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Abstract: The thermal conductance of a one-dimensional classical inertial Heisenberg model of linear
size L is computed, considering the first and last particles in thermal contact with heat baths at higher
and lower temperatures, Th and Tl (Th > Tl), respectively. These particles at the extremities of the chain
are subjected to standard Langevin dynamics, whereas all remaining rotators (i = 2, · · · , L − 1) interact
by means of nearest-neighbor ferromagnetic couplings and evolve in time following their own equations
of motion, being investigated numerically through molecular-dynamics numerical simulations. Fourier’s
law for the heat flux is verified numerically, with the thermal conductivity becoming independent of the
lattice size in the limit L → ∞, scaling with the temperature, as κ(T) ∼ T−2.25, where T = (Th + Tl)/2.
Moreover, the thermal conductance, σ(L, T) ≡ κ(T)/L, is well-fitted by a function, which is typical of
nonextensive statistical mechanics, according to σ(L, T) = A expq(−Bxη), where A and B are constants,
x = L0.475T, q = 2.28± 0.04, and η = 2.88± 0.04.

Keywords: Fourier’s law; generalized entropies; non-equilibrium physics; stochastic processes

1. Introduction

Two centuries ago, Fourier proposed the law for heat conduction in a given macroscopic
system, where the heat flux varies linearly with the temperature gradient, J ∝ −∇T [1]. For a
simple one-dimensional system (e.g., a metallic bar along the x̂ axis, J = Jx̂), the heat flux J
(rate of heat per unit area) is given by

J = −κ
dT
dx

, (1)

where κ is known as thermal conductivity. In principle, κ may depend on the temperature,
although most measurements are carried at room temperature, leading to values of κ for
many materials (see, e.g., Ref. [2]). Usually, metals (like silver, copper, and gold) present
large values of κ, and are considered good heat conductors, whereas poor heat conductors
(such as air and glass fiber) are characterized by small thermal conductivities; typically, the
ratio between the thermal conductivities of these two limiting cases may differ by a 104

factor. In most cases, good thermal conductors are also good electrical conductors, and
obey the Wiedemann–Franz law, which states that the ratio of their thermal and electrical
conductivities follows a simple formula, being directly proportional to the temperature [3].

In recent years, numerous studies have been conducted to validate Fourier’s law in
a wide variety of physical systems, both experimentally and theoretically. Particularly,
investigations for which microscopic ingredients may be responsible for the property of
heat conduction were carried out, and it has been verified that thermal conductivity may be
generated by different types of particles (or quasi-particles). In the case of good electrical
conductors, the most significant contribution to thermal conductivity comes from free
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electrons, whereas in electrical insulators, such contributions may arise from quasi-particles,
like phonons and magnons, or even from defects. For instance, for antiferromagnetic
electrical insulators, such as Sr2CuO3 and SrCuO2, which surprisingly behave as S = 1/2

Heisenberg chains, magnons yield the most relevant contribution for the thermal
conductivity, which can be fitted by a 1/T2 law, at high temperatures [4]. In these ma-
terials, the low-temperature regime presents ballistic-like heat conduction, increasing as
the size of the system increases, while the high-temperature regime presents normal heat
conduction [5–7].

Being a classical result, there is, in principle, no reason why Fourier’s law should gen-
erally apply to physical systems. This aspect has generated controversies in the literature,
both in experimental and theoretical studies (for a comprehensive theoretical discussion,
see, e.g., Ref. [8]). As a typical anomaly, the thermal conductivity κ (which should be an
intensive quantity) appears, in many cases, to depend on the size of the system, e.g., on
the total number of constituents, as it happens for chains of nonlinear oscillators, where
κ increases with the total number of elements [9]. This anomaly is usually considered a
failure of Fourier’s law. In addition, non-Fourier heat conduction can also emerge from
the Maxwell–Cattaneo–Vernotte hyperbolic heat equation, which represents the relativistic
version of the heat equation [10]. Recent advances in non-Fourier heat conduction can be
found in the work by Benenti et al. [11].

Several experimental investigations have verified Fourier’s law in a diverse range of
systems [4,12–15], including coal and rocks from coalfields [13], as well as two-dimensional
materials [14,15]. On the other hand, some authors claim to have found anomalies [16],
or even violations of this law for silicon nanowires [17], carbon nanotubes [18], and low-
dimensional nanoscale systems [19]. Furthermore, a curious crossover, induced by disorder,
was observed in quantum wires, where, by gradually increasing disorder, one goes from a
low-disorder regime, where the law is apparently not valid, to another regime characterized
by a uniform temperature gradient inside the wire, in agreement with Fourier’s law [20,21].

From the theoretical point of view, many authors have investigated Fourier’s law
in a wide diversity of models [9,22–46], like a Lorentz gas [23], biological [30] and small
quantum systems [29], chains of coupled harmonic [31] or anharmonic [9,28,34] oscillators,
models characterized by long-range [38,46] or disordered [41] interactions, as well as
systems of coupled classical rotators [42–45]. In the case of a coupled XY nearest-neighbor-
interacting rotator chain [44], the temperature dependence of the thermal conductance was
well-fitted by a q-Gaussian distribution,

Pq(u) = P0 expq(−βu2) , (2)

defined in terms of the q-exponential function,

expq(u) = [1 + (1 − q)u]1/(1−q)
+ ;

(
exp1(u) = exp(u)

)
, (3)

where P0 ≡ Pq(0) and [y]+ = y, for y > 0 (zero otherwise). The distribution in Equation (2)
is very common in the context of nonextensive statistical mechanics [47], since it appears
from the extremization of the generalized entropy, known as Sq, characterized by a real
index q [48],

Sq = k
W

∑
i=1

pi

(
lnq

1
pi

)
, (4)

where we introduced the q-logarithm definition,

lnq u =
u1−q − 1

1 − q
; (ln1 u = ln u) . (5)

Therefore, one recovers Boltzmann–Gibbs (BG) entropy,

SBG = −k
W

∑
i=1

pi ln pi , (6)
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as limq→1 Sq = SBG, whereas in the microcanonical ensemble, where all microstates present
equal probability, pi = 1/W, Equation (4) becomes,

Sq = k lnq W . (7)

Above, the q-exponential function in Equation (3) appears precisely as the inverse function
of the q-logarithm of Equation (5), i.e., expq(lnq u) = lnq(expq(u)) = u.

Since the introduction of the entropy Sq in Equation (4), a large amount of works
appeared in the literature, defining generalized functions and distributions (see, e.g.,
Ref. [47]). In particular, a recent study based on superstatistics has found a stretched
q-exponential probability distribution [49],

Pq(u) = P0 expq(−β|u|η) (0 < η ≤ 1), (8)

as well as its associated entropic form.
As already mentioned, the latest advances in experimental techniques made it pos-

sible to investigate thermal and transport properties and, hence, Fourier’s law, in low-
dimensional (or even finite-size) systems, like two-dimensional materials [14,15], silicon
nanowires [17], carbon nanotubes [18], and low-dimensional nanoscale systems [19]. These
measurements motivate computational studies in finite-size systems of particles that present
their own equations of motion, e.g., systems of interacting classical rotators, whose dynam-
ics may be followed through the direct integration of their equations of motion. In this way,
one may validate (or not) Fourier’s law, by computing the temperature and size dependence
of the thermal conductance. A recent analysis of a system of coupled nearest-neighbor-
interacting classical XY rotators [45], on d-dimensional lattices (d = 1, 2, 3) of linear size L,
has shown that, for a wider range of temperatures, the temperature dependence of the
thermal conductance was better fitted by a more general ansatz than the q-Gaussian distri-
bution of Equation (2). In fact, Fourier’s law was validated in Ref. [45] by fitting the thermal
conductance in terms of the functional form of Equation (8), with values of η(d) > 2.

In the present work, we analyze the thermal conductance of a one-dimensional clas-
sical inertial Heisenberg model of linear size L, considering the first and last particles in
thermal contact with heat baths at temperatures Th and Tl (Th > Tl), respectively. All re-
maining rotators (i = 2, · · · , L − 1) interact by means of nearest-neighbor ferromagnetic
couplings and evolve in time through molecular-dynamics numerical simulations. For this
classical model, we specifically concentrate on the high-temperature limit, where there
is no need for a spin wave approach, such as the Holstein–Primakoff quantum transfor-
mations. Our numerical data validate Fourier’s law, and similar to those of Ref. [45], the
thermal conductance is well-fitted by the functional form of Equation (8). The present
results suggest that this form should apply in general for the thermal conductance of
nearest-neighbor-interacting systems of classical rotators. In the Section 2, we define the
model and the numerical procedure; in Section 3, we present and discuss our results; in
Section 4, we present our conclusions.

2. Materials and Methods

The one-dimensional classical inertial Heisenberg model, for a system of L-interacting
rotators, is defined by the Hamiltonian,

H =
1
2

L

∑
i=1

ℓ2
i +

1
2 ∑

⟨ij⟩

(
1 − Si · Sj

)
, (9)

where ℓi ≡ (ℓix, ℓiy, ℓiz) and Si ≡ (Six, Siy, Siz) represent, respectively, continuously varying
angular momenta and spin variables at each site of the linear chain, whereas ∑⟨ij⟩ denote
summations over pairs of nearest-neighbor spins; herein, we set, without loss of generality,
kB, moments of inertia, and ferromagnetic couplings, all equal to the unit. Moreover,
spins present the unit norm, S2

i = 1, and at each site, angular momentum ℓi must be
perpendicular to Si, yielding ℓi · Si = 0; these two constraints are imposed at the initial
state and should be preserved throughout the whole time evolution.
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One should notice that, in contrast to a system of coupled classical XY rotators, where
canonical conjugate polar coordinates are commonly used [45], in the Heisenberg case, one
often chooses Cartesian coordinates [50–52]. The reason for this is essentially technical,
since in terms of spherical coordinates (more precisely, θ, ϕ, and their canonical conjugates
ℓθ , ℓϕ), a troublesome term (1/ sin2 θ) appears in the corresponding equations of motion,
leading to numerical difficulties [53,54]. However, some of the analytical results to be
derived next recover those of the classical inertial XY model for Si = (sin θi, cos θi, 0) and
ℓi = ℓiẑ.

It is important to mention that previous research on the thermal conductivity has
been carried out for a classical one-dimensional Heisenberg spin model, by using Monte
Carlo and Langevin numerical simulations [55], as well as for a classical one-dimensional
spin-phonon system, through linear-response theory and the Green–Kubo formula [56].
These investigations did not take into account the kinetic contribution in Equation (9), so
that in order to obtain the thermal conductivity they assumed the validity of Fourier’s law.
The main advantage of the introduction of the kinetic term in Equation (9) concerns the
possibility of deriving equations of motion, making it feasible to follow the time evolution
of the system through molecular-dynamics simulations, by a numerical integration of such
equations. This technique allows one to validate Fourier’s law, as well as obtain its thermal
conductivity directly.

In order to carry out this procedure, we consider an open chain of rotators with the first
and last particles in thermal contact with heat baths at higher and lower temperatures, Th
and Tl (Th > Tl), respectively (cf. Figure 1), whereas all remaining rotators (i = 2, · · · , L− 1)
follow their usual equations of motion (see, e.g., Refs. [50–52]). In this way, one has for sites
i = 2, . . . , L − 1,

Ṡi = ℓi × Si ,

ℓ̇i = Si × (Si+1 + Si−1) ,
(10)

whereas the rotators at extremities follow standard Langevin dynamics,

ℓ̇1 = −γhℓ1 + S1 × S2 + ηh ,

ℓ̇L = −γlℓL + SL × SL−1 + ηl .
(11)

Above, γh and γl represent friction coefficients, whereas ηh and ηl denote independent
three-dimensional vectors, ηh ≡ (ηhx, ηhy, ηhz), ηl ≡ (ηlx, ηly, ηlz), where each Cartesian
component stands for a Gaussian white noise with zero mean and correlated in time,

⟨ηhµ(t)⟩ = ⟨ηlµ(t)⟩ = 0 ,

⟨ηhµ(t)ηlν(t′)⟩ = ⟨ηhµ(t′)ηlν(t)⟩ = 0 ,

⟨ηhµ(t)ηhν(t′)⟩ = 2δµνγhThδ(t − t′) ,

⟨ηlµ(t)ηlν(t′)⟩ = 2δµνγlTlδ(t − t′) ,

(12)

with the indexes µ and ν denoting Cartesian components; from now on, we will set the
friction coefficients γh and γl equal to the unit. One should mention that different types of
thermostats have been used to investigate transport properties in systems out of equilibrium
(see, e.g., Ref. [42] for an application of Nosé–Hoover thermostats to a system of interacting
planar rotators); however, for the present Heisenberg chain, we found it more convenient
to use standard Langevin thermostats, as defined above.

The condition of a constant norm for the spin variables yields

dSi
dt

=
d(Si · Si)

1/2

dt
= 0 ⇒ Si · Ṡi = 0 , (13)

which should be used together with ℓi · Si = 0 in order to eliminate ℓ̈i and calculate S̈i from
Equations (10) and (11). For rotators at sites i = 2, · · · , L − 1, one has

S̈i = (Si+1 + Si−1)−
[
Si · (Si+1 + Si−1) + Ṡ2

i

]
Si , (14)
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whereas, for those at extremities,

S̈1 = −Ṡ1 + S2 −
[
S1 · S2 + Ṡ2

1

]
S1 + S1 × ηh ,

S̈L = −ṠL + SL−1 −
[
SL · SL−1 + Ṡ2

L

]
SL + SL × ηl .

(15)

For the system illustrated in Figure 1, we will consider the temperatures of the heat
baths differing by 2ε, with ε representing a positive dimensionless parameter; moreover,
the temperature parameter T = (Th + Tl)/2 will vary in a certain range of positive values.
Equations (14) and (15) are transformed into first-order differential equations (e.g., by
defining a new variable Vi ≡ Ṡi) to be solved numerically through the velocity Verlet
method [57,58], with a time step dt = 0.005, for different lattice sizes L (please, see the
Appendix A). The rotators at the bulk (i= 2, · · · , L − 1) follow a continuity equation,

dEi
dt

= −(Ji − Ji−1) , (16)

where

Ei =
1
2
ℓ2

i +
1
2 ∑

j=i±1

(
1 − Si · Sj

)
, (17)

so the stationary state is attained for (dEi/dt) = 0, i.e., Ji = Ji−1. The derivation is simple,
since from Equation (13) and ℓi · Si = 0, we have Ṡ2

i = ℓ2
i , hence,

d
dt

Ei = Ṡi · S̈i −
1
2

[
Ṡi · (Si+1 + Si−1) + Si ·

(
Ṡi+1 + Ṡi−1

)]
. (18)

This equation, together with Equation (14), yields

d
dt

Ei =
1
2

[
Ṡi · (Si+1 + Si−1)− Si ·

(
Ṡi+1 + Ṡi−1

)]
= 0 (19)

at the stationary state. Data are obtained at stationary states, which, as usual, take longer
to reach for increasing lattice sizes. For numerical reasons, to decrease fluctuations in the
bulk due to the noise, we compute an average heat flux by discarding a certain number
of particles p near the extremities (typically p ≃ 0.15L). In this way, we define an average
heat flux as

J ≡ 1
L − 2p

L−p

∑
i=p+1

⟨Ji⟩ , (20)

Ji =
1
2

(
Si · Ṡi+1 − Si+1 · Ṡi

)
, (21)

whereas ⟨..⟩ denotes time and sample averages, which will be described next.
Let us emphasize that for Si = (sin θi, cos θi, 0) and ℓi = ℓiẑ, one recovers the expression

for the heat flux of the classical inertial XY model, i.e., Ji =
1
2(ℓi + ℓi+1)sin (θi − θi+1) [45,59],

showing the appropriateness of the Cartesian-coordinate approach used herein for the
classical inertial Heisenberg model.

Let us now describe the time evolution procedure; for a time step dt = 0.005, each
unit of time corresponds to 200 integrations of the equations of motion. We considered a
transient of 5 × 107 time units to compute the averages ⟨Ji⟩ in Equation (20), and checked
that this transient time was sufficient to fulfill the condition Ji = Ji−1 (within, at least,
a three-decimal digits accuracy), for all values of L analyzed. After that, simulations
were carried out for an additional interval of 2 × 108 time units (leading to a total time of
2.5 × 108 for each simulation). The interval 2 × 108 was divided into 80 equally spaced
windows of 2.5 × 106 time units, so that time averages were taken inside each window;
then an additional sample average was taken over these 80 time windows, leading to the
averages ⟨Ji⟩.
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Rh Rl

1 2 3 4 L-3 L-2 L-1 L

J

BULK

Figure 1. Illustration of the system defined in Equation (9), where the rotators at extremities of the
chain are subjected to heat baths at different temperatures. The hot (Rh) and cold (Rl) reservoirs are
at temperatures Th = T(1 + ε) and Tl = T(1 − ε), respectively, leading to an average heat flux J = Jx
throughout the bulk (see text). The rotators at sites i = 2, . . . , L − 1 interact with their respective
nearest neighbors.

Using the results of Equation (20), one may calculate the thermal conductivity of
Equation (1), and consequently, the thermal conductance,

σ =
J

Th − Tl
=

J
2Tε

≡ κ

L
. (22)

In the next section, we present the results of both quantities, obtained from the numerical
procedure described above.

3. Results

We simulate the system of Figure 1 for different lattice sizes, namely, L = 50, 70, 100, 140,
considering the heat-bath temperatures differing by 2ε, with ε = 0.125. The temperature
parameter T = (Th + Tl)/2 varied in the interval 0 < T ≤ 3.5, capturing both low- and
high-temperature regimes. The values of L (L ≥ 50) were chosen adequately to guarantee
that the thermal conductivity κ did not present any dependence on the size L in the
high-temperature regime, as expected.

In Figure 2, we present numerical data for the thermal conductivity Figure 2a and
thermal conductance Figure 2b versus temperature (log–log representations) and different
sizes L. The similar qualitative behaviors of the data displayed in both properties of
Figure 2, for different values of L, evidence that the sizes considered in the present analysis
(L ≥ 50) are sufficiently large, in the sense that finite-size effects do not play a relevant
role. In Figure 2a, we exhibit κ(L, T) (the dependence of the thermal conductivity on the
size L, used herein, will become clear below), showing a crossover between two distinct
regimes (for T ≃ 0.3), as described next. (i) A low-temperature regime, where κ depends
on the size L, decreasing smoothly for increasing temperatures (L fixed). The plots of
Figure 2a show that, in the limit T → 0, an extrapolated value, κ(L, 0) ≡ limT→0 κ(L, T),
increases with L. Such a low-temperature increase with L has been observed in other one-
dimensional models (see, e.g., Refs. [42–45]) and is reminiscent of the behavior expected
for a chain of coupled classical harmonic oscillators. This anomaly is attributed to the
classical approach used herein, indicating that for low temperatures, a quantum–mechanical
procedure should be applied. (ii) A high-temperature regime, where κ essentially does
not depend on L (in the limit L → ∞), as expected from Fourier’s law. Moreover, in
this regime, one notices that κ decreases with the temperature as it generally occurs with
liquids and solids. For increasing temperature, the thermal conductivity of most liquids
usually decreases as the liquid expands and the molecules move apart; in the case of solids,
due to lattice distortions, higher temperatures make it more difficult for electrons to flow,
leading to a reduction in their thermal conductivity. The results of Figure 2a indicate
that the thermal conductivity becomes independent of the lattice size in the limit L → ∞,
scaling with the temperature as κ(T) ∼ T−2.25 at high temperatures. Therefore, the system
becomes a thermal insulator at high temperatures, approaching this state according to
κ(T) ∼ T−2.25. Despite the simplicity of the one-dimensional classical inertial Heisenberg
model of Figure 1, the present results are very close to experimental verifications in some
antiferromagnetic electrical insulators, such as the Heisenberg chain cuprates Sr2CuO3
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and SrCuO2, for which the thermal conductivity is well-fitted by a 1/T2 law at high
temperatures [4]. We should note that the one-dimensional Heisenberg model with nearest-
neighbor ferromagnetic interactions, defined by the Hamiltonian of Equation (9), does not
present an equilibrium phase transition, being characterized by a paramagnetic state for
all temperatures T > 0. In this case, one may perform the following transformations in
the Hamiltonian of Equation (9), leaving it unaltered: 1/2 → −1/2 (which incorporates
the coupling constant), as well as Sj → −Sj, keeping Si unchanged. Consequently, the
Hamiltonian of Equation (9) applies to antiferromagnetic systems at high temperatures,
as well.

L=50

L=70

L=100

L=140

10
-1

10
0

10
-2

10
-1

10
0

10
1

10
2

T

κ
(L
;T

)

(a)

L=50

L=70

L=100

L=140

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

T

σ
(L
;T

)

(b)

Figure 2. (Color online) Numerical data for the thermal conductivity [panel (a)] and thermal
conductance [panel (b)] are represented versus temperature (log–log plots) for different sizes
(L = 50, 70, 100, 140) of the one-dimensional classical inertial Heisenberg model. One notices a
crossover between the low- and high-temperature regimes for T ≃ 0.3. As expected, higher tempera-
tures amplify the effects of the multiplicative noise, which is proportional to the square root of the
corresponding temperatures (Th, Tl), currently leading to larger fluctuations in numerical data, as
shown in panel (a). All quantities shown are dimensionless.

The same data of Figure 2a are exhibited in Figure 2b where we plot the thermal
conductance σ(L, T) = κ(L, T)/L versus temperature, characterized by the two dis-
tinct temperature regimes described above. The low-temperature regime shows that
the zero-temperature extrapolated value κ(L, 0) scales as κ(L, 0) ∼ L, leading to σ(L, 0) ≡
limT→0 κ(L, T)/L ≃ 0.5. Such low-temperature results are in full agreement with those
obtained in previous simulations of coupled classical XY rotators [42–45]. On the other
hand, in the high-temperature regime, the thermal conductance presents a dependence on
L, as expected.

In Figure 3, we exhibit the thermal-conductance data of Figure 2b in conveniently
chosen variables, yielding a data collapse for all values of L considered. The full line
essentially represents the form of Equation (8), so that one writes

σ(L, T) = A expq(−Bxη) , (23)

where x = L0.475T, q = 2.28± 0.04, η = 2.88± 0.04, A = 0.492± 0.002, and B = 0.33± 0.04.
Notice that this value of η lies outside the range of what is commonly known as “stretched”
[cf. Equation (8)], so that the form above should be considered rather as a “shrinked”
q-exponential.



Entropy 2024, 26, 25 8 of 13

0.4921e2.28
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L=50
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σ
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;T
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Figure 3. The plots for the thermal conductance of Figure 2b are shown in a log–log representation,
for a conveniently chosen abscissa (x = L0.475T), leading to a collapse of data for all values of
L considered. The fitting (full line) is given by the function of Equation (23).

It should be mentioned that, in the case of coupled nearest-neighbor-interacting
classical XY rotators on d-dimensional lattices (d = 1, 2, 3) [45], the thermal conductance
was also fitted by the form of Equation (23), with values of η(d) > 2. In particular, in the
one-dimensional case, such a fitting was attained for x = L0.3T, q = 1.7, and η = 2.335,
showing that these numbers present a dependence on the number of spin components
(n = 2, for XY spins and n = 3, for Heisenberg spins), as well as on the lattice dimension
d. It is important to mention that the generalized forms in Equations (8) and (23) have
been used in the literature for an appropriate description of a wide variety of physical
phenomena, like velocity measurements in a turbulent Couette–Taylor flow [60], relaxation
curves of RKKY spin glasses, such as CuMn and AuFe [61], cumulative distribution for the
magnitude of earthquakes [62], and more recently, for the thermal conductance of a system
of interacting XY rotators [45]. Moreover, its associated entropic form has been studied in
detail in Ref. [49].

By defining the abscissa variable of Figure 3 in the general form x = Lγ(n,d)T, and
using the q-exponential definition of Equation (3), the slope of the high-temperature part of
the thermal-conductance data scales with L, as

σ ∼ L−[η(n,d)γ(n,d)]/[q(n,d)−1] , (24)

where we introduce the dependence (n, d) on all indices. Since the thermal conductivity
(κ = Lσ) should not depend on the size L (in the limit L → ∞), Fourier’s law becomes
valid for

η(n, d)γ(n, d)
q(n, d)− 1

= 1 . (25)

The data of Figure 3 lead to [η(3, 1)γ(3, 1)]/[q(3, 1)− 1] = 1.069 ± 0.083, whereas those
for XY rotators on d-dimensional lattices yield 1.0007, 0.95, and 0.93, for d = 1, 2, and 3,
respectively [45], indicating the validation of Fourier’s law for systems of coupled nearest-
neighbor-interacting classical n-vector rotators, through the thermal conductance form
of Equation (23).

Recently, similar analyses were carried out for an XY Hamiltonian with anisotropies,
in such a way to approach the Ising model in particular limits [63]. All the results for
the quantity in Equation (25), computed up to the moment, are summarized in Table 1,
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where one notices that finite-size effects play an important role in increasing dimensions,
as expected.

Table 1. Values of the ratio ηγ/(q − 1) (highlighted in blue color) analyzed up to the moment: n = 1
(d = 1) [63], n = 2 (dimensions d = 1, 2, 3) [45], together with the present results for n = 3 (d = 1).
In all cases studied, the limit of Equation (25) is numerically approached.

ηγ

q − 1
d = 1

(linear chain)
d = 2

(square lattice)
d = 3

(simple cubic lattice)

n = 1
(Ising ferromagnet)

1.0063
q = 1.65, η = 1.94, γ = 0.336 - -

n = 2
(XY ferromagnet)

1.0007
q = 1.7, η = 2.335, γ = 0.3 0.95

q = 3.2, η = 5.23, γ = 0.4
0.93

q = 3.5, η = 5.42, γ = 0.43

n = 3
(Heisenberg ferromagnet)

1.069
q = 2.28, η = 2.88, γ = 0.475 - -

4. Conclusions

We studied the heat flow along a one-dimensional classical inertial Heisenberg model
of linear size L, by considering the first and last particles in thermal contact with heat baths
at different temperatures, Th and Tl (Th > Tl), respectively. These particles at the extremities
of the chain were subjected to standard Langevin dynamics, whereas all remaining rotators
(i = 2, · · · , L − 1) interacted by means of nearest-neighbor ferromagnetic couplings and
evolved in time following their own classical equations of motion, being investigated
numerically through molecular-dynamics numerical simulations.

Fourier’s law for the heat flux was verified numerically, and both thermal conduc-
tivity κ(T) and thermal conductance σ(L, T) = κ(T)/L were computed, by defining
T = (Th + Tl)/2. The slope of the high-temperature part of thermal-conductance data
scales with the system size was σ ∼ L−1.069, indicating that in the limit L → ∞, one
should obtain a thermal conductivity independent of L. Indeed, in this limit, we found
κ(T) ∼ T−2.25 for high temperatures. The thermal-conductance data were well-fitted by the
function σ(L, T) = A expq(−Bxη), typical of nonextensive statistical mechanics, where A
and B are constants, x = L0.475T, q = 2.28± 0.04, and η = 2.88± 0.04. This fitting augments
the applicability of such a function, which has been used for describing several physical
phenomena in the literature, like velocity measurements in a turbulent Couette–Taylor
flow [60], relaxation curves of RKKY spin glasses [61], cumulative distribution for the
magnitude of earthquakes [62], and thermal conductance of a system of interacting XY
rotators [45]. Since the value of η found herein lies outside the range of what is commonly
known as “stretched” (0 < η ≤ 1), herein, we refer to this fitting function of a “shrinked”
q-exponential. The present results reinforce those obtained recently for XY rotators on
d-dimensional lattices [45], indicating that Fourier’s law should be generally valid for
systems of coupled nearest-neighbor-interacting classical n-vector rotators, through the
“shrinked” q-exponential function for the thermal conductance, with the indices q(n, d) and
η(n, d) presenting a dependence on the number of spin components and lattice dimension.

Despite the simplicity of the model considered herein, the results for the thermal
thermal conductivity at high temperatures (κ(T) ∼ T−2.25) are very close to experimental
verifications in some antiferromagnetic electrical insulators, such as the Heisenberg chain
cuprates Sr2CuO3 and SrCuO2, for which thermal conductivity is well-fitted by a 1/T2 law
at high temperatures [4]. At equilibrium, the present model exhibits a paramagnetic state
for all temperatures, so that its Hamiltonian may be shown to cover both ferromagnetic
and antiferromagnetic systems. The present results show that even for models exhibiting
simple equilibrium properties, one may have out-of-equilibrium regimes characterized
by transport properties typical of nonextensive statistical mechanics, like the ones found
herein. Since nonextensive statistical mechanics have been used in the description of a
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wide variety of complex systems, one expects that the present results should be applicable
to many of these systems in diverse, non-equilibrium regimes.

In summary, we demonstrated that (i) for the classical one-dimensional inertial fer-
romagnetic Heisenberg model, the (macroscopic) Fourier-law is validated from (micro-
scopic) first principles, i.e., the temperature-dependent thermal conductivity is, in the
high-temperature regime, finite and independent of the system size (the low-temperature
regime is to be handled within a quantum grounding, which is out of the goal of the
present paper); (ii) For all temperatures and sizes, the thermal conductivity appears to be
consistent with q-statistics since it can be neatly collapsed within a shrunken q-exponential
form; (iii) within this shrunken q-exponential form, a single universal condition, namely
η(n,d)γ(n,d)

q(n,d)−1 = 1, validates the Fourier law for the n-vector models for n = 1, 2, 3, which
constitutes a numerical indication that this centennial macroscopic law is possibly valid for
all values of (n, d), where n → ∞ and n → 0 correspond to the spherical model and ‘self-
avoiding walk’, respectively. It is not our present aim to review the rich existing literature
on the validity of the Fourier law within diverse classical and quantum approaches, but we
rather restrict our focus to analytical and numerical first-principle approaches of classical
systems that are similar to the present one.
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Appendix A. Numerical Procedures

Let us focus on the numerical integration of the equations of motion of the classical
inertial Heisenberg chain. Considering the change of variable Ṡi = Vi, we have the
following equations of motion:

Ṡi = Vi for all i

V̇i = (Si+1 + Si−1)−
[
Si · (Si+1 + Si−1) + V2

i

]
Si , i = 2, . . . , L − 1

V̇1 = −V1 + S2 −
[
S1 · S2 + V2

1

]
S1 + S1 × ηh ,

V̇L = −VL + SL−1 −
[
SL · SL−1 + V2

L

]
SL + SL × ηl .

(A1)

which is a system of 6L first-order differential equations. To solve the set of equations
entirely with the velocity Verlet method, we need to define ηh/l =

√
2Th/l/dt wh/l , where w

is a vector of dimensionless Gaussian white noises and dt is the time-step of the integration.
Therefore, we have the following discretized procedure:

Sk+1
i = Sk

i + Vi dt +
1
2

Fk
i (dt)2

Vk+1
i = Vk

i +
1
2
(Fk

i + Fk+1
i )dt

(A2)

where the generalized forces are as follows:
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Fi = (Si+1 + Si−1)−
[
Si · (Si+1 + Si−1) + V2

i

]
Si , i = 2, . . . , L − 1

F1 = −V1 + S2 −
[
S1 · S2 + V2

1

]
S1 +

√
2Th
dt

(S1 × wh) ,

FL = −VL + SL−1 −
[
SL · SL−1 + V2

L

]
SL +

√
2Tl
dt

(SL × wl) .

(A3)

Notice that (dt)−1/2 in the stochastic part of the forces is equivalent to (dt)3/2 and
(dt)1/2 in Fk

i (dt)2 and Fk
i dt respectively; this equivalence contains weak order 1/2 and

strong order 3/2 properties.
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