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Abstract: Recent research has shown that visual–text pretrained models perform well in traditional
vision tasks. CLIP, as the most influential work, has garnered significant attention from researchers.
Thanks to its excellent visual representation capabilities, many recent studies have used CLIP for
pixel-level tasks. We explore the potential abilities of CLIP in the field of few-shot segmentation.
The current mainstream approach is to utilize support and query features to generate class prototypes
and then use the prototype features to match image features. We propose a new method that utilizes
CLIP to extract text features for a specific class. These text features are then used as training samples
to participate in the model’s training process. The addition of text features enables model to extract
features that contain richer semantic information, thus making it easier to capture potential class
information. To better match the query image features, we also propose a new prototype generation
method that incorporates multi-modal fusion features of text and images in the prototype generation
process. Adaptive query prototypes were generated by combining foreground and background
information from the images with the multi-modal support prototype, thereby allowing for a better
matching of image features and improved segmentation accuracy. We provide a new perspective
to the task of few-shot segmentation in multi-modal scenarios. Experiments demonstrate that our
proposed method achieves excellent results on two common datasets, PASCAL-5i and COCO-20i.

Keywords: few-shot semantic segmentation; few-shot learning; semantic segmentation; multi-modal;
CLIP

1. Introduction

In recent years, there have been significant advancements in semantic segmentation
on various large-scale datasets [1,2] due to the continuous development of various deep
learning networks [3,4]. However, this task requires a large number of pixel-level labels to
train the model, which makes it costly and time consuming. Moreover, the trained model
has almost no recognition ability for classes that have not been seen during training.

The purpose of few-shot semantic segmentation (FSS) is to segment a new class using
only a few support samples, while the query images are unseen before. The challenge
of this task is to train a model that can learn features of the available classes and also
generalize to the unavailable classes with only a few samples in the training set. In FSS
methods [5–7], the main approach is to use prototypes to represent each class and then
match the prototypes and query images by elaborate matching methods. “Prototype” is an
abstract concept; briefly, it represents the average representation of a class, which can be
obtained by aggregating image features through clustering methods. To utilize a prototype
for guiding the segmentation of query images, researchers have proposed several methods
to make prototypes more representative for the target class. For instance, in [8], a prototype
alignment method is proposed for FSS tasks with the goal of enhancing the expressive
ability of a single prototype. Ref. [9] extends a single-class prototype to multiple to cope
with the variable appearance of class and different scenarios. Although the above methods
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have made great progress in FSS, only image features are employed in the prototype
generation process, and no additional modal features are considered. Ref. [10] shows
that cross-modal training is a lightweight and effective approach for adapting pretrained
multi-modal models to downstream unimodal tasks. We believe that cross-modal features
can be useful in few-shot segmentation as well, and that incorporating text features in the
prototype generation process can make the class prototypes more representative.

A increasing number of studies have shown that multi-modal models [11–13] based
on text-image features perform well in image classification and image retrieval tasks.
The milestone work CLIP [14] proved that training methods using text–image pairs can
yield models with excellent migration and generalization capabilities on traditional vision
tasks. Using CLIP for different downstream tasks requires only simple fine-tuning to
achieve high performance [15–17]. Yet compared to image classification, the challenge of
semantic segmentation is to correctly classify each pixel. CLIP learns high-level semantic
correlations between images and text rather than pixel-level information. Undoubtedly,
simply fine-tuning CLIP to adapt to semantic segmentation tasks is not feasible. There-
fore, researchers have attempted various methods to enable CLIP to perform these tasks.
The “encoder–decoder” paradigm is recognized as one of the most useful ways for semantic
segmentation. This paradigm is also mostly used for clip-based dense prediction tasks [18–20].
Well-designed loss functions and fine-tuning methods enable CLIP to be adapted to such
tasks. Existing approaches [21,22] use text features as weights for classifiers or design
prompt engineering such as learnable tokens to replace manual templates. Nonetheless,
the parameters in CLIP is enormous, and fine tuning it with few support images can easily
cause over-fitting. Therefore, we combine CLIP with an FSS model based on the prototype
structure. The generation of prototypes is an essential procedure in the FSS task, since
each pixel is classified by computing the cosine similarity or Euclidean distance between
the prototype and sample features. Our work investigates the fusion of text features with
image features and incorporates them into the process of prototype generation. Building on
previous work, we involve both text and images as training samples in the training of the
model instead of treating the text features as weights of the classifier without participating
in the training process.

In this paper, we propose a multi-modal few-shot segmentation method based on the
prototype structure. Referring to Figure 1, our approach consists of three main parts. The
first part is to involve the text samples in the model training instead of freezing the text
encoder of CLIP. We use a very simple method to involve text samples in the training process
and without extra training time. The second part is Multi-modal Support Prototype (MSP)
Generator; this module integrates text features and image features and adds the fused
features to the prototype generation process. MSP maps two modalities to the same
high-dimensional semantic space, making the prototype more representative of the object
class. In the last part, to make the prototype better match image features, we design a
new matching strategy called the Adaptive Foreground Background Matching (AFBM)
module. The AFBM module utilizes MSP to combine the foreground and background
information of the query image features. This module generates adaptive query prototypes
using query image features, although previous work such as PANet [8] and CRNet [23]
has also explored query feature prototypes they do not involve text features and image
foreground and background information. To match the proposed adaptive query prototype
and multi-modal support prototype, we designed new loss functions to further exploit
various prototypes. In general, our contributions include the following:

• Our work combines CLIP with a few-shot semantic segmentation model based on
a prototype structure. This approach addresses the problem of over-fitting when
fine-tuning CLIP uses a few support images.

• We propose MSP that involves text samples in model training and introduce image
text fusion features in the prototype generation process. Multi-modal support proto-
types are better at representing the same semantic information of an image and text
compared to single-modal prototype features for representing an object class.
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• We propose the AFBM module, which uses the foreground and background infor-
mation of an image combined with query image features and MSP to generate an
adaptive query prototype. Experiments demonstrate the excellent performance of our
method on diverse datasets.
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Figure 1. Overview of our proposed network for 1-shot segmentation. We optimize the process of
generating prototypes using fusion features of image and text. Our framework consists of MSP and
an AFBM module. Given only one annotated training image, our network is able to segment test
images with new classes.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation is an important task in computer vision, which aims to assign
each pixel in the input image to the corresponding class. The proposed Full Convolutional
Network (FCN) [24] marks the beginning of researchers’ application of CNN to pixel-level
prediction. Unlike previous traditional works [25,26], FCN replaces the fully connected
layer with a convolutional layer and upsamples the feature map using deconvolution. The
feature map is restored to the same size as the input image so that predictions can be made
for each pixel. Researchers have proposed various methods to improve the accuracy of
prediction and to make full use of pixel information. In recent years, the main approaches
for semantic segmentation have been based on encoder–decoder structures [27–29], which
use pyramid structures to extract features at multiple scales or attention mechanisms to
weight important information. These approaches aim to increase the perceptual field while
maintaining feature resolution. The U-Net [27] follows the “encoder–decoder” architecture,
which involves the use of multiple convolutional and pooling layers in the encoder to
extract image features and aggregate high-dimensional information. The decoder, on
the other hand, uses a combination of upsampling and convolutional layers to restore
the feature map to its original size and generate pixel-level results. After U-Net, the
DeepLab series [30–32] which uses dilated convolution and multi-scale feature fusion to
further improve the segmentation accuracy. Attention U-Net [33] introduces an attention
mechanism that suppresses irrelevant regions in the input image while highlighting salient
features in specific local regions.

Recently, transformer has developed rapidly in the field of computer vision. Since the
emergence of VIT [34], many subsequent works have used transformer as the backbone of
the model. SETR [35] proved the feasibility of transformer in image segmentation, which is
followed by a series of work such as Segmenter [36] and SegFormer [37]. These methods
explored more possibilities of transformer in the field of semantic segmentation. Despite
the great success of the above approach, there are still some problems: the long training
time of a model implies that more computational resources are required as the number of
parameters increases. The model does not generalize well to unseen classes, and it also
requires a large number of accurate pixel-level annotations to train effectively.
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2.2. Few-Shot Learning

Few-shot learning aims to enable the model to learn and generalize with a few labeled
data, allowing the model to recognize previously unseen classes. The existing methods can
be divided into three groups: transfer-learning method, data augmentation-based method,
and metric-based method. The transfer learning-based methods [38–40] typically involve
pre-training a model on a large datasets and then fine-tuning some of its layers on smaller,
targeted datasets. Weiyu Chen et al. [38] proposed a two-stage training method, first using
the basic class to train the model and then fine-tuning the model to improve the generaliza-
tion ability of the model on the novel class. However, this process can be time-consuming
due to the need for both pretraining and fine-tuning phases. The second approaches are
the data augmentation-based methods [41–43]. Since there are few labels available for
small-sample learning, researchers aim to increase the diversity of samples with limited
labels through data augmentation, which can expand the number of each category. Ref. [44]
proposed an automatic encoder, using the encoder to obtain the deformation information
between two samples of the same category and using it to expand the samples of the new
category so as to achieve the effect of data enhancement. However, this approach cannot
fully address the issue of class imbalance. The metric-based methods [45–47] are inspired
by meta-learning, which provide a paradigm for gaining experience through multiple
learning stages and using that experience to improve its next learning performance. In our
work, we use support–query pairs to generate prototype features to measure correlations.

2.3. Few-Shot Semantic Segmentation

Few-shot semantic segmentation (FSS) is a challenging task in computer vision.
The goal is to enable models to perform segmentation with a small number of training
samples. Additionally, the models should be able to recognize novel classes not present in
the training set. This means that the model requires strong migration and generalization
capabilities. To address the problem of generalization to the novel class, researchers have
proposed various methods based on few-shot learning. Amirreza Shaban et al. [48] first
proposed the FSS task in OSLSM [48] and designed a two-branch network where the first
branch is used to receive the labeled images from the support set, and the other branch
is used to receive the images to be segmented in the query set. The two-branch network
structure became the main paradigm for subsequent studies on this task.

In order to identify the images in the query set, there are two main approaches.
One approach aggregates image features to generate prototypes and then uses metric
functions such as cosine similarity and Euclidean distance for metrics and classification.
The PLNet [49], proposed by Nanqing Dong et al. [49], is the first FSS framework to
introduce prototype learning. It measures the similarity between prototypes and query
features using a metric function. Kaixin Wang et al. [8] proposed a prototype alignment
method that enhances the feature aggregation capability of individual prototypes during
training. In this way, the generated prototype is more similar to the features of the query
images. SG-One [50] was proposed by Xiaolin Zhang el al. [50]. They use masked average
pooling (MAP) to extract the representation vectors of the targets in the support set. MAP
is an effective way that combines the features extracted by the backbone network with its
ground truth mask to generate prototype features. Its simplicity and effectiveness have
led many subsequent works to adopt this approach for prototype generation. According
to Qi Fan et al. [51], the pixel similarity between different objects belonging to the same
class exhibits a significant gap compared to the pixel similarity between the same objects.
To address this issue, they propose to leverage query prototypes to match query features.

Another alternative method is to employ an encoder–decoder network structure.
The process involves first using the encoder to encode the features of both the support set
and the query set images. Then, an elaborate feature comparison module is used to activate
the same class of features in the query images. Finally, the feature decoder is utilized to
optimize the comparison results of the previous stage and generate the prediction map.
CANet, proposed by Chi Zhang et al. [52], introduces a dense comparison module (DCM)
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and an iterative optimization module (IOM) to leverage convolution for performing the
metric. This approach significantly enhances the segmentation performance compared
to previous methodologies. Zhuotao Tian et al. [53] made certain adjustments to the
output layer of the backbone network by incorporating the idea of CANet. Specifically, they
employed the high-dimensional features originally outputted from the last layer to generate
a rough segmentation result, which was then used to guide the network’s training process.
Additionally, they introduced a feature enhancement module that leverages features from
supporting ensemble images to enhance the query image features. Much of the subsequent
work has focused on designing different modules to aggregate features of the two types
of images using the support set features and query image features extracted through
the backbone network. For example, SD-AANet [54] designs two modules to aggregate
fusion features SDPM and SAAM. HSNet [55] aggregates multi-scale features using 4D
convolutional kernels.

2.4. CLIP in Segmentation

CLIP is a state-of-the-art model developed by OpenAI. It is designed to learn joint
representations of images and their associated textual descriptions. By leveraging a large-
scale dataset of image–text pairs, CLIP learns to understand the semantic relationships
between visual and textual information. Unlike traditional computer vision models that
focus solely on images, CLIP takes a multi-modal approach by considering both images
and text together. It utilizes a transformer-based architecture, which allows it to capture
complex relationships and contextual information across modalities. CLIP is pretrained
on a vast amount of internet data, which enables it to acquire a broad understanding of
various concepts and objects. During training, CLIP learns to associate images and their
corresponding texts, effectively mapping them into a shared embedding space. Yongming
Rao et al. [19] demonstrated that CLIP can yield good results in semantic segmentation
tasks by modifying the output of its last layer and designing a text–pixel loss function. This
enables CLIP to perform dense prediction tasks. Boyi Li et al. [18] extended the use of CLIP
to zero-shot image segmentation tasks by incorporating text features with image features
in dense prediction transformers (DPT) during the training process. This allowed them to
obtain fused features which were then fed into the decoder for image segmentation.

Due to the efficacy of CLIP’s pretraining parameters, many image segmentation
approaches use CLIP to generate coarse masks in the first step. These masks are then
iteratively trained using carefully designed modules, eventually producing accurate seg-
mentation results. For instance, Haohan Wang et al. [56] proposed the Iterative Mutual
Refinement (IMR) module, which is combined with CLIP to generate coarse image masks
that are further refined through iterative training. Additionally, Chong Zhou et al. [57]
combined the predicted image mask generated by CLIP with other segmentation networks
and further trained the model to achieve improved performance. Because of the impressive
effectiveness of integrating visual and textual features in the embedding space, numerous
methods have emerged that leverage CLIP for performing few-shot segmentation tasks.
Timo Lüddecke et al. [58] introduce a lightweight transformer-based decoder that facili-
tates the interaction between support features, query features, and text features. Mengya
Han et al. [59] use CLIP to solve the problem of few-shot part segmentation. They utilize the
text encoder to generate text features for each part, which aids in a more efficient learning
of visual features. Shuai Chen et al. [60] extracts image and text features by using CLIP
and generates a class-agnostic coarse mask. By adopting this class-agnostic process, the
network can better balance the influence of different classes during training, leading to
more equitable and effective performance.

Although various methods have been employed to modify CLIP for pixel-intensive
prediction tasks, the training process still necessitates a relatively large number of training
samples and time to attain optimal performance. Our proposed multi-modal FSS method is
based on the prototype structure and has achieved good results using only a small number
of training samples and a short training time.
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3. Method
3.1. Task Description

The few-shot segmentation task aims to identify previously unseen classes using a
limited number of samples, so the dataset is structured differently from previous tasks.
Suppose a dataset is divided into a training set Etrain and a test set Etest. In traditional
segmentation tasks, the training and test sets have the same number of classes. However, in
few-shot segmentation tasks, Etrain and Etest do not intersect (Etrain ∩ Etest = ∅). Intuitively,
once the model is trained, we select an image from the Etest as the query image, which does
not belong to any class in the Etrain. Then, we use one or more images from the test set as
the support image to segment this new class. We utilize the episodic paradigm approach to
train the model, which is a meta-learning-based approach proposed in [61]. This approach
was first employed in [48] for few-shot segmentation tasks. The main training process with
reference to the previous work can be summarized as follows: K-shot support images are
selected from the set S of support images {SI1,..... .SIk} and its corresponding ground truth
mask {MS1,.... .MSk}. A query image Iq and its corresponding mask Mq are selected from
the query image sets Q. The model obtains few-shot segmentation tasks {Si, Qi} from the
training set Etrain and uses the information in the support set S to guide the segmentation
tasks on the query set Q. In the training phase, each few-shot segmentation task is randomly
sampled from Etrain and treated as a distinct task. As a result, the model can be generalized
to new few-shot segmentation tasks after training. During the testing phase, the model’s
performance is evaluated using the Etest dataset, which is consistent with the training phase.
The model utilizes information from the support set S to segment the query set images in a
guided manner. In the testing phase, Mq in the query set Q is not visible to the model.

We will present our core ideas (referring to Figure 2) in the following sections. We first
combine the image features and text features extracted using CLIP to generate multi-modal
support prototypes. This prototype captures the combined information from both images
and text, enabling a comprehensive representation of the underlying data. Then, we employ
an AFBM module to generate adaptive query prototypes. AFBM utilizes the query features
to adaptively generate prototypes that are specifically tailored to match the query images.
This adaptive approach enhances the model’s ability to capture relevant information and
improve the matching performance.

MSP Generator

MAP

Figure 2. Overview of the network architecture. We first combine the image features with the text
features extracted via CLIP to generate a multi-modal support prototype. Then, we utilize AFBM to
generate adaptive query prototypes to match query features.

3.2. Image-Text Feature Fusion Processing

In this section, our main idea is to introduce how textual features can be integrated into
the network and incorporated into the training process. Adding text features as auxiliary
modalities can enhance the model’s capacity to identify new classes. Similar to previous
CLIP-based works, a manual prompt template {a photo of a class} is used for various cate-
gories where the class in the text needs to be replaced with an image. In contrast to previous
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approaches, our goal is to enhance the model with novel text features by training on text
samples rather than solely relying on text features as weights for the classifier. The current
few-shot segmentation model which is based on the prototype structure takes a pair of
support images and query images {Is, Iq} as input. These are fed to a backbone network
with shared parameters which generates corresponding features {Fs, Fq}. Previous studies
such as CANet [52] have shown that the deeper layers of a ResNet-based backbone network
have a significant impact on final performance. Additionally, PFENet [53] proposed that
features from different layers can be utilized to improve model training.

In our approach, we extract mid-level image features Fv using the backbone network.
Unlike previous few-shot segmentation works, we innovatively combine image features
with text features. We believe that incorporating supplementary modalities into the train-
ing process can improve the model’s capacity to differentiate among unfamiliar classes
resembling how humans obtain new knowledge. In daily life, using images as aids for
learning novel knowledge is more effective than relying solely on text. CLIP as a large
image text pretraining model has an image encoder Ev and a text side encoder Et. We input
the manual prompt template a photo of a class into the CLIP text encoder Et to obtain the
text feature Ft. We reshape Ft into a feature vector of the same size as Fv and then combine
Fv and Ft in the feature dimension to create a new image–text fusion feature. To make the
feature fusion more adequate, we pass the fused features through a 1 × 1 convolution layer
and relu activation function.

Fv,t = relu(conv(cat(Fv, Ft))) (1)

According to Equation (1), cat denotes that concatenating Fv and Ft in the feature dimension.
We use conv to refer to 1× 1 convolution layer and relu to denote the activation function. At
last, we use the fused features to generate prototypes and perform foreground–background
matching, which will be described in the following sections. In Section 4, our experiments
demonstrate that the fused features are more effective in generalizing to new categories
than using single image features alone.

3.3. Multi-Modal Support Prototype Generator

The primary focus of this section is to describe our proposed prototype generation
process based on multi-modal fusion features. To begin, we will first outline the process
of generating prototype features in most previous works. The image features {Fs, Fq} are
obtained after feeding the support image and the query image into the parameter-sharing
backbone network, and the support prototype can be expressed by Equation (2).

Ps = MAP(Fs, Ms) (2)

The formula MAP stands for masked average pooling, and Ms represents the ground truth
mask of the support image. The generated support prototype Ps is used to measure the
features of the query image by the cosine similarity function, and then, the predicted mask
is obtained by softmax function.

M̂1 = softmax
(
cosine

(
Ps, Fq

))
(3)

According to Equation (3), we use cosine to refer to the cosine similarity function and
softmax to denote the activation function. In conclusion, the support prototype plays a
crucial role in determining the final segmentation result. If it can cover a wider range
of accurate semantic information, then the segmentation performance will improve ac-
cordingly. Therefore, we aim to incorporate textual features into the support prototype
generation process to further enhance the segmentation accuracy. By using both image
and text modalities, we can leverage the complementary information between them to
generate prototypes that encapsulate a more comprehensive and accurate representation of
the underlying semantic information. As a result, this method can enhance the model’s
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capability to differentiate among distinct object classes and generalize to new classes with
only a limited number of labeled examples.

P∗s = MAP(Fv,t, Ms)⊕ Ps (4)

We fuse the image text fusion features Fv,t obtained in Section 3.2 with the ground truth
mask Ms of the support images to generate new support prototypes (as in Equation (4)).
Previous works generate prototypes by using mask average pooling combined with a
ground truth mask and deep features acquired through the backbone. In contrast, we
generate prototypes by combining the fused shallow features of the image and text features
with the ground truth mask of the support image, which we call MSP. We still utilize the
deep features of the image, as they contain crucial high-level semantic information. Giving
up these features would adversely affect the final segmentation results. To generate the
final support prototype P∗S , we connect the prototype generated by the support image
feature Fs with the multi-modal support prototype. In this way, the prototype features
cover richer semantic information, and thus, the perception of the novel class is more
accurate. The prototype features produced by this method will be used in the foreground–
background matching process outlined in Section 3.4.

3.4. Adaptive Foreground Background Matching Module

The method for incorporating textual features and the process for generating MSP
were introduced in Sections 3.2 and 3.3. This section focuses on generating foreground and
background prototypes using the AFBM module based on the foreground and background
information of the image (as shown in Figure 3). These prototypes are then combined with
the multi-modal support prototypes to generate the final adaptive query prototype for
classifying the query image. Previous work mostly generated support prototype features
to segment the query image. However, we argue that generating the query prototype using
the query image features can result in better segmentation. We combine the foreground–
background prototype and multi-modal support prototype with the query image features
to generate the required adaptive query prototype. This prototype is then used to segment
the query image and obtain the final segmentation result. Normally, the object we aim
to segment is the foreground of an image, whereas the background of the image is often
cluttered. Nevertheless, the background pixels also have an impact on the final performance.
To improve the final segmentation performance, we propose generating a background
prototype by aggregating the background pixels.

Ps f = MAP(Fs, Ms(m == 1)) (5)

Psb = MAP(Fs, Ms(m == 0)) (6)

To assign each pixel in the image’s ground truth mask to a certain class, we specify the label 1 as
the foreground pixel and the label 0 as the background pixel. In accordance with Equation (5),
we generate the foreground prototype by combining the pixels considered as foreground with
the image features through the MAP function. The background prototype is implemented in
the same manner as the foreground. In combination with the multi-modal support prototype
discussed in Section 3.3, the final process for generating foreground–background prototypes
can be represented by the following equations, Equations (7) and (8).

Ps f
∗ = MAP(Fv,t, Ms(m == 1))⊕ Ps f (7)

Psb
∗ = MAP(Fv,t, Ms(m == 0))⊕ Psb (8)

The support prototype is generated using the features of the support image. Even if
the support and query images belong to the same class, the support prototype may ignore
local information and result in prototype bias, which can adversely affect the performance
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of the query image. To tackle the problem of prototype bias, we generate an adaptive query
prototype by combining the foreground–background prototype features, the query image
features, and the multi-modal support prototype. We then use this query prototype to
guide the segmentation of the query image. As seen in previous works, the ground truth
mask of the image is required to generate the prototype. However, the ground truth mask
of the query image is not available during the inference process. Therefore, we use the
estimated mask of the query image instead of the ground truth mask to generate the query
prototype. According to Equation (9), we compute the similarity of the previously obtained
foreground prototype Ps f

∗ and background prototype Psb
∗ with the query image feature Fq,

respectively. The obtained results are passed through the softmax activation function to
obtain the predicted mask M̂q.

M̂q = softmax
(
cosine

(
Psf
∗, Psb

∗, Fq
))

(9)

To ensure that the adaptive query prototype accurately reflects the class characteristics
of the query image, we define a specific threshold value of β to separate the estimated
query image mask into foreground and background regions. This helps to ensure that the
adaptive query prototype captures the class characteristics of the query image. We classify
the predicted pixels as foreground when their values are >β f g and as background when
they are >βbg. According to the ablation experiments in Section 4, we conclude that for the
foreground prototype β f g = 0.7, and for the background prototype βbg = 0.6. Thus, there is
{Mq f , Mqb}, which will be used to generate the adaptive query prototype. As the foreground
of the image is the primary object for segmentation by the model, the information contained
in the foreground pixels is relatively distinct. We utilize the MAP function to merge the
query image features with the predicted foreground pixels, creating an adaptive foreground
query prototype (as in Equation (10)).

APq f = MAP
(

Fq, M̂q f

)
(10)
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Figure 3. The generation process of adaptive foreground prototype. We obtain the predicted mask
by calculating the similarity between the query features and the prototype. Then, we leverage the
predicted query mask to aggregate query features to generate an adaptive foreground prototype.

The background of the image contains more complex information than the foreground,
which can significantly impede the FSS task. Previous methods generate multiple proto-
types using background pixels and then select the prototype with the highest similarity to
match with the query image features. However, this approach is not only time consuming
but also inaccurate. We propose generating an adaptive background query prototype in
this paper. Based on Figure 4, we merge the estimated background query mask Mqb with
the query feature Fq through matrix multiplication. We then modify the shape of the feature
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map using the reshape operation to acquire Fqb. To activate each background pixel in the
feature map, we create a matrix ω by performing multiplication between Fqb and the query
feature Fq (as in Equation (11)). Finally, we multiply ω by the softmax activation function
with Fqb to acquire the adaptive background query prototype APqb (as in Equation (12)).
Attaching the query image features to each background pixel helps prevent imprecise
segmentation results caused by the cluttered information in the background pixels. This
approach aids in creating an adaptive background query prototype that more accurately
reflects the class characteristics of the query image.

ω = Matmul
(

Fqb, Fq

)
(11)

APqb = Matmul
(

Fqb, softmax(ω)
)

(12)

Now that we have the adaptive query prototype APq{APq f , APqb}, Section 3.5 will describe
the specific approach for designing the loss function to effectively utilize the adaptive query
prototype.
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Figure 4. The generation process of adaptive background prototype. We exploit the predicted query
mask to obtain a similarity matrix. Then, we use the matrix and query features to generate an adaptive
background prototype.

3.5. Multi-Prototype Matching Loss Function

Through the introduction of the previous sections, we arrived at the multi-modal sup-
port prototype P∗s {P∗s f , P∗sb} and the adaptive query prototype APq{APq f , APqb}. We used
these two prototypes to add up and balance the proportion of the two types of prototypes
by coefficients. The final generated prototype is shown in Equation (13).

PM = α1P∗s + α2 APq (13)

In our experiments, we set the two coefficients α1 = α2 = 0.5 and use the final generated
prototype PM to compute the similarity with the query feature Fq to derive the final predic-
tion mask. According to Equation (3), the final prototype PM and query image features are
used to obtain the final prediction mask M̂2 by the cosine similarity function and softmax
function. We use a binary cross-entropy (BCE) loss function to evaluate the gap between
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the prediction mask and ground truth mask of the image to continuously update the model
parameters (as in Equation (14)).

L1 = BCE
(
M2,Mq

)
) (14)

To be able to take full advantage of the adaptive query prototype and the multi-modal
support prototype, we calculate the similarity between these two prototypes and the query
image separately and derive the prediction mask. The loss function is then used to calculate
the value of the prediction mask with respect to ground truth mask (as in Equations (15)
and (16)).

L2 = BCE
(
cosine

(
AP q,Fq

)
,Mq

)
(15)

L3 = BCE(cosine(P∗s ,Fs),Ms) (16)

Finally, we use the weight coefficients λ to balance the weight of the three loss functions (as
in Equation (17)). In our experiments we set λ1 = λ2 = 1 and λ3 = 0.2.

L = λ1L1 + λ2L2 + λ3L3 (17)

4. Experiments
4.1. Datasets and Implementation Details

Datasets. We conduct experiments on two benchmark datasets, namely PASCAL-5i [62]
and COCO-20i [2], where the PASCAL dataset was used as a benchmark for evaluating
the performance of different image segmentation methods. The dataset contains images of
20 different object classes, each labeled at the pixel level, meaning that each pixel is labeled
according to the object to which it belongs. We follow previous work and divide the 20
categories in the PASCAL dataset into four folds, each containing five categories. We use
three folds for training and one fold for inference, ensuring that the training set and the test
set do not intersect in FSS task. To ensure the validity of the experiment, we use fold0 for
inference when the remaining three folds are used for training, and use fold1 for inference
when other fold is used for training. We repeat these experiments four times and report
the performance of each fold separately. The COCO dataset contains over 330,000 images,
featuring more than 80 different types of objects commonly found in complex real-world
scenes. Compared to PASCAL, the COCO dataset is a significantly more challenging task
with much greater category and image scene complexity. In such a challenging task, our
method can still achieve good performance. We similarly followed the setup of previous
work by dividing the 80 classes in the COCO into four folds and reporting the scores on
each fold separately.
Implementation Details. We used the classical ResNet-50/101 [4] as the backbone network
and utilized the pretraining parameters on ImageNet [1]. As CLIP is on the text side,
we use VITB-32 as the backbone network. We cropped the original image and ground
truth mask to size (473,473). During training, we used stochastic gradient descent with a
momentum of 0.9 and an initial learning rate of 0.001 to optimize the model parameters.
During training, we use meta-learning to train the model. As described in Section 3.1, our
model is trained with 24,000 episodes, each containing one support–query pair. We set
one round of training with 1200 episodes, totaling 20 rounds of training per batch of data,
with each batch containing four support–query pairs. We randomly selected 1000/4000
support–query pairs for testing, and the ground truth masks of the images were not visible
during testing. Consistent with most previous work, we used mean Intersection-over-
Union (mIoU) to report the model’s performance on both datasets. The formula for mIoU
is shown in Equation (18),

mIoU =
1
n

n

∑
i=1

TPi
TPi + FPi + FNi

(18)
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where n is the number of classes, i denotes class i, TPi denotes the number of pixels correctly
predicted as class i, FPi denotes the number of pixels that the model incorrectly predicts as
class i for pixels that are not class i, and FNi denotes the number of pixels that the model
incorrectly predicts as non-class i pixels.

4.2. Comparison with Previous Works

PASCAL-5i. To verify the effectiveness of our proposed method, we compared our model
with different approaches on the PASCAL and COCO datasets. As shown in Table 1, our
model outperforms previous approaches significantly in both the one-shot and five-shot
settings. In the one-shot experimental setting, the feature encoder using ResNet-50 exceeds
the results of SSP [51] by 2.0% on average across the four folds. This demonstrates the
effectiveness of the MSP and AFBM modules. While our current results in the one-shot
experimental setting show a 1.1% decrease compared to HSNet, we have observed higher
performance in the five-shot setting when compared to HSNet. We contend that this
discrepancy arises due to the fact that HSNet utilizes an encoder–decoder architecture,
which requires a longer training time compared to our proposed method. As stated
in Table 2, the training time for HSNet is reported to be 54 h, whereas our proposed
method requires only 5 h of training in the same experimental setting. Under the five-shot
experimental setting, using ResNet-50 as the backbone network, we improved the scores of
fold1 and fold2 to 73.0% and 75.1%, respectively, which is significantly ahead of previous
work. After using the stronger ResNet-101 backbone network, we achieved even higher
scores, with a score of 67.8% in fold0 and an average score of 65.9% across all four folds
in the one-shot setting. In the five-shot setting, we improved the score of fold0 to 72.8%
and the average score across all four folds to 74.5%, which is 4.1% higher than HSNet [55].
The few-shot segmentation model based on the prototype structure uses non-parametric
measures, such as similarity functions, to calculate segmentation results, resulting in fast
calculation and reasoning times. Although we use VITB-32 as the text feature encoder, this
does not significantly increase training and inference times.

Table 1. Quantitative comparison results on PASCAL-5i dataset. The best and second best results are
highlighted with bold and underline, respectively.

Method Backbone
1-shot 5-shot

fold0 fold1 fold2 fold3 Mean fold0 fold1 fold2 fold3 Mean

PANet [8] 44.0 57.5 50.8 44.0 49.1 55.3 67.2 61.3 53.2 59.3
PPNet [9] 48.6 60.6 55.7 46.5 52.8 58.9 68.3 66.8 58.0 63.0

PFENet [53] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
CWT [63] Res-50 56.3 62.0 59.9 47.2 56.4 61.3 68.5 68.5 56.6 63.7

HSNet [55] 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5
MLC [64] 59.2 71.2 65.6 52.5 62.1 63.5 71.6 71.2 58.1 66.1
SSP [51] 61.4 67.2 65.4 49.7 60.9 68.0 72.0 74.8 60.2 68.8

Ours 63.5 67.8 67.9 52.2 62.9 69.2 73.0 75.1 61.4 69.7
FWB [7] 51.3 64.5 56.7 52.2 56.2 54.8 67.4 62.2 55.3 59.9

PPNet [9] 52.7 62.8 57.4 47.7 55.2 60.3 70.0 69.4 60.7 65.1
PFENet [53] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4

CWT [63] Res-101 56.9 65.2 61.2 48.8 58.0 62.6 70.2 68.8 57.2 64.7
HSNet [55] 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4
MLC [64] 60.8 71.3 61.5 56.9 62.6 65.8 74.9 71.4 63.1 68.8
SSP [51] 63.7 70.1 66.7 55.4 64.0 70.3 76.3 77.8 65.5 72.5

Ours 67.8 71.2 67.7 57.1 65.9 72.8 76.7 81.7 66.7 74.5

COCO-20i. This is a very challenging dataset that contains 80 categories and more complex
foreground–background relationships, but our proposed method still achieves better results
than previous work. As in Table 3, under the one-shot setting with ResNet-50, our model
achieved an average score 1.4% higher than SSP [51] and 1.1% higher than MLC [64] across
all four folds. In the five-shot setting, we achieved a score of 56.5% in fold0, which is



Entropy 2023, 25, 1353 13 of 18

better than most previous approaches. When we used the stronger ResNet-101 backbone
network, our model performed even better on complex datasets. In the one-shot setting,
our model outperformed SSP [51] by 1.9% on average across all four folds, while in the
five-shot setting, we outperformed it by 3.2% on average.

Table 2. Efficiency comparison with ResNet-50 on PASCAL-5i in 1-shot setting.

Method mIoU Training Inference

PFENet [53] 60.8 24 h 52 ms
CWT [63] 56.3 10 h 232 ms

MMNet [65] 61.8 64 h 128 ms
HSNet [55] 64.0 54h 101 ms
BAM [66] 64.6 21 h 50 ms

HDMNet [67] 69.4 20 h 56 ms
Ours 62.9 5 h 60 ms

Table 3. Quantitative comparison results on COCO-20i dataset. The best and second best results are
highlighted with bold and underline, respectively.

Method Backbone
1-shot 5-shot

fold0 fold1 fold2 fold3 Mean fold0 fold1 fold2 fold3 Mean

FWB [7] 16.9 17.9 20.9 28.8 21.1 19.1 21.4 23.9 30.0 23.6
PANet [8] 31.5 22.6 21.5 16.2 23.0 45.9 29.2 30.6 29.6 33.8
PPNet [9] 36.5 26.5 26.0 19.7 27.2 48.9 31.4 36.0 30.6 36.7
CWT [63] Res-50 32.2 36.0 31.6 31.6 32.9 40.1 43.8 39.0 42.4 41.3
MLC [64] 46.8 35.3 26.2 27.1 33.9 54.1 41.2 34.1 33.1 40.6
SSP [51] 46.4 35.2 27.3 25.4 33.6 53.8 41.5 36.0 33.7 41.3

Ours 48.3 36.5 28.9 26.5 35.0 56.5 43.9 38.0 35.6 43.5
PFENet [53] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4
PMMs [68] 29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5

SCL [69] 36.4 38.6 37.5 35.4 37.0 38.9 40.5 41.5 38.7 39.9
CWT [63] Res-101 30.3 36.6 30.5 32.2 32.4 38.5 46.7 39.4 43.2 42.0
MLC [64] 50.2 37.8 27.1 30.4 36.4 57.0 46.2 37.3 37.2 44.4
SSP [51] 50.4 39.9 30.6 30.0 37.7 57.8 47.0 40.2 39.9 46.2

Ours 52.3 40.7 33.7 31.7 39.6 61.5 48.4 42.7 43.4 49.0

4.3. Efficiency Comparison with Previous Works

In our comparison with recent few-shot segmentation methods, we have observed
that while our experimental results may be slightly lower than state-of-the-art methods,
our method offers a significant advantage in terms of training time. Table 2 presents an
efficiency comparison with previous state-of-the-art methods. As can be seen, compared to
previous methods [55,66,67], although the method of HDMNet [67] significantly improves
the performance, it takes much longer training time. As evident from Table 2, our proposed
method demonstrates significantly lower training time compared to the method listed in
the table. The fact that our proposed method requires only 5 h of training time serves as
strong evidence of its effectiveness. The substantial reduction in training time significantly
highlights the efficiency and capability of our method. It demonstrates our method’s ability
to achieve results within a relatively short period of time.

4.4. Ablation Studies

Ablation experiments for different modules. To assess the effectiveness of our methods,
we conducted ablation studies on the proposed MSP, AFBM and MML methods. These
ablation experiments were conducted using a five-shot setting, and we utilized the ResNet-
50 as the backbone network. As shown in Table 4, the proposed MSP improved the model’s
performance by 1.6% compared to the baseline. This provides evidence that our proposed
multi-modal support prototype effectively improve the model’s predictive capability, and
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the introduced textual features enhance the support prototype’s ability to recognize a
novel class. AFBM further enhanced the model’s performance, improving the average
performance by 3% compared to the baseline. We found that combining MSP with AFBM
resulted in a significant performance improvement of the model, with the performance
increasing to 68.7%, which is 5.6% higher than the baseline. Finally, by incorporating all
methods, including the MML loss function, the model’s score increased significantly to
69.7% compared to the baseline of 6.6%. This result demonstrates the effectiveness of our
proposed method.

Table 4. Ablation studies for different modules.

MSP AFBM MML fold0 fold1 fold2 fold3 Mean

60.2 69.1 70.0 53.0 63.1
X 62.5 70.2 71.8 54.3 64.7 ↑1.6

X 65.7 71.3 72.0 56.5 66.4 ↑3.3
X X 68.4 72.4 73.6 60.2 68.7 ↑5.6
X X X 69.2 73.0 75.1 61.4 69.7 ↑6.6

Ablation experiments for β. We used β f g and βbg to generate the predicted mask M̂q
(as in Equation (9)). The choice of foreground and background thresholds in an image
can significantly impact its performance. The threshold size determines which pixels are
categorized as foreground or background, which, in turn, affects the accuracy and level of
detail in the resulting segmentation. If the threshold is set too high, it will likely result in
some foreground pixels being incorrectly assigned to background categories. Conversely, if
the threshold is set too low, it will likely result in some background pixels being incorrectly
assigned to the foreground category. We conduct ablation experiments for each value of
β f g ∈ [0.5, 0.9], βbg ∈ [0.5, 0.9], and the results of the experiments are shown in Figure 5.
Lighter colors represent better results, and darker colors represent worse results. Figure 5
summarizes the prediction scores of the model under different foreground and background
thresholds, and the model predicts best when β f g = 0.7, βbg = 0.6.
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Figure 5. Ablation results for β, shades of color represent different performance.

4.5. Visualization Qualitative Results

We present visualization qualitative results in a five-shot setting with the ResNet-101
backbone for better performance. As shown in Figure 6, the first line represents the support
image and its ground truth mask. The second line represents the query image which the
model aims to segment and its ground truth mask. The third row shows the segmentation
result obtained by the SSP [51] method, while the last row shows the segmentation perfor-
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mance obtained by our proposed method. As can be seen, the predictions reveal that some
of the target objects are not fully segmented (e.g., the body of the bird in the second column,
and the head of the train in the last column). Additionally, there are instances where a part
of the target object is incorrectly segmented (e.g., the Christmas tree in the seventh column
is mistakenly identified as a sofa). In comparison to the SSP [51] approach, generating a
multi-modal support prototype using text features is more accurate in recognizing different
classes than the prototype generated using only image features.

aeroplane bird bottle chair car computer sofa train

Su
p

p
o

rt
  i

m
a

ge
&

G
T 

m
as

k
Q

u
er

y 
 im

ag
e

&
G

T 
m

as
k

SS
P

O
u

r

Figure 6. Example results on PASCAL-5i for different models. From top to bottom, we show the
support image with ground truth mask region, query image with ground truth mask region, the SSP
prediction and our prediction.

5. Conclusions

In this paper, we propose to leverage CLIP to extract text features and utilize them as
training samples to participate in the model’s training process. Text samples are incorpo-
rated into the training process through a very simple way that does not require additional
training time. We also propose MSP to further leverage text features. MSP outperforms
single-modal prototype features in accurately representing the semantic information of
both images and text for a given object class. Additionally, we introduce the AFBM mod-
ule, which utilizes the foreground and background information of an image to generate
adaptive query prototypes for images. In order to align the proposed adaptive query proto-
type with the multi-modal support prototypes, we have developed new loss functions to
maximize the utilization of different prototypes. Finally, we train the model by combining
multiple prototypes via the MML loss function and achieve good scores on two generalized
datasets, PASCAL-5i and COCO-20i. Our proposed method exhibits a significantly reduced
model training time compared to previous models, highlighting the effectiveness of our
approach. This demonstrates a favorable balance between the training time and the results
of our method. By combining CLIP with a prototype-structured FSS model, we further
explore the potential of CLIP in FSS tasks. We hope that our work can provide valuable
insights for future research endeavors aimed at addressing issues related to a multi-modal
pretrained model.

Author Contributions: Conceptualization, S.-K.L.; Methodology, S.-C.G. and C.-Y.J.; Validation,
J.-Y.W.; Writing—original draft, S.-C.G.; Writing—review & editing, S.-K.L. and J.-Y.W.; Visualization,
C.-Y.J.; Supervision, W.-M.Z.; Funding acquisition, W.-M.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (no. 11974373), Key Project of National Natural Science Foundation of China (no. 61932005).



Entropy 2023, 25, 1353 16 of 18

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
2. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects

in context. In Proceedings of the 13th European Conference of the Computer Vision (ECCV 2014), Zurich, Switzerland, 6–12
September 2014; Proceedings—Part V 13; Springer: Cham, Switzerland, 2014; pp. 740–755.

3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.

4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

5. Siam, M.; Oreshkin, B.N.; Jagersand, M. Amp: Adaptive masked proxies for few-shot segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 5249–5258.

6. Liu, L.; Cao, J.; Liu, M.; Guo, Y.; Chen, Q.; Tan, M. Dynamic extension nets for few-shot semantic segmentation. In Proceedings of
the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 1441–1449.

7. Nguyen, K.; Todorovic, S. Feature weighting and boosting for few-shot segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 622–631.

8. Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. Panet: Few-shot image semantic segmentation with prototype alignment.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 9197–9206.

9. Liu, Y.; Zhang, X.; Zhang, S.; He, X. Part-aware prototype network for few-shot semantic segmentation. In Proceedings of the
16th European Conference of the Computer Vision (ECCV 2020), Glasgow, UK, 23–28 August 2020; Proceedings—Part IX 16;
Springer: Cham, Switzerland, 2020; pp. 142–158.

10. Lin, Z.; Yu, S.; Kuang, Z.; Pathak, D.; Ramanan, D. Multimodality helps unimodality: Cross-modal few-shot learning with
multimodal models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC,
Canada, 18–22 June 2023; pp. 19325–19337.

11. Li, J.; Li, D.; Xiong, C.; Hoi, S. Blip: Bootstrapping language-image pre-training for unified vision-language understanding
and generation. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022;
pp. 12888–12900.

12. Lu, J.; Batra, D.; Parikh, D.; Lee, S. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language
tasks. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
Volume 32.

13. Wang, W.; Bao, H.; Dong, L.; Bjorck, J.; Peng, Z.; Liu, Q.; Aggarwal, K.; Mohammed, O.K.; Singhal, S.; Som, S.; et al. Image as a
foreign language: Beit pretraining for all vision and vision-language tasks. arXiv 2022, arXiv:2208.10442.

14. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning
transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine
Learning, Online, 18–24 July 2021; pp. 8748–8763.

15. Gao, P.; Geng, S.; Zhang, R.; Ma, T.; Fang, R.; Zhang, Y.; Li, H.; Qiao, Y. Clip-adapter: Better vision-language models with feature
adapters. arXiv 2021, arXiv:2110.04544.

16. Zhou, K.; Yang, J.; Loy, C.C.; Liu, Z. Learning to prompt for vision-language models. Int. J. Comput. Vis. 2022, 130, 2337–2348.
[CrossRef]

17. Zhang, R.; Fang, R.; Zhang, W.; Gao, P.; Li, K.; Dai, J.; Qiao, Y.; Li, H. Tip-adapter: Training-free clip-adapter for better
vision-language modeling. arXiv 2021, arXiv:2111.03930.

18. Li, B.; Weinberger, K.Q.; Belongie, S.; Koltun, V.; Ranftl, R. Language-driven Semantic Segmentation. In Proceedings of the
International Conference on Learning Representations, Online, 3–7 May 2021.

19. Rao, Y.; Zhao, W.; Chen, G.; Tang, Y.; Zhu, Z.; Huang, G.; Zhou, J.; Lu, J. Denseclip: Language-guided dense prediction
with context-aware prompting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 18–24 June 2022; pp. 18082–18091.

20. Xu, J.; De Mello, S.; Liu, S.; Byeon, W.; Breuel, T.; Kautz, J.; Wang, X. Groupvit: Semantic segmentation emerges from text
supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 18134–18144.

21. Zhou, K.; Yang, J.; Loy, C.C.; Liu, Z. Conditional prompt learning for vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16816–16825.

22. Khattak, M.U.; Rasheed, H.; Maaz, M.; Khan, S.; Khan, F.S. Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 19113–19122.

http://doi.org/10.1007/s11263-022-01653-1


Entropy 2023, 25, 1353 17 of 18

23. Liu, W.; Zhang, C.; Lin, G.; Liu, F. Crnet: Cross-reference networks for few-shot segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 4165–4173.

24. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

25. Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph.
(TOG) 2004, 23, 309–314. [CrossRef]

26. Roerdink, J.B.; Meijster, A. The watershed transform: Definitions, algorithms and parallelization strategies. Fundam. Inform. 2000,
41, 187–228. [CrossRef]

27. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
18th International Conference of the Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Munich,
Germany, 5–9 October 2015; Proceedings—Part III 18; Springer: Cham, Switzerland, 2015; pp. 234–241.

28. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

29. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

30. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

31. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]

32. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

33. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.

34. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,
G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the
International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

35. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 6881–6890.

36. Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for semantic segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 7262–7272.

37. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation
with transformers. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021;
Volume 34, pp. 12077–12090.

38. Chen, W.Y.; Liu, Y.C.; Kira, Z.; Wang, Y.C.F.; Huang, J.B. A Closer Look at Few-shot Classification. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

39. Gidaris, S.; Komodakis, N. Dynamic few-shot visual learning without forgetting. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4367–4375.

40. Dhillon, G.S.; Chaudhari, P.; Ravichandran, A.; Soatto, S. A baseline for few-shot image classification. arXiv 2019, arXiv:1909.02729.
41. Lake, B.; Lee, C.y.; Glass, J.; Tenenbaum, J. One-shot learning of generative speech concepts. In Proceedings of the Annual

Meeting of the Cognitive Science Society, Quebec City, QC, Canada, 23–26 July 2014; Volume 36.
42. Hariharan, B.; Girshick, R. Low-shot visual recognition by shrinking and hallucinating features. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3018–3027.
43. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation policies from data. arXiv 2018,

arXiv:1805.09501.
44. Schwartz, E.; Karlinsky, L.; Shtok, J.; Harary, S.; Marder, M.; Kumar, A.; Feris, R.; Giryes, R.; Bronstein, A. 4-encoder: An effective

sample synthesis method for few-shot object recognition. In Proceedings of the Annual Conference on Neural Information
Processing Systems, Montreal, QC, Canada, 3–8 December 2018.

45. Allen, K.; Shelhamer, E.; Shin, H.; Tenenbaum, J. Infinite mixture prototypes for few-shot learning. In Proceedings of the
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 232–241.

46. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the
International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; Volume 2.

47. Li, W.; Wang, L.; Xu, J.; Huo, J.; Gao, Y.; Luo, J. Revisiting local descriptor based image-to-class measure for few-shot learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 9–15 June 2019;
pp. 7260–7268.

48. Shaban, A.; Bansal, S.; Liu, Z.; Essa, I.; Boots, B. One-shot learning for semantic segmentation. arXiv 2017, arXiv:1709.03410.
49. Dong, N.; Xing, E.P. Few-shot semantic segmentation with prototype learning. In Proceedings of the 2018 British Machine Vision

Conference (BMVC 2018), Newcastle, UK, 3–6 September 2018; Volume 3.

http://dx.doi.org/10.1145/1015706.1015720
http://dx.doi.org/10.3233/FI-2000-411207
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2017.2699184


Entropy 2023, 25, 1353 18 of 18

50. Zhang, X.; Wei, Y.; Yang, Y.; Huang, T.S. Sg-one: Similarity guidance network for one-shot semantic segmentation. IEEE Trans.
Cybern. 2020, 50, 3855–3865. [CrossRef] [PubMed]

51. Fan, Q.; Pei, W.; Tai, Y.W.; Tang, C.K. Self-support few-shot semantic segmentation. In Proceedings of the European Conference
on Computer Vision, Tel Aviv, Israel, 23–24 October 2022; pp. 701–719.

52. Zhang, C.; Lin, G.; Liu, F.; Yao, R.; Shen, C. Canet: Class-agnostic segmentation networks with iterative refinement and attentive
few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 15–20 June 2019; pp. 5217–5226.

53. Tian, Z.; Zhao, H.; Shu, M.; Yang, Z.; Li, R.; Jia, J. Prior guided feature enrichment network for few-shot segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 2020, 44, 1050–1065. [CrossRef] [PubMed]

54. Zhao, Q.; Liu, B.; Lyu, S.; Chen, H. A self-distillation embedded supervised affinity attention model for few-shot segmentation.
IEEE Trans. Cogn. Dev. Syst. 2023. [CrossRef]

55. Min, J.; Kang, D.; Cho, M. Hypercorrelation squeeze for few-shot segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6941–6952.

56. Wang, H.; Liu, L.; Zhang, W.; Zhang, J.; Gan, Z.; Wang, Y.; Wang, C.; Wang, H. Iterative Few-shot Semantic Segmentation from
Image Label Text. arXiv 2023, arXiv:2303.05646.

57. Zhou, C.; Loy, C.C.; Dai, B. Extract free dense labels from clip. In Proceedings of the European Conference on Computer Vision,
Tel Aviv, Israel, 23–24 October 2022; pp. 696–712.

58. Lüddecke, T.; Ecker, A. Image segmentation using text and image prompts. In Proceedings of the CVF Conference on Computer
Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 7076–7086.

59. Han, M.; Zheng, H.; Wang, C.; Luo, Y.; Hu, H.; Zhang, J.; Wen, Y. PartSeg: Few-shot Part Segmentation via Part-aware Prompt
Learning. arXiv 2023, arXiv:2308.12757.

60. Shuai, C.; Fanman, M.; Runtong, Z.; Heqian, Q.; Hongliang, L.; Qingbo, W.; Linfeng, X. Visual and Textual Prior Guided Mask
Assemble for Few-Shot Segmentation and Beyond. arXiv 2023, arXiv:2308.07539.

61. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. In Proceedings of the Advances in
Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Volume 29.

62. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

63. Lu, Z.; He, S.; Zhu, X.; Zhang, L.; Song, Y.Z.; Xiang, T. Simpler is better: Few-shot semantic segmentation with classifier weight
transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021; pp. 8741–8750.

64. Yang, L.; Zhuo, W.; Qi, L.; Shi, Y.; Gao, Y. Mining latent classes for few-shot segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 8721–8730.

65. Wu, Z.; Shi, X.; Lin, G.; Cai, J. Learning meta-class memory for few-shot semantic segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 517–526.

66. Lang, C.; Cheng, G.; Tu, B.; Han, J. Learning what not to segment: A new perspective on few-shot segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8057–8067.

67. Peng, B.; Tian, Z.; Wu, X.; Wang, C.; Liu, S.; Su, J.; Jia, J. Hierarchical Dense Correlation Distillation for Few-Shot Segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June
2023; pp. 23641–23651.

68. Yang, B.; Liu, C.; Li, B.; Jiao, J.; Ye, Q. Prototype mixture models for few-shot semantic segmentation. In Proceedings of the
16th European Conference of the Computer Vision (ECCV 2020), Glasgow, UK, 23–28 August 2020; Proceedings—Part VIII 16;
Springer: Cham, Switzerland, 2020; pp. 763–778.

69. Zhang, B.; Xiao, J.; Qin, T. Self-guided and cross-guided learning for few-shot segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 8312–8321.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCYB.2020.2992433
http://www.ncbi.nlm.nih.gov/pubmed/32497014
http://dx.doi.org/10.1109/TPAMI.2020.3013717
http://www.ncbi.nlm.nih.gov/pubmed/32750843
http://dx.doi.org/10.1109/TCDS.2023.3251371
http://dx.doi.org/10.1007/s11263-009-0275-4

	Introduction
	Related Work
	Semantic Segmentation
	Few-Shot Learning 
	Few-Shot Semantic Segmentation
	CLIP in Segmentation

	Method
	Task Description
	Image-Text Feature Fusion Processing
	Multi-Modal Support Prototype Generator
	Adaptive Foreground Background Matching Module
	Multi-Prototype Matching Loss Function

	Experiments
	Datasets and Implementation Details
	Comparison with Previous Works
	Efficiency Comparison with Previous Works
	Ablation Studies
	Visualization Qualitative Results

	Conclusions
	References

