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Abstract: Phase diagrams are powerful tools to understand the multi-scale behaviour of complex
systems. Yet, their determination requires in practice both experiments and computations, which
quickly becomes a daunting task. Here, we propose a geometrical approach to simplify the numerical
computation of liquid–liquid ternary phase diagrams. We show that using the intrinsic geometry
of the binodal curve, it is possible to formulate the problem as a simple set of ordinary differential
equations in an extended 4D space. Consequently, if the thermodynamic potential, such as Gibbs free
energy, is known from an experimental data set, the whole phase diagram, including the spinodal
curve, can be easily computed. We showcase this approach on four ternary liquid–liquid diagrams,
with different topological properties, using a modified Flory–Huggins model. We demonstrate that
our method leads to similar or better results comparing those obtained with other methods, but with
a much simpler procedure. Acknowledging and using the intrinsic geometry of phase diagrams thus
appears as a promising way to further develop the computation of multiphase diagrams.

Keywords: LLE ternary diagrams; binodal curves; spinodal curves; differential path-following
method; ordinary differential equations

1. Introduction

Equilibrium phase diagrams testify how a complex meso/macroscopic behaviour
emerges from a diversity of intermolecular interactions. Their knowledge thus guides us
into unravelling the multi-scale relationship that underlies the properties of a given mixture,
whether at equilibrium or during a dynamic process, for instance, liquid–liquid separation.
In practice, gaining such knowledge requires either a straightforward computation from
the prior knowledge of the thermodynamic potential (direct problem), or the determination
of such a potential (inverse problem), usually the Gibbs free energy for liquid mixtures,
from the experimental results. These direct and inverse problems are interrelated, as it is,
in reality, impossible to obtain the expression of the thermodynamic potential without any
prior experimental knowledge. Both experiments and computations are thus required to
obtain phase diagrams. While this topic has received a lot of attention, due to its central role,
it strikingly remains challenging nowadays to effectively compute phase diagrams from an
experimental data set. Fast and reliable algorithms are needed to solve the computational
problems arising such as the identification of model parameters from the experimental data,
the localization of phase separation envelopes, and the detection of multi-phase regions. A
vast literature points out the trial of treating even the common case of ternary systems that
can undergo phase separation into two phases.

This observation is striking since the key features of the phase diagram of a common
ternary mixture are well known and can be considered textbook material, for instance,
binodal and spinodal curves, together with critical or plait points. These geometrical
elements define the boundaries of stable, metastable, and unstable domains of the ternary
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mixture in the phase diagram. While the experimental determination of the spinodal curve
is intrinsically challenging, many techniques have been devised to obtain the binodal curve,
from which a reliable model can then be derived to predict the location of the spinodal
curve [1]. Still, the nature of the binodal curve is often ignored by experimentalists, who
usually record the location of phase separation or solubilization. While correct from a
phenomenological standpoint, half the information is then lost as the binodal curve is
actually the combination of two branches of conjugated compositions, or nodes.

From an adequate experimental data set, the first computational problem is an inverse
one. The thermodynamic potential must be derived from the experimental data. A vast
literature treats the techniques to solve the inverse problem using different optimization
algorithms, including stochastic optimization [2], genetic algorithms [3], the ant colony
optimization method [4], and others. The most popular optimization criteria include the
least-square minimization on the distance between the experimental and model estimated
points and the tangent plane distance function, although other formulations are imple-
mented in stochastic optimization algorithms [2]. We refer the interested reader to the
review paper [5] for the detailed study of existing numerical approaches for parameter
estimation in the phase equilibria context. We also remark that most of the published
literature deals with NRTL or UNIQUAC models.

The second computational problem is a direct one. Both the binodal and spinodal
curves should be computed over the whole composition range from the expression of the
previously extracted expression of the thermodynamic potential. In order to compute the
binodal curve, one needs to solve the set of algebraic equations expressing the equality
between the chemical potentials in each phase for every component of the multicomponent
mixture. Different methods are currently used to address this problem. The simplest
one consists in solving these algebraic equations by a kind of Newton–Raphson iterative
procedure over the discrete mesh approximating the state space [6]. Clearly, the accuracy
of the result, as well as the computational effort is directly related to the finiteness of the
mesh that is used. The famous liquid–liquid multi-phase flash algorithm proposed by
Michelsen [7] uses the phase stability analysis based on the minimization of the distance
between the tangent plane and the Gibbs energy surface, and hence explores the geometrical
properties of the potential surface. Recently, Binous and Bellagi [8] proposed to use the arc-
length continuation method, reducing the computation of the binodals to the integration of
differential-algebraic (DEA) systems of equations with high accuracy. It is worth also citing
the homotopic methods, see [9] and references therein, which allow solving simultaneously
direct and indirect problems.

Interestingly, both computation problems are challenging due to the intrinsic geometry
of the equilibrium curves that we briefly recapitulate. Since the pioneering works of D.J.
Korteweg [10], the mathematical description of phase diagrams can be set in terms of
topological properties of the surface associated with the appropriate thermodynamic
potential, for instance, the Gibbs free energy G. The problem is rather simple in two-
parametric systems (one-component biphasic system with varying temperature or pressure,
bi-component systems under isobaric–isothermal conditions, etc.). In this case, the analysis
reduces to the detection of the bitangent lines and the inflection points of the graph of the
potential. However, in the ternary case, this picture becomes much more complicated.

Indeed, the binodal curves result from the projections of the one-parametric families
of bitangent lines to the surface, while the spinodal curves are the projections of the curves
of zero Gauss curvature. Starting from the works of Arnold [11] and Varchenko [12], the
types of possible singularities associated with different types of thermodynamic potentials
have been the subject of many studies; see, for instance, refs. [13–15] and references therein.
Most of these works treated the binary systems with varying pressure or temperature,
though the developed methods can be generalized to any type of diagram.

In this work, we propose an algorithm able to treat both direct and inverse problems
by the integration of ordinary differential equations (ODE). This huge simplification rests
on the reformulation of the mathematical problems in a space adequate to the intrinsic
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geometry of ternary phase diagrams. More precisely, our key idea is to reformulate the
definition of the binodal curves in an extended 4D space by associating a proper config-
uration space to each phase of the system. To this end, the phase coexistence conditions
are rewritten in geometrical terms involving the notions of bitangent planes and conodal
pairs of points. The binodal curves are then shown to be the projections of the integral
curve of a certain vector field in the extended space. The same approach applied in the 2D
composition plane yields the vector field generating the spinodal curves.

Using the described geometrical construction, the numerical computation of binodal
and spinodal curves can be performed via the standard integration of a system of ODE
equations by any conventional ODE solver. From the numerical point of view, the proposed
method implements a kind of a differential path-following algorithm. This method is here
applied to detect the binodal and spinodal curves of ternary liquid mixture diagrams of
types 0, I, and II, defined according to Treybal’s [16] classification. The proposed approach
can be implemented with a variety of models for the thermodynamic potential, in particular,
excess Gibbs free energy models like NRTL or UNIQUAC. We chose here the expression
based on the analytical Flory–Huggins model, modified with a ternary cross-term that
accounts for the oversimplifying hypotheses underlying the standard Flory–Huggins model.
Interaction parameters were found through a non-linear optimization procedure associated
with a non-standard criterion, which accounts for the intrinsic geometry of the binodal
curve. This choice of model is not exclusive to the computation of the binodal and spinodal
curves via ODE integration, but it has several remarkable advantages. First of all, the
Flory–Huggins model provides a good representation of mixtures composed of molecules
of different lengths, for instance, when one or more compound is a polymer, as suggested
by [1]. On the other hand, the linearity of the Flory–Huggins expression of the Gibbs
free energy of mixing with respect to unknown parameters facilitates the resolution of the
inverse LLE problem. Indeed, some of the unknown parameters can be computed directly
in the binary case, provided the miscibility gap is known experimentally. This fact leads to
an important simplification of the fitting procedure in the ternary case for the diagrams of
type I and II.

The paper is organized as follows. In Section 2, we recall how the phase separation
conditions of a biphasic system maintained at thermodynamic equilibrium are related to
the Gibbs free energy surface topology. In Section 3, we present the main conceptual result
of the paper. The problem is considered in the extended 4D space having the structure of
product space of two copies of 2D configuration space associated with each phase. It is
shown that the phase coexistence conditions define a smooth curve in this space, referred
to as the generalized binodal curve. Each point of this curve projects on a tie-line of the phase
diagram. The binodal curve computation is then reduced to the numerical integration of a
system of four differential equations. Apart from the special case of zero (or “island”)-type
diagrams, the starting point of such integration can be found by solving at most three
binary problems on the boundaries of the composition triangle. In Section 4, the developed
approach is applied to the analysis of the series of examples of ternary mixtures, modelled
by using the Flory–Huggins equation with an additional triple interaction term. We show
that the novel computation method performs nicely, and our fitting results are of similar to
better accuracy relative to other authors who have used NRTL or UNIQUAC models with
parameters carried out with much more powerful optimization algorithms.

2. Phase Separation: from Thermodynamics to Geometry
2.1. Phase Coexistence in Multicomponent Mixtures at Thermodynamic Equilibrium

Consider an N-component system of volume V characterized by temperature T,
pressure P, and entropy S. Denote by ni the number of moles of the i-th component and set
n = (n1, ..., nN). By choosing P, T, and n as the coordinates of the thermodynamic state
space, the physicochemical properties of the system as a whole can be described by the
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Gibbs free energy G(P, T, n). Being a homogeneous function of the first order with respect
to ni, G can be expressed as

G(P, T, n) =
N

∑
i=1

niµi(P, T, n), (1)

where by definition, µi =
∂G
∂ni

is the chemical potential of i-th component. The fundamental
Gibbs equation

dG = −SdT + VdP +
N

∑
i=1

µidni (2)

describes the infinitesimal changes in the state of the system.
Consider an isolated system maintained at thermodynamic equilibrium without chemi-

cal reactions, and assume that its components coexist in two phases denoted by superscripts
I and I I. Then G = GI + GI I . Equations (1) and (2) are valid for each phase, while the

equilibrium condition dG = 0 reads dGI + dGI I = 0. Moreover, since ntot =
N
∑

i=1
ni = const

and ni = nI
i + nI I

i = const, it follows that dnI
i = −dnI I

i . Then, the equilibrium assumption
implies the equality between the pressure and the temperature in two phases: T I = T I I ,
PI = PI I , as well as the equality of chemical potentials of each component in both phases:

µI
i (P, T, n) = µI I

i (P, T, n). i = 1, . . . , N (3)

In the remaining part of this paper, only the isobaric–isothermic conditions will be
considered, and thus, the dependence of G on P and T will be neglected. It is also worth
remarking that two different thermodynamic models might be used for the expressions of
Gibbs energy and chemical potentials of two phases, and other types of diagrams (liquid–
solid, solid–solid, etc.) can be modelled in this way. The computational method discussed
in this paper can be easily adopted to this case, but for the sake of simplicity, it is assumed
that both phases of the system are described by one single model of G.

2.2. Phase Coexistence Conditions in Partial Molar Variables

Most of the thermodynamic models of real mixtures, as well as the available data of
phase separation, are given in terms of either mole, volume or mass fractions of the com-
ponents. So, for practical purposes, it is more convenient to express the phase coexistence
conditions with respect to one of these sets of variables, for example, the mole fractions.
This choice makes no restriction on the computations presented below, but in the case of
volume or mass fraction, the specific molar Gibbs energy should be replaced by Gibbs
energy per unit of volume or mass.

Let g = G/ntot and xi =
ni

ntot
denote, respectively, the molar free Gibbs energy and the

mole fractions of the components of the mixture. Since
N
∑

i=1
xi = 1, only N − 1 of them can

be used as independent variables. In what follows, we denote x = (x1, . . . , xN−1), so that
xN = 1− x1− ...− xN−1. In terms of molar variables, the first N− 1 equilibrium conditions
(3) are equivalent to the following relations:

∂gI(xI)

∂xI
i

=
∂gI I(xI I)

∂xI I
i

, i = 1, . . . , N − 1, (4)

while the N-th condition (3) yields

gI(xI)− gI I(xI I)−
N−1

∑
i=1

∂gI(xI)

∂xI
i

(xI
i − xI I

i ) = 0. (5)
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The interested reader can find the detailed mathematical derivation of these conditions
in Appendix A.

The phase coexistence conditions written in forms (4) and (5) admit a clear geometrical
interpretation. Indeed, in the particular case N = 2, Equations (4) and (5) reduce to the
conditions of existence of a bitangent line to the graph of the molar free energy function
g(x), x ∈ [0, 1]:

g′(xI) = g′(xI I), g(xI)− g(xI I) = g′(xI)(xI I − xI),

as it is shown in Figure 1. Here, g′ = ∂g
∂x . Other characteristics of the graph of g, like its

convexity and the existence of inflexion points, are related to the material stability of the
mixture. We will discuss them in a more general context in the next section.

  

1 2 3 4 5 6

x

g(x)

x I xIIunstable 

metastable 

stable 0 stable 

inflexion points

co-nodal points

bitangent line

~g’(x I)

Figure 1. Two-phase separation in binary mixture: geometrical meaning of conditions (4) and (5).

2.3. Ternary Case: Phase Equilibrium Condition and Bitangent Planes Geometry

Let us now focus on a three-component liquid mixture whose components may coexist
in one or two liquid phases. As in the binary case, in the ternary case, conditions (4) and (5)
have a straightforward geometrical interpretation in terms of surface geometry.

Denote the composition domain of a ternary mixture by

Ω def
= {x = (x1, x2) : xi ∈ [0, 1], i = 1, 2 and x1 + x2 ≤ 1}.

Consider a smooth surface

W def
= {(x, z) ∈ R3 : z = g(x), x ∈ Ω }

associated with the graph of the function g : Ω→ R. The vector field

N(x, z) = g′1(x)∂x1 + g′2(x)∂x2 − ∂z, (6)

defines the normal direction to this surface. Here, ∂xi are the coordinate vector fields in

R3 and g′i =
∂g(x)

∂xi
, i = 1, 2. Let P1 = (xI , g(xI)) and P2 = (xI I , g(xI I)) be two points in R3

belonging to the surface W, and such that

g′1(x
I) = g′1(x

I I), g′2(x
I) = g′2(x

I I). (7)

In view of (6), it means that the normals N(P1) and N(P2) are collinear.
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Further, the vector P1P2 = (xI I
1 − xI

1, xI I
2 − xI

2, g(xI I)− g(xI)) belongs to the tangent
plane TP1W attached to the surface W at P1, which means that P1P2 ⊥ N(P1), i.e.,

g(xI I)− g(xI)− g′1(x
I)(xI I

1 − xI
1)− g′2(x

I)(xI I
2 − xI

2) = 0. (8)

In view of condition (7), the vector −P1P2 also belongs to TP2W. In other words, for N = 3,
conditions (4) and (5) mean that the surface W admits a bitangent plane passing through the
points P1 and P2. Such pairs of points on the surface W are called conodal. It is easy to see
that the projections on Ω of the points P1 and P2 along the z-axis define the compositions of
splitting liquid phases xI and xI I .

The projection of the bitangent segment P1P2 on Ω is usually referred as node or
tie-line. The curves on W formed by one-parametric families of conodal pairs define two
directrices of a certain ruled surface in R3, with the bitangent segments P1P2 being its
generators. Projections of these directrices on Ω are called conodal or binodal curves of the
phase diagram.

2.4. Differential Geometry of the Gibbs Energy Surface

As we have seen in the previous section, the geometry of the Gibbs energy surface
W determines the topology of the underlying phase diagram. In fact, the most important
properties of the phase diagram are encoded in the Gauss curvature of W. Denote by

H(x) def
=

[
∂2g(x)
∂xi∂xj

]N−1

i,j=1

the Hessian associated to the function g. Then, the Gauss curvature of surface W takes the
form [17]:

K(x) =
det H(x)

(g′1(x)
2 + g′2(x)

2 + 1)2

According to the sign of K, the composition domain Ω can partitioned into elliptic
(K > 0), parabolic (K = 0), and hyperbolic (K < 0) sub-domains. The surface W is also
subdivided into elliptic and hyperbolic sub-domains by the parabolic curve {(x, z) ∈W :
K(x) = 0}. On the other hand, K is a product of two principal curvatures of the surface:
K = k1 · k2, so that the parabolic curve on W is the curve of zeros of one of the principal
curvatures of the surface.

The vertical (i.e., along z-axis) projection of the parabolic curve on Ω defines the
spinodal curve on the phase diagram. It bounds the elliptic sub-domain corresponding

to the material stability domain of the mixture, which will be referred as Ω̃ def
= {x ∈

Ω : K(x) ≥ 0}. It follows that the phase diagram can be described as the almost-
Riemannian manifold M = (Ω̃, H) with a border, equipped with an almost-Riemannian
metric associated with the Hessian H(x). The sub-domain of Ω̃ between the binodal and
spinodal curves correspond to the metastable domain, while the remaining part delimited
by the binodal curve and the boundary of Ω is the stable miscibility domain, where no
phase separation occurs. In the binary case (see Figure 1), the binodal and spinodal curves
reduce to two pairs of points that define the limits of stable and metastable domains.

The parabolic curves on smooth surfaces are very interesting geometrical objects. They
may contain points where the curve has fourth-order contact with the tangent plane. Such
special parabolic points (godrons in the terminology of [18]) correspond to the plait (critical)
points of phase diagrams. It can be shown that special parabolic points give rise to two
branches of conodal curves on W. In the underlying phase diagram, plait points are the
only common points between spinodal and binodal curves. Besides plait points, binodal
curves lie entirely in Ω̃. The plait point location can be found by solving equations due to
Tompa [19]:

g′′′222g′′11
2 − 3g′′′122g′′11g′′12 + 3g′′′112g′′12

2 − g′′′111g′′12g′′22 = 0, g′′11g′′22 − g′′12
2
= 0 (9)
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where g′′′ijk =
∂3g

∂xi∂xj∂xk

Figure 2 illustrates the described geometrical concepts.

  
x2

x1

z

spinodal curve

tie line

plait (critical)
point

co-nodal points

binodal curve

bitangent lineco-nodal directrix

parabolic curve 
K=0W

Ω
unstable

K>0

K<0P1

P2

Ω∖~Ω

Figure 2. Gibbs energy surface W vs. the corresponding phase diagram. The hyperbolic domain
of surface W is delimited by the parabolic curve (black dashed curve). Its vertical projection on Ω
defines the spinodal curve (black and white dashed curve), which bounds the unstable domain of the
phase diagram. The one-parametric family of conodal pairs of points on W (co-nodal directrix curve,
yellow) projects on the binodal curve of the phase diagram. It can touch the spinodal curve at a plait
point. The binodal curve divides the elliptic domain on Ω into stable (white) and metastable (light
blue) sub-domains.

3. Four-Dimensional Geometry of the Binodal Curve

So far, we have compared the 3D geometry of the surface W with the structure of
the 2D phase diagram on Ω. But in order to better understand the intrinsic structure
of the binodal curve, it would be more appropriate to associate a proper composition
space ΩI and ΩI I to each of the phases. Consider now an extended configuration space
Σ = ΩI ×ΩI I of dimension four:

Σ def
= {q ∈ R4 : q = (q1, q2) with q1 = xI ∈ ΩI , q2 = xI I ∈ ΩI I}.

Equations (7) and (8) define three smooth sub-manifolds in Σ associated with zero-level
sets of three functions Fi : Σ→ R1 such that

F1(q) = g′1(q1)− g′1(q2), F2(q) = g′2(q1)− g′2(q2), (10)

F3(q) = g(q2)− g(q1) + (∇xg(q1)|q2 − q1),

where ∇xg(q1) = (g′1(q1), g′2(q1)) and ( | ) denote, respectively, the standard gradient and
scalar product in R2. The intersection of these 3D sub-manifolds defines a one-dimensional
sub-manifold B ⊂ Σ such that

B def
= {q ∈ Σ : Fi(q) = 0, i = 1, 2, 3}. (11)

The orthogonal projections πi : Σ→ Ω such that πI(q) = q1 and πI I(q) = q2 define
two branches πI(B) and πI I(B) of the binodal curve. In what follows, the sub-manifold B
will be referred to as the generalized binodal curve.
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Let V(q) ∈ TqB be the tangent vector at point q ∈ B of the generalized binodal B

defined by (11). By construction, V ∈
3⋂

i=1
Ker∇qFi, so that by definition,

∇qFi(q) ·V(q) = 0, i = 1, 2, 3.

Computing the gradients of Fi yields the following system of linear equations verified
by components of the vector field V = (V1, V2, V3, V4) at q ∈ B :

 g′′11(q1) g′′12(q1) −g′′11(q2) −g′′12(q2)
g′′12(q1) g′′22(q1) −g′′12(q2) −g′′22(q2)
Φ1(q) Ψ1(q) 0 0

 ·


V1
V2
V3
V4

 = 0, (12)

where the functions Φ1 and Ψ1 are defined by the relation(
Φ1
Ψ1

)
= H(q1) · (q1 − q2).

Rewriting (12) in a more compact form yields

Φ1V1 + Ψ1V2 = 0, H(q2)

(
V3
V4

)
= H(q1)

(
V1
V2

)
. (13)

If det H(q2) 6= 0 and at least one of the functions Φ1, Ψ1 is non-zero, one obtains the
solution of (13) in the form

V1 = Ψ1 det H(q2), V2 = −Φ1 det H(q2)

and (
V3
V4

)
= (H(q2))

−1 · H(q1) ·
(

V1
V2

)
,

Performing all necessary simplifications, we obtain
V1
V2
V3
V4

 =


Ψ1 det H(q2)
−Φ1 det H(q2)
Ψ2 det H(q1)
−Φ2 det H(q1)

 (14)

where, by definition, (
Φ2
Ψ2

)
= H(q2) · (q1 − q2). (15)

The above expressions define a smooth vector field V ∈ TΣ. It is well defined except
for the singular points q such that det H(q1) = det H(q2) = 0, in other words, if q1 and q2
belong to the spinodal, i.e., if they coincide forming the plait point of the phase diagram.
The described geometrical construction is shown in Figure 3.
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ΩII

ΩI

x1

x2

(V 1 ,V 2)

(V 3 ,V 4)

binodal curve
spinodal curve

plait (critical) 
point

q1=(x1
I , x2

I )

q2=( x1
II , x2

II)

Ω

Σ

Figure 3. Four-dimensional lifting of the binodal curve. The complete configuration space of the
binodal curve is Σ = ΩI ×ΩI I . The vector field V = (V1, V2, V3, V4) generates a smooth curve B
(blue) in Σ. The orthogonal projections of B onto Ω form the binodal curve (black) on the underlying
phase diagram. The dotted lines indicate the coupled pairs of phases, and the dashed red curve
indicates the location of the spinodal curve.

Summing up, we showed that the binodal curve can be easily recovered from the
projection of the integral curve of the vector field V. Moreover, the particular structure of
formula (14), namely the properties (13) and (15), imply that the tie-lines are orthogonal to
the binodal with respect the metric in Ω̃ associated with the Hessian matrix H(x).

Numerical Computation of Binodal and Spinodal Curves

Being the integral curve of the vector field V, the generalized binodal curve can be
computed by solving the system of ordinary differential equations q̇ = V(q) in Σ. Here,
the dot notation stands for the derivative with respect to any suitable parameter. This result
has an important practical application regarding its computation.

Using the vector field V, the numerical computation of binodal curves reduces to a
simple ODE integration by any conventional solver with desired accuracy. The normaliza-
tion of V allows one to avoid the eventual stiffness problem when approaching the border
of Ω̃, so it is recommended to use the arc-length parameter for the integration. To start the
computation, one needs to find an initial point in Σ, i.e., a starting tie-line of the binodal
curve. This can be performed by analysing the profile of the W surface along the boundaries
of the composition domain Ω, in other words, by solving at most three binary problems
over the interval [0, 1]. The only exception here are the closed-type 0 phase diagrams, for
which the initial tie-line must be found inside Ω.

The same method can be applied to derive the differential equation of the spinodal
curve. This case is even simpler because it is a problem in the 2D space Ω. Indeed, being
the solution of the equation H(x) = 0, the spinodal curve is a solution to the differential
equation associated with the vector field S(x) = ∇x H(x)⊥ in Ω, which, in general, is
regular at plait points. Here, the superscript ⊥ denotes the orthogonal complement to
the vector ∇x H(x) in R2. In other words, the spinodal curve is the solution of the ODE
equation ẋ = S(x), x ∈ Ω; the starting point for the integration can be detected by finding
one inflexion point of the function g on the boundary of Ω or inside Ω for closed-type
curves.
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Once binodal and spinodal curves are computed, the plait point can be found by
solving numerically Equation (9), taking the approximate common point between these
curves as the initial guess for the non-linear solver in order to facilitate the converge
procedure.

The implementation of the described computational method requires accessing the
derivatives of the thermodynamic model defining the function g up to the order two. The
finite-difference method may be not sufficient to obtain the necessary accuracy level for
the Hessian computation. In fact, this is the main obstacle in the implementation of such
types of algorithms in many other domains involving the thermodynamic models of real
systems. However, we would like to stress the fact that the nowadays numerical technology
allows one to easily overcome this inconvenience. For the academic use, the symbolic
computation packages, like Maple or Mathematica, which we used in this paper, would be
more than sufficient. To develop a stand-alone calculator of phase diagram, the automatic
differentiation technique can be employed. A pilot version of a functional code of this kind
was described in [20] for the computation of the univolatility curves of the residue curve
maps.

4. Inverse Problem and Case Studies

Following [16], ternary LLE phase diagrams of biphasic systems can be roughly
divided into three main classes depending on the number of the partially miscible binary
pairs:

• Type 0 or “island” type: The diagram is characterized by a closed heterogeneous
domain inside the composition triangle, while all three binary pairs are miscible. The
systems of this type exhibit two plait points.

• Type I: One pair of components exhibits a miscibility gap on the border of the com-
position triangle. This type of diagram possesses one plait point where both liquid
phases have the same composition. This is the most common type of phase diagrams
(75% according to [21]).

• Type II: This type is characterized by the presence of two partial miscibility gaps on
the borders of the composition triangle. Such diagrams do not have plait points. They
represent about 20% of known solutions ([21]).

Under variations in temperature or pressure, all these types of behaviour transform
one into another, or split into two or more heterogeneous zones. Two heterogeneous zones
can also melt, forming three phase domains. The analysis of this phenomenon goes beyond
the aim of this paper. The three case studies presented below correspond to the three
standard types of diagrams, using the Flory–Huggins model for the free energy function g.

4.1. The Flory–Huggins Model Equation

The choice of an appropriate thermodynamic model for function g depends on the
particular application. For LLE diagrams, NRTL or UNIQIUAC models that describe a
huge class of ternary systems, were studied by numerous authors, though the quality of
the model parameter regression is not always satisfactory. As suggested by [1], for the
polymer solutions, the Flory–Huggins (FH) model can be employed to describe the systems
of type non-solvent–solvent–polymer, solvent–polymer–polymer, and even three polymers.
The relative simplicity of the mathematical expression of constitutive equation is the main
advantage of the FH model with respect to NRTL or UNIQUAC models used by other
authors. Unlike NRTL or UNIQUAC, formulated in terms of mole fractions, the FH model
uses partial volume fractions, assuming that the total volume of the systems is equal to the
sum of partial volumes.

The classical Flory–Huggins model defines the free energy of mixing per unit of
volume according to the expression

g =
x1

N1
ln x1 +

x2

N2
ln x2 +

x3

N3
ln x3 + χ12x1x2 + χ13x1x3 + χ23x2x3 + βx1x2x3. (16)
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Here xi, i = 1, 2, 3 are the volume fractions of the components, and N2 and N3 and
relative numbers of segments in the molecules of the compounds with respect to the first
compound, which usually corresponds to water; thus, N1 = 1. The symbols χij and β
stay for the binary and ternary interaction coefficients. In all computation below, x3 was
replaced by x3 = 1− x1 − x2.

In most of the papers that use Equation (16), the ternary coefficient β = 0, while some
of the binary interaction coefficients may depend on the components of the composition
vector x. However, the triple interaction term accounts for the possible linear dependency
of χij on x, and allows one to relax the total volume conservation hypothesis when mixing
the components. So, in this paper, to maintain the model equations as simple as possible,
the six parameters Ni, χij, and β are assumed to be constant. In other words, in this paper,
we propose considering (16) as a formal mathematical expression without taking into
account the exact physical meaning of its parameters, at least in the cases where constant
volume assumption is difficult to justify.

4.2. Parameter Estimation Procedure and Case Studies

In order to calculate the LLE diagrams presented below, a set of nb tie-line measure-
ments was used.

In order to fit the model, the six parameters of the FH model were computed via a
non-linear optimization procedure, associated with the function

min
p

(
nb

∑
k=1

F2
1 (qk) + F2

2 (qk) + F2
3 (qk)

(1− F2
3 (qk))2

)
, (17)

where Fi are defined by (10), and p is the vector of unknown scalar parameters. The
denominator term penalizes those pairs of points that do not belong to the same bitangent
line. In our examples this criterion showed a better convergence to the experimental
data comparing to the sole square term in the nominator of (17). The exact mathematical
expressions of functions Fi associated with the FH model are provided in Appendix B.1.

The described NLP minimization procedure was applied to compute two of the
examples below: the type 0 diagram water–dimethyl sulfoxide (DMSO)–tetra hydrofuran
(THF) (see in Figure 4) and water–phenol–acetone at 50 °C (Figure 5a). However, for the
diagrams of types I and II, the computation can be simplified, provided the measurement
of at least one of binary miscibility gaps is available. In fact, in this case, the linearity of the
FH model with respect to the parameters allows one to compute the part of the parameters
describing the binary pair straightforwardly, and thus reduces the number of unknowns
of problem (17). The computation formulae are provided in Appendix B.1. Finally, the
quality of the predicted model can be evaluated using the standard formula for the root
mean square deviation (RMSD)

σ = 100

(
1

6n

nb

∑
k=1

3

∑
i

(
xI,FH

i,k − xI,exp
i,k

)2
+
(

xI I,FH
i,k − xI I,exp

i,k

)2
)1/2

used by other authors.
All numerical computations presented in this paper were realized by Mathematica 9

software [22]. We used the standard functions with the default choice of methods. Namely,
the ODE integration was performed by NDSolve function, which implements the LSODA
algorithm (combined Adams and BDF methods). The optimization problem was solved
by the FindMinimum command with the quasi-Newton method chosen by default. The
original unpublished data used for the LLE regression are included in Appendix C, together
with the computational formulae for the Flory–Huggins model available in Appendix B.1.
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dimethyl sulfoxide

water
0.0 0.2 0.4 0.6 0.8 1.0

tetra hydrofuran

Figure 4. Phase diagram of water–DMSO–THF in the volume fraction space. Here, black points
and dashed lines correspond to the experimental points and tie-lines from [23]. The blue curve and
the red dashed curve represent, respectively, the binodal and spinodal curves calculated using the
Flory–Huggins model. White points indicate the end-points of the FH-calculated tie-lines (grey) used
in the RMSD evaluation.

4.2.1. Type 0 Diagram: Water–DMSO–THF

The parametric regression of type 0 diagrams is known to be a difficult task. Figure 4
represents our result of the phase diagram prediction based on the experimental data avail-
able in [23] for the water–DMSO–THF system. These data were also studied in [8,24,25]
using NRTL and UNIQUAC models. In Table 1, the computed RMSD value of the recon-
structed FH model is compared with those obtained by other authors, showing a good
quality of prediction for this mixture using the FH model.

Table 1. Root mean square deviation σ of analysed mixture.

System Model T, C σ

water–DMSO–THF FH (this work) 20° 3.53
water–DMSO–THF, [25] NRTL 20° 5.83
water–DMSO–THF, [8] UNIQUAC 20° 3.4

water–DMSO–THF, [24] NRTL 20° 3.18, 3.09
water–DMSO–THF, [24] UNIQUAC 20° 3.97, 3.4

water–acetone–phenol FH (this work) 50° 0.88
water–acetone–phenol, [26] NRTL 50° 0.81
water–acetone–phenol, [24] NRTL 50° 1.13
water–acetone–phenol, [24] UNIQIAC 50° 1.17

water–acetone–phenol FH (this work) 56° 1.27
water–acetone–phenol, [23] NRTL 56° 1.61
water–acetone–phenol, [23] UNIQUAC 56° 1.52

water–acetone–hexadecane FH (this work) 20° 2.92

4.2.2. Type I Diagram: Water–Phenol–Acetone

The ternary diagrams of the water–phenol–acetone system at 50 °C and 60 °C us-
ing NRTL and UNIQUAC models were studied in [24,26], both using the same data
from [26]. Our result of the FH regression according the method described above is shown
in Figure 5a). In Figure 5b, we show the phase diagram for 56 °C computed using the data
from [23]. In this second case, the computation was simplified because [23] provides the
measurement on the phenol–water miscibility gap. It allows one to compute explicitly
the values of χ13 and N3. The remaining four parameters were estimated via the general
optimization procedure described above. Again, the comparison with the RMSD values
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published by other authors shows a very good quality of our result for 50 °C, and the best
one for 56 °C.

     a).      b).

acetone acetone

water waterphenol phenol
0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Phase diagram of water–phenol–acetone in the volume fraction space at 50 °C (a) and at
56 °C (b). Black points and dashed lines correspond to the experimental points and tie-lines from [26]
(left) and [23]. The blue curve and the red dashed curve represent, respectively, the binodal and
spinodal curves calculated using the Flory–Huggins model. White points indicate the end-points of
the FH-calculated tie-lines (grey) used in the RMSD evaluation.

4.2.3. Type II Diagram: Water–Acetone–Hexadecane

For the water–acetone–hexadecane system, we used our own set of 14 tie-line measure-
ments obtained with Raman’s spectroscopy. Another set of 17 measurements of the phase
envelope, without taking into account the conodal pair correspondence, were obtained
using the redisolution by adding acetone. More details on the experimental procedure
are available in [27]; the data are included in Appendix C, Tables A1 and A2. The phase
envelope measurements allowed one to detect the acetone–hexadecane miscibility gap.
For the miscibility gap of water–hexadecane, we used the data accessible in the literature.
Knowing these two miscibility gaps, we first computed the four parameters N2, N3, χ13,
and χ23. Due to the significant variation of the solubility data of hexadecane in water in
different sources, the term χ13 was replaced by the χ13 + δ, where the correction term δ was
adjusted in the next step of computation. After this important simplification, the number
of unknown parameters was reduced to three. Applying the optimization protocol on the
remaining set of parameters produced the result depicted in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0

waterhexadecane

acetone

Figure 6. Water–acetone–hexadecane system in the volume fraction space. Black points and dashed
lines correspond to the experimental points and tie-lines. The blue curve and the red dashed curve
represent, respectively, the binodal and spinodal curves calculated using the Flory–Huggins model.
White points indicate the end-points of the FH-calculated tie-lines (grey) used in the RMSD evaluation.
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This result shows an excellent prediction for shape of phase envelope, and a very good
quality for the tie-lines’ directions. The RMSD value associated with this predictions equal
to 2.92.

5. Conclusions

This work showed that the challenging computation of liquid–liquid phase diagrams
can be drastically simplified by taking into account the intrinsic geometrical structures
associated with phase equilibrium conditions. The crucial mathematical idea is to work in
an adequate extended space. Indeed, we show that the stability domain boundary defined
by the 2D binodal curve is a projection of a higher-dimensional object, the 4D generalized
binodal curve, which can be easily computed by solving a set of ordinary differential
equations.

This mathematical viewpoint is employed to propose a new numerical algorithm
for phase-diagram computation, which drastically reduces the computation effort and
guarantees a high value of accuracy. Notably, the only iterative procedure is the one used to
find the initial point for the integration. We tested this methodology on four ternary liquid
phase diagrams of different topological types. We chose a modified Flory–Huggins model
for the regression procedure applied to the available experimental data. The presented
results show a good, sometimes excellent, accordance between the data and the calculated
model, which opens a promising perspective for the further development of the method to
study other types of multiphase diagrams. Furthermore, the developed approach can be
used for any other type of ternary diagram and is valid for any chosen thermodynamic
model.
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Appendix A. Phase Coexistence Conditions in Terms of Molar Fractions

Let g = G/ntot denote the molar free Gibbs energy. Since the mole fractions xi =
ni

ntot

verify
N
∑

i=1
xi = 1, only N − 1 of them can be used as independent variables. In what

follows, we denote x = (x1, . . . , xN−1), so that nN = ntot(1 − x1 − ... − xN−1). Since

dxN = −
N−1
∑

i=1
dxi, the Gibbs Equation (2) takes the form

dg = −sdT + vdP +
N−1

∑
i=1

(µi − µN)dxi, (A1)

where s = S/ntot and v = V/ntot are the specific molar entropy and volume, correspond-
ingly. Moreover, for all i = 1, . . . , N − 1 we obtain

∂g
∂xi

=
1
n

∂G
∂xi

=
1
n

(
∂G
∂ni

∂ni
∂xi

+
∂G

∂nN

∂nN
∂xi

)
= µi − µN , (A2)
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and hence,

g =
1
n

N

∑
i=1

µini =
N−1

∑
i=1

(µi − µN)xi + µN . (A3)

Rewriting (A2), (A3) for each phase, the phase coexistence Equations (3) can be
expressed in terms of mole fractions. Indeed, the first N − 1 equilibrium conditions (3) are
equivalent to the following relations:

∂gI(xI)

∂xI
i

=
∂gI I(xI I)

∂xI I
i

, i = 1, . . . , N − 1, (A4)

while the N-th condition (3) yields

gI(xI)− gI I(xI I)−
N−1

∑
i=1

∂gI(xI)

∂xI
i

(xI
i − xI I

i ) = 0. (A5)

Appendix B. The Flory–Huggins Model Computational Formulae

Appendix B.1. Phase Coexistence Conditions Associated with Flory–Huggins Model and Linearity

In the case of the Flory-Huggins model (16) the mathematical expressions of functions
Fi take the forms

F1 = χ12

(
xI

2 − xI I
2

)
− χ13

(
2(xI

1 − xI I
1 ) + xI

2 − xI I
2

)
− χ23

(
xI

2 − xI I
2

)
+β
(

xI
2 − 2xI

1xI
2 − (xI

2)
2 − xI I

2 + 2xI I
1 xI I

2 + (xI I
2 )2

)
+

1
N1

ln

(
xI

1
xI I

1

)
− 1

N3
ln

(
1− xI

1 − xI
2

1− xI
1 − xI I

2

)

F2 = χ12

(
xI

1 − xI I
1

)
− χ13

(
xI

1 − xI I
1

)
− χ23

(
xI

1 − xI I
1 + 2xI

2 − 2xI I
2

)
+

+β
(

xI
1 − (xI

1)
2 − xI I

1 + (xI I
1 )2 − 2xI

1xI
2 + 2xI I

1 xI I
2

)

+
1

N2
ln

(
xI

2
xI I

2

)
− 1

N3
ln

(
1− xI

1 − xI
2

1− xI I
1 − xI I

2

)
(A6)

F3 = χ12(xI
1 − xI I

1 )(xI
2 − xI I

2 )− χ13(xI
1 − xI I

1 )(xI
1 − xI I

1 + xI
2 − xI I

2 )

−χ23(xI
2 − xI I

2 )(xI
1 − xI I

1 + xI
2 − xI I

2 )

+β
(

xI
1xI

2 − 2(xI
1)

2xI
2 − xI I

1 xI
2 + 2xI

1xI I
1 xI

2 − 2xI
1(xI

2)
2 + xI I

1 (xI
2)

2

−xI
1xI I

2 + (xI
1)

2xI I
2 + xI I

1 xI I
2 − (xI I

1 )2xI I
2 + 2xI

1xI
2xI I

2 − xI I
1 (xI I

2 )2
)

+
1

N1

(
xI

1 − xI I
1 − xI I

1 ln

(
xI

1
xI I

1

))
+

1
N2

(
xI

2 − xI I
2 − xI I

2 ln

(
xI

1
xI I

1

))

− 1
N3

(
xI

1 − xI I
1 + xI

2 − xI I
2 − (1− xI I

1 − xI I
2 ) ln

(
1− xI

1 − xI
2

1− xI I
1 − xI I

2

))
The phase coexistence conditions (4) and (5) take the form Fi(q) = 0 for i = 1, 2, 3

and q = (xI
1, xI

2, xI I
1 , xI I

2 ) ∈ Σ. Remarkably, for the FH model, these conditions are linear
with respect to the interaction parameters χij, β and to the 1/N2 and 1/N3 values. This fact
permits the direct computation of these constants in the binary case, as it is explained in
the next section.
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Appendix B.2. Detection of the Parameters of the Fh Model from the Miscibility Gap Limits

Assume that components 1 and 3 are partially miscible and assume that the values
xI

1 and xI I
1 are available through the experimental procedure. The binary mixture of

components 1–3 corresponds to the side x2 = 0 of the boundary of Ω. Setting x1 = x,
x3 = 1− x, the function g can be rewritten in the form

g1 =
x

N1
ln x +

1− x
N3

ln(1− x) + χ13x(1− x).

Using expressions (A6), the phase coexistence conditions (4) and (5) applied to the
function g1 then have the form

2(xI − xI I)χ13 +
1

N3
ln
(

1− xI

1− xI I

)
− ln

(
xI

xI I

)
= 0, (A7)

xI − xI I − χ13(xI − xI I)2 + (1− xI I) ln
(

1− xI

1− xI I

)
(A8)

− 1
N3

(
xI − xI I − xI I ln

(
xI

xI I

))
= 0.

If the values of xI and xI I are known, the above equations form a system of two linear
algebraic equations with respect to χ13 and 1/N3, which can be easily computed explicitly.

Assume that both couples 1–3 and 2–3 are partially miscible. Then, the same procedure
as above can be applied to find parameters N2, N3, χ13, and χ23 by solving a system of four
linear algebraic equations in terms of the miscibility gap limits xI

1, xI I
1 and xI

2, xI I
2 .

Appendix C. Water–Acetone–Hexadecane Experimental Data

Table A1. Water–acetone–hexadecane tie-lines, mass fraction experimental data.

Phase I Phase II

Water Acetone Hexadecane Water Acetone Hexadecane

0.005026 0.088051 0.906923 0.1153287 0.88 0.0046713

0.002956 0.121763 0.875281 0.07389669 0.9115 0.014603313

0.004319 0.127764 0.867917 0.05061999 0.919 0.030380015

0.000775 0.153273 0.845952 0.02604692 0.9075 0.06645308

0.000313 0.284572 0.715115 0.01003813 0.865 0.124961871

0.002187 0.023547 0.974265 0.93897 0.06102 0.000000001

0.002148 0.029435 0.968417 0.87777 0.12223 0.000000001

0.001949 0.036801 0.96125 0.793004 0.20699 0.000000001

0.000308 0.048658 0.951034 0.67413 0.3259 0.000000001

0.003093 0.054403 0.942503 0.56358 0.4364 0.000000001

0.000276 0.065321 0.934403 0.49548 0.50452 0.000000001

0.005298 0.074969 0.919733 0.3655 0.63446 0.000000001

0.003066 0.082343 0.914591 0.2541 0.74585 0.000000001

0.002307 0.097121 0.900573 0.1747 0.82524 0.000000001
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Table A2. Water–acetone–hexadecane phase envelope, mass fraction experimental data. The high-
lighted values correspond to the miscibility gap of the binary mixture acetone–hexadecane.

Water Acetone Hexadecane

0.3503 0.6496 8.98 × 10−5

0.1989 0.7996 0.0015

0.1519 0.846 0.002

0.115 0.882 0.0033

0.10056065 0.89269389 0.00674546

0.06122825 0.91649876 0.02227299

0.04112357 0.9178071 0.04106932

0.02740997 0.90841079 0.06417925

0.01445356 0.88430202 0.10124442

0.0039 0.8456 0.1504

0.002 0.799 0.199

0 0.783 0.217

0 0.264 0.736

0.0005 0.1975 0.8021

0.0007 0.1589 0.8404

0.00092 0.1122 0.8869

0.00065 0.0603 0.9391
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