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Abstract: We investigate the dynamics of a system composed of two different subsystems when
subjected to different nonlinear Fokker–Planck equations by considering the H–theorem. We use
the H–theorem to obtain the conditions required to establish a suitable dependence for the system’s
interaction that agrees with the thermodynamics law when the nonlinearity in these equations is
the same. In this framework, we also consider different dynamical aspects of each subsystem and
investigate a possible expression for the entropy of the composite system.

Keywords: generalized entropy; H–theorem; entropy production; nonlinear Fokker–Planck equation

1. Introduction

Thermodynamics and statistical mechanics have entropy as a fundamental tool con-
necting the properties of a system from the particles’ microscopic dynamics with macro-
scopic quantities and, consequently, with thermodynamic quantities. The concept of en-
tropy started with Clausius’s studies of thermal machines [1]. Subsequently, the Boltzmann
and Gibbs works incorporated the concept of probability, building up the fundamentals
of statistical mechanics [2–4]. It has been successfully applied in many contexts, where
the fundamental basis is the molecular chaos hypothesis, which assumes the close-range
interaction of molecules and the absence of memory in the collision of particles [5,6]. How-
ever, for many physical systems (e.g., fractal and self-organizing structures), conditions for
the fulfillment of the molecular chaos hypothesis are not observed as well as the range of
the interactions, which are long-ranged [7–9]. These points have motivated the analysis
of extensions for thermodynamics and statistical physics to cover these scenarios. As an
example, Tsallis has proposed an extension of the entropy [10], which has been systemati-
cally applied in many contexts such as black holes [11], the electrocaloric effect in quantum
dots [12], chemotaxis of biological populations [13], Bose–Einstein condensation [14,15],
and stimulated the analysis of other entropies [16–20]. More applications can be found in
Refs. [21–26]. These entropies verify the H–theorem [27–31], which represents an important
result of nonequilibrium statistical mechanics by ensuring that a system will reach an
equilibrium after a long time evolution. The H–theorem establishes a connection between
the dynamics and entropy, which may be used to investigate the dynamics behind the law
of additivity for the different entropies. In this framework, by considering a nonlinear
Fokker–Planck equation, the H–theorem can show how the entropy additivity laws can be
obtained when a system composed of many subsystems is taken into account. In addition,
it can also allow us to obtain the equilibrium distributions.
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Here, we investigate through the H–theorem the conditions on the dynamics equations,
i.e., nonlinear Fokker–Planck equations [32–35], for each subsystem of a composed system
to reach the equilibrium condition. The results show that generalized entropies imply
a coupling between the nonlinear equations. The distributions that emerge from these
dynamics equations have a power-law behavior, where each subsystem modifies the other.
We also investigate the entropy production for this system. These developments are
presented in Section 2. In Section 3, we present our discussions and conclusions.

2. The Problem

Let us start our analysis by establishing the nonlinear Fokker–Planck equations con-
nected to the dynamics of each subsystem of a composed system. They are

∂

∂t
ρ1(x1, t) = Γ

∂2

∂x2
1

P1(ρ1, t)− ∂

∂x1

[
F1(x1)ρ1(x1, t)

]
(1)

and

∂

∂t
ρ2(x2, t) = Γ

∂2

∂x2
2

P2(ρ2, t)− ∂

∂x2

[
F2(x2)ρ2(x2, t)

]
, (2)

where Fi(xi), with i = 1 or 2, represents the external force, i.e., Fi = −∂xi φi(xi) and φi(xi) is
a potential energy, while Γ stands for a generic diffusion coefficient. Notice that P1(ρ1, t)
and P2(ρ2, t) present in the diffusive term may have the same form or a different form.
Particular choices of Pi(ρi, t) have been successfully analyzed in several problems such as in
porous media [36], anomalous diffusion [37], overdamped systems [38], and the Boltzmann
equation endowed with a correlation term [39]. In Equations (1) and (2), Pi(ρi, t) will be
determined by the H–theorem in connection with the entropic form used to describe the
combination of subsystems 1 and 2. It is worth pointing out that the different possibilities
may be considered by allowing us to obtain different results for the composite system
of 1 and 2 subsystems, as discussed in Refs. [28,29]. However, the combination of these
equations, which represent the subsystem 1 and 2, in connection with thermostatistics (e.g.,
the nonextensive statistics [40]) requires careful analysis with direct consequences on the
entropic additivity and zeroth law [41–43]. To accomplish this task, we consider general
scenarios with different dynamics to investigate possible conditions to Equations (1) and (2)
to allow a thermostatistics context.

2.1. H-Theorem

We start our analysis in terms of the H–theorem first by considering P1(ρ1) and P2(ρ2)
with the same functional form. Afterwards, we consider P1(ρ1) and P2(ρ2) with a different
functional form. Each one of these cases has different implications for the entropy related
to the composed system formed by the systems 1 and 2, with the dynamics given in terms
of Equations (1) and (2). Following Ref. [28,29,31], we analyze the behavior of the time
derivative of the Helmholtz free energy. This free energy is defined by F = U − TS, with
the internal energy, U, given by

U =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2[φ1(x1) + φ2(x2)]ρ1(x1, t)ρ2(x2, t) (3)

and the entropy, S, expressed in terms of an arbitrary function

S = k
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2s(ρ1, ρ2). (4)

Note that Equations (3) and (4) represent the total internal energy and the entropy of the
system composed of two subsystems governed by Equations (1) and (2), respectively.
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By using the previous equations, the total free energy of the system is given by

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2[Ψ(x1, x2)ρ1(x1, t)ρ2(x2, t)− kTs(ρ1, ρ2)], (5)

with Ψ(x1, x2) = φ1(x1) + φ2(x2). Before determining the time derivative of Equation (5),
we assume that P1(ρ1, t) and P2(ρ2, t) have essentially the same functional forms and the
entropy is a function of the product of the probability densities related to each subsystem,
i.e., s(ρ1, ρ2) = s(ρ1ρ2). It is then possible to show that

d
dt

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
Ψ(x1, x2)− kT

∂

∂ρ12
s(ρ12)

]
∂

∂t
[ρ1(x1, t)ρ2(x2, t)], (6)

where ρ12 = ρ1ρ2, and

d
dt

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)ρ2 − kTρ2

∂

∂ρ12
s(ρ12)

}
× ∂

∂x1

{
Γ

∂

∂x1
P1(ρ1, t)− F1(x1)ρ1(x1, t)

}
+

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)ρ1 − kTρ1

∂

∂ρ12
s(ρ12)

}
× ∂

∂x2

{
Γ

∂

∂x2
P2(ρ2, t)− F2(x2)ρ2(x2, t)

}
. (7)

After integration by parts and applying the conditions ρi(x → ±∞, t)→ 0 and ∂xρi(x →
±∞, t)→ 0, we obtain

d
dt

F = −
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
∂

∂x1
φ1(x1)ρ2 − kTρ2

2
∂ρ1

∂x1

∂2

∂ρ2
12

s(ρ12)

}

×
{

Γ
∂

∂x1
P1(ρ1, t)− F1(x1)ρ1(x1, t)

}
−

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
∂

∂x2
φ2(x2)ρ1 − kTρ2

1
∂ρ2

∂x2

∂2

∂ρ2
12

s(ρ12)

}

×
{

Γ
∂

∂x2
P2(ρ2, t)− F2(x2)ρ2(x2, t)

}
. (8)

Now, let us focus on the term

Γ
∂

∂xi
Pi(ρi, t)− Fi(xi)ρi(xi, t), (9)

where i = 1, 2, which will be directly connected with the properties of the entropy of the
composite system. To proceed, we consider that

Pi(ρi, t) = Dj,γ(t)ρ
γ
i (xi, t) +Dj,ν(t)ρν

i (xi, t), (10)

with j 6= i, j = 1, 2, and

Dj,γ(t) = αγ

∫ ∞

−∞
dxjρ

γ
j (xj, t) and Dj,ν(t) = αν

∫ ∞

−∞
dxjρ

ν
j (xj, t), (11)

to be able to cover different scenarios, where αγ and αν are constants. Note that the
choice of the Dj,γ(t) and Dj,ν(t) implies that each subsystem influences the other. This
aspect of the problem can be associated to the feature that the nonlinearity present in
Equations (1) and (2) introduces additional interactions between the subsystems during the
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thermalization process, where each subsystem works as an additional thermal bath to the
other. By using the previous equations, we have

d
dt

F = −
∫ ∞

−∞
dx1

1
ρ1

{∫ ∞

−∞
dx2

[
∂

∂x1
φ1(x1)ρ2ρ1 − kTρ2

2ρ1
∂ρ1

∂x1

∂2

∂ρ2
12

s(ρ12)

]

×
∫ ∞

−∞
dx2

[
∂

∂x1
φ1(x1)ρ1ρ2 + Γ

∂ρ1

∂x1
ρ2

∂

∂ρ12

(
αγρ

γ
2 ρ

γ
1 + ανρν

2ρν
1
)]}

−
∫ ∞

−∞
dx2

1
ρ2

{∫ ∞

−∞
dx1

[
∂

∂x2
φ2(x2)ρ1ρ2 − kTρ2

1ρ2
∂ρ2

∂x2

∂2

∂ρ2
12

s(ρ12)

]

×
∫ ∞

−∞
dx1

[
∂

∂x2
φ2(x2)ρ1ρ2 + Γ

∂ρ2

∂x2
ρ1

∂

∂ρ12

(
αγρ

γ
2 ρ

γ
1 + ανρν

2ρν
1
)]}

. (12)

We verify that

d
dt

F ≤ 0 for − kTρ12
∂2

∂ρ2
12

s(ρ12) = Γ
∂

∂ρ12

(
αγρ

γ
2 ρ

γ
1 + ανρν

2ρν
1
)

(13)

= Γ
∂

∂ρ12

(
αγρ

γ
12 + ανρν

12
)
,

which implies

d
dt

F = −
∫ ∞

−∞
dx1

1
ρ1

{∫ ∞

−∞
dx2

[
∂

∂x1
φ1(x1)ρ2ρ1 − kTρ2

2ρ1
∂ρ1

∂x1

∂2

∂ρ2
12

s(ρ12)

]}2

−
∫ ∞

−∞
dx2

1
ρ2

{∫ ∞

−∞
dx1

[
∂

∂x2
φ2(x2)ρ1ρ2 − kTρ2

1ρ2
∂ρ2

∂x2

∂2

∂ρ2
12

s(ρ12)

]}2

. (14)

Consequently, by solving Equation (13) with Γ = kT under the conditions defined in
Refs. [28–31], we obtain

s(ρ12) =
αγ

γ− 1
(
ρ12 − ρ

γ
12
)
+

αν

ν− 1
(ρ12 − ρν

12). (15)

The entropy for the composite system is given by

S =
αγk

γ− 1

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2
(
ρ12 − ρ

γ
12
)

+
ανk

ν− 1

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2(ρ12 − ρν

12), (16)

which can also be rewritten as

S =
αγk

γ− 1

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2
[
ρ1ρ2 − (ρ1ρ2)

γ]
+

ανk
ν− 1

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2
[
ρ1ρ2 − (ρ1ρ2)

ν] (17)

and, consequently, as

S =
αγk

γ− 1

[
1−

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2(ρ1ρ2)

γ
]

+
ανk

ν− 1

[
1−

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2(ρ1ρ2)

ν
]

. (18)
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Equation (18) has several particular cases, such as the Tsallis and Kaniadakis entropies,
depending on the values of the parameters αγ, αν, γ, and ν. It is noteworthy that this
result preserves the additivity in the Penrose sense [3], i.e., S(ρ12) = S(ρ1ρ2) required for a
system composed of independent subsystems when the standard entropy is employed.

In the previous context, Equations (1) and (2) can be written as follows:

∂

∂t
ρ1(x1, t) = D2,γ(t)

∂2

∂x2
1

ρ
γ
1 (x1, t) +D2,ν(t)

∂

∂x2
1

ρν
1(x1, t)− ∂

∂x1

[
F1(x1)ρ1(x1, t)

]
(19)

and

∂

∂t
ρ2(x2, t) = D1,γ(t)

∂2

∂x2
2

ρ
γ
2 (x2, t) +D1,ν(t)

∂2

∂x2
2

ρν
2(x2, t)− ∂

∂x2

[
F2(x2)ρ2(x2, t)

]
, (20)

with Di,γ(t) = Di,γ(t)Γ and Di,ν(t) = Di,ν(t)Γ, by evidencing the influence of one of them
on the other. In particular, the terms forming the diffusive part can also be connected with
anomalous diffusion processes with different diffusion regimes. The stationary solutions
obtained from Equations (19) and (20) are given by

γ

γ− 1
D2,γρ

γ−1
1,st (x1) +

ν

ν− 1
D2,νρν−1

1,st (x1) = C1 − φ1(x1) (21)

and

γ

γ− 1
D1,γρ

γ−1
2,st (x2) +

ν

ν− 1
D1,νρν−1

2,st (x2) = C2 − φ2(x2), (22)

where limt→∞Di,γ(t) = Di,γ = constant, φi(x) are potentials with a minimum, and Ci are
constants. For the Tsallis entropy, by taking, for simplicity, Di,ν = 0, we have

ρ1,st(x1) =
1
Z1

[
1− (γ− 1)

Zγ−1
1

γD2,γ
φ1(x1)

] 1
γ−1

=
1
Z1

expγ

[
−
Zγ−1

1

γD2,γ
φ1(x1)

]
(23)

and

ρ2,st(x2) =
1
Z2

[
1− (γ− 1)

Zγ−1
2

γD2,γ
φ1(x2)

] 1
γ−1

=
1
Z2

expγ

[
−
Zγ−1

2

γD1,γ
φ2(x2)

]
, (24)

where Zi = 1/{[(γ− 1)/(γDi,γ)]Ci}
1

γ−1 is defined by the normalization condition and
Di,γ = kT

∫ ∞
−∞ dxiρ

γ
i,st(xi). In the preceding equations, expq[x] is the q−exponential func-

tion, defined as follows [40]:

expq[x] ≡
{

(1 + (q− 1)x)1/(q−1) , x > 1/(1− q),
0 , x < 1/(1− q).

(25)

The presence of this function in the previous equations enables the identification of either a
short- or a long-tailed behavior of the solution, depending on the value of the parameters γ
and ν. Indeed, they may have a compact behavior for γ > 1 (or ν > 1) due to the cut-off re-
quired by the q-exponential to retain the probabilistic interpretation of the distribution. On
the other hand, for γ < 1 (or ν > 1), the solutions may have the asymptotic limit governed
by a power-law behavior, which may also be related to a Lévy distribution [44] and, conse-
quently, asymptotically with the solutions of the fractional Fokker–Planck equations [45],
which are asymptotically governed by power-laws.
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From the stochastic point of view, Equations (19) and (20) are connected with the
following Langevin equations:

ẋ1 = F1(x1) +
√

2ΓΛ1,2(t)ξ1(t) (26)

and

ẋ2 = F2(x2) +
√

2ΓΛ2,1(t)ξ2(t), (27)

where ξ1(t) and ξ2(t) are connected to the stochastic forces and Λi,j(t) = Dj(i),γ(ν)(t)

ρ
γ(ν)
i(j) (x, t) + Dj(i),ν(γ)(t) ρ

ν(γ)
i(j) (x, t). In particular, we have

〈ξ1〉 = 〈ξ2〉 = 0 , 〈ξ1ξ2〉 = 〈ξ2ξ1〉 = 0 (28)

and

〈ξ1(t)ξ1(t′)〉 ∝ δ(t− t′) , 〈ξ2(t)ξ2(t′)〉 ∝ δ(t− t′). (29)

The walkers related to this problem can be described, for simplicity, in the absence of
external forces, in terms of the following equations [46,47]:

ρ1(x1, t + τ) =
∫ ∞

−∞
Θ1,2[x1 − x′1, t; ρ(x1 − x′1, t)]ρ1(x1 − x′1, t)Φ(x′1)dx′1 (30)

and

ρ2(x2, t + τ) =
∫ ∞

−∞
Θ2,1[x2 − x′2, t; ρ(x2 − x′2, t)]ρ2(x2 − x′2, t)Φ(x′2)dx′2, (31)

where

Θi,j[xi, t; ρ(xi, t)] = αγ

∫ ∞

−∞
dxjρ

γ
j (xj, t)ργ−1

i (xi, t) + αν

∫ ∞

−∞
dxjρ

ν
j (xj, t)ρν−1

i (xi, t). (32)

These equations, in the limit τ → 0 and x′i → 0, yield Equations (1) and (2) in the absence
of external forces, respectively.

Let us now consider a general case, i.e., the one in which the diffusion terms have a
different nonlinear dependence on the distributions. This means that the systems have
different dynamical aspects governed by the nonlinear dependence on the distribution
present in the diffusive term. By using the preceding equations and having in mind
Equation (5), we may write

d
dt

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)

∂

∂t
[ρ1(x1, t)ρ2(x2, t)] (33)

− kT
[

∂

∂ρ1
s(ρ1, ρ2)

∂

∂t
ρ1(x1, t) +

∂

∂ρ2
s(ρ1, ρ2)

∂

∂t
ρ2(x2, t)

]}
,

which implies

d
dt

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)ρ2 − kT

∂

∂ρ1
s(ρ1, ρ2)

}
× ∂

∂x1

{
Γ

∂

∂x1
P1(ρ1, t)− F1(x1)ρ1(x1, t)

}
+

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)ρ1 − kT

∂

∂ρ2
s(ρ1, ρ2)

}
× ∂

∂x2

{
Γ

∂

∂x2
P2(ρ2, t)− F2(x2)ρ2(x2, t)

}
. (34)
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After some calculations, it is possible to show that

d
dt

F = −
∫ ∞

−∞
dx1

1
ρ1

∫ ∞

−∞
dx2

{
∂

∂x1
φ(x1)ρ2ρ1 − kT

[
ρ1

∂2

∂ρ2
1

s(ρ1, ρ2)

]
∂

∂x1
ρ1

}

×
{[

Γ
∂

∂ρ1
P1(ρ1, t)

]
∂

∂x1
ρ1 − F1(x1)ρ1

}
−

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

1
ρ2

{
∂

∂x2
φ(x2)ρ1ρ2 − kT

[
ρ2

∂2

∂ρ2
2

s(ρ1, ρ2)

]
∂

∂x2
ρ2

}

× ∂

∂x2

{[
Γ

∂

∂ρ2
P2(ρ2, t)

]
∂

∂x2
ρ2 − F2(x2)ρ2

}
. (35)

Let us analyze in particular the previous equation, for example, for the case

P1(ρ1, t) = D2,ν(t)ρ
γ
1 (x1, t) and P2(ρ2, t) = D1,γ(t)ρν

2(x2, t), (36)

with

D2,ν(t) =
1

ν− 1

∫ ∞

−∞
dx2ρν

2(x2, t) and D1,γ(t) =
1

γ− 1

∫ ∞

−∞
dx1ρ

γ
1 (x1, t), (37)

which implies different dynamics for each subsystem. We notice that it is possible to take
into account different aspects of the dynamics of each subsystem, and every choice has
different implications for the total entropy of the composite system. Similar nonlinear
Fokker–Planck equations were considered in Ref. [48] from the point of view of analyzing
the interaction between the two subsystems. From Equation (37), we deduce that the
entropy needs to satisfy the following equations:

−ρ1
∂2

∂ρ2
1

s(ρ1, ρ2) =
γ

ν− 1
ρν

2ρ
γ−1
1 and − ρ2

∂2

∂ρ2
2

s(ρ1, ρ2) =
ν

γ− 1
ρν−1

2 ρ
γ
1 (38)

in order to verify

d
dt

F ≤ 0, (39)

and, consequently, to satisfy the H–theorem. A solution for the previous system of equa-
tions is

s(ρ1, ρ2) =
1

(ν− 1)(γ− 1)
(
ρ1ρ2 − ρν

2ρ
γ
1
)
. (40)

This result allows us to write the total entropy of this system as follows:

S =
k

(ν− 1)(γ− 1)

[
1−

∫ ∞

−∞
dx2ρν

2(x2, t)
∫ ∞

−∞
dx1ρ

γ
1 (x1, t)

]
. (41)

It is remarkable that this result for the entropy differs from the preceding one given by
Equation (18), obtained from a different choice of nonlinear Fokker–Planck equations.
Equation (41) results from a combination of different subsystems with different dynamics,
which individually have different entropies associated with them. One of the consequences
is that the entropy of the composite system, for this specific case, can not be written as
S(ρ1ρ2), only when γ = ν. Another remarkable point is the connection of Equation (41)
with the composition of Tsallis entropies of different q-indices [49,50]. The solution can
be found in this framework using the q-exponential functions. In particular, it is possible
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to show that the solution for each nonlinear Fokker–Planck equation, in the absence of
external force, is

ρ1(x1, t) = expγ

[
−β1(t)x2

1

]
/Z1(t) (42)

and

ρ2(x1, t) = expν

[
−β2(t)x2

2

]
/Z2(t), (43)

with β1(t), β2(t), Z1(t), and Z2(t) obtained from the following set of equations:

1
2β1

d
dt

β1 = − 2γ

ν− 1
Iν

Zν
2
√

β2
β1Z1−γ

1 , − 1
Z1

d
dt
Z1 = − 2γ

ν− 1
Iν

Zν
2
√

β2
β1Z1−γ

1 , (44)

1
2β2

d
dt

β2 = − 2ν

γ− 1
Iγ

Zγ
1

√
β1

β2Z1−ν
2 , − 1

Z2

d
dt
Z2 = − 2ν

γ− 1
Iγ

Zγ
1

√
β1

β2Z1−ν
2 , (45)

with

Iκ =


Γ( 1

2 )Γ(1+ κ
κ−1 )√

κ−1Γ( 3
2+

κ
κ−1 )

1 ≤ κ < 2

Γ( 1
2 )Γ( κ

1−κ−
1
2 )√

1−κΓ( κ
1−κ )

0 ≤ κ ≤ 1
, (46)

where κ = γ or ν.
Figure 1 shows the behavior of the mean square displacement for two different sets

of γ and ν in the absence of external forces. The values chosen for the parameters γ and ν
are responsible for different behaviors of the mean square displacement for each case, as
pointed out in the inset of Figure 1. In particular, the diffusion present in this scenario is
anomalous [51,52]. Figure 2 shows the behavior of Equation (41) for two different sets of
γ and ν. Note that different values of β1(0) and β2(0) used to obtain Figures 1 and 2 are
connected to different initial conditions for each subsystem. This is the reason why we
initially verified different behaviors for each set of the parameters γ and ν, and, after some
time, the mean square displacement has the same time dependence for both subsystems.
The entropy production is shown in the inset in Figure 2, which corresponds to the behavior
of Equation (61) for the entropy given by Equation (41). We underline that the system
composed of these two systems reaches equilibrium in the limit of t → ∞, since in this
limit Ṡ(t) → 0. For general nonlinear Fokker–Planck equations, the entropy should
simultaneously satisfy the following equations,

−ρ1
∂2

∂ρ2
1

s(ρ1, ρ2) =
∂

∂ρ1
P1(ρ1, t) and − ρ2

∂2

∂ρ2
2

s(ρ1, ρ2) =
∂

∂ρ2
P2(ρ2, t), (47)

to verify d
dt F ≤ 0 and, consequently, satisfy the H–theorem. It is also significant to mention

that, depending on the form of the nonlinear dependence in the Equations (1) and (2),
which may not recover the standard form of the Fokker–Planck equation, the entropy
associated with these equations will not recover the usual form.
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Figure 1. Behavior of σ2
x /σ0,γ(ν) versus t for two different sets of γ and ν, where σ0,γ(ν) =

σγ(ν)

∫ ∞
−∞ dξξ2 expγ(ν)

(
−ξ2)/ ∫ ∞

−∞ dξ expγ(ν)

(
−ξ2), where σγ(ν) is chosen in order to collapse the

curves for each set of values. We consider, for simplicity, β1(0) = 2 and β2(0) = 1. The red dashed-
dotted and black dashed lines represent the case γ = 0.4 with ν = 0.7. The blue dashed-dotted
and black dashed-dotted-dotted lines represent the case γ = 0.35 with ν = 0.55. Notice that the
behavior for the cases worked out in this figure have different time dependence for the mean square
displacement, as pointed out in the inset.
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Figure 2. Behavior of Equation (41) versus t for two different sets of γ and ν. We consider, for
simplicity, β1(0) = 2 and β2(0) = 1. The red dashed-dotted line represents the case γ = 0.4 with
ν = 0.7. The blue dashed-dotted line represents the case γ = 0.35 with ν = 0.55. Notice that the
behavior for the cases worked out in this figure have different time dependence for Ṡ(t), as pointed
out in the inset.
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2.2. Entropy Production

Let us analyze the entropy production related to Equation (17) with the dynamics of
ρ1(x1, t) and ρ2(x2, t) given by Equations (19) and (20). By performing a time derivative of
Equation (17), we obtain

d
dt
S(t) = k

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
∂

∂ρ12
s(ρ12)

]
∂

∂t
[
ρ1(x1, t)ρ2(x2, t)

]
= −k

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2ρ2

∂

∂ρ12
s(ρ12)

∂

∂x1
J1(x1, t)

− k
∫ ∞

−∞
dx1ρ1

∫ ∞

−∞
dx2

∂

∂ρ12
s(ρ12)

∂

∂x2
J2(x2, t) (48)

and, consequently, performing integration by parts with the conditions J1(x1 → ±∞, t)→
0 and J2(x2 → ±∞, t)→ 0, also

d
dt
S(t) = k

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

[
ρ2

2
∂2

∂ρ2
12

s(ρ12)
∂ρ1

∂x1

]
J1(x1, t)

+ k
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

[
ρ2

1
∂2

∂ρ2
12

s(ρ12)
∂ρ2

∂x2

]
J2(x2, t) . (49)

It is possible to simplify Equation (48) by using, from the H–theorem, the equations

−kTρ1ρ2
2

∂ρ1

∂x1

∂2

∂ρ2
12

s(ρ12) = Γ
∂

∂x1
P1(ρ1, t) (50)

and

−kTρ2ρ2
1

∂ρ2

∂x2

∂2

∂ρ2
12

s(ρ12) = Γ
∂

∂x2
P2(ρ2, t), (51)

in order to obtain

d
dt
S(t) = − 1

T

∫ ∞

−∞
dx1F1(x1)J1(x1, t)− 1

T

∫ ∞

−∞
dx2F2(x2)J2(x2, t)

+
1
T

∫ ∞

−∞
dx1
J 2

1 (x1, t)
ρ1(x1, t)

+
1
T

∫ ∞

−∞
dx2
J 2

2 (x2, t)
ρ2(x2, t)

, (52)

where

J1(x1, t) = −Γ
∂

∂x1
P1(ρ1, t) + F1(x1)ρ1(x1, t) (53)

and

J2(x2, t) = −Γ
∂

∂x2
P2(ρ2, t) + F2(x2)ρ2(x2, t), (54)

with P1(ρ1, t) and P2(ρ2, t) given by Equations (10) and (11). Equation (48) can be written
as follows:

d
dt
S = Π−Φ (55)

where one identifies the entropy flux, representing the exchanges of entropy between the
subsystems represented by ρ1 and ρ2 and their neighborhood,

Φ =
1
T

∫ ∞

−∞
dx1F1(x1)J1(x1, t) +

1
T

∫ ∞

−∞
dx2F2(x2)J2(x2, t), (56)
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as well as the entropy-production contribution:

Π =
1
T

∫ ∞

−∞
dx1
J 2

1 (x1, t)
ρ1(x1, t)

+
1
T

∫ ∞

−∞
dx2
J 2

2 (x2, t)
ρ2(x2, t)

. (57)

We underline that T and ρi(xi, t) are positive quantities, yielding the desirable result: Π ≥ 0.
For the general case represented by Equation (4), we have

d
dt
S(t) = k

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
∂

∂ρ1
s(ρ1, ρ2)

∂

∂t
ρ1(x1, t) +

∂

∂ρ2
s(ρ1, ρ2)

∂

∂t
ρ2(x2, t)

]
= −k

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

∂

∂ρ1
s(ρ1, ρ2)

∂

∂x1
J1(x1, t)

− k
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

∂

∂ρ2
s(ρ1, ρ2)

∂

∂x2
J2(x2, t). (58)

Performing integration by parts in Equation (58) and by taking into account the conditions
J1(x1 → ±∞, t)→ 0 and J2(x2 → ±∞, t)→ 0, we obtain that

d
dt
S(t) = k

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
∂ρ1

∂x1

∂2

∂ρ2
1

s(ρ1, ρ2)

]
J1(x1, t)

+ k
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
∂ρ2

∂x2

∂2

∂ρ2
2

s(ρ1, ρ2)

]
J2(x2, t). (59)

By using the equations,

−ρ1
∂ρ1

∂x1

∂2

∂ρ2
1

s(ρ1, ρ2) =
∂

∂x1
P1(ρ1, t) and − ρ2

∂ρ2

∂x2

∂2

∂ρ2
2

s(ρ1, ρ2) =
∂

∂x2
P2(ρ2, t), (60)

it is possible to simplify Equation (59) in order to obtain

d
dt
S(t) = − 1

T

∫ ∞

−∞
dx1F1(x1)J1(x1, t)− 1

T

∫ ∞

−∞
dx2F2(x2)J2(x2, t)

+
1
T

∫ ∞

−∞
dx1
J 2

1 (x1, t)
ρ1(x1, t)

+
1
T

∫ ∞

−∞
dx2
J 2

2 (x2, t)
ρ2(x2, t)

, (61)

where

J1(x1, t) = −Γ
∂

∂x1
P1(ρ1, t) + F1(x1)ρ1(x1, t) (62)

and

J2(x2, t) = −Γ
∂

∂x2
P2(ρ2, t) + F2(x2)ρ2(x2, t), (63)

as before, with P1(ρ1, t) and P2(ρ2, t) arbitrary. Note that Equation (61) is formally equal
to Equation (52), which evidences that the result obtained for the entropy production is
invariant in form when the entropies are obtained from the H–theorem.

3. Discussion and Conclusions

We have investigated the entropy of a system composed of two subsystems governed
by nonlinear Fokker–Planck equations. In this context, we have essentially analyzed two
scenarios; in one of them, the subsystems have the same dynamics, and in the other one,
they have different dynamics, i.e., the nonlinear Fokker–Planck equations are different. The
first case allows the definition of entropy which can be connected to different cases and
preserves the formal structure S(ρ1, ρ2) = S(ρ1ρ2) also verified by the standard entropy of
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Boltzmann–Gibbs. For the other case, we consider different dynamics for each subsystem,
which allows the definition of an entropic form for which S(ρ1, ρ2) 6= S(ρ1ρ2). In both
cases, we have analyzed the entropy production and we have shown the effect of each
subsystem on the composite system. In addition, we have shown that the time variation of
the entropy (entropy production) for the total system is invariant in form for all the cases
considered here.
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