the density of particles of the sys-
tem environment and, therefore, should be non-negative. Moreover, we consider the
parallelepipedal constraints:

c(t) = (u(t), n1(t), n2(t)) ∈ [−umax, umax]× [0, nmax]
2 = Q, for all t ∈ [0, T], (21)

where umax, nmax > 0. The parameters ε, ω1, ω2, Λ1, Λ2, θ1, θ2, φ1, φ2, Ω1, Ω2, umax, nmax
are considered fixed when we formulate the optimal control problems, while modifying
some of them alters the quantum dynamics, i.e., one can vary them for a deeper analysis.

In this article, the two-qubit system is considered, in general, with piecewise contin-
uous controls. The described below GPMs operate in theory with such controls, and the
performed computer implementations of GPMs use piecewise linear interpolation for
controls. For the non-differentiable objectives, we consider piecewise linear controls that,
in contrast to piecewise constant controls used in the GRAPE-type method in [25], is another
way of parameterization of controls.

For such a Markovian two-qubit system, the corresponding evolution equation for
real-valued states was obtained in [23] and has the form

dx(t)
dt

=
(

A + Buu(t) + Bn1 n1(t) + Bn2 n2(t)
)
x(t), x(0) = xρ0 , (22)

obtained using the parameterization of the system density matrix,

ρ =


ρ1,1 ρ1,2 ρ1,3 ρ1,4
ρ∗1,2 ρ2,2 ρ2,3 ρ2,4
ρ∗1,3 ρ∗2,3 ρ3,3 ρ3,4
ρ∗1,4 ρ∗2,4 ρ∗3,4 ρ4,4

 =


x1 x2 + ix3 x4 + ix5 x6 + ix7

x2 − ix3 x8 x9 + ix10 x11 + ix12
x4 − ix5 x9 − ix10 x13 x14 + ix15
x6 − ix7 x11 − ix12 x14 − ix15 x16

. (23)

To analyze the dynamics of each qubit separately, we consider the reduced density
matrices ρj ∈ C2×2, j = 1, 2, and the corresponding Bloch vectors for the two qubits

ρ1 = TrH2 ρ =
2

∑
k=1

(I2 ⊗ ⟨k|)ρ(I2 ⊗ |k⟩), ρ2 = TrH1 ρ =
2

∑
k=1

(⟨k| ⊗ I2)ρ(|k⟩ ⊗ I2), (24)

where |k⟩ are basis vectors in H1 and H2. Because the density matrix of a qubit can be
bijectively mapped to the Bloch ball (in R3, this ball is centered in the point (0, 0, 0) and has
the unit radius), consider Bloch vectors rj = (rj

x, rj
y, rj

z) where rj
α = Tr(ρjσα), α ∈ {x, y, z},

|rj| ≤ 1, j = 1, 2. In terms of parameterization (23), one has:

r1 = (2(x4 + x11), −2(x5 + x12), x1 + x8 − x13 − x16), (25)

r2 = (2(x2 + x14), −2(x3 + x15), x1 − x8 + x13 − x16). (26)
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Reduced density matrices are ρj = 1
2

(
1 + rj

z rj
x − i rj

y

rj
x + i rj

y 1 − rj
z

)
, j = 1, 2. Further, for density

matrices ρ1(t) and ρ2(t) vs t ∈ [0, T], we consider their von Neumann entropies, i.e.,
S(ρj(t)) = −Tr

(
ρj(t) log ρj(t)

)
, j = 1, 2, and the sum S(ρ1(t)) + S(ρ2(t)). The behavior of

these quantities in the numerical experiments is shown below in Figures 1b and 2c,f,i.

Figure 1. For the initial state ρ0 = 1
4 I4 and the control c = 0: (a) the von Neumann entropy S(ρ(t))

and xc=0
j (t), j = 1, 8, 13, 16, i.e., the diagonal elements of the diagonal ρ(t), vs t ∈ [0, T = 300] (in

this case, the entropy steers from the largest value log 4 ≈ 1.39 to zero, indicating the system’s state
purification and minimization of S(ρ(T)); (b) the entropies S(ρ1(t)) and S(ρ2(t)) for the first and
second qubits, correspondingly, and the sum S(ρ1(t)) + S(ρ2(t)), vs t ∈ [0, T = 300], steer to zero.

Figure 2. For the problem of keeping the invariant S(ρ(t)) ≡ S(ρ0) at the whole [0, T = 5]. Problem (4)
and GPM-2 are used: (1) the subfigures (a–c) shows the results for ε = 0.1 and c(0) = (sin(2t), 0, 0);
(2) the subfigures (d–f) shows the results for ε = 0.1 and c(0) = 0; (3) the subfigures (g–i) shows the
results for ε = 0 (i.e., without taking into account the Lamb shift and the dissipator) and c(0) = 0.
The subfigures (a,d,g) show the obtained controls; for these controls, the subfigures (b,e,h) and (c,f,i)
show, correspondingly, the two-qubit system characteristics (S(ρ(t)), etc.) vs t and the entropies
S(ρ1(t)), S(ρ2(t)), their sums vs t. In the cases related to the subfigures (c,f), we see that for each
qubit its entropy is not constant.
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5. Numerical Optimization Tools: Markovian Two-Qubit Case
5.1. Gradient-Based Optimization Approach for the Problems with J1, J3, J4
5.1.1. Pontryagin Function and Krotov Lagrangian

According to the theory of optimal control (e.g., [72]), for the unified optimal control
problem with Φ(c) representing J1, J3, J4, the Pontryagin function is

h(χ, ρ, c) = ⟨χ,−i[Hc, ρ] + εDn(ρ)⟩ − P g(ρ)− γuu2 − γn(n1 + n2)

= ⟨Kc(χ, ρ), c⟩ − γuu2 − γn(n1 + n2) + h(χ, ρ),

where χ and ρ are 4 × 4 density matrices; c = (u, n1, n2) ∈ R3; the functions

Kc = (Ku,Kn1 ,Kn2), Ku(χ, ρ) = ⟨χ,−i[V, ρ]⟩, (27)

Knj(χ, ρ) =
〈

χ,−i[ΛjWj, ρ] + εΩj

(
2σ−

j ρσ+
j + 2σ+

j ρσ−
j −

{
I4, ρ

})〉
, j = 1, 2 (28)

(the 4 × 4 identity matrix I4 appears in Knj since σ+
j σ−

j + σ−
j σ+

j = I4), j = 1, 2; the term

h(χ, ρ) =
〈

χ,−i[HS, ρ] + ε
2

∑
j=1

Ωj
(
2σ−

j ρσ+
j −

{
σ+

j σ−
j , ρ

})〉
− P g(ρ).

As the Introduction notes, various Krotov-type iterative methods are used in quantum
optimal control. In this article, we do not use any Krotov-type method, but we use the
Krotov Lagrangian, which is the following for the unified problem:

L(c, ρ) = G(ρ(T))−
∫ T

0
R(t, ρ(t), c(t))dt,

G(ρ(T)) = F(ρ(T)) + ⟨χ(T), ρ(T)⟩ − ⟨χ(0), ρ0⟩,

R(t, ρ, c) =
〈

χ(t),−i[Hc, ρ] + εLD
n (ρ)

〉
+ ⟨χ̇(t), ρ⟩ − P g(ρ)− γuu2 − γn(n1 + n2).

The function χ is defined in the next subsection as the solution of the adjoint system also
defined below. For each admissible control c, the values of the Krotov Lagrangian and Φ(c)
coincide, as in the general V.F. Krotov theory [61].

5.1.2. Unified Adjoint System and Gradient

Consider the increment of L at admissible controls c, c(k) (for the further consideration,
we introduce k ≥ 0 as an iteration index):

L(c, ρ)− L(c(k), ρ(k)) = G(ρ(T))− G(ρ(k)(T))

−
∫ T

0
(R(t, ρ(t), c(t))− R(t, ρ(k)(t), c(k)(t)))dt, (29)

where the control process (c(k), ρ(k)) is known.
By analogy with [61] (pp. 239–240) in the theory of optimal control, here for the

increment (29), we consider the first-order Taylor expansions for G, R. At admissible
controls c, c(k), this gives the representation

Φ(c)− Φ(c(k)) =
〈 d

dρ
G(ρ(k)(T), ρ(T)− ρ(k)(T)

〉
−
∫ T

0

〈 ∂

∂ρ
R(t, ρ(k)(t), c(k)(t)), ρ(t)− ρ(k)(t)

〉
dt

−
∫ T

0

〈 ∂

∂c
R(t, ρ(k)(t), c(k)(t)), c(t)− c(k)(t)

〉
E3 dt + r.
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Here, the notations with the derivatives mean that we initially find these derivatives with
respect to ρ or (ρ, c), and after that, we substitute ρ = ρ(k)(T), etc.; r is the corresponding

residual. Setting the derivatives
d

dρ
G(ρ(k)(T) and

∂

∂ρ
R(t, ρ(k)(t), c(k)(t)) to be zero gives the

adjoint system which defines the function χ(k) as detailed below. As the result, the increment
formula for the unified objective Φ(c) has the form

Φ(c)− Φ(c(k)) = −
∫ T

0

〈 ∂

∂c
R(t, ρ(k)(t), c(k)(t)), c(t)− c(k)(t)

〉
E3

dt + r, (30)

∂

∂c
R(t, ρ(k)(t), c(k)(t)) =

∂

∂c
h(χ(k)(t), ρ(k)(t), c(k)(t)) = Kc(χ(k)(t), ρ(k)(t))

− γu(u(k)(t))2 − γn(n
(k)
1 (t) + n(k)

2 (t)).

The differentiation of the unified function F is needed to obtain the condition for the
final co-state χ(k)(T), i.e., the transversality condition; for differentiation of F, it is needed
to consider the various forms of F shown in (9). For differentiation of R, it is needed to
consider the various forms of g(ρ) shown in (10). Using the matrix differential calculus
(e.g., [73]), for the problems the following derivatives are found:

dS(ρ)
dρ

= − log ρ − IdimH=4,

dF(ρ)
dρ

=


d

dρ
(S(ρ)− S(ρ0))

2, if J1 is used,

d
dρ

(S(ρ)− S)2, if J3 or J4 is used,

= −2(log ρ + I4)

{
S(ρ)− S(ρ0), if J1 is used,
S(ρ)− S, if J3 or J4 is used,

dg(ρ)
dρ

=


0, if J3 is used,
d

dρ
(S(ρ)− S(ρ0))

2, if J1 is used,

d
dρ

(max{S(ρ − S, 0})2, if J4 is used

= −2(log ρ + I4)


0, if J3 is used,
S(ρ)− S(ρ0), if J1 is used,
max{S(ρ)− S, 0}, if J4 is used.

To compute the derivative
∂

∂ρ
R(t, ρ(k)(t), c(k)(t)), one needs to operate with the right-

hand side of the system (2) and take into account the corresponding properties such that the
anti-commutativity property of commutator and cyclic permutation of matrices under trace.

In this regard, and using the given formulas above for
dg(ρ)

dρ
, we, as a result, obtain the

adjoint system shown below in Proposition 1. This adjoint system contains the following
superoperator acting on χ(k)(t) (this superoperator is the same as derived in [24]):

D†
n(k)(t)(χ

(k)(t)) =
2

∑
j=1

[
Ωj

(
n(k)

j (t) + 1
)(

2σ+
j χ(k)(t)σ−

j −
{

σ+
j σ−

j , χ(k)(t)
})

+Ωjn
(k)
j (t)

(
2σ−

j χ(k)(t)σ+
j −

{
σ−

j σ+
j , χ(k)(t)

})]
,

where “†” reflects that ⟨χ(k)(t), T1(ρ(t))− T1(ρ
(k)(t))⟩ = ⟨T†

1 (χ
(k)(t)), ρ(t)− ρ(k)(t)⟩ and

also ⟨χ(k)(t), T2(ρ(t)) − T2(ρ
(k)(t))⟩ = ⟨T†

2 (χ
(k)(t)), ρ(t) − ρ(k)(t)⟩ with the operators
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T1 := 2σ−
j · σ+

j , T2 := 2σ+
j · σ−

j and (σ+
j )⊤ = σ−

j , (σ−
j )⊤ = σ+

j ; note that σ+
j σ−

j , σ−
j σ+

j
are Hermitian.

Proposition 1. (Adjoint system). For the Markovian two-qubit case of the system (2) and the
unified objective functional Φ(c) containing the unified terminant F(ρ(T)) and integrand g(ρ(t)),
the adjoint system has the following form:

dχ(k)(t)
dt

= −i[Hc(k)(t), χ(k)(t)]− εD†
n(k)(t)(χ

(k)(t))− P
dg(ρ(k)(t))

dρ
, (31)

χ(k)(T) = −dF(ρ(k)(T))
dρ

. (32)

If the adjoint system is used with taking into account one of the two pointwise state
constraints, then the system depends on ρ(k). Anyway, the adjoint system is linear in co-
state χ(k). This system is solved backward in time. In view of (30) and like the formula (3.16)
in [24], we consider the gradient of the unified objective.

Proposition 2. (Gradient). For the Markovian two-qubit case of the system (2) and the unified
objective functional Φ(c), the corresponding gradient at a given admissible control c(k) has the form

grad Φ(c(k))(t) =
(
−Ku(χ(k)(t), ρ(k)(t)) + 2γuu(k)(t),

−Knj(χ(k)(t), ρ(k)(t)) + γn, j = 1, 2
)

, t ∈ [0, T]. (33)

Here ρ(k) is the solution of the Markovian case of the system (2) with control c(k), while χ(k) is the
solution of the adjoint system (31), (32) with the control process (ρ(k), c(k)); the vector function
Kc(χ, ρ) defined in (27), (28) is used with these solutions.

In general, the formula (33) for the unified gradient reminds us, e.g., of the gradient for-
mula (2.5.29) given in Reference [74] on the theory of optimal control with real-valued states.

5.1.3. Projection Form of the PMP

Following the projection form of the PMP known in the theory of optimal control (e.g.,
see [75]) and also its use in quantum control [58], below such a projection form of the PMP
is formulated.

Proposition 3. (Projection form of the differential version of the PMP for the unified problem with
the objective Φ(c)). For the Markovian two-qubit case of the system (2) and the unified objective
functional Φ(c) with piecewise continuous controls satisfying (21) for a fixed final time T > 0,
if an admissible control ĉ = (û, n̂1, n̂2) is a local minimum point of Φ(c) to be minimized, then for
ĉ there exist such the solutions ρ̂ and χ̂ that the pointwise condition

ĉ(t) = PrQ
(
ĉ(t)− α grad Φ(ĉ)(t)

)
, t ∈ [0, T], α > 0, (34)

holds and, in detail, has the form

û(t) =


−umax, û(t; α) < −umax,
umax, û(t; α) > umax,
û(t; α), |û(t; α)| ≤ umax,

where û(t; α) = û(t) + α(Ku(χ̂(t), ρ̂(t))− 2γuû(t)),

n̂j(t) =


0, n̂j(t; α) < 0,
nmax, n̂j(t; α) > nmax,
n̂j(t; α), n̂j(t; α) ∈ [0, nmax],
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where n̂j(t; α) = n̂j(t) + α(Knj(χ̂(t), ρ̂(t))− γn), j = 1, 2.

5.1.4. One- and Two-Step Gradient Projection Methods

In the theory of optimal control, there are various forms of GPM-1 operating with
control functions (e.g., see in [76–78]). In quantum control, for example, work [28] exploits
GPM-1, which uses two algorithmic parameters (coefficient α for the gradient of the consid-
ered in that article objective functional and parameter θ ∈ [0, 1] of the convex combination
between the given control c(k) and depending on the α projection form for constructing
c(k+1)) and a scheme of one-dimensional optimization with respect to θ at each iteration, to
search for the best variation of c(k) in the sense of the best decreasing objective. In contrast
to [28], this article considers GPM-1 without the aforementioned convex combination
and with a fixed α at the whole set of iterations. The considered GPM-2 is based on the
heavy-ball method (see the works [79,80]), its projection version [81,82] and the recent
papers [23,24], where the corresponding GPM-2 adaptations are used for quantum control.

For the unified optimal control problem and a given admissible initial guess c(0), con-
sider the following GPMs iterative processes operating in the functional space of controls.

• GPM-1. The iteration process in the vector form is as follows and is reminiscent of (34):

c(k+1)(t) = PrQ
(
c(k)(t)− α grad Φ(c(k))(t)

)
, α > 0, k ≥ 0. (35)

In detail, we have

u(k+1)(t) =


−umax, u(k)(t; α) < −umax,
umax, u(k)(t; α) > umax,
u(k)(t; α), |u(k)(t; α)| ≤ umax,

where u(k)(t; α) = u(k)(t) + α(Ku(χ(k)(t), ρ(k)(t))− 2γuu(k)(t)),

n(k+1)
j (t) =


0, n(k)

j (t; α) < 0,

nmax, n(k)
j (t; α) > nmax,

n(k)
j (t; α), n(k)

j (t; α) ∈ [0, nmax],

where n(k)
j (t; α) = n(k)

j (t) + α(Knj(χ(k)(t), ρ(k)(t))− γn), j = 1, 2;

• GPM-2. The iteration process in the vector form is as follows:

c(k+1)(t) = PrQ
(
c(k)(t)− α grad J(c(k))(t)

+ β(c(k)(t)− c(k−1)(t))
)
, α, β > 0, k ≥ 1, (36)

where c(1) is obtained using GPM-1 for a given initial guess c(0).

Here, the algorithmic parameters α, β > 0 are fixed for all iterations. One may consider
this, on the one hand, as a drawback, because we do not try to effectively variate these
parameters, and, on the other hand, as a simpler case for the analysis. Moreover, here,
relying on the various known computational facts about the heavy-ball method (e.g.,
see [83,84]), we take β ∈ (0, 1) and more likely β = 0.8, 0.9 in GPM-2, but not β = 10, etc.
TensorFlow MomentumOptimizer [84] under the setting use_nesterov = False represents
the heavy-ball method, where the parameter is 0.9 by default.

5.2. Zeroth-Order Stochastic Optimization for the Problems with J2, J5

GA belongs to zeroth-order stochastic tools, such as differential evolution, simulated
annealing, particle-swarm optimization, sparrow search algorithm, etc., whose stochastic
behavior models try to find a global minimizer of an objective function without its gradient
due to these behavior models. In this article, the GA implementation [85] has been adjusted
for the problems with the objectives J2, J5.
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When a GA realization works with large umax, nmax, then one can expect that the
algorithm may miss a closer-to-optimal point, which is in a smaller subdomain. Because of
the stochastic nature of GA, one can expect that, for the same optimization problem, the re-
sults of different trials of the GA may differ significantly even with the same deterministic
settings (mutation probability, etc.). That is why one can perform—for the same opti-
mization problem—several trials of the GA and then select the lowest computed value of
the objective over the trials. However, e.g., if we consider the keeping problem (5) with
regularization in controls and consider J2 as sufficiently close to zero, and the profiles in
the computed controls are acceptable, then it is not needed to perform more trials of the
GA, because we know that zero is the lower bound for J2.

6. Analytical and Numerical Analysis: Markovian Two-Qubit Case

In the numerical experiments, the following values of the system parameters are used:

ω1 = 1, ω2 = 0.5, Λ1 = 0.3, Λ2 = 0.5, Ω1 = 0.2, Ω2 = 0.6, ε = 0.1,

φ1 = π/4, φ2 = π/3, θ1 = π/3, θ2 = π/4. (37)

(except for Case 3 in Section 6.2, where for comparison, we set ε = 0). All the parameters are
expressed in the relative units of free oscillation of the first qubit, which has period T1 = 2π.
Free oscillations of the second qubit have period T2 = 2T1. The decoherence rate is by the
order of magnitude smaller than the oscillations of the first qubit. The difference between
the qubit’s free transition frequencies may occur twice, for example, in superconducting
qubits. The system-environment coupling is determined by the parameter ε. This parameter
specifies the (uncontrolled) decoherence rate, i.e., the rate of decoherence when u = 0 and
n ≡ 0). Generally, the decoherence rate is several orders of magnitude smaller than the rate
of free dynamics. In this study, we focus on cases where the decoherence rate is an order of
magnitude slower than the free dynamics.

In the computer realizations (in Python) of GPM-1 and GPM-2, piecewise linear
interpolation of controls u, n1, n2 is used at a uniform grid introduced over [0, T] with M
subintervals, i.e., with M + 1 time instances. To solve the considered ODEs, solve_ivp
from SciPy is used.

6.1. Results on the von Neumann Entropy under Zero Coherent and Incoherent Controls

If one takes c = 0, then (22) becomes
dxc=0

dt
= Axc=0, xc=0(0) = xρ0 whose solution is

xc=0(t) = eAtxρ0 . For the parameterized initial density matrix ρ0 = diag(a1, a2, a3, a4)

(s.t. aj ≥ 0, j = 1, 2, 3, 4,
4
∑

j=1
aj = 1) and the corresponding initial state xρ0 =

(a1, six zeros, a2, four zeros, a3, 0, 0, a4), as Reference [23] shows, system (22) for c = 0
has the following exact solution:

xc=0
1 (t) = a1 + a2 − a2e−2εΩ2t + e−2ε(Ω1+Ω2)t(e2εΩ1t − 1)(a3e2εΩ2t + a4(e2εΩ2t − 1)),

xc=0
8 (t) = e−2εΩ2t(a2 + a4 − a4e−2εΩ1t), xc=0

13 (t) = e−2εΩ1t(a3 + a4 − a4e−2εΩ2t),

xc=0
16 (t) = a4e−2ε(Ω1+Ω2)t, xc=0

j (t) = 0, j ∈ 1, 16 \ {1, 8, 13, 16}, t ≥ 0. (38)

The corresponding density matrix ρ is diagonal. Then the final von Neumann entropy is

S(ρ(T)) = − ∑
xc=0

j (T) ̸=0, j=1,8,13,16

xc=0
j (T) log xc=0

j (T). (39)

Using (25), (26), we obtain for the Bloch vectors:

r1(t) =
(

r1
x(t), r1

y(t), r1
z(t)

)
=
(

0, 0, xc=0
1 (t) + xc=0

8 (t)− xc=0
13 (t)− xc=0

16 (t)
)

,
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r2(t) =
(

r2
x(t), r2

y(t), r2
z(t)

)
=
(

0, 0, xc=0
1 (t)− xc=0

8 (t) + xc=0
13 (t)− xc=0

16 (t)
)

.

Thus, the jth reduced density matrix is also diagonal, ρj(t) = 1
2

(
1 + rj

z(t) 0
0 1 − rj

z(t)

)
, and

we have S(ρj(t)) =

{
− 1+rj

z(t)
2 log 1+rj

z(t)
2 − 1−rj

z(t)
2 log 1−rj

z(t)
2 , if rj

z(t) ̸∈ {±1},
0, if otherwise.

Case 1: ρ0 = 1
4I4 (a1 = a2 = a3 = a4 = 1

4 ), i.e., the completely mixed quantum state
whose von Neumann entropy is the largest among 4 × 4 density matrices. Using (39),
for (37) and T = 50, 200, 250, we obtain, correspondingly, S(ρ(T)) ≈ 0.2571, 0.0016, 0.0003.
For a sufficiently large T, this steering allows the purification of the system states with good
quality. This corresponds to the problem of minimizing the objective functional J0(c) =
S(ρ(T)) → inf that relates to (3). We see that in the considered case, the purification goal is
achieved using the system-free evolution, i.e., without any non-trivial control c. Figure 1
shows xc=0

j (t), j = 1, 8, 13, 16, and S(ρ(t)) computed via (39) vs t ∈ [0, T = 300]. We see

that approximately xc=0
1 steers to 1, while xc=0

8 , xc=0
13 , and xc=0

16 steer to zero. This means
that the system approximately steers to the pure state ρ = diag(1, 0, 0, 0).

Case 2: ρ0 = diag
( 1

2 , 3
10 , 1

10 , 1
10
)
, i.e., a mixed quantum state. If we take Formula (38)

with ε = 0, then we have xc=0
1 (t) ≡ 1

2 , xc=0
8 (t) ≡ 3

10 , xc=0
13 (t) ≡ 1

10 , and xc=0
16 (t) ≡ 1

10
for any t ≥ 0. For any time, this particular dynamic system does not leave the state ρ0
(xρ0 )—this is a singular point of the system vector field. This analytical finding relates with
one of the considered below cases for the keeping problem (and with the right column of
the subfigures in Figure 2) analyzed in the next subsection.

6.2. The Problem of Keeping the Initial Entropy S(ρ0)

Consider the initial state ρ0 = diag
( 1

2 , 3
10 , 1

10 , 1
10
)

with S(ρ0) ≈ 1.168 and the problem
of keeping the von Neumann entropy S(ρ(t)) at the level S(ρ0) at the whole [0, T = 5].

6.2.1. Using the Problem (4) and GPM

Set the coefficient P = 0.1 in (4). Set the bounds umax = 30, nmax = 10 in (21).
The regularization (13) is not used in each of the described below three cases. We use
GPM-2 (see the iteration formula (36)) with the gradient of the corresponding functional,
parameters α = 3, β = 0.9 fixed for the whole number of iterations. For comparison,
GPM-1 (see the iteration formula (35)) with the same α is used. With respect to the both
terms of the objective J1, we use the following stopping criterion for GPMs:

(
(S(ρ(k)(T))− S(ρ0))

2 ≤ εstop,1

)
&

 1
P

T∫
0

(S(ρ(t))− Sρ0)
2dt ≤ εstop,2

. (40)

Set εstop,1 = 10−6 and εstop,2 = 10−5.
Consider the following three cases: (1) ε = 0.1 and c(0) = (sin(2t), 0, 0); (2) ε = 0.1

and c(0) = 0; (3) ε = 0 and c(0) = 0. For the GPM computer implementations, we
consider piecewise linear interpolation for u, n1, n2 at the uniform time grid with M = 103

subintervals.
Case 1 (ε = 0.1 and c(0) = (sin(2t), 0, 0)). GPM-2 at the cost of 132 iterations

reaches (40). For this case, consider the left column of the subfigures in Figure 2. We
see that all the computed controls u, n1, n2 are non-zero here. We see that the graphs of
S(ρ(t)) (blue solid), degree of purity P(ρ(t)) = Trρ2(t), and the Hilbert–Schmidt distance
∥ρ(t)− 1

4I4∥= [Tr
(
(ρ(t)− 1

4I4)
2)]1/2 vs t ∈ [0, T] are close to the constants that relate to the

idea of the keeping problem. At the same time, the graph of ∥ρ(t)− ρ0∥ is far from constant
and shows that this (approximate) keeping relates to sufficiently different distances between
the system states and ρ0 at various time instances. For comparison, GPM-1 is used for the
same c(0). Let the largest allowed number of iterations be 500 for this method. At the cost
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of 500 iterations, GPM-1 does not reach the stopping criterion (40), but the terminal part

of J1 is near 3 × 107 (rather less than εstop,1 = 10−6) and 1
P

T∫
0
(S(ρ(t))− Sρ0)

2dt ≈ 0.0005.

Thus, both GPM-1 and GPM-2 work good here, but GPM-2 reaches the criterion at the cost
of 132 iterations.

Case 2 (ε = 0.1 and c(0) = (0, 0, 0)). Only the initial guess is different, i.e., we use the
same values (37), etc., the same other settings in GPM-2. At the cost of 253 iterations, GPM-
2 reaches (40). The resulting control c contains the control u = 0, while both the obtained
controls n1, n2 are non-trivial. The middle column of the subfigures in Figure 2 shows the
obtained results. Thus, in this keeping problem, it is sufficient to adjust only n1, n2 under
u = 0. Moreover, note that for c(0) = 0, its component u(0) = 0 is singular in the sense that
the corresponding switching function Ku(χ(0)(t), ρ(0)(t)) ≡ 0 at the whole [0, T].

Case 3 (ε = 0.1 and c(0) = (0, 0, 0)). In contrast to the previous case, here we do not
take into account the Lamb shift and the dissipator. The right column of the subfigures in
Figure 2 shows that, in this case, the system dynamics achieve the goal of keeping S(ρ(t))
at the level S(ρ0) at the whole [0, T = 5].

6.2.2. Using the Problem (5) and Genetic Algorithm

Further, the keeping problem is considered as minimizing the objective J2 in the class
of piecewise linear controls via the GA. Here, the class of piecewise linear controls u, n1, n2
is defined at the uniform grid introduced at [0, T = 5] with only M = 10 subintervals
(compare with M = 103 used for interpolation of controls in the GPM computer realization).
Thus, here, we consider 3(M + 1) = 33 control parameters. Consider umax = nmax = 4
and use the regularization (12) with γu = 0, γn = 0.01, δn1 = δn2 = 1. For GA, we set
the allowed number of iterations to 350. Figure 3 shows the results obtained due to some
GA trial that started from an automatically generated initial point. In this case, we obtain
J2 = q2 ≈ 0.005, satisfying the regularization requirements for incoherent controls in (12)
with the largest allowed jumps δn1 = δn2 = 1. All the resulting controls u, n1, n2 are
non-trivial here.

Figure 3. For the problem of keeping the invariant S(ρ(t)) ≡ S(ρ0) at the whole [0, T = 5]. Consider-
ing piecewise linear controls (with M = 10 subintervals) relates to the GA finite-dimensional opti-
mization. At the resulting controls computed with some GA trial: (a) S(ρ(t)), P(ρ(t)), and ∥ρ(t)− ρ0∥
vs t ∈ [0, T = 5]; (b) the subsequence of the monotonically decreasing values of J2 among all its
values computed during the GA work.

6.3. The Problem of Steering the von Neumann Entropy to a Predefined Value

Consider the steering problem as only the terminal problem, i.e., we use the objective J3
and (6). As with objective J1, we also consider the system with the values in Equation (37),
setting bounds umax = 30, nmax = 10. We set the initial state ρ0 = diag

(
0, 1

2 , 0, 1
2
)

with
S(ρ0) = log 2 ≈ 0.7 and the target value Star = 0.4. Set T = 40. With respect to the regular-
ization (13), we consider two cases: with and without this regularization. GPM-2 is used
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with α = 3 and β = 0.9. Piecewise linear interpolation for controls is used with M = 103

equal subintervals. We take c(0) = 0.5. The stopping criterion is J3(c(k)) ≤ εstop = 10−6.
Case 1: Without the regularization (13). GPM-2, at the cost of 42 iterations, meets the

stopping criterion. The obtained results are shown in Figure 4a,b,c. We see that all the
resulting controls are non-trivial.

Figure 4. For the problem of steering the von Neumann entropy to the predefined value Star = 0.4
from the initial value S(ρ0) ≈ 0.7: without (see the subfigures (a–c)) and with (see the subfigures (d–f))
the regularization (13). Here, Sup.b. = log 4 is the von Neumann entropy upper bound, SL(ρ(t)) =
1 − P(ρ(t)) is the linear entropy.

Case 2: With the regularization (13). Set γu = γn = 10−3. GPM-2, at the cost of 34
iterations, meets the stopping criterion. The obtained results are shown in Figure 4d,e,f. We
see that only coherent control is computed as non-trivial. Thus, for the considered steering
problem, it is sufficient to adjust only non-trivial coherent control.

6.4. The Steering Problem for the von Neumann Entropy under the Pointwise Constraint for
This Entropy

In view of the graphs of S(ρ(t)) vs t in Figure 4a,d, we introduce and try to satisfy
the pointwise constraint S(ρ(t)) ≤ S = 1, t ∈ [0, T = 40], in addition to the requirement to
reach the value Star = 0.4.

Consider both the problems (7) and (8) and, correspondingly, GPM and GA.

6.4.1. Using the Problem (7) and GPM

Consider the objective J4 and the problem (7). With respect to both terms of the
objective J4, we use the following stopping criterion for the GPMs:

(
(S(ρ(k)(T))− Star)

2 ≤ εstop,1

)
&

 1
P

T∫
0

(max{S(ρ(k)(t))− S, 0})2dt ≤ εstop,2

. (41)

Set εstop,1 = 10−6 and εstop,2 = 10−3. We take the penalty coefficient P = 0.05 in J4.
The regularization (13) is not used here. We set the bounds umax = 30, nmax = 10 in (21).
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GPM-2 with α = 3, β = 0.9 at the cost of 39 iterations provides reaching (41). The results
are shown in Figure 5a,b.

Figure 5. For the problem of steering, the von Neumann entropy to the predefined value Star = 0.4
from the initial value S(ρ0) ≈ 0.7 under the state constraint S(ρ(t)) ≤ S = 1: (1) with respect
to the problem (7) (without the regularization (13)) and using GPM-2 (subfigures (a,b)); (2) with
respect to the problem (8) (with the described in the main text special class of controls) and the
regularized objective (11) (with γu = 0.1, γn = 0) and using the GA (subfigures (c,d)). We see
that, for approximate steering, it is appropriate to adjust only coherent control under the zero
incoherent controls.

6.4.2. Using the Problem (8) and Genetic Algorithm

Consider the problem of steering the von Neumann entropy under the pointwise
constraint on S(ρ(t)) as minimizing J5. Here, taking into account the structure of the
resulting controls obtained via GPM-2, and shown in Figure 5b, we construct the following
special class of piecewise linear controls. Let both incoherent controls be zero throughout
the interval [0, T = 40], while coherent control is zero at (0.3T, T], and is a piecewise linear
function at [0, 0.3T], which is determined at the uniform grid with M = 20 subintervals
taken at [0, 0.3T]. Consider the bound umax = 4 and penalty factor P = 0.5. In this
optimization problem, T is not fixed and is considered as a control parameter varied at
the range [T1, T2] = [38, 40]. Thus, here the objective function g5 depends on M + 1 = 21
control parameters, which determine coherent control, and T. Moreover, the regularization
in the control parameters according to (11) is used with γu = 0.1, γn = 0. The upper bound
for the number of iterations of the GA is set at 200. The results of certain GA trials are
shown in Figure 5c,d. The resulting value |S(ρ(T))− Star| ≈ 6 × 10−5 and the computed
pointwise max-max term in J5 is zero. Thus, we see that, for approximate steering, it is
appropriate to adjust only coherent control under the zero incoherent controls here.

7. Conclusions

In this article, we consider the general problem of controlling the von Neumann en-
tropy of quantum systems either at some final time or over some time interval. The example
of the two-qubit system is considered in detail with the following control goals: (1) min-
imizing or maximizing the final entropy S(ρ(T)); (2) steering S(ρ(T)) to a given target
value; (3) steering S(ρ(T)) to a target value and satisfying the pointwise state constraint
S(ρ(t)) ≤ S for a given S; (4) keeping S(ρ(t)) constant at a given time interval. Under the
Markovian two-qubit dynamics determined by a GKSL-type master equation with co-
herent and incoherent controls: (1) for the differentiable cases and piecewise continuous
controls, one- and two-step gradient projection methods have been adapted by deriving
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the corresponding adjoint systems and gradients for the objective functionals; (2) for the
non-differentiable cases and piecewise linear controls, a finite-dimensional optimization
with the genetic algorithm has been performed. The numerical experiments conducted
with these optimization tools demonstrate their appropriateness for the problems consid-
ered and enable the identification of various structures in the resulting controls. A more
detailed analysis of the entropy involving objective functionals, taking into account the
Hilbert–Schmidt distances and the reduced density matrices (24), is an open direction for
future research.
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