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Abstract: This paper investigates the complex dynamics of a ratio-dependent predator–prey model
incorporating the Allee effect in prey and predator harvesting. To explore the joint effect of the
harvesting effort and diffusion on the dynamics of the system, we perform the following analyses:
(a) The stability of non-negative constant steady states; (b) The sufficient conditions for the occurrence
of a Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation; (c) The derivation of the
normal form near the Turing–Hopf singularity. Moreover, we provide numerical simulations to
illustrate the theoretical results. The results demonstrate that the small change in harvesting effort and
the ratio of the diffusion coefficients will destabilize the constant steady states and lead to the complex
spatiotemporal behaviors, including homogeneous and inhomogeneous periodic solutions and
nonconstant steady states. Moreover, the numerical simulations coincide with our theoretical results.

Keywords: Turing–Hopf bifurcation; stability; diffusion; predator–prey model; harvesting rate

1. Introduction

The predator–prey interaction is a significant topic in the studies of populations,
communities, and ecosystems and has attracted much attention from scholars. Since
the introduction of the classical Lotka–Volterra model, predator–prey models have been
continuously improved and developed, but there are still many ecological problems that
need attention and solving [1–4]. We can use the following form of an ordinary differential
equation to represent the predator–prey system

du
dT

= f1(u) + p(u, v)v,
dv
dT

= f2(v) + cp(u, v)v,

where u and v are the densities of prey and predators, respectively. Here, f1(u) is the
natural growth rate of the prey population in the absence of predators, f2(v) is the preda-
tor growth rate without prey, c is the conversion rate from predation, and p(u, v) is the
functional response. Generally, functional responses can be divided into two categories:
prey-dependent functional response and predator-dependent functional response. Prey-
dependent functional response means that p(u, v) is the function of prey density only;
see [4–7], for example. However, in predator-dependent predator–prey models, the func-
tion p(u, v) depends on the densities of both predator and prey. In [8], the authors proposed
that a functional response should depend on the ratio of prey-to-predator density, which is
supported by several laboratory observations and has been widely used in predator–prey
systems. Since then, the ratio-dependent predator–prey models have gained much atten-
tion over many decades. Compared with the traditional prey-dependent predator–prey
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models, the ratio-dependent models can exhibit richer and more reasonable dynamical
behaviors [9–13].

In fact, there are still other factors, as well as the functional response, that should be
considered in the study of the predator–prey systems. Stephens et al. [14] suggested that
the Allee effect, proposed by Allee [15], can be defined as a positive relationship between
any component of individual fitness and the number or density of conspecifics. In the 2000s,
Kramer et al. [16] suggested that the Allee effect can be caused by mate limitation, predator
satiation, cooperative feeding or defense, habitat alternation, dispersal, etc. Their study
showed that the Allee effect plays a key role in numerous systems. Later, Merdan [17]
studied the effect of the Allee effect on the stability of a Lotka–Voterra model. The study
demonstrated that the presence of the Allee effect makes the system take a longer time
to reach the stable equilibrium and reduces the densities of both prey and predators at
the stable equilibrium. Due to the significant effect on population dynamics, the Allee
effect has gained increasing attention; see [18–27], for example. In view of human needs,
the harvesting of biological resources should also be taken into account in predator–prey
models. In [28], Xiao et al. considered the ratio-dependent predator–prey model with
constant harvesting of predators as follows:

du
dT

= u(1 − u) +
auv

u + v
,

dv
dT

= v
(
−d +

bu
u + v

)
− h,

(1)

where h represents the harvesting rate; for more background about (1), we refer readers
to [28] and the references therein. For system (1), the authors obtained the occurrence of nu-
merous types of bifurcations, including the Bogdanov–Takens bifurcation, the saddle-node
bifurcation, and the supercritical and subcritical Hopf bifurcations. From the perspective of
biology, it is more reasonable that the harvesting rate function should be proportional to the
harvested population. In [29], Chakraborty et al. proposed the modified ratio-dependent
predator–prey system with nonconstant predator harvesting as follows:

du
dT

= ru(1 − u
K
) +

αuv
u + av

,
dv
dT

=
αb0u

u + av
− dv − hv,

(2)

where h > 0 is the harvesting rate; for more details concerning system (2), we refer readers
to [29] and the references therein. This study revealed that when the harvesting rate is very
high or low, the predator will eventually be extinct. In [30], the authors discussed the local
stability of system (2). They gave the conditions under which the interior equilibrium is
stable or unstable, a focus or a center. Their study showed that the predator harvesting rate
plays a key role in the stability of the interior equilibrium of system (2), and the presence of
predator harvesting makes system (2) exhibit much richer dynamical behaviors.

As is well known, the predators and prey distribute inhomogeneously in different
locations; therefore, diffusion should be taken into account in ecological and biological
models. Based on the fact that diffusion may destabilize the steady state and induce the
occurrence of Turing instability, many scholars have investigated the diffusive predator–
prey systems; see [13,31–34], for example. Although the ratio-dependent predator–prey
system has been extensively investigated, a study concerning the system incorporating the
Allee effect, predator harvesting, and diffusion has not been seen yet. Based on this, we
consider a diffusive system with the Allee effect in prey and predator harvesting as follows:

∂u
∂T

− d1∆u =
4γ

(K − Q0)2 u(u − Q0)(K − u)− G
uv

u + v
,

∂v
∂T

− d2∆v = µG
uv

u + v
− Lv − Hv,

(3)
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where K is the carrying capacity for the prey, γ is the maximum per capita growth rate of
the prey, G is the capturing rate, µ is the conversion rate, L is the predator death rate, and
H is the harvesting rate. Further, Q0(Q0 < K) is the Allee threshold, and d1 and d2 are the
diffusion coefficients. Let

û =
u
K

, v̂ =
v
K

, t =
G
T

, a =
4γK2

G(K − Q0)2 ,

b =
Q0

K
, c = µ, d =

L
G

, h =
H
G

, D0 =
d1

d2
,

and, by dropping the hats of the notations, we can obtain the corresponding diffusive
system with a homogeneous Neumann boundary and initial conditions as follows:

∂u
∂t

− D0∆u = au(u − b)(1 − u)− uv
u + v

, x ∈ (0, lπ),
∂v
∂t

− ∆v =
cuv

u + v
− dv − hv, x ∈ (0, lπ),

∂u
∂ν

= 0,
∂v
∂ν

= 0, x = 0, lπ,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, lπ).

(4)

For system (4) without the Allee effect, Gao et al. [34] studied the existence and properties
of a Hopf bifurcation, provided the conditions for the occurrence of Turing instability
induced by diffusion, and proved the existence and non-existence of the non-constant
steady states. When the harvesting term in (4) is absent, i.e., h = 0, Rao and Kang [13]
investigated the effect of diffusion and the Allee effect on the dynamical complexity of the
system. Their results reveal that the strength of the Allee effects plays a key role in the
formation of distinct spatial patterns.

In this paper, we aim to explore the joint effect of diffusion and harvesting effort on
the dynamics in system (4). Notice the fact that the term uv

u+v has no definition at (0, 0); we
assume that uv

u+v

∣∣
(0,0) = 0 as in [9,10]. The rest of this article is organized as follows. In

Section 2, we first discuss the existence of positive equilibria. Then, we investigate the dy-
namics of the ODE system corresponding to system (4). In particular, using the harvesting
rate as the bifurcation parameter, we study the stability of the positive equilibria, verify
the existence of a Hopf bifurcation, and derive the explicit formulas for determining the
properties of the bifurcating periodic solutions by applying the center manifold theory and
normal form method. In Section 3, we give the sufficient conditions for the occurrence of
the Turing–Hopf bifurcation. In Section 4, to illustrate the complex dynamics of system (4),
we calculate the normal form near the Turing–Hopf bifurcation point. In Section 5, we give
some numerical simulations to illustrate our theoretical results.

2. Dynamics of the ODE Model

When diffusion is absent, system (4) becomes
du
dt

= au(1 − u)(u − b)− uv
u + v

,
dv
dt

=
cuv

u + v
− dv − hv.

(5)

It is easy to see that system (5) always has three boundary equilibria: E0 = (0, 0), E1 = (b, 0),
and E2 = (1, 0). Obviously, the interior equilibria should satisfy the following equationa(1 − u)(u − b) =

v
u + v

,
cu

u + v
= d + h,

(6)

which yields to

u2 − (1 + b)u + b +
c − d − h

ac
= 0.
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Therefore, when the following condition

(H1) : d + h < c ≤ 1, ac(b − 1)2 > 4(c − d − h)

is satisfied, system (5) has two interior equilibria E∗
1 (u

∗
1 , v∗1) and E∗

2 (u
∗
2 , v∗2), where v∗i =

c − d − h
d + h

u∗
i (i = 1, 2), and

u∗
1 =

b + 1 −
√
(b − 1)2 − 4(c−d−h)

ac

2
,

u∗
2 =

b + 1 +
√
(b − 1)2 − 4(c−d−h)

ac

2
.

(7)

Then, we analyze the stability of all equilibria of system (5). Note that the Jacobian
matrix cannot be evaluated at E0 since uv

u+v is not differentiable at (0, 0). We can obtain,
from the first equation of (5), that

u(t) = u(0)e
∫ t

0

(
(u(t)−b)(1−u(t))− v(s)

u(s)+v(s)

)
ds.

Similarly, from the second equation of system (5), we have that

v(t) = v(0)e
∫ t

0

(
cu(s)

u(s)+v(s)−d−h
)

ds,

which means u(t) > 0 and v(t) > 0 when u(0) > 0, v(0) > 0. From the equation for the
prey density, we have for 0 < u < u0,

du
dt

< −au(u − 1)(u − b) < −au(u0 − 1)(u0 − b) = −auA

where u(0) = u0 < b, A = (u0 − 1)(u0 − b) > 0. It can be proven that u(t) < u0e−aAt, thus
lim

t→+∞
u(t) = 0. Notice that

dv
dt

=

(
c

1 +
v
u

− d − h

)
v,

so we mainly consider two cases:
Case I: If v(t) has infinite extremum for t > 0, then the maximal values are determined

by dv/dt = 0, which can be given by

vmax(tk) =
c − d − h

d + h
umax(tk).

Since lim
t→+∞

u(t) = 0, we can obtain that lim
t→+∞

v(t) = 0.

Case II: If v(t) has finite extremum when t > 0, then there exists a T0 > 0 such that v(t)

is a monotonic function of t when t > T0. Notice that lim
t→+∞

v
u = ∞, we have lim

t→+∞

dv
dt

< 0.

Therefore, v(t) is monotonically decreasing for t > T0, and we claim that lim
t→+∞

v(t) = 0.

Otherwise, lim
t→+∞

v(t) = B > 0. Then, for any ε > 0, we have

dv
dt

< v

(
c

1 +
B
u

− d − h

)
< −v(1 − ε)(d + h)

for a sufficiently large t. It is easy to prove that

v(t) < v0 e−(1−ε)(d+h)t,
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which implies that v(t) → 0 when t → +∞. It contradicts the assumption B > 0. Con-
sequently, lim

t→+∞
v(t) = 0. Based on the above discussion, we obtain that E0 is locally

asymptotically stable. For Ei (i = 1, 2), the corresponding Jacobian matrix can be given by

J
∣∣
E1

=

(
ab(1 − b) −1

0 c − (d + h)

)
,

J
∣∣
E2

=

( −a(1 − b) −1
0 c − (d + h)

)
,

respectively, so we can obtain the local stability of boundary equilibria as follows.

Lemma 1. For system (5):

(i) E0 is a stable node;
(ii) If c > d + h, then E1 is a source, and E2 is a saddle;
(iii) If c < d + h, then E1 is a saddle, and E2 is a stable node.

Next, we analyze the local stability of E∗
i (i = 1, 2). The Jacobian Matrices around

E∗
i (i = 1, 2) can be written as

J
∣∣∣
E∗

i

=


au∗

i (1 + b − 2u∗
i ) +

u∗
i v∗i

(u∗
i + v∗i )

2 − u∗2
i

(u∗
i + v∗i )

2

cv∗2
i

(u∗
i + v∗i )

2 − cu∗
i v∗i

(u∗
i + v∗i )

2

, i = 1, 2, (8)

and

TrJ
∣∣∣
E∗

i

= au∗
i (1 + b − 2u∗

i ) +
u∗

i v∗i (1 − c)
(u∗

i + v∗i )
2 , i = 1, 2, (9)

DetJ
∣∣∣
E∗

i

=
acu∗2

i v∗i [2u∗
i − (1 + b)]

(u∗
i + v∗i )

2 , i = 1, 2. (10)

According to Equations (7) and (10), we can conclude that

TrJ
∣∣∣
E∗

1

> 0, DetJ
∣∣∣
E∗

1

< 0, DetJ
∣∣∣
E∗

2

> 0,

which implies that E∗
1 is always a saddle, and the stability of E∗

2 is determined by the sign

of TrJ
∣∣∣
E∗

2

. Substituting the expressions for u∗
2 and v∗2 , we have

TrJ
∣∣∣
E∗

2

= −
a
(

b + 1 +
√
(b − 1)2 − 4(c−d−h)

ac

)
2

(√
(b − 1)2 − 4(c − d − h)

ac

)
+

(c − d − h)(d + h)(1 − c)
c2 . (11)

When (H1) holds, we can obtain that

lim
h→(c−d)−

TrJ
∣∣∣
E∗

2

= −a(1 − b) < 0,

dTrJ|E∗
2

dh
= − b + 1

c
√
(b − 1)2 − 4(c−d−h)

ac

− 2(1 − c)(d + h) + c
c2 − 1 < 0.

Note that ac(b − 1)2 > 4(c − d − h), we obtain that

lim
h→( 4(c−d)−ac(b−1)2

4 )+
TrJ
∣∣∣
E∗

2

=
a(b − 1)2[4c − ac(b − 1)2](1 − c)

16c
> 0
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provided 4(c − d) − ac(b − 1)2 > 0. So, under the assumptions (H1) and

4(c − d) − ac(b − 1)2 > 0, (11) has a unique positive zero hH ∈ ( 4(c−d)−ac(b−1)2

4 , c − d)

such that TrJ
∣∣∣
E∗

2

> 0 when h < hH , while TrJ
∣∣∣
E∗

2

< 0 when h > hH . Denote

(H2) : 4(c − d)− ac(b − 1)2 > 0.

Summarizing the previous discussion, we conclude that:

Theorem 1. Assume that (H1) is satisfied. Then, system (5) has two positive equilibria
E∗

i (i = 1, 2). Furthermore:

(i) E∗
1 is unstable;

(ii) If (H2) holds, then there exists a unique hH ∈ ( 4(c−d)−ac(b−1)2

4 , c − d) such that E∗
2 is

asymptotically stable when h > hH , while E∗
2 is unstable when h < hH , where hH is the

positive zero of (11).

In fact, we can also obtain the conclusion as follows.

Lemma 2. Assume that (H1) and (H2) hold. Then, system (5) undergoes a Hopf bifurcation at
E∗

2 as h = hH .

Proof. Denote

J|E∗
2
=

(
a11 a12
a21 a22

)
, (12)

where

a11 = au∗
i (1 + b − 2u∗

i ) +
u∗

i v∗i
(u∗

i + v∗i )
2 ,

a12 = − u∗2
i

(u∗
i + v∗i )

2 , a21 =
cv∗2

i
(u∗

i + v∗i )
2 , a22 = − cu∗

i v∗i
(u∗

i + v∗i )
2 .

(13)

Let λ(h) = κ(h)± iω(h) be a pair of complex roots of

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0,

satisfying κ(hH) = 0. Then,

κ(h) =
a11 + a22

2
, ω(h) =

1
2

√
−4a12a21 − (a11 − a22)2.

Since

κ′(hH) =
1
2

dTrJ|E∗
2

dh
< 0,

we complete the proof.

Let ũ = u − u∗
2 , ṽ = v − v∗2 . For the sake of convenience, we still denote ũ and ṽ by u

and v. Thus, system (5) can be rewritten as
du
dt

= a(u + u∗
2)(1 − (u + u∗

2))((u + u∗
2)− b)− (u + u∗

2)(v + v∗2)
(u + u∗

2) + (v + v∗2)
,

dv
dt

=
c(u + u∗

2)(v + v∗2)
(u + u∗

2) + (v + v∗2)
− d(v + v∗2)− h(v + v∗2).

(14)

Rewrite system (14) as du
dt
dv
dt

 = J|E∗
2

(
u
v

)
+

(
f (u, v, h)
g(u, v, h)

)
, (15)
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where

f (u, v, h) = a1u2 + a2uv + a3v2 + a4u3 + a5u2v + a6uv2 + a7v3 + . . . ,

g(u, v, h) = b1u2 + b2uv + b3v2 + b4u3 + b5u2v + b6uv2 + b7v3 + . . . ,

with

a1 = −3au∗
2 + a + ab +

v∗2
2

(u∗
2 + v∗2)

3 , a2 = − 2u∗
2v∗2

(u∗
2 + v∗2)

3 , a3 =
u∗2

2
(u∗

2 + v∗2)
3 ,

a4 = −a − v∗2
2

(u∗
2 + v∗2)

4 , a5 =
2u∗

2v∗2 − v∗2
2

(u∗
2 + v∗2)

4 , a6 =
2u∗

2v∗2 − u∗2
2

(u∗
2 + v∗2)

4 ,

a7 = − u∗2
2

(u∗
2 + v∗2)

4 , b1 = − cv∗2
2

(u∗
2 + v∗2)

3 , b2 =
2cu∗

2v∗2
(u∗

2 + v∗2)
3 ,

b3 = − cu∗2
2

(u∗
2 + v∗2)

3 , b4 =
cv∗2

2
(u∗

2 + v∗2)
4 , b5 =

cv∗2
2 − 2cu∗

2v∗2
(u∗

2 + v∗2)
4 ,

b6 =
cu∗2

2 − 2cu∗
2v∗2

(u∗
2 + v∗2)

4 , b7 =
cu∗2

2
(u∗

2 + v∗2)
4 .

Let

P :=
(

N 1
M 0

)
,

where
M = − a21

ω(h)
, N =

a22a11

2ω(h)
.

Then, we obtain that

P−1 J|E∗
2
P = ϕ(h) :=

(
κ(h) −ω(h)
ω(h) κ(h)

)
.

Denote
M0 := M|h=hH , N0 := N|h=hH , β0 := ω(hH).

Using (u, v)T = P(p, q)T , system (15) becomesdp
dt
dq
dt

 = ϕ(h)
(

p
q

)
+

(
f 1(p, q, h)
g1(p, q, h)

)
, (16)

where

f 1(p, q, h) =
1
M

g(Np + q, Mp, h)

=

(
N3

M
b4 + N2b5 + NMb6 + M2b7

)
p3 +

(
3N2

M
b4 + 2Nb5 + Mb6

)
p2q

+

(
N2

M
b1 + Nb2 + Mb3

)
p2 +

(
3N
M

b4 + b5

)
pq2 +

(
2N
M

b1 + b2

)
pq

+
b4

M
q3 +

b1

M
q2 + · · · ,
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g1(p, q, h) = f (Np + q, Mp, h)− N
M

g(Np + q, Mp, h)

=

(
N3a4 + M3a7 + N2Ma5 + NM2a6 −

N4

M
b4 − N3b5 − MN2b6 + NM2b7

)
p3

+

(
3N2a4 + 2NMa5 + M2a6 −

N4

M
b4 − 2N2b5 − NMb6

)
p2q

+

(
N2a1 + NMa2 + M2a3 −

3N3

M
b4 − 2N2b5 − NMb3

)
p2

+

(
3Na4 + Ma5 −

3N2

M
b4 − Nb5

)
pq2 +

(
2Na1 + Ma2 −

2N2

M
b1 − Nb2

)
pq

+

(
a4 −

N
M

b4

)
q3 +

(
a1 −

N
M

b1

)
q2 + · · · .

The polar coordinate form of (16) can be written as:{
τ̇ = κ(h)τ + α(h)τ3 + · · · ,
θ̇ = ω(h) + ε(h)τ2 + · · · .

(17)

By Taylor expanding (17) at h = hH , we have{
τ̇ = κ′(hH)(h − hH)τ + α(hH)τ

3 + o((h − hH)τ, (h − hH)τ
3, τ5),

θ̇ = ω(hH) + ω′(hH)(h − hH) + ε(hH)τ
2 + o((h − hH)

2, (h − hH)τ
2, τ4).

(18)

To determine the stability of the bifurcating periodic solutions, we need to discuss the sign
of α(hH), which is given by

α(hH) :=
1

16
( f 1

ppp + f 1
pqq + g1

ppq + g1
qqq)

+
1

16β0
[ f 1

pq( f 1
pp + f 1

qq)− g1
pq(g1

pp + g1
qq)− f 1

ppg1
pp + f 1

qqg1
qq],

(19)

where all partial derivatives are evaluated at the bifurcation point (p, q, b) = (0, 0, hH), and

f 1
ppp(0, 0, hH) = 6

(
N3

0
M0

b4 + N2
0 b5 + N0M0b6 + M2

0b7

)
, f 1

pqq(0, 0, hH) = 2
(

3N0

M0
b4 + b5

)
,

g1
ppq(0, 0, hH) = 2

(
3N2

0 a4 + 2N0M0a5 + M2
0a6 −

3N3
0

M0
b4 − 2N2

0 b5 − N0M0b6

)
,

g1
qqq(0, 0, hH) = 6

(
a4 −

N0

M0
b4

)
, f 1

pp(0, 0, hH) = 2

(
N2

0
M0

b1 + N0b2 + M0b3

)
,

f 1
pq(0, 0, hH) =

2N0

M0
b1 + b2, f 1

qq(0, 0, hH) =
2

M0
b1,

g1
pp(0, 0, hH) = 2

(
N2

0 a1 + N0M0a2 + M2
0a3 −

N3
0

M0
b1 − N2

0 b2 − N0M0b3

)
,

g1
pq(0, 0, hH) = 2N0a1 + M0a2 −

2N2
0

M0
b1 − N0b2, g1

qq(0, 0, hH) = 2
(

a1 −
N0

M0
b1

)
.

Thus, we can obtain the sign of the coefficient α(hH) in (19). Note that κ′(hH) < 0; we draw
the following conclusions.

Theorem 2. Suppose that (H1) and (H2) hold. Then, system (5) undergoes a Hopf bifurcation at
E∗

2 when h = hH . Furthermore:
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(i) If α(hH) < 0, the bifurcating periodic solutions are orbitally asymptotically stable, and
periodic solutions occur as h decreases and passes hH .

(ii) If α(hH) > 0, the bifurcating periodic solutions are unstable, and periodic solutions occur as h
decreases and passes hH .

3. Turing Instability Induced by Diffusion and Turing–Hopf Bifurcation

In this section, we discuss the effect of diffusion on the stability of E∗
2 and give the

sufficient conditions for the occurrence of Turing instability induced by diffusion. By
computation, we have that the characteristic equations corresponding to E∗

2 can be given by∣∣∣∣∣∣∣
λ +

n2

l2 D0 − a11 −a12

−a21 λ +
n2

l2 − a22

∣∣∣∣∣∣∣ = 0, n ∈ N0,

which can be equivalent to

∆n(λ) = λ2 − Tnλ + Jn = 0, n ∈ N0 = 0, 1, 2, · · · , (20)

where

Tn =− (D0 + 1)
n2

l2
+ a11 + a22,

Jn =D0
n4

l4 − (a11 + D0a22)
n2

l2 + a11a22 − a12a21,

(21)

with aij (i, j = 1, 2) defined as in (13). In the following analysis, we always assume that
(H1) and (H2) are satisfied.

Theorem 3. Assume that (H1) and (H2) hold. Then, there exists a positive integer k∗, for n ≥ k∗:

(i) System (4) exhibits a Turing bifurcation on D0 = Sn(h) when hH < h < h(n).
(ii) The Turing–Hopf bifurcation occurs at E∗

2 when (h, D0) = (hH , D∗
0(n)), where

k∗ = ⌊
√

l2(c − d − h)(d + h)(1 − c)
c2 ⌋+ 1,

Sn(h) =
[au∗

2(1 + b − 2u∗
2) +

(c − d − h)(d + h)
c2 ]

n2

l2 +
a(c − d − h)(d + h)

c
u∗

2(1 + b − 2u∗
2)

n4

l4 +
(c − d − h)(d + h)

c
n2

l2

,

D∗
0(n) =

(c − d − h)(d + h)
c

[
n2

l2 − (c − d − h)(d + h)(1 − c)
c2

]
n4

l4 +
(c − d − h)(d + h)

c
n2

l2

,

h(n) = {h > 0 : Sn(h) = 0}, k∗0 = {n : D∗
0(n) = max

k∈N
{D∗

0(k)}}.

Proof. From Theorem 1, we know that Turing instability occurs as ∆n(λ) has roots with a
positive real part for some n ∈ N when h > hH . From (20), Tn < 0 can be satisfied provided
h > hH . Thus, we only need to seek the condition for Jn = 0 to ensure the occurrence of
Turing instability. In fact, Jn = 0 is equivalent to

D0 = Sn(h) :≜
[au∗

2(1 + b − 2u∗
2) +

(c − d − h)(d + h)
c2 ]

n2

l2 +
a(c − d − h)(d + h)

c
u∗

2(1 + b − 2u∗
2)

n4

l4 +
(c − d − h)(d + h)

c
n2

l2

.

By calculation, we have
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d
dh

Sn(h) =
[

n6

l6

(
− b + 1

c
√
(b − 1)2 − 4(c−d−h)

ac

− 1
c
− 2(d + h)

c2

)
+ 2

n4

l4
a(c − d − h)(d + h)

c
u∗′

2 (h)(1 + b − 4u∗
2)

+
n2

l2
a(c − d − h)2(d + h)2

c2 u∗′
2 (h)(1 + b − 4u∗

2)

]
1[

n4

l4 +
(c − d − h)(d + h)

c
n2

l2

]2 ,

where u∗
2(h) is a function of h defined as in (7). Since u∗

2 > (1 + b)/2, u∗′
2 (h) > 0, we have

d
dh Sn(h) < 0. Then, D0 = Sn(h) is a monotonically decreasing function with respect to h.
Notice that

lim
h→h+H

Sn(h) =
(d + h)(c − d − h)

c

[
n2

l2 − (1 − c)(c − d − h)(d + h)
c2

]
1

n4

l4 + (c−d−h)(d+h)
c

n2

l2

.

Thus, lim
h→h+H

Sn(h) > 0 if and only if n2

l2 − (1−c)(c−d−h)(d+h)
c2 > 0 holds true. Denote

D∗
0(n) = lim

h→h+H
Sn(h), k∗ = ⌊

√
l2(c − d − h)(d + h)(1 − c)

c2 ⌋+ 1,

we can conclude that D∗
0(n) = lim

h→h+H
Sn(h) > 0 for n ≥ k∗. To guarantee the positiveness of

D0 on the curve D0 = Sn(h), we should ensure that the condition h < h(n) holds. Denote
the Turing bifurcation curve as Ln, that is

Ln : D0 = Sn(h), for hH < h < h(n), n ≥ k∗.

When Ln intersects the critical Hopf bifurcation curve h = hH at (hH , D∗
0(n)), system (3)

undergoes the Turing–Hopf bifurcation at E∗
2 as

(h, D0) = (hH , D∗
0(n)).

For n ≥ k∗, to seek the maximum of D∗
0(n), we take the derivative of D∗

0(n) with respect to

n2. We can have that

dD∗
0(n)

dn2 =
(c − d − h)(d + h)

cl2
[

n4

l4 + (c−d−h)(d+h)
c

n2

l2

]2

[
−n4

l4 +
2n2(1 − c)(c − d − h)(d + h)

c2l2 +
(1 − c)(c − d − h)2(d + h)2

c3

]
.

In fact,
dD∗

0(n)

dn2 has the same sign as

Φ(n2) = −n4

l4 +
2n2(1 − c)(c − d − h)(d + h)

c2l2 +
(1 − c)(c − d − h)2(d + h)2

c3

when (H1) holds. Let Φ(x) = − x2

l4 + 2x(1−c)(c−d−h)(d+h)
c2l2 + (1−c)(c−d−h)2(d+h)2

c3 . We can
see that

lim
x→0+

Φ(x) =
(1 − c)(c − d − h)2(d + h)2

c3 > 0, lim
x→+∞

Φ(x) < 0.

So, there must exist a x∗ > 0 satisfying Φ(x∗) = 0 and Φ(x∗) > 0 as x ∈ [0, x∗), while
Φ(x∗) < 0 as x ∈ (x∗, ∞). Denote km = ⌊√x∗⌋. As km ≤ k∗, D∗

0(n) is a decreasing function
of n. As km > k∗, D∗

0(n) is increasing for n ∈ [k∗, km] and decreasing for n ∈ [km + 1, ∞). So,
D∗

0(n) will reach the maximum value as k = k∗, k = km, or k = km + 1. Let



Entropy 2024, 26, 18 11 of 24

k∗0 =


k∗, if km ≤ k∗,
km, if km > k∗ and D∗

0(km) > D∗
0(km+1)

,

km + 1, if km > k∗ and D∗
0(km) < D∗

0(km+1)
,

we can obtain that D∗
0(k∗0)

= maxn∈N D∗
0(n). Then, we complete the proof.

4. Normal Forms for Turing–Hopf Bifurcation

Denote
ū = u − u∗

2 , v̄ = v − v∗2 ,

and drop the bars. Then, we can rewrite (4) as follows:
∂u
∂t

= D0∆u + a(u + u∗
2)(u + u∗

2 − b)(1 − (u + u∗
2))−

(u + u∗
2)(v + v∗2)

u + u∗
2 + v + v∗2

,

∂v
∂t

= ∆v +
c(u + u∗

2)(v + v∗2)
u + u∗

2 + v + v∗2
− d(v + v∗2)− h(v + v∗2).

(22)

By setting h = hH + µ1 and D0 = D∗
0 + µ2, (µ1, µ2) is the Turning-Hopf singularity in the

µ1 − µ2 plane. Thus, system (4) becomes
∂u
∂t

= (D∗
0 + µ2)∆u + b11u + b12v + b13u2 + b14uv + b15v2 + b16u3 + b17u2v + b18uv2 + b19v3,

∂v
∂t

= ∆v + b21u + b22v + b23u2 + b24uv + b25v2 + b26u3 + b27u2v + b28uv2 + b29v3,
(23)

where

b11 =au∗
2(hH)(1 + b − 2u∗

2(hH)) +
(c − d − hH)(d + hH)

c2

+ µ1

[
a + ab − 4au∗

2(hH)√
a2c2(b − 1)2 − 4ac(c − d − hH)

+
c − 2d − 2hH

c2

]
,

b12 =− (d + hH)
2

c2 + µ1

[
−2(d + hH)

c2

]
,

b13 =− 3au∗
2(hH + µ1) + a + ab +

v∗2
+ (hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))3 ,

b14 =− 2u∗
2(hH + µ1)v∗2(hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))3 ,

b15 =
u∗2

2 (hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))3 ,

b16 =− a − v∗2(hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))4 ,

b17 =
2u∗

2(hH + µ1)v∗2(hH + µ1)− v∗2
2 (hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))4 ,

b18 =
−u∗2

2 (hH + µ1) + 2u∗
2(hH + µ1)v∗2(hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))4 ,

b19 =− u∗2
2 (hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))4 ,

b21 =
(c − d − hH)

2

c
+ µ1

[
−2(c − d − hH)

c

]
,
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b22 =
−(c − d − h)(d + hH)

c
+ µ1

[
−(c − 2d − 2hH)

c

]
,

b23 =− cv∗2
2 (hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))3 ,

b24 =
2cu∗

2(hH + µ1)v∗2(hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))3 ,

b25 =− cu∗2
2 (hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))3 ,

b26 =
cv∗2

2 (hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))4 ,

b27 =
cv∗2

2 (hH + µ1)− 2cu∗
2(hH + µ1)v∗2(hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))4 ,

b28 =
cu∗2

2 (hH + µ1)− 2cu∗
2(hH + µ1)v∗2(hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))4 ,

b29 =c
u∗2

2 (hH + µ1)

(u∗
2(hH + µ1) + v∗2(hH + µ1))4 .

It follows from (20) that for (22), when µ1 = µ2 = 0, ∆0(λ) = 0 has a pair of purely
imaginary roots ±iω0 with ω0 =

√
J0, ∆k∗0 (λ) = 0 has a zero root and a negative real root

λ = −Tk∗0 , and, if k ̸= 0, k∗0, all of the roots of ∆k(λ) = 0 have negative real parts. For (23),
we have

D(µ) =

(
D∗

0 + µ2 0
0 1

)
, L(µ) =

(
b11 b12
b21 b22

)
,

and

F(u, v, µ1, µ2) =

(
b13u2 + b14uv + b15v2 + b16u3 + b17u2v + b18uv2 + b19v3

b23u2 + b24uv + b25v2 + b26u3 + b27u2v + b28uv2 + b29v3

)
.

For convenience, we rewrite D(µ) and L(µ) as

D(µ) = D0 + D(1,0)
1 µ1 + D(0,1)

1 µ2, (24)

L(µ) = L0 + L(1,0)
1 µ1 + L(0,1)

1 µ2. (25)

For L, we have

D0 =

(
D∗

0 0
0 1

)
, D(1,0)

1 =

(
0 0
0 0

)
, D(0,1)

1 =

(
1 0
0 0

)
,

L0 =

(
l0,11 l0,12
l0,21 l0,22

)
, L(1,0)

1 =

(
l1,11 l1,12
l1,21 l1,22

)
, L(0,1)

1 =

(
0 0
0 0

)
,

with

l0,11 = au∗
2(hH)(1 + b − 2u∗

+(hH)) +
(c − d − hH)(d + hH)

c2 , l0,12 = − (d + hH)
2

c2 ,

l0,21 =
(c − d − hH)

2

c
, l0,22 =

−(c − d − h)(d + hH)

c
,

l1,11 =
a + ab − 4au∗

2(hH)√
a2c2(b − 1)2 − 4ac(c − d − hH)

+
c − 2d − 2hH

c2 , l1,12 =
−2(d + hH)

c2 ,

l1,21 =
−2(c − d − hH)

c
, l1,22 =

−(c − 2d − 2hH)

c
.
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Let

Mk(λ) =

(
λ + D∗

0
k2

l2 − l0,11 −l0,12

−l0,21 λ + k2

l2 − l0,22

)
.

By calculation, we obtain that

Φ1 = (ξ0, ξ0), Φ2 = ξn∗ ,

Ψ1 = col(ηT
0 , ηT

0 ), Ψ2 = ηT
n∗ ,

where

ξ0 =

(
ξ01
ξ02

)
=

(
1

iω0−l0,11
l0,12

)
, η0 =

(
η01
η02

)
= D1

(
1

iω0−l0,11
l0,21

)
,

ξ0 =

(
ξ01
ξ02

)
,=

(
1

−iω0−l0,11
l0,12

)
, η0 =

(
η01
η02

)
= D1

(
1

−iω0−l0,11
l0,21

)
,

ξn∗ =

(
ξn∗1
ξn∗2

)
=

 1
D∗

0
n2∗
l2
−l0,11

l0,12

, ηn∗ =

(
ηn∗1
ηn∗2

)
= D2

 1
D∗

0
n2∗
l2
−l0,11

l0,21

,

with

D1 =
l0,21l0,12

l0,21l0,12 + (iω0 − l0,11)2 , D2 =
l0,21l0,12

l0,21l0,12 + (D∗
0

n2∗
l2 − l0,11)2

.

Following the techniques in [35], by a recursive transformation, we can obtain that the
normal form for the Turing–Hopf bifurcation can be given by

ż = Bz +

B11µ1z1 + B21µ2z1
B̄11µ1z1 + B̄21µ2z1
B13µ1z3 + B23µ2z3

+

B210z2
1z2 + B102z1z2

3
B̄210z2

1z2 + B̄102z1z2
3

B111z1z2z3 + B003z3
3

+ O(|z||µ2|), (26)

where

B11 = ηT
0 L(1,0)

1 ξ0, B21 = ηT
0 L(0,1)

1 ξ0,

B13 = ηT
n∗

(
− n2∗

l2 D(1,0)
1 ξn∗ + L(1,0)

1 ξn∗

)
, B23 = ηT

n∗

(
− n2∗

l2 D(0,1)
1 ξn∗ + L(0,1)

1 ξn∗

)
,

and

B210 = C210 +
3
2
(D210 + E210), B102 = C102 +

3
2
(D102 + E102),

B111 = C111 +
3
2
(D111 + E111), B003 = C003 +

3
2
(D003 + E003).

Next, we need to calculate Cijk, Dijk, and Eijk.

Fj1 j2 = (F(1)
j1 j2

, F(2)
j1 j2

)T ,

with

F(k)
j1 j2

=
∂F(k)(0, 0, 0, 0)

∂uj1 ∂vj2
, k = 1, 2, j1 + j2 = 2, 3.

Then, we can figure out by calculation that
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A200 =F20 + 2ξ02F11 + ξ2
02F02 = A020,

A002 =F20 + 2ξn∗2F11 + ξ2
n∗2F02,

A110 =2(F20 + 2Re(ξ02)F11 + |ξ02|2F02),

A101 =2(F20 + (ξ02 + ξn∗2)F11 + ξ02ξn∗2F02) = A011,

A210 =3(F30 + (2ξ02 + ξ02)F21 + (ξ2
02 + 2|ξ02|2)F12 + |ξ02|2ξ02F03),

A102 =3(F30 + (ξ02 + 2ξn∗2)F21 + (ξ2
n∗2 + 2ξ02ξn∗2)F12 + ξ02ξ2

n∗2F03),

A111 =6(F30 + (ξn∗2 + 2Reξ02)F21 + (|ξ02|2 + 2ξn∗2Reξ02)F12 + |ξ02|2ξn∗2F03),

A003 =F30 + 3(ξn∗2F21 + ξ2
n∗2F12) + ξ2

n∗2F03.

Thus, we can obtain

C210 =
1

6lπ
ηT

0 A210, C102 =
1

6lπ
ηT

0 A102,

C111 =
1

6lπ
ηT

n∗ A111, C003 =
1

6lπ
ηT

n∗ A003,

D210 =
1

6lπiω0
[−(ηT

0 A200)(η
T
0 A110) + (ηT

0 A110)(η
T
0 A110) +

2
3
(ηT

0 A020)(η
T
0 A200)],

D102 =
1

6lπiω0
[−2(ηT

0 A200)(η
T
0 A002) + (ηT

0 A110)(η
T
0 A002) + 2(ηT

0 A002)(η
T
k0

∗ A101)],

D111 =
1

6lπiω0
[(ηT

n∗ A011)(η
T
0 A110)− (ηT

n∗ A101)(η
T
0 A110),

D003 =
1

6lπiω0
[(ηT

n∗ A011)(η
T
0 A002)− (ηT

n∗ A101)(η
T
0 A002),

E210 =
1
6

ηT
0 [Syz1⟨h00110⟩+ Syz2⟨h00200⟩],

E102 =
1
6

ηT
0 [Syz1⟨h00002⟩+ Syz3⟨hn∗0101⟩],

E111 =
1
6

ηT
n∗ [Syz1⟨h0n∗011⟩+ Syz2⟨h0n∗10⟩+ Syz3⟨hn∗n∗110⟩],

E003 =
1
6

ηT
n∗ [Syz3⟨hn∗n∗002⟩],

with

Syz1 =

(
2b13 + b14ξ02 b14 + 2b15ξ02
2b23 + b24ξ02 b24 + 2b25ξ02

)
,

Syz2 =

(
2b13 + b14ξ02 b14 + 2b15ξ02
2b23 + b24ξ02 b24 + 2b25ξ02

)
,

Syz3 =

(
2b13 + b14ξ0n∗ b14 + 2b15ξ0n∗
2b23 + b24ξ0n∗ b24 + 2b25ξ0n∗

)
,
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and

h00110 =
1

lπ
{−[L0(Id)]

−1 A110 +
1

iω0
[ηT

0 A110ξ0 +
1
3

ηT
0 A110ξ0]},

h00200 =
1

lπ
{(2iω0 − L0(Id))

−1 A200 −
1

iω0
[ηT

0 A200ξ0 +
1
3

ηT
0 A110ξ0]},

h00002 = − 1
lπ

[L0(Id)]
−1 A002 +

1
lπiω0

[ηT
0 A002ξ0 − ηT

0 A002ξ0],

hn∗0101 =
1

lπ
[iω0 +

n2∗
l2 D0 − L0]

−1 A101 −
1

lπiω0
[ηT

n∗ A101ξn∗ ],

h0n∗011 =
1

lπ
[−iω0 +

n2∗
l2 D0 − L0]

−1 A011 +
1

lπiω0
[ηT

n∗ A101ξn∗ ],

hn∗n∗002 =
1

2lπ

[ (2n∗)2

l2 D0 − L0

]−1
A002 + h00002,

h0n∗101 = hn∗0101, hn∗n∗110 = h00110.

So, the normal form truncated to the third-order terms for the Turing–Hopf bifurcation can
be written as {

ρ̇ = α1(µ)ρ + κ11ρ3 + κ12ρς2,
ς̇ = α2(µ)ς + κ21ρ2ς + κ22ς3,

(27)

where

α1(µ) = Re(B11)µ1 + Re(B21)µ2, α2(µ) = B13µ1 + B23µ2,

κ11 = sign(Re(B210)), κ12 =
Re(B102)

|B003|
, κ21 =

B111

|Re(B210)|
, κ22 = sign(B003).

5. Numerical Simulations

In this section, we provide some numerical simulations to show the previous analysis.
To illustrate Theorem 2, we choose a = 1.82, b = 0.21, c = 0.5, d = 0.3, and h = 0.09

such that (H1) and (H2) hold. By calculation, we have E∗
2 = (0.6439, 0.2561), hH = 0.0591,

and α(hH) = −0.7076 < 0. According to Theorem 2, we know that (5) undergoes a Hopf
bifurcation at E∗

2 when h decreases and passes hH , and the bifurcating periodic solutions
are stable, as shown in Figure 1.

(a) (b)

Figure 1. System (5) has stable periodic solutions. (a) represents the prey u, and (b) represents the
predator v.

Choose a = 1.8, b = 0.2, c = 0.5, d = 0.3, and l = 2, such that (H1) and (H2) hold. We
can obtain, from Theorem 3, that the Turing–Hopf bifurcation occurs at (hH , D∗

2(k∗0)
) =

(0.05774, 0.17154) and the wave number is k∗ = 1 (see Figure 2). When (h, D0) =
(0.05774, 0.17154), (u∗

2 , v∗2) = (0.6439, 0.2561). By calculation, the normal form truncated to
the third-order term is
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{
ρ̇ = ρ(−15.8798µ1 − ρ2 − 0.2403ς2),
ς̇ = r(−38.1544µ1 − 0.3003µ2 + 11.3740ρ2 + ς2).

(28)

Recalling that ρ > 0, system (28) has the equilibria
Ã0 = (0, 0),
Ã1 = (

√
−15.8798µ1, 0), for µ1 < 0,

Ã±
2 = (0, ±

√
−38.1521µ1 − 0.3002µ2), for 38.1521µ1 + 0.3002µ2 < 0,

Ã±
3 = (

√
−1.7973µ1 + 0.0193µ2, ±

√
−58.5938µ1 − 0.0804µ2),

for −1.7973µ1 + 0.0193µ2 > 0, 58.5938µ1 + 0.0804µ2 < 0.

Figure 2. Stable region for E∗ in h − D0 plane on region [0.056, 0.07] × [−0.2, 0.8] as (h, D0) =

(0.05774, 0.17154), k∗ = 1.

Denote the bifurcation curves as

H0 : µ1 = 0; T : µ2 = −127.057µ1;

T1 : µ2 = −728.5753µ1, µ1 < 0; T2 : µ2 = 92.9795µ1, µ1 < 0.

Then, we obtain the bifurcation diagram in the µ1 − µ2 plane and the corresponding phase
portraits of system (28) in the ρ − ς plane, as shown in Figure 3. Clearly, the above curves
divide the µ1 − µ2 plane into six regions, denoted as Ri, i = 1, 2 · · · , 6 (see Figure 3). The
existence and stability properties of the steady states in the six regions are listed in Table 1.

Table 1. Stability of the steady states in different regions of system (28).

Region Steady States Stability of the Steady States

R1 Ã0, Ã0 is locally asymptotically stable.

R2 Ã0, Ã1, Ã1 is locally asymptotically stable; Ã0 is unstable.

R3 Ã0, Ã1, Ã±
3 Ã±

3 are locally asymptotically stable; Ã0, Ã1 are unstable.

R4 Ã0, Ã1, Ã±
2 , Ã±

3 Ã±
3 are locally asymptotically stable; Ã0 Ã1 and Ã±

2 are unstable.

R5 Ã0, Ã1, Ã±
2 Ã±

2 are locally asymptotically stable; Ã0 Ã1 are unstable.

R6 Ã0, Ã±
2 Ã±

2 are locally asymptotically stable; Ã0 is unstable.
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(a)

(b)

Figure 3. (a) Detailed parameter regions near the Turing–Hopf bifurcation point (0.05774, 0.17154);
(b) phase portraits in region R1 − R6.

Obviously, the equilibria Ã0, Ã1, Ã±
2 , and Ã±

3 of system (28) correspond to the constant
equilibrium, the spatially homogeneous periodic solution, the nonconstant steady state,
and the spatially inhomogeneous periodic solution of system (4). Thus, the dynamical
behaviors of system (4) nearby the Turing–Hopf singularity in the h − D0 plane can be
determined by the dynamical behaviors of system (28).

In R1, there is a stable equilibrium, Ã0, in (28), which means E∗
2 is asymptotically

stable; see Figure 4.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. When (µ1, µ2) = (0.0005, 0.001) lies in R1, E∗
2 = (0.6498, 0.2572) is locally asymptotically

stable. (a,b) represent the prey u, and (c,d) represent the predator v. The initial values are chosen as
u0(x, t) = 0.6498 − 0.000001 sin x, v0(x, t) = 0.2572 + 0.000001 cos x. (b,d) are middle-term behaviors
for u and v, respectively.

In R2, there are two equilibria, Ã0 and Ã1 in (28). Since Ã1 is stable, system (4) has a
stable, spatially homogeneous periodic solution; see Figure 5.

(a) (b)

(c) (d)

Figure 5. When (µ1, µ2) = (−0.00001, 0.1) lies in R2, system (4) has stable, spatially homogeneous
period solutions. (a,b) represent the prey u, and (c,d) represent the predator v. The initial values
are chosen as u0(x, t) = 0.6437 − 0.0002 sin x, v0(x, t) = 0.256 − 0.00025 cos x. (b,d) are long-term
behaviors for u and v, respectively.

In R3, there are four equilibria, Ã0, Ã1, and Ã±
3 in (28). Since Ã+

3 and Ã−
3 are stable,

there exist spatially inhomogeneous periodic solutions; see Figure 6.
In R4, there are six equilibria, Ã0, Ã1, Ã±

2 , and Ã±
3 , in (28). Since Ã+

3 and Ã−
3 are stable,

there exist spatially inhomogeneous periodic solutions; see Figure 7.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. When (µ1, µ2) = (−0.000003, 0.0004) lies in R3, system (4) has two spatially inhomoge-
neous periodic solutions. (a,b,e,f) represent the prey u, and (c,d,g,h) represent the predator v. The
initial values are u0(x, t) = 0.6439 + 0.00008 cos x and v0(x, t) = 0.2561 + 0.000006 sin x in (a,d) and
u0(x, t) = 0.6439 − 0.00008 cos x and v0(x, t) = 0.2561 − 0.000006 sin x in (e,f). (b,d,f,h) are long-term
behaviors for u and v, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. When (µ1, µ2) = (−0.000003, 0) lies in R4, system (4) has two spatially inhomogeneous
periodic solutions. (a,b,e,f) represent the prey u, and (c,d,g,h) represent the predator v. The ini-
tial values are u0(x, t) = 0.6439 + 0.00008 cos x and v0(x, t) = 0.2561 + 0.000006 sin x in (a,d) and
u0(x, t) = 0.6439 − 0.00008 cos x and v0(x, t) = 0.2561 − 0.000006 sin x in (e,f). (b,d,f,h) are long-term
behaviors for u and v, respectively.

In R5, there are four equilibria, Ã0, Ã1, and Ã±
2 , in (28). Since Ã+

2 and Ã−
2 are stable,

there exist spatially inhomogeneous steady states; see Figure 8.
In R6, there are three equilibria, Ã0 and Ã±

2 , in (28). Since Ã+
2 and Ã−

2 are stable, there
exist spatially inhomogeneous steady states; see Figure 9.
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(a) (b)

(c) (d)

Figure 8. When (µ1, µ2) = (−0.000003, −0.1) lies in R5, system (4) has spatially inhomogeneous
steady states. (a,b) represent the prey u, and (c,d) represent the predator v. The initial values are
chosen as u0(x, t) = 0.6439 − 0.00008 cos x and v0(x, t) = 0.2561 − 0.000006 sin x in (a–d). (b,d) are
long-term behaviors for u and v, respectively.

Figure 8. When (µ1, µ2) = (−0.000003, −0.1) lies in R5, system (4) has spatially inhomogeneous
steady states. (a,b) represent the prey u, and (c,d) represent the predator v. The initial values are
chosen as u0(x, t) = 0.6439 − 0.00008 cos x and v0(x, t) = 0.2561 − 0.000006 sin x in (a–d). (b,d) are
long-term behaviors for u and v, respectively.
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(a) (b)

(c) (d)

Figure 9. When (µ1, µ2) = (−0.0001, 0.04) lies in R6, system (4) has spatially inhomogeneous steady
states. (a,b) represent the prey u, and (c,d) represent the predator v. The initial values are chosen as

u0(x, t) = 0.6452 − 0.0002 sin x and v0(x, t) = 0.2563 − 0.00025 cos x. (b,d) are long-term behaviors
for u and v, respectively.

6. Conclusions and Discussion

In this paper, we investigate the ratio-dependent predator–prey system with the Allee
effect in prey and predator harvesting. We give a detailed analysis of the joint effect
of harvesting effort and diffusion on the spatiotemporal behaviors of system (4), and
our results reveal that the presence of a harvesting term makes the system exhibit more
interesting dynamical behaviors.

A ratio-dependent predator–prey system with a harvesting term is a relatively new
issue that has been investigated by several researchers and has yielded many interesting
results. Recently, Gao et al. [34] analyzed the existence of a Hopf bifurcation induced by
harvesting rate and a Turing bifurcation induced by diffusion, respectively, for systems (4)
without the Allee effect. However, they did not consider the dynamics of multi-parameter
synergism, which is also a major difficulty in our research.

The main contribution of our paper is a detailed analysis of bifurcation near the posi-
tive constant steady state of system (4) in the one-dimensional spatial domain (0, lπ). For
the spatially homogeneous model, using the harvesting rate h as the bifurcation parameter,
we analyze the stability of interior equilibria. By applying the center manifold theory and
normal form method, we derive the formula determining the direction of the Hopf bifurca-
tion and the stability of the bifurcating periodic solutions. For the reaction–diffusion model,
we firstly verify the existence of Turing instability induced by diffusion, which reveals
the existence of spatially inhomogeneous patterns, including the spatially inhomogeneous
periodic solutions and non-constant steady-state solutions. Then, the normal form near the
Turing–Hopf bifurcation point is derived. Our study demonstrates that as the harvesting
rate h decreases and passes the critical value hH , the coexistence equilibrium E∗

2 will lose

Figure 9. When (µ1, µ2) = (−0.0001, 0.04) lies in R6, system (4) has spatially inhomogeneous steady
states. (a,b) represent the prey u, and (c,d) represent the predator v. The initial values are chosen as
u0(x, t) = 0.6452 − 0.0002 sin x and v0(x, t) = 0.2563 − 0.00025 cos x. (b,d) are long-term behaviors
for u and v, respectively.

6. Conclusions and Discussion

In this paper, we investigate the ratio-dependent predator–prey system with the Allee
effect in prey and predator harvesting. We give a detailed analysis of the joint effect
of harvesting effort and diffusion on the spatiotemporal behaviors of system (4), and
our results reveal that the presence of a harvesting term makes the system exhibit more
interesting dynamical behaviors.
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A ratio-dependent predator–prey system with a harvesting term is a relatively new
issue that has been investigated by several researchers and has yielded many interesting
results. Recently, Gao et al. [34] analyzed the existence of a Hopf bifurcation induced by
harvesting rate and a Turing bifurcation induced by diffusion, respectively, for systems (4)
without the Allee effect. However, they did not consider the dynamics of multi-parameter
synergism, which is also a major difficulty in our research.

The main contribution of our paper is a detailed analysis of bifurcation near the posi-
tive constant steady state of system (4) in the one-dimensional spatial domain (0, lπ). For
the spatially homogeneous model, using the harvesting rate h as the bifurcation parameter,
we analyze the stability of interior equilibria. By applying the center manifold theory and
normal form method, we derive the formula determining the direction of the Hopf bifurca-
tion and the stability of the bifurcating periodic solutions. For the reaction–diffusion model,
we firstly verify the existence of Turing instability induced by diffusion, which reveals
the existence of spatially inhomogeneous patterns, including the spatially inhomogeneous
periodic solutions and non-constant steady-state solutions. Then, the normal form near the
Turing–Hopf bifurcation point is derived. Our study demonstrates that as the harvesting
rate h decreases and passes the critical value hH , the coexistence equilibrium E∗

2 will lose
its stability, and the Hopf bifurcation occurs. Finally, numerical simulations, which are
consistent with the theoretical results, are performed to illustrate the theoretical analysis.

In ecosystems, humans, as higher animals, have the ability to harvest biological
resources. Our research shows that if humans overharvest biological resources, it will
lead to the unbalance of the ecosystem. Our study provides the critical harvesting rate hH
without destroying the ecosystem, which not only ensures the health of the ecosystem but
also maximizes the biological resources available to humans. At the same time, our results
also show that humans can obtain better harvest times and easier harvest locations by
controlling the ratio of the diffusion coefficients of prey and predators and the harvesting
rate near the Turing–Hopf singularity (hH , D∗

0(n)). This can greatly reduce the difficulty for
humans in obtaining biological resources.

In [36], the authors proposed the non-continuous harvesting function as follows

H(x) =

{
0, x < T,
qx, x > T.

They assumed that the harvesting may start as the population reaches some critical value
T. To further the study, we will consider a non-continuous harvesting function in our
system, compare the theoretical results to the results in the paper, and reveal the effect of
the harvesting rate on the predator population. Moreover, we may consider the effect of
spatial heterogeneity on the dynamics of (4).
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