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Abstract: In this work, a computational scheme is proposed to identify the main combinations
of handcrafted descriptors and deep-learned features capable of classifying histological images
stained with hematoxylin and eosin. The handcrafted descriptors were those representatives of
multiscale and multidimensional fractal techniques (fractal dimension, lacunarity and percolation)
applied to quantify the histological images with the corresponding representations via explainable
artificial intelligence (xAI) approaches. The deep-learned features were obtained from different
convolutional neural networks (DenseNet-121, EfficientNet-b2, Inception-V3, ResNet-50 and VGG-19).
The descriptors were investigated through different associations. The most relevant combinations,
defined through a ranking algorithm, were analyzed via a heterogeneous ensemble of classifiers
with the support vector machine, naive Bayes, random forest and K-nearest neighbors algorithms.
The proposed scheme was applied to histological samples representative of breast cancer, colorectal
cancer, oral dysplasia and liver tissue. The best results were accuracy rates of 94.83% to 100%, with the
identification of pattern ensembles for classifying multiple histological images. The computational
scheme indicated solutions exploring a reduced number of features (a maximum of 25 descriptors)
and with better performance values than those observed in the literature. The presented information
in this study is useful to complement and improve the development of computer-aided diagnosis
focused on histological images.

Keywords: classification; histological images; deep-learned features; fractal techniques; xAI representation;
ensembles; heterogeneous classifiers

1. Introduction

Histopathology considers the study of biological tissues and their microscopic struc-
tures. Histopathologists examine tissue samples under a microscope to identify abnormal
changes in cell structure and indicate possible pathological conditions [1,2]. In this process,
staining techniques, such as hematoxylin and eosin (H&E), and microscopy are commonly
explored in order to obtain information for the diagnosis, treatment and understanding
of the progression of hyperplasias, dysplasias, metaplasias and neoplasms [1,3,4]. For
example, when the H&E technique is used, the staining process aims to highlight the
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basophils and eosinophils in tissues [5,6]. The first dye highlights cell nuclei with a bluish
color, while the second makes the cytoplasm reddish. Other cellular structures have colors
derived from mixing these dyes [7]. These conditions contribute to the analysis of regions of
interest, whether by specialists or automated systems aimed at classifying and recognizing
cancer patterns, considered a global public health issue. Over the past decade, there has
been a 20% increase in cancer incidence, and more than 25 million new cases are expected
by 2030. According to [8], cancer has become an important cause of premature mortality
globally and is associated with high social and economic costs. The estimated productivity
losses are EUR 104.6 billion of the gross national domestic product in Europe and USD
46.3 billion of the combined gross domestic product of the BRICS countries (Brazil, Russia,
India, China and South Africa).

In this context, delays in the diagnosis and treatment of cancer can increase the rates
of the disease in advanced stages and consequently, mortality. On the other hand, the
characterization of cellular changes and their associations with cancer are complex and
challenging processes for histopathologists [3,4,9]. Methods based on computer vision
and artificial intelligence techniques have provided important advances to minimize these
challenges, increasing cancer diagnostic and prognostic accuracy values, especially through
computer-aided diagnosis (CAD) [10,11]. In these systems, the extraction and classification
of features are essential for the recognition of histological patterns commonly examined by
pathologists, especially in the contexts of colorectal cancer, breast cancer, oral dysplasia and
liver tissue [12,13]. It is noted, for example, that the combined use of techniques (ensemble
learning), such as those based on convolutional neural networks (CNN), make it possible
to characterize information at different levels and scales to verify how they relate to each
other in the data space [14].

Although a CNN architecture directly performs image classifications, when the val-
ues in its internal layers (deep-learned features) were investigated separately, the results
indicated more relevant performance, with new approaches in the context of medical
images [15–20], including the use of transfer learning [21] or even different ensembles of
descriptors [22–27]. Among the combinations with deep-learned features, the use of fractal
descriptors (handcrafted), such as fractal dimension, lacunarity and percolation, deserves
to be highlighted because they are capable of appropriately measuring complex shapes
generally found in nature and in the context of H&E samples [12,28–34]. Moreover, the
handcrafted features that we selected are commonly used for describing complex struc-
tures like the ones found in histopathological images. Therefore, it is noted that proposals
based on ensemble learning have been indicated as one of the main research fields for the
development of new models [35].

In addition, it is important to note that explainable artificial intelligence (xAI) has
contributed significantly to the improvement of ensemble learning models, especially in the
validation and interpretation of results [36,37], in order to ensure that accurate classifications
are determined for the right reasons [38,39]. This question motivated the development of
strategies based on class activation mappings (CAMs) [40], specifically, gradient-weighted
class activation mappings (Grad-CAMs) and local interpretable model-agnostic explana-
tions (LIME) [41]. These approaches can be applied to produce visualizations of the image
regions that support the CNN classification process. Quantifying this type of image with
fractal techniques can complement the process of classification and pattern recognition of
histological images. Despite these observations, it is noted that this hypothesis has not yet
been investigated in the specialized literature in the context of multiple H&E datasets such
as those explored here.

The strategies highlighted previously result in a highly complex feature space, a fact that
can make investigations of contexts with a reduced number of samples unfeasible [42,43],
such as histological datasets commonly used to investigate colorectal cancer, breast cancer,
oral dysplasia and liver tissues. This situation can be overcome by identifying the most
relevant features for the classification process and, consequently, indicating more accu-
rate and robust CAD systems. Thus, feature selection plays a critical role in identifying
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patterns [44], but there is no universal approach in order to define the best results for all
contexts [45–48]. On the other hand, algorithms based on ranking and filters, such as ReliefF,
are capable of detecting feature dependencies and provide the best solutions in different
experiments [47,49–51]. This strategy provides sets of features with different dimensions
via any desired criteria. In addition, a set of descriptors can also be highly dependent on the
heuristics of the classifier used to evaluate the model [52]. This challenge can be minimized
through a classification process with different heuristics (ensemble of classifiers) [53]. Tech-
niques that are part of this set consider the so-called crowd wisdom, in which a decision
is made from different perspectives and when associated, can be more accurate. The jus-
tification is that possible individual errors are compensated by the successes of the other
components [53]. Therefore, investigating the most relevant combinations of descriptors and
techniques for the analysis, classification and pattern recognition of H&E images remains
an ongoing challenge. This makes ensemble-learning-based solutions more generalizable
and robust.

Even with some initiatives observed [12,54–57], models based on ensemble learning
with multiscale and multidimensional fractal descriptors, such as those investigated here,
have not yet been fully explored in the literature, including the quantification with the Grad-
CAM and LIME representations. In this context, some insights are still pertinent, such as
whether it is possible to define standards between the techniques used to classify multiple
types of H&E images; whether multiscale and multidimensional fractal descriptors indicate
gains in relation to the results achieved via deep-learned features with transfer learning;
whether fractal descriptors obtained from Grad-CAM and LIME representations can con-
tribute to the performance of an ensemble learning scheme; and whether the combination of
ensembles (descriptors and classifiers) indicates more competitive performance in relation
to that available in the specialized literature. Some architectures such as DenseNet-121 [58],
Inception-V3 [59], ResNet-50 [60] and VGG-19 [61] can still be explored to provide deep-
learned features, even with the success provided in the direct classification of some types
of histological images [23,62–64]. EfficientNet [65] has not yet been fully explored with the
approaches presented here. Therefore, the strategies and conditions previously presented
are useful to make knowledge comprehensible to the specialists focused on developing and
improving CAD systems. Moreover, the proposed scheme to identify, select and classify
the main combinations is based on aspects widely discussed in information theory, image
processing and pattern recognition, especially to obtain more robust baseline schemes in
this context of histological samples.

In this work, a computational scheme was defined to identify the most relevant feature
ensembles in order to complement and improve the development of CAD systems focused
on H&E images. The handcrafted descriptors were defined using multiscale and multidi-
mensional fractal techniques (percolation, fractal dimension and lacunarity) to quantify the
original H&E samples and the corresponding LIME and Grad-CAM representations. The
deep-learned features were obtained from the DenseNet-121, EfficientNet-b2, Inception-V3,
ResNet-50 and VGG-19 architectures. The descriptors were analyzed based on different
ensembles, considering the ReliefF algorithm with an ensemble of classifiers (support vector
machine, naive Bayes, random forest and K-nearest neighbors). The proposed methodology
was applied to distinguish histological samples representative of breast cancer, colorectal
cancer, oral dysplasia and liver tissue. The information and conditions obtained were
detailed from each experiment. The main contributions of this work are:

• A computational scheme capable of indicating the main ensembles of descriptors for the
study of histological images, exploring the ReliefF algorithm and multiple classifiers;

• An optimized ensemble of deep-learned features with the best results for classifying
colorectal cancer, liver tissue and oral dysplasia, using a reduced number of features
(up to 25 descriptors);

• Indications of the discriminative power of ensembles based on fractal features from
the LIME and CAM representations;
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• Solutions without overfitting and a more robust baseline scheme, with the necessary
details for comparisons and improvements of CAD systems focused on H&E images.

In the Section 2 of this paper, the methodology is described in detail, and in Section 3,
the results are presented and discussed. The conclusion is drawn in Section 4.

2. Materials and Methods

In this section, the main steps for the proposed scheme are described, exploring the
combined use of deep-learned features via transfer learning with fractal descriptors ob-
tained from original H&E images and their CAM and LIME representations. In the first
step, the CNN architectures were defined, and the output layer was fine-tuned to match
the classes available on each dataset. Also, in the same step, the CAM and LIME represen-
tations were generated considering the fine-tuned models. The second step defined the
extraction of the deep-learned features from the selected architectures and the multiscale
and multidimensional fractal features using the original H&E images and their xAI rep-
resentations. In the third step, the extracted features were combined (feature vectors) in
different ensembles in order to identify the most relevant information in each context. In
the fourth step, the features from each ensemble were ranked and selected to define the best
solutions with a reduced number of descriptors. In the fifth and last step, the discriminative
capacities of the optimized ensembles were verified through a heterogeneous ensemble
with four classifiers. An overview of the proposed scheme is illustrated in Figure 1, with
details presented in the next sections.

2.1. Datasets

The proposed scheme was tested on four H&E-stained histological datasets, repre-
sentatives of breast cancer (UCSB) from [66], colorectal cancer (CR) from [67], liver tissue
(LG) from [68] and oral epithelial dysplasia (OED) from [69]. The main details about these
datasets are in Table 1, with some samples presented in Figure 2 in order to illustrate
each context.

Table 1. Main details of the H&E-stained histological datasets.

Dataset Image Type Number of
Classes Classes Number of Samples Resolution

UCSB [66] Breast cancer 2 Malignant and benign 58 (32/26) 896 × 768
CR [67] Colorectal cancer 2 Malignant and benign 165 (74/91) from 567 × 430 to 775 × 552
LG [68] Liver tissue 2 Male and female 265 (150/115) 417 × 312
OED [69] Oral epithelial dysplasia 2 Healthy and severe 148 (74/74) 450 × 250

2.2. Step 1—Fine-Tuning the CNN and xAI Representations

Five CNN architectures were considered in the present scheme: DenseNet-121 [58],
EfficientNet-b2 [65], Inception-V3 [59], ResNet-50 [60] and VGG-19 [61]. These models
were chosen considering their different image classification strategies, which provided a
broader investigation of the proposed scheme with different deep-learned features. All
models were obtained from the PyTorch library, with details presented in Table 2, including
accuracy values achieved on the ImageNet dataset [70].

The fine-tuning step was applied to map the last layer of each CNN with the available
classes, changing the final connections and weights corresponding to the total number of
groups in each H&E dataset (Table 1). This strategy avoided the full network training stage
and made it possible to investigate datasets with a reduced number of images. This process
was performed with a k-fold cross-validation (k = 10), which divided the input in k folds
of approximately the same size in order to train the model from several possible samples.
For each of the k iterations of the training process, a fold was used as evaluation data and
the other k − 1 as training data. Each iteration should train a new model, and the output
selected was the model with the highest accuracy when classifying test data left out of the
process’s training input. This technique was applied to reduce the possibility of overfitting.
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Table 2. Details of the pretrained architectures and respective accuracies (data from [71]) explored to
define the deep-learned features and xAI representations.

Architecture Parameter Layers Accuracy (ImageNet)

DenseNet-121 [58] 8 × 106 121 91.97%
EfficientNet-b2 [65] 9.1 × 106 324 95.31%

Inception-V3 [59] 2.7 × 107 48 93.45%
ResNet-50 [60] 2.6 × 107 50 92.86%

VGG-19 [61] 1.4 × 108 19 90.87%

Figure 1. An overview of the proposed scheme.
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Figure 2. Examples of H&E images: breast UCSB from [66], benign (a) and malignant (b); CR
from [67], benign (c) and malignant (d); LG from [68], male (e) and female (f); OED from [69],
healthy (g) and severe (h).

In addition, each training considered 10 epochs, using the stochastic gradient descent
(SGDM) strategy, and an initial learning rate lr = 0.01 with a reduction factor of 0.75 every
2 epochs; the cross-entropy function was used to calculate the adjustment on the parameters.
This was repeated for each permutation of architecture and dataset. It is important to
highlight that the input images were normalized considering the standard deviation and
average of the ImageNet dataset’s color channel values to match the methodology used on
the model’s pretraining [72]. Finally, the resulting fine-tuned models were the ones that
achieved the highest accuracy for the evaluation set, independent of the epoch.

xAI Representations: LIME and Grad-CAM

To obtain each xAI representation, LIME and Grad-CAM methods were applied to
every image using the fine-tuned model for the corresponding dataset. The Grad-CAM
representations were defined through the last convolutional layer of each CNN architecture,
using the approach of [73]. This choice was based on the idea that the deepest layers
contained values related to global patterns on the input [74]. The output was a map,
converted into a heatmap, with the weights indicating the contribution of each pixel to
the final classification. In Figure 3, the Grad-CAM representations of some H&E images
are illustrated.
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Figure 3. Examples of xAI representations based on the Grad-CAM technique, with (a) the original
image, (b) the weights mapped to indicate the contribution of each pixel, (c) the mapping transformed
into a heatmap and (d) the heatmap overlaying the original image.

For the LIME method, the results were defined via 1000 local disturbances and using
the quick-shift segmentation algorithm [75]. The obtained representation indicated an
image with five regions of interest, or superpixels, that were most relevant to explaining
the classification result. In Figure 4, some examples of LIME representations obtained from
H&E images are illustrated.

Figure 4. Examples of LIME representations with (a) indicating the original image and (b) the five
selected superpixels for the explanation.

2.3. Step 2—Feature Extraction

In this study, the attributes were defined from three origins to compose the ensembles:
fractal features from the H&E images; deep-learned features from the layer preceding the
output on multiple CNN models; and fractal features from the LIME and CAM representa-
tions. These three groups were identified as handcrafted features, deep-learned features
and xAI features, respectively.
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2.3.1. Handcrafted Features: Multiscale and Multidimensional Fractal Techniques

The quantification was carried out using multiscale and multidimensional fractal
techniques, specifically the fractal dimension, lacunarity and percolation approaches. The
fractal dimension was based on the idea of expanding Euclidean concepts, in which mea-
surements were contained in an n-dimensional space, with n being an integer greater than
zero. The fractal dimension quantified the amount of space filled, indicating the roughness
of the structure under analysis. Lacunarity is a complementary measure to the fractal
dimension, quantifying the distribution and organization of pixels contained in an image.
The lacunarity values represented how the patterns were organized at different observation
scales. Percolation is a physical concept that can be observed in the movement and filtering
of fluids through porous materials. A classic example of this phenomenon is water flowing
through a glass of coffee powder. Considering the quantification process, this concept was
explored to indicate the number of clusters, image porosity and cluster size [32].

Fractal techniques were calculated from probability matrices, responsible for storing
the probabilities of an image containing a square region filled with each of the shapes that
constituted it. This filling was verified via a distance relationship between pixel values
under analysis and the size of the area in question [76]. Each matrix was obtained using
the gliding-box method, which consisted of sliding a square box of side r across the entire
image and checking whether the pixels were inside or outside the box [77]. Thus, given
an r-sided box with a central pixel pc, a pixel p was considered when its distance d in
relation to pc was less than or equal to r. This process resulted in a frequency distribution
matrix N(m, r), with m representing the number of pixels within a box of side r. The
probability matrix P(m, r) was obtained through the normalization of N(m, r), according
to Equation (1), dividing the value of each count by nr, which represented the total number
of boxes of side r contained in the image with the application of the gliding box, as seen in
Equation (2).

P(m, r) =
N(m, r)

nr
, (1)

nr = (width − r + 1) ∗ (height − r + 1). (2)

The previously described strategy indicated a multiscale quantification due to the
variation in r. In addition, as described by [78], in the proposed scheme, the Chebyshev
distance or chessboard was applied to calculate d. Finally, as the application context
uses colored images with RGB color space, the multidimensional strategy was applied
considering a pixel via a 5-dimensional representation, such as (x, y, r, g, b) [78].

From these procedures, the fractal dimension FD was calculated considering the
estimate of boxes of side r necessary to overlay an image, as shown in Equation (3).
The lacunarity L was calculated from the first and second moments of the probability
matrix, obtained according to Equations (4) and (5), respectively. These moments were
combined using Equation (6) and resulted in the measurement of the lacunarity on a specific
observation scale.

FD(r) =
r2

∑
m=1

P(m, r)
m

. (3)

µ(r) =
r2

∑
m=1

mP(m, r). (4)

µ2(r) =
r2

∑
m=1

m2P(m, r). (5)

L(r) =
µ2(r)− (µ(r))2

(µ(r))2 . (6)
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Percolation measurements were also extracted using the gliding-box algorithm, follow-
ing the strategy of [32]. Therefore, given a box with side r, the pixels contained in the box
were considered pores and labeled using the Hoshen–Kopelman [79] algorithm. Pores with
the same label were understood as part of the same cluster. This process was repeated for
each box of side r. Thus, it was possible to compute the metrics C(r), which indicated the
average number of clusters present in each box; Q(r), which defined the average coverage
ratio of the largest cluster; and P(r), which provided the ratio of percolating boxes.

The C(r) metric was obtained via an average count of the number of clusters c (present
in each box i), according to Equation (7). The metric Q(r) was obtained considering
an average of the size of the largest cluster |cmax| in each of the i boxes, according to
Equation (8). Finally, the ratio of percolating boxes was defined by dividing the number
of boxes in which percolation occurred by the number of boxes computed in an image.
Percolation in a box pi occurred when the ratio between the number of pores Ωi and the
total number of pixels in the box r2 exceeded the percolation threshold 0.59275 [12,32], as
shown in Equation (9). Thus, P(r) was defined via Equation (10).

C(r) =
∑nr

i=1 ci

nr
. (7)

Q(r) =
∑nr

i=1 |cmaxi |
nr

. (8)

pi =


1,

Ωi
r2 ≥ 0.59275,

0,
Ωi
r2 < 0.59275.

(9)

P(r) =
∑nr

i=1 pi

nr
. (10)

It is important to highlight that the quantification carried out in this work used matrices
defined from boxes with side r, within the 3 ≤ r ≤ 41 range, according to descriptions
presented by [12,78]. Also, the r parameter was set to an odd value to guarantee the
existence of a central pixel in each box. Therefore, the increase in the value of r was of two
units in each iteration. The probability matrix based on these parameters guaranteed a
quantification on 20 different scales.

In addition, both lacunarity functions and percolation measures were also interpreted
as scalar values in order to obtain representative descriptors of possible patterns existing in
each observation [12,32,78,80–83]. In these proposals, the authors were able to point out
how some of these curves displayed a distinct behavior for each of the classes, making
them relevant to the classification process. These features were defined as:

• Area under the curve (A): It indicates the complexity of the texture. For a discrete
function consisting of N points defined in x1, . . . , xn, this descriptor can be obtained
via Equation (11), with a and b as the point indices that delimit the analysis range;

A(a, b) =
b − a
2N

b−1

∑
n=a

( f (xn) + f (xn+1)). (11)

• Skewness (S): it is defined via Equation (12), where N is the number of points in the
function, xi is the i-th point in the function, x is the average of the function values, and
a and b are the indices of the points that delimit the interval;

S(a, b) =
1
N ∑b

i=a(xi − x̄)3√
[ 1

N ∑b
i=a(xi − x̄)2]3

. (12)
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• Area ratio (R): From the asymmetry, the ratio between the halves of the area under the
curve must also present similar values for similar classes. This descriptor was obtained
through Equation (11), with a and b indicating the points that delimit the interval;

R(a, b) =
A( b

2 + 1, b)

A(a, b
2 )

. (13)

• Maximum point: It indicates the value in the largest heterogeneous area of the curve.
Thus, images from the same class can present similar values, for both f (x) and x.
Totally different values are expected for different classes.

In summary, the fractal descriptors were organized into a feature vector with
116 descriptors: 20 fractal dimensions; 20 lacunarities; 20 average numbers of clusters
present in each box; 20 average ratios covered by the largest cluster on each box; 20 percent-
ages of boxes percolated; and 16 curve descriptors, 4 for each of the functions L(r), C(r),
Q(r) and P(r).

2.3.2. Deep-Learned Features

In this study, the deep-learned features were extracted from five CNN architectures:
DenseNet-121 [58], EfficientNet-b2 [65], Inception-V3 [59], ResNet-50 [60] and VGG-19 [61].
The results were five vectors of deep-learned features. It is important to highlight that in
general, the values in the initial layers of a CNN define the quantification of local patterns,
such as shape, edge and color. The deeper layers are useful for identifying global patterns,
such as texture and semantics [74]. Therefore, in order to explore the global patterns,
the normalization layer after the last dense block was chosen from the DenseNet-121
architecture. This layer provided 1024 values. From the EfficientNet-b2, Inception-V3
and ResNet-50 architectures, each final average pooling layer contributed 1408, 2048 and
2048 values, respectively. From VGG-19, the extraction occurred in the last fully connected
layer before the output, providing a vector with 4096 values.

2.4. Step 3—Feature Ensemble

This step was defined to organize the handcrafted and deep-learned descriptors
with the corresponding ensembles, concatenating the features in order to analyze their
discriminative capabilities in each of the H&E datasets [84]. It is important to emphasize
that each representation obtained through xAI techniques was quantified with fractal
approaches (Section 2.3.1), completing the handcrafted set. For each of the five CNN
architectures, two feature vectors of xAI representations were defined via fractal techniques,
with one from the Grad-CAM images and the other from the LIME images. Each vector
considered 116 descriptors (described in Section 2.3.1): 20 fractal dimensions; 20 lacunarity
values; 20 average numbers of clusters present in each box; 20 average ratios covered
by the largest cluster on each box; 20 percentages of boxes that percolated; and 16 curve
descriptors, 4 for each of the functions L(r), C(r), Q(r) and P(r).

In this context, the descriptors explored here were organized into 55 distinct com-
positions, with 16 individual compositions according to their origins and the number
of available descriptors. Among the vectors, three groups of distinct origins were de-
fined: handcrafted, deep-learned and xAI. The handcrafted vectors were obtained through
the fractal techniques (F), indicating 116 descriptors. The deep-learned vectors were ob-
tained via DenseNet-121 (D) with 1024 features, EfficientNet-b2 (E) with 1408 features,
Inception-V3 (I) with 2048 features, ResNet-50 (R) with 2048 features and VGG-19 (V) with
4096 features. Finally, the xAI vectors were composed of handcrafted descriptors obtained
through the application of fractal techniques. In this case, the xAI vectors were defined with
116 descriptors, organized into two groups: those resulting from Grad-CAM explanations,
with Grad-CAM DenseNet-121 (DCAM), Grad-CAM EfficientNet-b2 (ECAM), Grad-CAM
Inception-V3 (ICAM), Grad-CAM ResNet-50 (RCAM) and Grad-CAM VGG-19 (VCAM); and
those resulting from the LIME explanations, with LIME DenseNet-121 (DLIME), LIME
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EfficientNet-b2 (ELIME), LIME Inception-V3 (ILIME), LIME ResNet-50 (RLIME) and LIME
VGG-19 (VLIME). The 16 vector compositions with their origins and descriptor numbers
are indicated in Table 3.

Table 3. Feature vectors obtained via different techniques.

Origin Composition Number of Features

Handcrafted Fractals (F) 116

Deep learned DenseNet-121 (D) 1024
EfficientNet-b2 (E) 1408
Inception-V3 (I) 2048
ResNet-50 (R) 2048
VGG-19 (V) 4096

xAI Grad-CAM DenseNet-121 (DCAM) 116
Grad-CAM EfficientNet-b2 (ECAM) 116
Grad-CAM Inception-V3 (ICAM) 116
Grad-CAM ResNet-50 (RCAM) 116
Grad-CAM VGG-19 (VCAM) 116
LIME DenseNet-121 (DLIME) 116
LIME EfficientNet-b2 (ELIME) 116
LIME Inception-V3 (ILIME) 116
LIME ResNet-50 (RLIME) 116
LIME VGG-19 (VLIME) 116

The remaining 39 feature vectors were created with ensembles of these individual
vectors by aggregation, as illustrated in Figure 5. The ensembles were divided into three
groups: an ensemble of handcrafted and deep-learned features; an ensemble of deep-
learned features; and an ensemble of xAI features. The first group was composed of six
vectors, five of them associating the fractal vector with each of the deep-learned features
from a CNN, and the other was composed via fractal vector with all the deep-learned
features from all CNN models, as presented in Table 4. The ensemble group of deep-learned
features was composed of 11 vectors, with 10 permutations of deep-learned features from 2
distinct architectures and one with all available deep-learned features, as shown in Table 5.
The last group contained 22 vectors with ensembles of xAI representation descriptors,
organized according to the methodology applied to deep-learned ensembles (see Table 6).

Figure 5. Illustration of the ensemble of features by aggregation.

Table 4. Ensembles of handcrafted and deep-learned features.

Composition Number of Features

F + D 1140
F + E 1524
F + I 2164
F + R 2164
F + V 4212

F + D + E + I + R + V 10,740



Entropy 2024, 26, 34 12 of 26

Table 5. Ensembles of deep-learned features.

Composition Number of Features

D + E 2432
D + I 3072
D + R 3072
D + V 5120
E + I 3456
E + R 3456
E + V 5504
I + R 4096
I + V 6144
R + V 6144

D + E + I + R + V 10,624

Table 6. Ensembles of xAI features.

Composition Number of Features

DCAM + ECAM 232
DCAM + ICAM 232
DCAM + RCAM 232
DCAM + VCAM 232
ECAM + ICAM 232
ECAM + RCAM 232
ECAM + VCAM 232
ICAM + RCAM 232
ICAM + VCAM 232
RCAM + VCAM 232

DCAM + ECAM + ICAM + RCAM + VCAM 580
DLIME + ELIME 232
DLIME + ILIME 232
DLIME + RLIME 232
DLIME + VLIME 232
ELIME + ILIME 232
ELIME + RLIME 232
ELIME + VLIME 232
ILIME + RLIME 232
ILIME + VLIME 232
RLIME + VLIME 232

DLIME + ELIME + ILIME + RLIME + VLIME 580

2.5. Step 4—Feature Selection

The results achieved in Step 3 were vectors with high dimensions, which can lead
to classifications with overfitting [43]. In order to avoid this problem, the solution was to
apply a dimensionality reduction based on the ranking of the ReliefF technique [85]. This
technique was considered to control the number of descriptors under analysis and due to
its success found in other studies [45,47,86]. It is important to highlight that the analyzed
vectors had dimensions between 116 and 10,740. In this context, considering that the total
samples available in our experiments ranged from 58 to 265 images (Table 2), the tests were
carried out with totals between 5 and 25 descriptors, starting the analysis process with the
maximum value of descriptors and exploring decrements of 5 descriptors, until reaching
the smallest dimension [83].

2.6. Step 5—Classifier Ensemble and Evaluation Metrics

The last step consisted of carrying out the classifications based on the vectors with
an ensemble of heterogeneous classifiers, representative of different categories: support
vector machine (SVM) [87], based on functions; naive bayes [88], based on probabilities;
random forest [89], based on decision trees; and instance-based K-nearest neighbors [90].
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The classifications were combined based on the average of probabilities. In this strategy,
the average of all probabilities resulting from each of the classifiers was calculated, so the
class with the highest average was selected as the answer (assigned class).

The results were analyzed considering the accuracy metric capable of indicating the
global performance of the model (among all the classifications, how many the model
classified correctly) [91]. Accuracy was determined through Equation (14), where true
positives (TP) are the positive values that the model correctly classified as positive; true
negatives (TN) are the negative values that the model correctly classified as negative; false
positives (FP) are the negative values that the model incorrectly classified as positive; and
false negatives (FN) are the positive values that the model incorrectly classified as negative.

Accuracy =
TP + VN

TP + FP + TN + FN
. (14)

In addition, the classification process also considered the k-fold cross-validation ap-
proach, with k = 10. It is important to highlight that the descriptor selection process was
applied to each training set of each fold. The selected descriptors were used to perform
the classification on the corresponding test set. This technique was applied to reduce the
possibility of overfitting occurring, since the result was obtained through the classifica-
tion average [92]. Figure 6 illustrates this cross-validation process with the selection of
descriptors.

Figure 6. Illustration of the k-fold cross-validation strategy applied in this step.

2.7. Software Packages and Execution Environment

In the proposed scheme, the Pytorch 1.9.0 [71] machine learning library was used
to define the convolutional network models. Grad-CAM explanations were obtained via
the pytorch-grad-cam 1.3.1 library [93]. The LIME explanations were obtained using the
lime 0.2.0.1 library [94], implemented in python [41]. The application of each model was
carried out in a remote environment on Google Colab, which provided a free console for
executing codes in Python3 and a GPU for processing with 12 GB of available memory.
The fractal descriptors were implemented and executed in parts in Matlab R2019b [95]
and Python3. Feature selection and classification were processes carried out using the
Weka v3.8.5 platform [96]. For this last part, the executions were carried out using an
Intel® Core™ i5-8265U 1.60 GHz processor and 8 GB of RAM (Intel, Santa Clara, CA, USA).
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3. Results and Discussion

The proposed scheme was tested on datasets of histological images (Section 2.1), with
comparisons of benign versus malignant (UCSB and CR datasets), healthy versus severe
(OED dataset), and male versus female (LG dataset). A performance overview is presented
in Section 3.2, with results through the main associations against those from CNNs applied
directly to classify the samples and from studies available in the specialized literature.

3.1. Feature Ensemble Performance

The combinations were tested according to details presented in Section 2.4, and the
10 highest accuracy values using the smallest number of descriptors were computed to
define the average performance in each category. The average performance values are in
Table 7 with the highest values in bold.

Table 7. Average accuracy values (%) computed from the 10 best results in each combination and for
each type of H&E image.

CR LG OED UCSB

Handcrafted 84.48% ± 2.05 90.42% ± 5.23 87.03% ± 1.78 72.41% ± 1.89
Deep learned 99.27% ± 0.76 98.49% ± 0.65 96.28% ± 0.55 91.38% ± 1.54

xAI 83.82% ± 0.90 86.98% ± 2.54 80.88% ± 0.43 78.28% ± 1.14
Ensemble of handcrafted

and deep learned 99.76% ± 0.30 99.02% ± 0.51 96.49% ± 0.66 90.52% ± 0.86

Ensemble of deep learned 100% 99.66% ± 0.11 97.23% ± 0.47 92.93% ± 0.93
Ensemble of xAI 86.18% ± 1.45 89.62% ± 0.42 78.85% ± 0.61 78.45% ± 1.16

From the average values, it is noted that the ensemble of deep-learned features pro-
vided the highest values in all datasets, with an emphasis on the CR dataset (average
accuracy of 100%). In the other datasets, this type of solution indicated accuracy values of
99.66% (LG), 97.23% (OED) and 92.93% (UCSB). Moreover, these facts confirm the feasibil-
ity of using the transfer learning strategy in order to obtain relevant compositions for the
analysis of histological images. In addition, the ensemble of handcrafted with deep-learned
features was the second association capable of indicating relevant accuracy values for the
CR (99.76%), LG (99.02%) and OED (96.49%) datasets. Classifications using descriptors
based on the xAI representations presented less expressive results, with average accuracy
values between 78% and 89% (approximately), but with clear indications about the dis-
criminative potential that can be explored on other research fronts. These facts are relevant
contributions to support solutions without overfitting and more robust baseline schemes
commonly explored for the improvement of CAD systems focused on H&E images.

These results were analyzed with the Friedman test in order to verify whether there
were statistically significant differences between the compositions. The p-value was con-
trasted against α = 0.05. Thus, if p-value < α, the difference was considered significant.
The test was based on the averages of the first 10 results present in each descriptor cate-
gory. Thus, taking into account a comparison among the six types of feature vectors, the
p-value was 0.0033, indicating statistically significant differences, with an emphasis on
the ensemble of deep-learned features against handcrafted, xAI and xAI ensemble. Each
pairwise p-value is displayed in Table 8. The differences between the obtained results via
an ensemble of deep-learned features and those from an ensemble of handcrafted with
deep-learned features were not statistically significant. In addition, the Friedman test
provided an average ranking between the performance values of the main associations
tested here. The best-ranked combination was the ensemble of deep-learned features, with
average accuracy values ranging from 92.93% (UCSB) to 100% (CR).
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Table 8. Ranking of the best associations with their respective pairwise p-values, according to average
accuracy values and the Friedman test.

p-Value Ensemble of
Deep Learned

Ensemble of Handcrafted
and Deep Learned Deep Learned Handcrafted Ensemble of xAI xAI Average Ranking

Ensemble of deep learned - 0.3955 0.2396 0.0191 0.0191 0.0066 1
Ensemble of handcrafted

and deep learned 0.3955 - 0.7313 0.1006 0.1006 0.0380 2.25

Deep learned 0.2396 0.7313 - 0.1819 0.1819 0.0735 2.75
Handcrafted 0.0191 0.1006 0.1819 - 1.0000 0.6073 4.75

Ensemble of xAI 0.0191 0.1006 0.1819 1.0000 - 0.6073 4.75
xAI 0.0066 0.0380 0.0735 0.6073 0.6073 - 5.5

3.1.1. Details of the Top 10 Solutions

The best combination was defined based on the highest accuracy value using the
smallest number of descriptors. Considering this criterion, the obtained rankings are
displayed in Tables 9–12 with the first 10 solutions for the CR, LG, OED and UCSB datasets,
respectively. It is noted that the average ranking of the solution validates its position.

In relation to the data collected from the CR dataset (Table 9), it is possible to observe
that the 10 best results indicated an accuracy of 100%. It is noted that the descriptors from
the DenseNet-121 (D) and EfficientNet-b2 (E) models were those that contributed the most
to these results. In these cases, the vectors were defined with a maximum of 20 descriptors,
minimizing overfitting.

When the LG dataset was considered (Table 10), it was observed that only one combi-
nation indicated an accuracy value of 100%: the ensemble of deep-learned features from
the DenseNet-121 (D) and ResNet-50 (R), exploring only 25 descriptors. The contribution of
descriptors from the DenseNet-121 was a highlight, present in all vectors of the best results.

Table 9. Top 10 results for the classification of the CR dataset with feature vectors composed of
ensembles of deep-learned features.

Feature Vector Size Accuracy (%) F-1 Score

D + E 10 100 1.000
E + V 10 100 1.000

D + E + I + R + V 10 100 1.000
D + E 15 100 1.000
D + I 15 100 1.000
E + V 15 100 1.000

D + E + I + R + V 15 100 1.000
D + E 20 100 1.000
D + I 20 100 1.000

D + V 20 100 1.000

Table 10. LG dataset: top 10 results exploring the ensembles of deep-learned features.

Feature Vector Size Accuracy (%) F-1 Score

D + R 25 100 1.000
D + E 10 99.62 0.996
D + E 15 99.62 0.996
D + I 15 99.62 0.996

D + R 15 99.62 0.996
D + E 20 99.62 0.996
D + I 20 99.62 0.996

D + R 20 99.62 0.996
D + E 25 99.62 0.996
D + I 25 99.62 0.996
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Table 11. OED dataset: top 10 results via the ensembles of deep-learned features.

Feature Vector Size Accuracy (%) F1-Score

I + V 20 97.97 0.980
E + I 25 97.97 0.980

D + E 20 97.30 0.973
D + I 20 97.30 0.973
I + R 20 97.30 0.973

D + R 25 97.30 0.973
I + V 25 97.30 0.973
D + I 10 96.62 0.966

D + E 15 96.62 0.966
I + V 15 96.62 0.966

Table 12. UCSB dataset: Top 10 results exploring the ensembles of deep-learned features.

Feature Vector Size Accuracy (%) F1-Score

D + E 25 94.83 0.948
D + E 15 93.10 0.931
E + R 15 93.10 0.931
I + R 15 93.10 0.931

D + E 20 93.10 0.931
D + I 25 93.10 0.931
E + I 25 93.10 0.931
I + R 25 93.10 0.931

E + R 10 91.38 0.914
D + R 15 91.38 0.914

For the OED dataset (see Table 11), the highest accuracy was 97.97% with an ensemble
of descriptors from the Inception-V3 (I) and VGG-19 (V) architectures, using a reduced
number of attributes (20 features). Another combination that achieved the same perfor-
mance considered the descriptors from the EfficientNet-b2 (E) and Inception-V3 (I) models.
However, this last combination involved 25 attributes. In addition, Inception-V3 (I) was
the architecture that contributed the most to the best results, followed by DenseNet-121 (D).
The main vectors were also defined with up to 25 descriptors.

Finally, considering the UCSB dataset, which is shown in Table 12, it is noted that the
highest accuracy value was 94.83%. This performance was defined via the association of
deep-learned features from DenseNet-121 (D) with EfficientNet-b2 (E) exploring a total of
25 descriptors. From the top 10 solutions, it is observed that nine compositions were defined
based on the DenseNet-121 or ResNet-50 architectures. The total number of descriptors
present in the vectors follows the previously found pattern consisting of solutions with a
maximum of 25 attributes.

3.1.2. Feature Summary

The best result was defined through the ensembles of deep-learned features, consider-
ing the top 10 solutions for each H&E dataset. For the CR dataset (Figure 7a), it is observed
that the compositions were defined mainly based on the EfficientNet-b2 (E) model, rep-
resenting from 60% to 90% of the features present in 7 of the top 10 solutions. Regarding
the LG dataset (Figure 7b), the obtained vectors from the DenseNet-121 (D) architecture
predominated (9 of the 10 compositions), indicating from 48% to 100% of the total features
in each ensemble. When the OED dataset (Figure 7c) was considered, the highest frequency
was obtained through Inception-V3 (I), present in 7 of the 10 compositions, but with a
smaller presence of features in the ensembles (from 10% to 40%). Finally, the compositions
for the UCSB dataset (Figure 7d) were based on more homogeneous compositions among
DenseNet-121 (D), EfficientNet-b2 (E) and ResNet-50 (R). However, in each ensemble, there
was a higher incidence of features from the ResNet-50 (R) architecture (from 73% to 100%
of the total descriptors).
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Figure 7. Proportion of features from each CNN in the ensembles, observing the 10 best accuracy
values for the CR (a), LG (b), OED (c) and UCSB (d) datasets.

Based on the details presented previously, some patterns and/or behaviors were
observed. The ensembles explored here effectively contributed to a distinction between the
H&E images, surpassing the results provided via single-source descriptors. The ensemble of
deep-learned features supported the main solutions, with highlights, in terms of occurrence,
for the descriptors extracted from the DenseNet-121 (present in 28 of the 40 vectors)
and EfficientNet-b2 (present in 19 of the 40 vectors) models. Finally, considering the
dimensionalities of the feature vectors, compositions involving 10 to 25 deep-learned
features were sufficient to determine the top 10 solutions.

3.2. Proposed Scheme versus Fine-Tuned CNN Classifications

In order to verify possible gains of the proposed scheme in relation to CNN mod-
els applied directly to each H&E dataset, the performance values of the architectures
(DenseNet-121 [58], EfficientNet-b2 [65], Inception -V3 [59], ResNet-50 [60] and VGG-19 [61])
were collected after the fine-tuning process. The methodological details were presented
in Section 2.2. In addition, Figures 8–11 show the best accuracy rates via CNNs against
those of the proposed scheme. It is important to highlight that other experiments could
be defined, involving different conditions and limits, but those carried out here provided
sufficient information to support the contributions of our investigation.
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Figure 8. Ranking of accuracy values (%) provided by different approaches in classifying the
CR dataset.

Figure 9. Ranking of accuracy values (%) provided by different approaches in classifying the
LG dataset.

Figure 10. Ranking of accuracy values (%) provided by different approaches in classifying the
OED dataset.

Figure 11. Ranking of accuracy values (%) provided by different approaches in classifying the
UCSB dataset.

When image classifications were given directly by the CNN architectures, the DenseNet-
121 and EfficientNet-b2 models indicated the lowest performance values, ranging from
67.81% to 79.26% and from 54.35% to 80.35%, respectively. The VGG-19 and ResNet-
50 networks provided the best performance: LG (88.29%) and OED (97.59%) classified
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via VGG-19; CR (91.26%) and UCSB (88.52%) through the ResNet-50. However, these
accuracy values were lower than those achieved through the proposed scheme, exploring
an ensemble of deep-learned features with four heterogeneous classifiers. Also, through
the information detailed here, it was noted that the classification performance via a CNN
model was not directly related to that achieved through deep-learned features used in an
independent process. Most of the best results explored features from the DenseNet-121 and
EfficientNet-b2 networks, indicating the lowest performance. These results confirm the
contributions obtained in this study.

3.3. Performance Overview in Relation to the Literature

Different techniques are available in the specialized literature in order to investigate
patterns in histological images, such as for the CR, LG, OED and UCSB datasets [12,13,19,
55,69,97–100]. Therefore, an illustrative overview is important to show the quality of our
proposal, indicated in Tables 13–16 for each of the datasets.

Table 13. Classification of colorectal samples: accuracy values (%) provided by different approaches.

Method Approach Accuracy (%)

Proposed DenseNet-121 and EfficientNet-b2 (ensemble of deep-learned features) 100%

Roberto et al. [12] ResNet-50, fractal dimension,
lacunarity and percolation (ensemble of handcrafted and deep-learned features) 99.39%

Dabass et al. [101] 31-layer CNN (deep learning) 96.97%

de Oliveira et al. [19] ResNet50 (activation_48_relu layer), ReliefF and 35
deep-learned features 98.00%

Tavolara et al. [97] GAN and U-Net (deep learning) 94.02%
Sena et al. [102] 12-layer CNN (deep learning) 93.28%
Segato dos Santos et al. [81] Sample entropy and fuzzy logic (handcrafted) 91.39%
Roberto et al. [33] Percolation (handcrafted) 90.90%
Bentaieb and Hamarneh [103] U-Net and AlexNet (deep learning) 87.50%
Zhang et al. [99] ResNet deep-tuning (DL) 86.67%
Awan et al. [104] Color normalization, U-Net and GoogLeNet (deep learning) 85.00%

Table 14. Classification of liver tissue: accuracy values (%) via different approaches.

Method Approach Accuracy (%)

Proposed DenseNet-121 and ResNet-50 (ensemble of deep-learned features) 100%
Di Ruberto et al. [105] Statistical analysis and texture features (handcrafted) 100%

Nanni et al. [13] 6 CNNs and handcrafted
features (ensemble of handcrafted and deep-learned features) 100%

Roberto et al. [12] ResNet-50, fractal dimension, lacunarity
and percolation (ensemble of handcrafted and deep-learned features) 99.62%

de Oliveira et al. [19] ResNet50 (activation_48_relu layer), ReliefF and 5
deep-learned features 99.32%

Andrearczyk and Whelan [106] Texture CNN (deep learning) 99.10%
Watanabe et al. [107] GIST descriptor, PCA and LDA (handcrafted) 93.70%

Table 15. Classification of oral dysplasia: accuracy rates (%) provided by different methods.

Method Approach Accuracy (%)

Proposed Inception-V3 and VGG-19 (ensemble of deep-learned features) 97.97%
Adel et al. [108] SIFT, SURF, ORB (handcrafted) 92.80%

Azarmehr et al. [100] Neural architecture search and handcrafted descriptors
(morphological and nonmorphological) 95.20%

Silva et al. [69] Morphological and nonmorphological features (handcrafted) 92.40%
Maia et al. [57] Densenet121 91.91%

Krishnan et al. [109] Fractal dimension, wavelet, Brownian movement
and Gabor filters (handcrafted) 88.38%
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Table 16. Classification of breast cancer: accuracy values (%) trough different strategies.

Method Approach Accuracy (%)

Li et al. [110] RefineNet and Atrous DenseNet (deep learning) 97.63%

Yu et al. [98] CNN, LBP, SURF, GLCM and other
handcrafted features (ensemble handcrafted and deep-learned features) 96.67%

Proposed DenseNet-121 and EfficientNet-b2 (ensemble of deep-learned features) 94.83%
Feng et al. [111] Stacked denoising autoencoder (deep learning) 94.41%

Kausar et al. [55] Color normalization, Haar wavelet decomposition and
16-layer CNN (deep learning) 91.00%

Roberto et al. [12] ResNet-50, fractal dimension, lacunarity and
percolation (ensemble of handcrafted and deep-learned features) 89.66%

Roberto et al. [33] Percolation (handcrafted) 86.20%
Papastergiou et al. [112] Spacial decomposition and tensors (deep learning) 84.67%
Araújo et al. [113] Color normalization, 13-layer CNN and SVM (deep learning) 83.30%

From this illustrative overview, it is possible to conclude that the proposed scheme
provided solutions that surpassed a single type of descriptor or even other relevant asso-
ciations [19,55,69,97,99,100,106,112]. Moreover, the computational scheme was capable of
indicating optimized ensembles with the best results for classifying colorectal cancer, liver
tissue and oral dysplasia, considering a maximum of 25 descriptors. Finally, these solutions
without overfitting and with more robust baseline schemes are for improving CAD systems
focused on H&E images. These contributions complement the proposal presented here in
this illustrative overview.

4. Conclusions

In this work, a computational scheme was developed in order to define the main en-
sembles of descriptors for the study of histological images, exploring their ranking based on
the ReliefF algorithm with a robust ensemble of classifiers (four heterogeneous algorithms).
The handcrafted descriptors were established from multiscale and multidimensional fractal
techniques (fractal dimension, lacunarity and percolation) and applied to quantify H&E
images and their Grad-CAM and LIME representations. The deep-learned features were
obtained from multiple CNN architectures, considering the transfer learning strategy. The
experiments were carried out on H&E images, representative of breast cancer, colorectal
cancer, oral dysplasia and liver tissue.

From the results, the ensemble of deep-learned features provided the highest val-
ues in all datasets, with accuracy rates of 94.83% (UCSB), 97.97% (OED) and 100% (CR
and LG), exploring a reduced number of features (up to 25 attributes). The descriptors
were mainly obtained from the DenseNet-121 and EfficientNet-b2 architectures. In addi-
tion, the proposed scheme also indicated that handcrafted ensembles with deep-learned
features provided expressive distinctions in the contexts of multiple histological images,
with accuracy rates of 99.76% (CR), 99.02% (LG) and 96.49% (OED). This type of compo-
sition indicated better performance values than those achieved through individualized
analyses, commonly observed in the specialized literature, whether exploring only deep
learning [102,103,106,112] or handcrafted techniques [33,69,74,107]. In both categories of
ensembles, this study provided useful details and conditions for the community interested
in the development and improvement of models for classifying patterns in H&E samples. In
relation to the experiments exploring xAI representations, the results were less expressive,
with average accuracy values ranging from 78% to 89%. On the other hand, this type of
composition achieved results similar to those of directly applied networks, responsible
for providing the xAI representations. Thus, we believe that there are still several study
avenues to understand the full information capacity present in this type of representation,
seeking to improve CAD system designs focused on histological images.

The best solutions were analyzed in relation to the results obtained from consolidated
machine-learning techniques, directly applying CNN models to classify the histological
datasets. This process considered the DenseNet-121, EfficientNet-b2, Inception-V3, VGG-19
and ResNet-50 architectures. The results were accuracy values from 54.35 to 97.59. The



Entropy 2024, 26, 34 21 of 26

VGG-19 and ResNet-50 networks indicated the best rates: LG (88.29%) and OED (97.59%)
via VGG-19; CR (91.26%) and UCSB (88.52%) through ResNet-50. These performance
values were lower than those achieved through the best solutions with the proposed
scheme. When an illustrative overview was considered in relation to the specialized
literature, it was possible to conclude that the proposed scheme provided solutions that
surpassed a single type of descriptor or even other relevant associations [55,69,97,106,112].
Moreover, the computational scheme was capable of indicating optimized ensembles with
the best results for classifying colorectal cancer, liver tissue and oral dysplasia. Therefore,
these conditions highlight the ability of the proposed scheme to present solutions without
overfitting and a more robust baseline scheme, with the necessary details for the analysis
and testing of CAD systems, focused on H&E samples. Regarding classifications involving
representative samples of breast cancer (UCSB dataset), the proposed scheme provided a
lower performance, indicating a possible limit of the main solution in this context.

In future works, it is intended to (1) expand the number of handcrafted techniques
to quantify H&E images and their representations, especially to define the possible limits
involving combinations via xAI; (2) carry out new tests after applying adjustments to the
parameters of the CNN architectures in order to verify their impacts on the xAI represen-
tations and corresponding quantification; (3) explore multiview learning approaches to
complement multiple representations, including investigations into possible gains after
applying learning enrichment strategies with fractal techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

H&E Hematoxylin and eosin
CAD Computer-aided diagnosis
CNN Convolutional neural network
xAI Explainable artificial intelligence
CAM Class activation mapping
Grad-CAM Gradient-weighted class activation mapping
LIME Local interpretable model-agnostic explanations
UCSB Breast cancer dataset
CR Colorectal cancer dataset
LG Liver tissue dataset
OED Oral epithelial dysplasia dataset
SGDM Stochastic gradient descent
F Fractal techniques
D DenseNet-121
E EfficientNet-b2
I Inception-V3
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R ResNet-50
V VGG-19
DCAM Grad-CAM representation via DenseNet-121
ECAM Grad-CAM representation via EfficientNet-b2
RCAM Grad-CAM representation via ResNet-50
ICAM Grad-CAM representation via Inception-V3
VCAM Grad-CAM representation via VGG-19
DLIME LIME representation via DenseNet-121
ELIME LIME representation via EfficientNet-b2
ILIME LIME representation via Inception-V3
RLIME LIME representation via ResNet-50
VLIME LIME representation via VGG-19
VP True positives
VN True negatives
FP False positives
FN False negatives
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