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Abstract: Many methods have been developed to study nonparametric function-on-function regres-
sion models. Nevertheless, there is a lack of model selection approach to the regression function
as a functional function with functional covariate inputs. To study interaction effects among these
functional covariates, in this article, we first construct a tensor product space of reproducing kernel
Hilbert spaces and build an analysis of variance (ANOVA) decomposition of the tensor product
space. We then use a model selection method with the L1 criterion to estimate the functional function
with functional covariate inputs and detect interaction effects among the functional covariates. The
proposed method is evaluated using simulations and stroke rehabilitation data.

Keywords: model selection; L1 criterion; reproducing kernel Hilbert space; smoothing spline

1. Introduction

Functional data can be found in various fields, such as biology, economics, engineering,
geology, medicine and psychology. Recently, statistical methods and theories on functional
data were widely studied ([1–6]). Functional data sometimes have more complicated
structures. For example, the motivation data of this paper, stroke rehabilitation data,
utilized a collection of 3D video games known as Circus Challenge to enhance upper limb
function in stroke patients ([7–9]). The patients were scheduled to play the movement game
over three months at specified times. At each visit time t, the level of impairment of stroke
subject i was measured using the CAHAI (Chedoke Arm and Hand Activity Inventory)
score, denoted as yi(t), and movements of upper limbs of patients, such as forward circle
movement and sawing movement, were also recorded. The movement data at time t and
frequency s from the ith patient were denoted as xi(t, s). Determining a way to model
the relationship of yi(t) and functional xi(t, ·) is key to studying whether the movements
are helpful to the rehabilitation level of the stroke patient or not. Furthermore, there is
a question of whether there are interaction effects among the movements on the stroke
patient’s rehabilitation. Zhai et al. [9] developed a nonparametric concurrent regression
model to study the relationship between functional movements and the CAHAI score.
However, they did not consider the interaction effects of functional movements on the
CAHAI score. We aim to examine the interaction effects of movements on CAHAI scores
and predict the rehabilitation level of stroke patients in this paper.

In this paper, we apply the following nonparametric concurrent regression model
(NCRM) to model stroke rehabilitation data:

yi(t) = f (t, xi(t, ·)) + εi(t), i = 1, . . . , n, (1)

where f is a bivariate functional to be estimated nonparametrically, response yi(t) is a
function of t, covariate xi(t, ·) is a vector of functional with length q, and εi(t) is a random
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error. To explore the interaction effects among components of covariates xi(t, ·), we use the
smooth spline analysis of variance (SS ANOVA) method [10,11] to decompose regression
function f .

A multivariate function can be decomposed of main effects and interaction effects
via the SS ANOVA method ([10,11]). When the dimension of covariates q is large, the
decomposed model contains a large number of interaction effects. Even if only the main
effects and second-order interaction terms are investigated, the order of the number of
decomposition terms is O(q2), which leads to a highly complicated model. To model
stroke rehabilitation data with q = 3, there are 22 terms, including the main effects and
interaction effects. This challenges the estimation method for the NCRM model. To
avoid this shortcoming, Zhai et al. [9] took all functional covariates as a whole and did
not consider interaction effects among covariates. Following [12], this paper conducts a
model selection method for the NCRM model with all main effects and interaction effects.
In this method, the regression function is estimated and significant components of the
decomposition are selected simultaneously.

Model selection is a crucial step in building statistical models that accurately capture
the relationships between variables ([13,14]). It can choose the most suitable model from
a set of candidate models based on certain criteria such as goodness-of-fit, predictive
performance, and interpretability. Based on the SS ANOVA approach, model selection
is crucial to determine the contribution of each component of the decomposition to the
overall variance of the response variable. Several methods have been proposed for selecting
models with SS ANOVA, including forward selection, backward elimination, and stepwise
regression ([15–20]). However, these methods are limited in their ability to handle high-
dimensional data and identify complex interactions among variables. Hence, regularization
methods such as the L1 penalty have gained popularity in recent years ([12,21–25]), which
allow for the selection of sparse and robust models. For example, Zhang et al. [23] devel-
oped a nonparametric penalized likelihood method with the likelihood basis pursuit and
used it for variable selection and model construction. Lin and Zhang [22] proposed a com-
ponent selection and smoothing method for multivariate nonparametric regression models
by penalizing the sum of component norms of SS ANOVA. Furthermore, Wang et al. [12]
developed a unified framework for estimation and model selection methods in nonparamet-
ric function-on-function regression, which performs well when using L1 penalty methods
for model selection. Dong and Wang [24] proposed a nonparametric method for learning
conditional dependence structure in graph models by applying L1 regularization to detect
the neighborhoods of edges, where SS ANOVA decomposition is used to depict interaction
effects of edges in the graph model. In this paper, we borrowed the L1 regularization idea
to build model selection by penalizing the sum of norms of the ANOVA decomposition
components for the NCRM model. In addition, Bayesian analysis methods can also be used
to study interaction effects; for example, Ren et al. [26] proposed a novel semiparametric
Bayesian variable selection model for investigating linear and nonlinear gene–environment
interactions simultaneously, allowing for structural identification.

This paper proposes an estimation and model selection approach for the NCRM
model (1). Following [12,22], the SS ANOVA decomposition for the tensor product
space of the reproducing kernel Hilbert spaces (RKHS) is constructed, and the L1 penalty
approach for the components of the decomposition is implemented. We use estimation
procedures under either an L1 or a joint L1 and L2 penalty to fit teh NCRM model. We study
the interaction effects of the covariate xi(t, ·) in model (1) via ANOVA decomposition of
the regression function, where the tensor product RKHS is built based on Gaussian kernels.
The decomposition is different from that of Zhai et al. [9], where they took the covariate as
a whole variable and did not consider their interaction effects. Based on the decomposition,
model selection with the tensor product RKHS is conducted using the L1 penalty method.
With regards to the covariate xi(t, ·), the models from Wang et al. [12] are not suitable to
analyze the stoke data. In this paper, we apply the proposed method to stroke rehabilitation
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data and study the relationship of the movements and the patient’s CAHAI score. Besides
the main effects, the interaction effect of the movements is also detected.

The remainder of the article is organized as follows. In Section 2, we present the
tensor product RKHS with the Gaussian kernel and the SS ANOVA decomposition of
the regression function. In Section 3, we show model selection and estimation proce-
dures. The simulation study and application of stroke rehabilitation data are presented in
Sections 4 and 5. We conclude in Section 6.

2. Nonparametric Concurrent Regression Model

For the NCRM model (1), we consider xi(t, ·) = (xi1(t, ·), . . . , xiq(t, ·)), where
xij(t, s) : S → R for any fixed time t ∈ T is a function of s within a space denoted
by Xj, j ∈ 1, · · · , q. Generally, t and s can be transformed into [0, 1]. For simplicity, we let
T = [0, 1] and S = [0, 1] and let Xj ⊂ L2[0, 1], j = 1, · · · , q, which are independent of t.
Furthermore, we assume that yi(t) ∈ Y ⊂ L2[0, 1] and εi(t) for i = 1, . . . , n are identically
and independently distributed in L2[0, 1] with mean zero and

∫ 1
0 E[εi(t)2]dt < ∞. It is

shown that the regression function f is a functional function with an independent covariate
xi(t, ·). To provide a nonparametric estimation of f , the SS ANOVA decomposition method
is used to construct a tensor product space of RKHS to which f belongs.

When f is treated as a function with respect to the first augment t ∈ T , we consider
the Sobolev space [10],

H(1) =

{
f : f and f ′ absolutely continuous,

∫ 1

0
( f ′′)2dt < ∞

}
, (2)

whereH(1) can be rewritten as

H(1) = {1} ⊕ {t} ⊕H(1)
2 ,

where {1} is a constant space, {t} is a linear function space with t as an independent
variable. H(1)

2 is a smooth function space orthogonal to the constant space and the linear

function space. Reproducing kernels (RK) for these three subspaces are K(1)
0 (t, t′) = 1,

K(1)
1 (t, t′) = k1(t)k1(t′), and K(1)

2 (t, t′) = k2(t)k2(t′)− k4(|t− t′|), where k1, k2 and k4 are
defined as

k1(x) = x− 0.5,

k2(x) =
1
2

{
k2

1(x)− 1
12

}
,

k4(x) =
1

24

{
k4

1(x)− 1
2

k2
1(x) +

7
240

}
.

For functional augments x(t, ·), RK and its corresponding RKHS for f as a function
of functions in X = X1 × · · · × Xq are constructed as follows. For any uj, u′j ∈ Xj, we
construct a Gaussian kernel as

K(2)
2,j (uj, u′j) = exp

−
∥∥∥uj − u′j

∥∥∥2

2

, (3)

where
∥∥uj
∥∥2

=
∫ 1

0 u2
j (s)ds. We can show that when the space Xj is a complete space,

K(2)
2,j is a symmetric and strictly positive definite. The unique RKHS H(2)

2,j derived from

K(2)
2,j is separable and does not contain any non-zero constants. To construct an SS ANOVA
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decomposition, we letH(2)
j = {1} ⊕H(2)

2,j . Then, the tensor product space in this paper is

H(2) = H(2)
1 ⊗ · · · ⊗H

(2)
q with the following decomposition:

H(2) =H(2)
1 ⊗ · · · ⊗H

(2)
q

={1} ⊕H(2)
2,1 ⊕ · · · ⊕H

(2)
2,q ⊕

{
H(2)

2,1 ⊗H
(2)
2,2

}
⊕ · · · ⊕{

H(2)
2,q−1 ⊗H

(2)
2,1

}
⊕ · · · ⊕

{
H(2)

2,1−1 ⊗ · · · ⊗H
(2)
2,q

}
. (4)

Decomposition (4) is different from that of Zhai et al. [9] where H(2) is decomposed of
constant space {1} and another RKHS not considering interaction among x(t, ·).

Next, we consider the tensor product spaceH = H(1) ⊗H(2) which has the following
decomposition:

H =
(
{1} ⊕ {t} ⊕H(1)

2

)
⊗
(
{1} ⊕ {⊕q

j=1H
(2)
2,j } ⊕ · · · ⊕

{
H(2)

2,1 ⊗ · · · ⊗H
(2)
2,q

})
={1} ⊕ {t} ⊕H(1)

2 ⊕ {⊕
q
j=1H

(2)
2,j } ⊕ {⊕

q
j=1{H

(2)
2,j × {t}}}⊕

{⊕q
j=1{H

(2)
2,j ×H

(1)
2 }} ⊕ · · · ⊕

{
H(2)

2,1 ⊗ · · · ⊗H
(2)
2,q

}
⊕{

H(2)
2,1 ⊗ · · · ⊗H

(2)
2,q × {t}

}
⊕
{
H(2)

2,1 ⊗ · · · ⊗H
(2)
2,q ⊗H

(1)
2

}
.

There, the null space {1} ⊕ {t} stands for the main effect of the parametric form of t,
H(1)

2 is the main effect of the non-parametric form of t,H(2)
2,j is the main effect of the non-

parametric form of uj, {t} ⊗H
(2)
2,j is the linear nonparametric interaction between t and uj ,

H(1)
2 ⊗H

(2)
2,j is the nonparametric nonparametric interaction between t and uj, and so on,

H(1)
2 ⊗H

(2)
2,1 ⊗ · · · ⊗H

(2)
2,q is the nonparametric nonparametric interaction between t and u,

where u = (u1, . . . , uq). We denote φ1(t, u) = 1 and φ2(t, u) = k1(t) as the basis functions
ofH0. For example, with q = 3, the RKs corresponding to the above sub-RKHS are

H0 := {1} ⊕ {t} ←→ K0((t, u), (t′, u′)) = 1 + k1(t)k1(t′),

H1 := H(1)
2 ←→ K1((t, u), (t′, u′)) = K(1)

2 (t, t′),

H1+j := H(2)
2,j ←→ K1+j((t, u), (t′, u′)) = K(2)

2,j (uj, u′j),

H4+j := {t} ⊗H(2)
2,j ←→ K4+j((t, u), (t′, u′)) = k1(t)k1(t′)K

(2)
2,j (uj, u′j),

H7+j := H(1)
2 ⊗H

(2)
2,j ←→ K7+j((t, u), (t′, u′)) = K(1)

2 (t, t′)K(2)
2,j (uj, u′j),

H8+j+l := H(2)
2,j ⊗H

(2)
2,l ←→ K8+j+l((t, u), (t′, u′)) = K(2)

2,j (uj, u′j)K
(2)
2,l (ul , u′l),

H11+j+l := {t} ⊗H(2)
2,j ⊗H

(2)
2,l ←→ K11+j+l((t, u), (t′, u′)) = k1(t)k1(t′)K

(2)
2,j (uj, u′j)K

(2)
2,l (ul , u′l),

H14+j+l := H(1)
2 ⊗H

(2)
2,j ⊗H

(2)
2,l ←→ K14+j+l((t, u), (t′, u′)) = K(1)

2 (t, t′)K(2)
2,j (uj, u′j)K

(2)
2,l (ul , u′l),

H20 := H(2)
2,1 ⊗H

(2)
2,3 ⊗H

(2)
2,3 ←→ K20((t, u), (t′, u′)) =

3

∏
j=1
K(2)

2,j (uj, u′j),

H21 := {t} ⊗H(2)
2,1 ⊗H

(2)
2,3 ⊗H

(2)
2,3 ←→ K21((t, u), (t′, u′)) = k1(t)k1(t′)

3

∏
j=1
K(2)

2,j (uj, u′j),

H22 := H(1)
2 ⊗H

(2)
2,1 ⊗H

(2)
2,3 ⊗H

(2)
2,3 ←→ K22((t, u), (t′, u′)) = K(1)

2 (t, t′)
3

∏
j=1
K(2)

2,j (uj, u′j),
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for j, l = 1, 2, 3 and j < l, where the left and right parts stand for the tensor product spaces
and their corresponding RKs, respectively.

3. Model Selection and Estimation

We let the projection of f ontoH0 be ∑2
k=1 dkφk(t, u), u = (u1, . . . , uq), and {H1, · · · ,HQ}

be the sub-RKHS generated by the tensor product method in Section 2, where Q is a number
of sub-RKHS. L1 penalties are applied to coefficients dk for the spaceH0 and components
of the decomposition of f (projections of f onto Hj, j = 1, · · · , Q). We estimate f by
minimizing the following penalized least squares:

1
n

n

∑
i=1

{∫ 1

0
(yi(t)− f (t, xi(t, ·)))2dt

}
+ λ1

2

∑
k=1

w1k|dk|+ λ2

Q

∑
v=1

w2,v‖Pv f ‖H, (5)

where f ∈ H, Pv is the projection operator onto Hj, ‖·‖H is a norm induced from H, λ1
and λ2 are tuning parameters, and 0 ≤ w1k, w2,v < ∞ are pre-specified weights. We may
set w11 = 0 when φ1 = 1 to avoid penalty to the constant function.

Since the response function is a stochastic process in the L2[0, 1] space, there exists a set
of orthogonal basis functions {ηk(t), k = 1, 2, . . .} in L2[0, 1], where {ηk(t), k = 1, 2, . . . , n}
is an empirical functional principal component (EFPC) of {y1(t), · · · , yn(t)} ([27]). We let
νik =< yi(t), ηk(t) > and Lik f =

∫ 1
0 f (t, xi(t, ·))ηk(t)dt for i = 1, 2, . . . , n and k = 1, . . . , n.

We assume that {Lik} are bounded linear functionals. With EFPC, functional data can be
transformed to scalar data such that modeling and analysis can be conducted by using
traditional statistical methods. It can show that the PLS (5) based on functional data yi(t)
reduces to the following PLS based on scalar data {νik}:

1
n

n

∑
i=1

n

∑
k=1

{
(νik − Lik f )2

}
+ λ1

2

∑
k=1

w1k|dk|+ λ2

Q

∑
v=1

w2,v‖Pv f ‖H. (6)

By Lemma 3.1 in Wang et al. [12], minimizing the PLS (6) is equivalent to minimizing the
following PLS:

1
n

n

∑
i=1

n

∑
k=1

{
(νik − Lik f )2

}
+ λ1

2

∑
k=1

w1k|dk|+ τ0

Q

∑
v=1

w2,vθ−1
v ‖Pv f ‖2

H + τ1

Q

∑
v=1

w2,vθv, (7)

subject to θv ≥ 0 for 1 ≤ v ≤ Q, where λ1, τ0, τ1 are tuning parameters.
We letH∗ = H1⊕ · · ·⊕HQ. To provide an RK with linear combination of its subspaces

RK for the space ofH∗, we define a new inner product inH∗,

< f , g >∗=
Q

∑
v=1

w2,vθ−1
v < Pv f , Pvg >, (8)

where < ·, · > is the inner product inH. Under the new inner product, the RK ofH∗1 is

K∗((t, u), (t′, u′)) =
Q

∑
v=1

w−1
2,v θvKv((t, u), (t′, u′)),

where coefficient θv can measure the contribution of the components of the decomposition
to the model. Next, we use the reproducing property of the kernel function to transform the
infinite-dimensional optimization problem (7) into a finite-dimensional solution problem.
We let H1n = span{

∫ 1
0 K

∗((t, x(t, ·)), (t′, xi(t′, ·)))ηk(t′)dt′, i = 1, 2, . . . , n, k = 1, 2, . . . , n},
which is a subspace ofH∗. Then, any f ∈ H∗ can be decomposed as

f = f0 + f1n + ρ,
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where f0 ∈ H0, f1n ∈ H1n, and ρ ∈ H∗ 	H1n. We denote

K∗(t′ ,xi(t′ ,·))(t, x(t, ·)) = K∗((t′, xi(t′, ·)), (t, x(t, ·)))

as the evaluation function of point (t′, xi(t′, ·)), and f1 = f1n + ρ. Then, we can rewrite the
PLS (7) as

1
n

n

∑
i=1

n

∑
k=1

{
νik − uik− < f1(t′, xi(t′, ·)), ηk(t

′) >
}2

+ τ0

Q

∑
v=1

w2,vθ−1
v ‖Pv f ‖2

H∗ + λ1

2

∑
k=1

w1k|dk|+ τ1

Q

∑
v=1

w2,vθv

=
1
n

n

∑
i=1

n

∑
k=1

{
νik − uik− << f1,K∗(t′ ,xi(t′ ,·)) >H∗ , ηk(t

′) >
}2

+ τ0

Q

∑
v=1

w2,vθ−1
v ‖Pv f ‖2

H∗ + λ1

2

∑
k=1

w1k|dk|+ τ1

Q

∑
v=1

w2,vθv

=
1
n

n

∑
i=1

n

∑
k=1

{
νik − uik− < f1,

∫ 1

0
K∗(t′ ,xi(t′ ,·))ηk(t

′)dt′ >H∗
}2

+ τ0

Q

∑
v=1

w2,vθ−1
v ‖Pv f ‖2

H∗ + λ1

2

∑
k=1

w1k|dk|+ τ1

Q

∑
v=1

w2,vθv

=
1
n

n

∑
i=1

n

∑
k=1

{
νik − uik− < f1n,

∫ 1

0
K∗(t′ ,xi(t′ ,·))ηk(t

′)dt′ >H∗
}2

+

τ0

Q

∑
v=1

w2,vθ−1
v ‖Pv f1n‖2

H∗ + τ0

Q

∑
v=1

w2,vθ−1
v ‖Pvρ‖2

H∗ + λ1

2

∑
k=1

w1k|dk|+ τ1

Q

∑
v=1

w2,vθv, (9)

where uik =
∫ 1

0 f0(t′, xi(t′, ·))ηk(t′)dt′. The first equality uses the reproducing property,
and the third equality uses the fact that ρ is orthogonal toH1n. Minimizing (9) must have
ρ = 0, and we obtain the following representer theorem:

Theorem 1 (Representer Theorem). The solution to PLS (9) is

f (t, x(t, ·)) =
2

∑
j=1

dj ϕj(t) +
Q

∑
v=1

w−1
2,v θv

n

∑
i=1

n

∑
k=1

cikξik(t, x(t, ·)), (10)

where ϕ1(t) = 1, ϕ2(t) = k1(t), and ξik(t, x(t, ·)) =
∫ 1

0 Kv((t, x(t, ·)), (t′, xi(t′, ·)))ηk(t′)dt′.

From this representer theorem, the PLS (9) reduces to

1
n

n

∑
i=1

n

∑
k=1

(νik −
2

∑
j=1

aikjdj −
Q

∑
v=1

w−1
2,v θv

n

∑
j=1

n

∑
l=1

cjlbikjl)
2

+λ1

2

∑
k=1

w1k|dk|+ τ0

Q

∑
v=1

w−1
2,v θv

n

∑
i=1

n

∑
k=1

n

∑
j=1

n

∑
l=1

cikbikjlcjl + τ1

Q

∑
v=1

w2,vθv, (11)

where aikj =
∫ 1

0 ϕj(t)ηk(t)dt, bikjl = ∑Q
v=1 w−1

2,v θvbv
ikjl , bv

ikjl =
∫ 1

0 ξ jl(t, xi(t, ·))ηk(t)dt. We

let Σ = ∑Q
v=1 w−1

2,v θvΣv, the (i + (k − 1)n, j + (l − 1)n)th element of Σv is bv
ikjl . We let

Yk = (ν1k, . . . , νnk)
>, Y = (Y>1 , . . . , Y>n )>, c = (c11, c21, . . . , cnn)>, d = (d1, d2)

>,
w2 = (w2,1, . . . , w2,Q)

>, Σ be an n2 × n2 matrix with bikjl as the (i + (k− 1)n, j + (l − 1)n)
element, and T be a n2 × 2 matrix with aikj as the (i + (k − 1)n, j) element. Then, the
PLS (11) reduces to

1
n
‖Y − Td− Σc‖2 + λ1

2

∑
k=1

w1k|dk|+ τ0c>Σc + τ1w>2 θ, (12)

subject to θv ≥ 0, v = 1, 2, . . . , Q.
The backfitting algorithm in Wang et al. [12] is applied to solve the PLS (12) as follows

(Algorithm 1):
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Algorithm 1 Model Selection Algorithm

Set initial value d = d0, θ = θ0.
repeat

Update c by minimizing 1
n‖Y − Td− Σc‖2 + τ0c>Σc

Calculate Y∗ = Y − Rθ, where R is an n×Q matrix with the v-th column being w−1
2,v Σvc

Update d by minimizing 1
n‖Y

∗ − Td‖2 + λ1 ∑2
k=1 w1k|dk|

select tuning parameter M by the k-fold cross-validation or BIC method
Update θ by minimizing 1

n‖Y − Td− Rθ‖2 + τ0c>Rθ subject to θv ≥ 0 for 1 ≤ v ≤ Q and
w>2 θ ≤ M

until c, d and θ converge
return c, d and θ

4. Statistical Properties

In this section, we assume that X and Y are complete measurable spaces. We let P be
a probability measure on X q × L2(T ) andM = T ×X q. Without the loss of generality, we
let the terms λ1 ∑2

k=1 w1k|dk| and λ2 ∑Q
v=1 w2,v‖Pv f ‖H in (6) be combined into ‖ f ‖H.

We define a loss function,

L( f ; x, y) =
∫ 1

0
(y(t)− f (t, x(t, ·)))2dt,

where y(t) ∈ Y and x ∈ X q . The corresponding L-risk function (Steinwart and Christ-
mann [28]) is

RL,P( f ) = EP[L( f ; x, y)].

We let f ∗ = arg min
f∈H

RL,P( f ), R∗L,P,H = RL,P( f ∗), and

fP,λ = arg min
f∈H

{RL,P( f ) + λ‖ f ‖H}.

Obviously, f̂ = fD,λ. We state convergence properties in the following theorem and
show its proofs in Appendix B.

Theorem 2. Assume that f :M→ R is measurable for any f ∈ H,M is a complete measurable
space, and |P|2 =

∫
X q×L2(T )‖y(t)‖

2
2dP(x, y) < ∞. When λ → 0 and λ6n → ∞ as n → ∞,

we have

|RL,P( f̂ )− R∗L,P,H | = Op(λ).

Theorem 2 states that as λ tends to 0 and λ6n tends to infinity as n tends to infinity,
the function estimate f̂ is L-risk consistent (Steinwart and Christmann [28]).

5. Simulation

In this section, numerical experiments are studied to evaluate the performance of the
proposed model selection approach. Functional covariate take xi(t, ·) = (xi1(t, ·), xi2(t, ·)),
where xij(t, ·) = cos (2π(x∗ij(t, ·))), and x∗ij(t, ·) follows a Gaussian process with mean
function µ(t) = t. Kernel function for the GP takes the RBF kernel kg(s1, s2) = exp(−(s1 −
s2)

2/2) for j = 1 and the rational quadratic kernel kl(s1, s2) = 1/(1 + (s1 − s2)
2) for j = 2.

Three functions for f (t, x(t, ·)) are presented as follows: for t ∈ [0,1],
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M1 : f (t, x(t, ·)) =1 + 5 cos(2πt)3,

M2 : f (t, x(t, ·)) =1 + 0.5t + 10
∫ 1

0
x3

1(t, s)ds + 5
∫ 1

0
x3

2(t, s)ds + 10
∫ 1

0
x3

1(t, s)ds
∫ 1

0
x3

2(t, s)ds,

M3 : f (t, x(t, ·)) =1 + 5 cos(2πt) + 10
∫ 1

0
x1(t, s)x2(t, s)ds.

We see that M1 has the main effect of t, M2 consists of three main effects and the nonpara-
metric nonparametric interaction of x1 and x2, M3 consists of the main effect of t, and the
nonparametric nonparametric interaction of x1 and x2. Random error εi(t) follows N(0, 0.22)
and N(0, 0.52). All simulations are repeated 200 times.

We generate n samples {yi(t), xi(t, ·) : i = 1, . . . , n} as training data, and nt = 50 sam-
ples {ỹi(t), x̃i(t, ·) : i = 1, . . . , n} as test data. For comparison, we evaluate the performance
using the following root mean square error (RMSE) on the test data:

RMSE =

√
1
nt

nt

∑
i=1

∥∥∥ f (t, x̃i(t, ·))− f̂ (t, x̃i(t, ·))
∥∥∥2

2
,

where ‖·‖2 is the norm of L2(T ).
The proposed model selection method is used to train the model and predict the test

data, denoted by L1. Not considering model selection, we use the L2 penalty method to es-
timate the NCRM model denoted by L2, which minimizes the following objective function,

1
n

n

∑
i=1

{∫ 1

0
(yi(t)− f (t, xi(t, ·)))2dt

}
+ λ

Q

∑
v=1
‖Pv f ‖2

H, (13)

where λ is the tuning parameter. After model selection, the selected model is estimated
with the L2 penalty method, which is denoted by L1 + L2. Table 1 shows the average RMSE
and standard deviation in parentheses for these three estimation methods, L1, L2 and
L1 + L2. We see that under models M1 and M3, L1 + L2 have the smallest RMSEs among
these three estimation methods. Under model M2, L1 has better performance than L2 and
comparable results with those of L1 + L2. In addition, for the three different methods,
prediction performance improves as the σ decreases and the training sample size increases.

To evaluate the performance of model selection by the L1 penalty method, we take
three measurement indices in Wang et al. [12], specificity (SPE), sensitivity (SEN) and
F1 scores,

SPE =
TN

TN + FP
, SEN =

TP
TP + FN

, F1 =
2TP

2TP + FN + FP
,

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives
and false negatives, respectively. The non-zero components of the decomposition of the
regression function are considered as positive samples. For θv > 0, its estimated value is
larger than 0, which is considered a true positive.

Table 2 shows the sensitivities, specificities, and F1 scores. Overall, the L1 penalty
method performs well in different simulation settings. In addition, model selection becomes
better with decreasing σ and increasing training sample size.
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Table 1. Average values and standard deviations of RMSEs. (Methods corresponding to bold numbers
perform best).

n σ Model L1 L2 L1 + L2

20 0.2 M1 0.2906 (0.1386) 0.3010 (0.0287) 0.0981 (0.0420)
M2 0.8876 (0.1147) 0.9577 (0.0782) 0.9493 (0.0707)
M3 1.2065 (0.8556) 0.9423 (0.1713) 0.7108 (0.6317)

0.5 M1 0.3027 (0.1323) 0.4238 (0.0654) 0.1205 (0.0591)
M2 0.9486 (0.1166) 1.0039 (0.0760) 0.9996 (0.0794)
M3 1.3906 (0.9134) 1.0044 (0.1952) 0.8008 (0.5486)

40 0.2 M1 0.1655 (0.0127) 0.2390 (0.0416) 0.0792 (0.0113)
M2 0.7722 (0.0517) 0.8088 (0.0877) 0.7928 (0.0630)
M3 0.6664 (0.2255) 0.5773 (0.0456) 0.3968 (0.0423)

0.5 M1 0.1913 (0.0944) 0.3257 (0.0860) 0.0913 (0.0179)
M2 0.8605 (0.0678) 0.8918 (0.0856) 0.8819 (0.0746)
M3 0.7824 (0.2060) 0.6869 (0.0420) 0.4952 (0.0764)

80 0.2 M1 0.1358 (0.0860) 0.1416 (0.0238) 0.0737 (0.0076)
M2 0.6040 (0.0620) 0.6599 (0.0894) 0.6595 (0.0708)
M3 0.3227 (0.0218) 0.3793 (0.0237) 0.2635 (0.0248)

0.5 M1 0.1635 (0.1412) 0.2419 (0.0704) 0.0844 (0.0206)
M2 0.7338 (0.0552) 0.7589 (0.0696) 0.7578 (0.0605)
M3 0.4080 (0.1488) 0.5511 (0.0475) 0.3566 (0.0470)

Table 2. Average values and standard deviations of SPE, SEN, F1 scores under models M1, M2, M3.

n σ Model SPE SEN F1

20 0.2 M1 0.9956 (0.0291) 0.9800 (0.1404) 0.9783 (0.1421)
M2 0.9700 (0.0601) 0.7017 (0.1472) 0.7883 (0.1166)
M3 0.9906 (0.0366) 0.9850 (0.1219) 0.9592 (0.1527)

0.5 M1 0.9961 (0.0233) 0.9850 (0.1219) 0.9800 (0.1279)
M2 0.9786 (0.0511) 0.6917 (0.1529) 0.7881 (0.1201)
M3 0.9889 (0.0386) 0.9850 (0.1219) 0.9553 (0.1543)

40 0.2 M1 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
M2 0.9614 (0.0667) 0.9817 (0.0762) 0.9512 (0.0872)
M3 0.9833 (0.0428) 1.0000 (0.0000) 0.9517 (0.1212)

0.5 M1 0.9989 (0.0111) 0.9950 (0.0707) 0.9933 (0.0744)
M2 0.9407 (0.0720) 0.9600 (0.1086) 0.9177 (0.1060)
M3 0.9844 (0.0417) 1.0000 (0.0000) 0.9550 (0.1178)

80 0.2 M1 0.9983 (0.0175) 1.0000 (0.0000) 0.9958 (0.0424)
M2 0.9743 (0.0737) 1.0000 (0.0000) 0.9635 (0.0701)
M3 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

0.5 M1 0.9956 (0.0291) 0.9850 (0.1219) 0.9817 (0.1259)
M2 0.9546 (0.0853) 1.0000 (0.0000) 0.9317 (0.1031)
M3 0.9983 (0.0135) 1.0000 (0.0000) 0.9950 (0.0406)

6. Application

The proposed model selection approach is applied to analyze stroke rehabilitation
data with 70 stroke survivors ([7]).

The data consist of 34 acute patients with an incidence of stroke less than a month ago
and 36 chronic patients with an incidence of stroke more than six months ago. To improve
upper limb functions for stroke patients, a convenient home-based rehabilitation system
via action video games with 3D-position movement behaviors has been developed [7,8].
The patients played the movement game at scheduled times. For each visit time t, the
impairment level of subject i was assessed using a measure called CAHAI (Chedoke Arm
and Hand Activity Inventory) score, denoted as yi(t), and movements such as forward
circular movement and sawing movement were recorded. In this paper, three movements,
forward circular movement of the parental limb from the x-axis (xi1 = LA05.lx), sawing
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movement of the parental limb from the y-axis (xi2 = LA09.ly), and the movement of the
non-parental limb from the direction of the x-axis (xi3 = LA28.rqx) are taken as functional
covariates. For the purpose of illustrating the proposed method, we use the data from
acute patients. During the three-month study period, each acute patient received up to
seven assessments, which resulted in 173 observations. CAHAI scores were normalized
before analysis.

In this paper, we focus on the interaction effect upon the order of two, and take the
following decomposition:

K0((t, u), (t′, u′)) = 1 + k1(t)k1(t′),

K1((t, u), (t′, u′)) = K(1)
2 (t, t′),

K1+j((t, u), (t′, u′)) = K(2)
2,j (uj, u′j),

K4+j((t, u), (t′, u′)) = k1(t)k1(t′)K
(2)
2,j (uj, u′j) +K

(1)
2 (t, t′)K(2)

2,j (uj, u′j),

K5+j+l((t, u), (t′, u′)) = K(2)
2,j (uj, u′j)K

(2)
2,l (ul , u′l),

for j, l = 1, 2, 3 and j < l. Readers can also choose various kinds of SS ANOVA de-
composition by merging kernel functions according to their own needs. From Section 3,
we have

K∗((t, u), (t′, u′)) =
10

∑
v=1

w−1
2,v θvKv((t, u), (t′, u′)),

where coefficient θv for kernel function Kv provides levels of contribution of Kv to the
overall model.

The penalty method with L1 regularization for model selection is applied to stroke
rehabilitation data. Parameters {θv} are computed, and values larger than 0 are θ2 = 4.157,
θ3 = 0.819, θ4 = 0.636, θ7 = 0.592 and θ10 = 0.741. This shows that the main effects of
xi1(t, ·), xi2(t, ·) and xi3(t, ·), the linear nonparametric interaction of t and x3(t, ·) and the
nonparametric-nonparametric interaction of x2(t, ·) and x3(t, ·) have nonzero contribu-
tions to the CAHAI score. Thus, the three movements, forward circular movements of
the parental limb, awing movements of the parental limb and of the non-parental limb,
may be helpful to the recovery of stroke patients. In addition, the interaction of awing
movements of the parental limb and the non-parental limb, may contribute to the level of
daily life dependence or upper limb function impairment. Figure 1 plots the estimates of
nonparametric regression functions for four stroke patients. We can see that the regression
function in the NCRM model has the same trend as the scores of CAHAI, and on the
whole, they all show an increasing trend along with fluctuating trends, which shows that
movements may improve upper limb function for stroke patients.

Prediction performance of the proposed method is evaluated using a tenfold cross-validation,

RPE =
1
10

10

∑
i=1

√
1
nj

∑
i∈jth f old

∥∥∥Yi(t)− Ŷ(−j)
i (t)

∥∥∥2

2
,

where Ŷ(−j)
i (t) is the predicted value of Yi(t) based on the fitted selected model with the

L1 + L2 penalty and the data excluding the jth fold. The RPE for Stoke data is 1.0690, which
is smaller than 1.1700 from the method of Zhai et al. [9].
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Figure 1. CAHAI scores (red line) and their corresponding fitted values (blue line) for 4 patients.

7. Conclusions

For functional data with functional covariate inputs, this paper applies the Gaussian
kernel function to construct the tensor product RKHS to model the regression function.
This leads to a nonparametric concurrent regression model. The L1 penalty method is used
to detect components of the SS ANOVA decomposition of the regression function, which
has nonzero contribution to model fit. The backfitting algorithm is developed to estimate
the model selection. The proposed method is applied to stroke rehabilitation data, and the
results show that besides the main effects, there are interaction effects of the movements on
the CAHAI score. This indicates that movements may help improve the level of daily life
dependence or impairment of upper limb function of a stroke patient.
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Appendix A. Tensor Product and Reproducing Kernel Hilbert Space

In this section, we provide a brief description of tensor product space, reproducing
kernel Hilbert space (RKHS) and SS ANOVA.

Tensor Product Space. A tensor product space refers to the direct product of multiple
vector spaces. For two vector spaces, denoted by V and W, the tensor product space is
V ⊗W = {(v, w)|v ∈ V, w ∈W}. For details, please see Lin [29].

Reproducing Kernel Hilbert Space (RKHS). Reproducing kernel is a kernel func-
tion with the property of reproduction, and a reproducing kernel Hilbert space is a
type of Hilbert space that possesses the property of a reproducing kernel. Mathemati-
cally, for a reproducing kernel K and its deduced RKHS H, the reproduction property is
f (x) = 〈 f , K(x, ·)〉, where f is inH and x is an input variable. RKHS provides an effective
tool for modeling nonlinear relationships and handling high-dimensional data. In the con-
text of regression, an RKHS is utilized as the foundation for model selection and estimation.
For details, please see Wainwright [30].

Smoothing spline analysis of variance. Smoothing spline analysis of variance (SS
ANOVA) is a powerful tool which combines the strengths of smoothing splines and analysis
of variance to facilitate the simultaneous exploration of main effects and interactions among
variables. SS ANOVA is an important and useful method to model nonlinear relationships
within the regression framework [31–36]. For example, Wahba [31] presented theory and
applications of smoothing spline models, with a special focus on function estimation from
functional data with noise, where it includes univariate smoothing spline, multidimensional
thin plate spline, splines on the sphere, additive spline, and interacting spline. Furthermore,
Wahba et al. [32] extended the SS ANOVA model to the exponential family distribution
and used the developed method to estimate the risk of diabetic retinopathy progression.
In addition, Gao et al. [34] combined an SS ANOVA model with a log-linear model to fit
multivariate Bernoulli data.

To illustrate the SS ANOVA approach, we consider a nonparametric model represented
as follows:

y = f (x1, . . . , xp) + ε, (A1)

where f is the unknown smoothing function and ε is an error term. Applying SS ANOVA
to model (A1), we decompose f as follows:

f (x1, . . . , xp) = µ +
p

∑
i=1

fi(xi) + ∑
i<j

fi,j(xi, xj) + · · ·+ f1,...,p(x1, . . . , xp). (A2)

For this decomposition, µ denotes the overall mean, functions f1(x1), f2(x2), . . . , and fp(xp)
capture the main effects inherent in Model (A1), and functions fi,j(xi, xj) provide the
interactions between variables xi and xj, and so forth. One way to model these functions,
f1(x1), f2(x2), . . . , fp(xp), and f1,...,p(x1, . . . , xp), is to use the smoothing splines, such as the
cubic splines.

Appendix B. Proof of Theorem 2

From the triangle inequality, we have

|RL,P( f̂ )− R∗L,P,H| ≤ |RL,P( f̂ )− RL,P( fP,λ)|+ |RL,P( fP,λ)− R∗L,P,H|.

Hence, we separately calculate the convergence rates of |RL,P( f̂ ) − RL,P( fP,λ)| and
|RL,P( fP,λ)− R∗L,P,H|.
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Since |P|2 and ‖KH‖H are bounded, without loss of generality, we assume that q = 1,
|P|2 = 1, and ‖KH‖ = 1, where KH is the RK ofH and then RL,P(0) ≤ |P|2 = 1. From the
proof of Theorem 3 in Zhai et al. [9], we have∣∣∣RL,P( f̂ )− RL,P( fP,λ)

∣∣∣ ≤ c
(

2 + ‖ f̂ ‖∞ + ‖ fP,λ‖∞

)∥∥∥ f̂ − fP,λ

∥∥∥
∞

,

where c is an indeterminate constant depending on L.
We know that

λ‖ fP,λ‖H ≤ arg inf
f∈H

RL,P( f ) + λ‖ f ‖H ≤ RL,P(0) ≤ 1.

Hence, when
∥∥∥ fP,λ − f̂

∥∥∥
H
≤ 1, we have ‖ fP,λ‖∞ ≤ ‖KH‖∞‖ fP,λ‖H ≤ cλ−1 and

‖ f̂ ‖∞ ≤ ‖ fP,λ‖∞ + ‖ fP,λ− f̂ ‖∞ ≤ cλ−1 + 1. Therefore, we have∣∣∣RL,P( f̂ )− RL,P( fP,λ)
∣∣∣ ≤ cλ−1|| fP,λ − f̂ ‖H.

Meanwhile,

λ‖ fP,λ‖H + RL,P( fP,λ)− R∗L,P,H = inf
f∈H

λ‖ f ‖H + RL,P( f )− R∗L,P,H

≤λ‖ f ∗‖H + RL,P( f ∗)− R∗L,P,H ,

which shows that

RL,P( fP,λ)− R∗L,P,H ≤ λ(‖ f ∗‖H − ‖ fP,λ‖H) ≤ c2λ,

where c2 > 0 is a constant. Taking the Fréchet derivative ofRL,P( f ) + λ‖ f ‖H with respect
to f , setting it to zero, we have

λ− EP(y− fP,λ(x))Φ = 0, (A3)

where Φ((t, x(t, ·))) = KH(·, (t, x(t, ·))) is a canonical map. We let h(x, y) = −2(y −
fP,λ(x)). Following the proof of Theorem 5.9 in [28], we show that

〈 fP̄,λ − fP,λ, EP̄hΦ− EPhΦ〉+ λ
∥∥ fP,λ − fP̄,λ

∥∥2
H ≤ 0,

where P̄ is any distribution defined on X q × L2(T ). According to (A3), we know that

λ
∥∥ fP,λ − fP̄,λ

∥∥2
H ≤〈 fP,λ − fP̄,λ, EP̄hΦ− EPhΦ〉
≤
∥∥ fP,λ − fP̄,λ

∥∥
H · ‖EP̄hΦ− EPhΦ‖H,

which indicates that ∥∥ fP,λ − fP̄,λ
∥∥
H ≤

1
λ
‖EP̄hΦ− EPhΦ‖H.

Let P̄ = D, and from Lemma 9.2 of Steinwart and Christmann [28], we have

P
(∣∣∣RL,P( f̂ )− R∗L,P,H

∣∣∣ ≥ ε
)

≤P
(

cλ−2‖EPhΦ− EDhΦ‖H + c2λ > ε
)

≤O
(

n−1λ−6
)

,

with ε = O(λ). Thence, we obtain the order of
∣∣∣RL,P( f̂ )− R∗L,P,H

∣∣∣ as Op(λ).
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