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Abstract: Contact fatigue is one of the most common failure forms of typical basic components such
as bearings and gears. Accurate prediction of contact fatigue performance degradation trends in com-
ponents is conducive to the scientific formulation of maintenance strategies and health management
of equipment, which is of great significance for industrial production. In this paper, to realize the
performance degradation trend prediction accurately, a prediction method based on multi-domain
features and temporal convolutional networks (TCNs) was proposed. Firstly, a multi-domain and
high-dimensional feature set of vibration signals was constructed, and performance degradation
indexes with good sensitivity and strong trends were initially screened using comprehensive eval-
uation indexes. Secondly, the kernel principal component analysis (KPCA) method was used to
eliminate redundant information among multi-domain features and construct health indexes (HIs)
based on a convolutional autoencoder (CAE) network. Then, the performance degradation trend
prediction model based on TCN was constructed, and the degradation trend prediction for the
monitored object was realized using direct multi-step prediction. On this basis, the effectiveness of
the proposed method was verified using a bearing common-use data set, and it was successfully
applied to performance degradation trend prediction for rolling contact fatigue specimens. The
results show that using KPCA can reduce the feature set from 14 dimensions to 4 dimensions and
retain 98.33% of the information in the original preferred feature set. The method of constructing the
HI based on CAE is effective, and change processes versus time of the constructed HI can truly reflect
the degradation process of rolling contact fatigue specimen performance; this method has obvious
advantages over the two commonly used methods for constructing HIs including auto-encoding (AE)
networks and gaussian mixture models (GMMs). The model based on TCN can accurately predict
the performance degradation of rolling contact fatigue specimens. Compared with prediction models
based on long short-term memory (LSTM) networks and gating recurrent units (GRUs), the model
based on TCN has better performance and higher prediction accuracy. The RMS error and average
absolute error for a prediction step of 3 are 0.0146 and 0.0105, respectively. Overall, the proposed
method has universal significance and can be applied to predict the performance degradation trend
of other mechanical equipment/parts.

Keywords: contact fatigue; feature extraction; health indexes (HIs); degradation prediction; temporal
convolutional network (TCN); convolutional autoencoder (CAE)

1. Introduction

With the rapid progress of manufacturing technology, the structure of mechanical
equipment becomes more and more complex, the operating conditions of parts become
more and more severe [1], and the probability of failure increases accordingly. Therefore,
predictive monitoring of mechanical equipment/parts is particularly important because it
helps in the scientific formulation of maintenance strategies and the health management of
equipment. At the same time, the application of technologies such as the Internet, smart
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sensors, and wireless communication in the mechanical field enables more information
to be collected. These massive data reflect the health status and performance changes in
mechanical equipment/parts and contain rich information, which has prompted the field
of mechanical health monitoring to enter the era of “big data”. However, existing fault
diagnosis and early warning methods cannot reliably realize fault diagnoses and early
warnings for the status of mechanical equipment/parts under the background of mas-
sive data. As an alternative, data-driven mechanical equipment/parts health monitoring
technology is attracting extensive attention from researchers [2,3]. Therefore, identifying
methods to deeply mine and utilize historical and real-time information in massive data
to accurately grasp the health status of mechanical equipment/parts and analyze its per-
formance degradation trends has become a research hotspot in the condition monitoring
field [4].

The failure process of contact fatigue is essentially the initiation and propagation of
cracks. Contact fatigue strength is an important index that affects the service performance
of bearings, gears, etc. At present, rolling contact fatigue testing is the only way to obtain
the contact fatigue properties of materials, which takes a long time and is labor-intensive.
Therefore, it is of great significance to realize accurate predictions for performance degrada-
tion trends of rolling contact fatigue specimens. This will not only predict the fatigue failure
time point of specimens in advance and shorten the test time but also improve the methods
used to obtain contact fatigue properties of materials. That is to say, in the context of big
data, the contact fatigue properties of materials can be obtained by analyzing historical
data of materials rather than relying only on rolling contact fatigue tests.

To predict the degradation trends of monitored objects, the core work mainly includes
two parts. One is to construct an HI that can truly reflect the performance degradation
process of the monitored object throughout its life cycle. The other is to build a predictive
model that can accurately predict the changing trend in the HI. For the construction of
an HI, one idea is to extract features from raw data and use them for state monitoring.
This method is widely used, such as extracting single-domain multi-features and multi-
domain multi-features, as well as directly extracting deep features from raw data, etc., and
directly using the extracted features as the HI or using the dimension-reduced features
as the HI [5–12]. For example, Ahmad W et al. [5] extracted time domain features such
as the rms, skewness, and mean value of rolling bearing vibration signals for use as an
HI. Zhang Y Q et al. [10] extracted three indexes for use as an HI, including the root mean
square value, steepness, and average power spectral density of bearings, and realized
the early fault identification of rolling bearings. Another method is to divide the feature
data into healthy samples and test samples based on the extracted features, measure the
health degree of the test samples by calculating the similarity, and then define the health
degree as the HI. The change process in the health degree is regarded as the process of
performance degradation [13–16]. For example, Zheng X X et al. [13] first extracted the
wavelet packet feature of the vibration signal of the rolling bearing and then used the
Markovis distance between the features as the HI of the bearing. Yang C et al. [15] used the
grey correlation degree as the HI of bearing performance, which was able to detect bearing
faults earlier. In addition, some researchers directly use the raw signal as the input for
neural networks [17–20] and use the deep features contained in the extracted signal as an HI.
For example, Yang L et al. [19] reported a potential method to realize real-time monitoring
of sediment particle parameters by introducing a particles-laden droplet-driven triboelectric
nanogenerator (PLDD-TENG) combined with the deep learning method. Their results
indicated that a convolutional neural network (CNN) deep learning model could identify
the particle parameters based on the output signals of PLDD-TENG and high identifying
accuracy. However, the first two methods have problems such as incomplete use of the
state information of the monitored object and ignoring the nonlinear relationship among
characteristics. The third method needs to fully consider the operating characteristics
of the monitored objects because different objects have different mechanical structures,
operating environments, and damage mechanisms. In terms of building degradation
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trend prediction models, most researchers use shallow machine learning methods, such
as support vector machine (SVM) and extreme learning machine (ELM) [21–24], or the
long short-term memory (LSTM) neural network, gating recurrent unit (GRU) model, and
deep learning method optimized on this basis [25–32]. However, it is difficult for shallow
machine learning methods to fully exploit the correlation between data, which will have
a great impact on prediction accuracy. For deep learning methods, the current recurrent
neural network model is most suitable for sequence data prediction; however, it is still
difficult to perform a large number of parallel calculations due to the network structure,
which affects the calculation speed of the model.

The vibration signal contains the most essential information on the operating state
of the monitored object [33]. In this paper, we carry out research on the performance
degradation prediction of a rolling contact fatigue specimen based on the vibration signal.
A performance degradation trend prediction method based on multi-domain features and
TCN is proposed, aimed at addressing the shortcomings of existing performance degra-
dation prediction research, such as information loss when building an HI, poor parallel
computing performance, and a small receptive field when building a prediction model,
combined with non-stationary and nonlinear vibration characteristics of the monitored
object and time series characteristics of monitoring object performance degradation. A
flowchart is given in Figure 1, and the effectiveness of the method was verified using a
bearing common use data set. On this basis, the proposed method was successfully applied
to the performance degradation trend prediction for a rolling contact fatigue specimen.
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2. Theory and Method
2.1. Multi-Domain Feature Extraction and Feature Screening
2.1.1. Multi-Domain Feature Extraction

In view of the fact that the information contained in a single feature or single-domain
feature has certain limitations, it cannot fully reflect the complete process of performance
degradation for a monitored object. Therefore, this paper extracts the vibration signal from
the time domain, frequency domain, and time-frequency domain. Note that the discrete
vibration signal value collected each time during the test is x(n) = {x1, x2, · · · xN−1, xN},
where N is the number of sampling points for each time. For the convenience of subsequent
description, the extracted features are numbered.

Time domain analysis is to describe vibration signals with statistical features, including
dimensional indicators and dimensionless indicators. In this paper, seven dimensional
features are extracted, such as mean and root mean square value, and six dimensionless
features extracted, such as the skewness index and kurtosis index, which are listed in
Table 1 [34].

Table 1. Time domain feature parameters.

No. Feature Calculation Formula

Dimensional Time Domain Features

f 1 mean −
X = 1

N

N
∑

i=1
xi

f 2 rms value Xrms =

√
1
N

N
∑

i=1
x2

i

f 3 variance Xvar =
1

N−1

N
∑

i=1
(xi − X)

2

f 4 absolute mean Xabs =
1
N

N
∑

i=1
|xi|

f 5 root amplitude Xsra =

(
1
N

N
∑

i=1

√
|xi|
)2

f 6 peak Xp = max
1≤i≤N

(|xi|)
f 7 peak to peak Xp−p = max(xi)−min(xi)

Dimensionless time domain features

f 8 skewness index Xskew = 1
N

N
∑

i=1

(
xi − X

)3/Xstd
3

f 9 kurtosis index Xkur =
1
N

N
∑

i=1

(
xi − X

)4/Xstd
4

f 10 peak indicator Xc− f = Xp/Xrms
f 11 margin indicator Xcl− f = Xp/Xsra
f 12 impulse indicator Xi− f = Xp/Xabs
f 13 waveform indicator Xs− f = Xrms/Xabs

The frequency domain analysis is to transform the vibration signal into the frequency
domain using Fourier transform (FT) and then analyze the obtained signal spectrogram.
Compared with time domain analysis, the frequency domain analysis can display more
details of fault characteristics. In this paper, the 12 frequency domain features that were
extracted, such as the frequency amplitude mean and frequency amplitude variance, are
shown in Table 2 [34], where s(k) represents the spectrum obtained using the fast Fourier
transform (FFT) of each sampled signal and fk represents the frequency value of the k-th
spectral line.
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Table 2. Frequency domain feature parameters.

No. Feature Calculation Formula

f 14 frequency amplitude mean F1 = 1
K

K
∑

k=1
s(k)

f 15 frequency amplitude variance F2 = 1
K−1

K
∑

k=1
(s(k)− F1)

2

f 16 first-order center of gravity F3 =
K
∑

k=1
fks(k)/

K
∑

k=1
s(k)

f 17 second-order center of gravity F4 =

√
1
K

K
∑

k=1
( fk − F3)

2s(k)

f 18 rms frequency F5 =

√
K
∑

k=1
fk

2s(k)/
K
∑

k=1
s(k)

f 19 frequency domain features 1 F6 =
K
∑

k=1
(s(k)− F1)

3/
[
K
(√

F2
)3
]

f 20 frequency domain features 2 F7 =
K
∑

k=1
(s(k)− F1)

4/
(
KF2

2)
f 21 frequency domain features 3 F8 =

K
∑

k=1
fk

2s(k)/

√
K
∑

k=1
s(k)

K
∑

k=1
fk

4s(k)

f 22 frequency domain features 4 F9 = F4/F3

f 23 frequency domain features 5 F10 =

√
K
∑

k=1
fk

4s(k)/
K
∑

k=1
fk

2s(k)

f 24 frequency domain features 6 F11 =
K
∑

k=1
( fk − F3)

3s(k)/
(
KF4

3)
f 25 frequency domain features 7 F12 =

K
∑

k=1
( fk − F3)

4s(k)/
(
KF4

4)

Time–frequency analysis can capture transient characteristics, making up for the
limitation that a single time–domain analysis or frequency–domain analysis cannot fully
reflect fault characteristics when dealing with complex non-stationary signals. In this paper,
the wavelet packet transform is used to extract the time–frequency domain features of the
vibration signal, and the wavelet basis is used to select the db3 function to decompose the
signal in three layers, as shown in Figure 2.
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Figure 2. Schematic diagram showing the three-layer wavelet packet decomposition.

After the original signal is decomposed with the wavelet packet, the second norm
of the node coefficient is called the node energy. When the monitored object fails, some
node energy may change. Therefore, the ratio of the node energy to the total node en-
ergy in the corresponding decomposition layer is used as the time–frequency domain
feature parameter.

ei = ‖c(t)i‖2 (1)

Ei = ei/
M

∑
m=1

em (2)
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where ei represents the energy of the i-th node coefficient; c(t)i represents the wavelet packet
coefficient of the i-th node decomposed at each layer; and M represents the total number of
nodes obtained with each layer decomposition.

Considering the feature number and the decomposition degree of the signal, this paper
selects a total of 12 feature parameters for the energy ratio of each node in the second and
third layers of the signal wavelet packet decomposition as the time–frequency domain
features. According to the position of each node in the wavelet packet signal decomposition
tree diagram shown in Figure 2, for the second layer and the third layer, in order from left
to right, the eigenvalues calculated using the coefficients of each node are numbered as
f 26–f 29 and f 30–f 37.

2.1.2. Feature Screening

A total of 37 multi-domain features were extracted based on the original vibration
signal, but not every feature adequately reflects the performance degradation process of
the monitored object. Therefore, it is unscientific to screen features only based on the
visualization results of features; instead, it is necessary to establish evaluation indicators to
obtain the optimal feature set. In this paper, the monotonicity of features, the correlation
between features, and the trend evaluation index of features are integrated [35], and a
comprehensive evaluation index Ch(F) is constructed for feature screening. It should be
noted that, since a change in the feature may show a downward trend with time, where its
trend value is negative, the trend value in Equation (3) takes an absolute value.

Ch(F) = α1Mon(F) + α2Con(F) + α3|Tre(F)|

s.t.
3
∑

i=1
αi = 1 , αi > 0

(3)

where a1, a2, a3 represent the proportion of monotonicity, correlation mean, and trend in the
feature, respectively, and its value can be optimized according to the service environment
and performance degradation characteristics of the monitored object. The definitions of
three evaluation indicators are shown in Equations (4)–(6), respectively.

Mon(F) =
1

N − 1

∣∣∣∣S( d
dF

> 0)− S(
d

dF
< 0)

∣∣∣∣ (4)

Con(F) =
1
N

N

∑
j=1

∣∣Con(F, Fj)
∣∣ (5)

Tre(F̃, T̃) =
N
(

N
∑

i=1
f̃i t̃i

)
−
(

N
∑

i=1
f̃i

)(
N
∑

i=1
t̃i

)
√√√√[N

N
∑

i=1
f̃i

2 −
(

N
∑

i=1
f̃i

)2
][

N
N
∑

i=1
t̃i

2 −
(

N
∑

i=1
t̃i

)2
] (6)

In Equation (4), N represents the number of samples in the feature F; d/dF represents the
derivation result for the feature F; S represents the number of d/dF greater than zero or less
than zero. In Equation (5), if there are N feature sequences, the correlation between the
feature and the features including itself can be obtained using Equation (7) (the correlation
between the feature and itself is 1), and then the obtained value can be substituted into
Equation (5) and used to obtain the mean correlation of features. In Equation (6), f̃i
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represents the i-th value in the rank sequence F̃ of the feature sequence F and t̃i represents
the i-th value in the rank sequence T̃ of the time series T.

Con(F1, F2) =

N
∑

i=1

(
f1,i − F1

)(
f2,i − F2

)
√

N
∑

i=1

(
f1,i − F1

)2 N
∑

i=1

(
f2,i − F2

)2
(7)

where F1, F2 represents any two feature sequences; N represents the number of samples in
the feature; f 1,i and F1 represents the i-th eigenvalue and mean of the feature F1, respectively;
and f 2,i and F2 represent the i-th eigenvalue and mean of the feature F2, respectively.

In order to obtain the features that are sensitive to the performance degradation process
of the monitored object, the monotonicity, correlation mean, and trend of 37 multi-domain
features are calculated using Equations (4)–(6). On this basis, the comprehensive evaluation
index value of each feature is calculated using Equation (3), and the features with larger
comprehensive evaluation index values are selected to form the optimal feature set.

2.2. Construction of Health Indexes

The construction of HIs is closely related to the extracted vibration signal charac-
teristics, and the ideal HI can clearly reflect the performance degradation process of the
monitored object during its whole life cycle. Aiming at the information loss problem faced
by the existing one-dimensional HI, on the basis of the above multi-domain feature extrac-
tion, this paper uses kernel principal component analysis (KPCA) to reduce the feature
dimension and uses a convolutional autoencoder (CAE) network to build an HI.

2.2.1. Feature Dimensionality Reduction Based on KPCA

The dimension of the preferred feature set obtained using the aforementioned method
is still high, which will bring dimensional disaster to subsequent calculations. At the same
time, there is coupling between the features of the high-dimensional feature set, which will
lead to information duplication and overfitting. Therefore, it is necessary to reduce the
dimension of the preferred feature set to retain as much effective information as possible
while reducing the dimension of the feature set.

Considering the non-stationary and nonlinear characteristics of vibration signals in
the process of performance degradation of most monitored objects, it is more general
to select a dimension reduction method suitable for nonlinear operations for feature di-
mension reduction. In this paper, the KPCA method is used to reduce the dimension of
the preferred feature set. This method uses a kernel function to effectively capture the
nonlinear characteristics of the data [14] and non-linearly maps the linearly inseparable
data in low-dimensional space to high-dimensional space, so as to realize the linearity of
the data [36,37].

The basic idea of KPCA is to achieve data classification and fitting by transforming
data originally located in a low-dimensional feature space into a higher-dimensional feature
space. In this method, the original data are mapped into a higher-dimensional space, a new
kernel matrix is constructed using the inner product, and then feature value decomposition
of the kernel matrix is performed to extract the most important feature vectors. When the
original data are projected onto these feature vectors, the original data can be converted
into a nonlinear feature space to achieve nonlinear feature extraction [38].

2.2.2. Construction of the HI Based on a CAE Network

A convolution autoencoder (CAE) network is a network model derived from an
autoencoder (AE) network, which converts the encoding and decoding calculation process
of data from conventional linear layers to convolution layers to better obtain data deep
nonlinear information. The simple CAE network structure is shown in Figure 3.
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In the encoding stage, the input information is encoded using multi-layer convolu-
tion operations, after which a one-dimensional encoded feature is obtained. For a one-
dimensional input sequence x, the one-dimensional convolution operation at each layer is
as follows:

yk = f (wk·x + bk) (8)

where wk represents the k-th convolution kernel of the convolutional layer; bk represents
the corresponding bias; “·” represents the convolution operation; and f represents the
activation function.

In the decoding stage, the encoded features are used as input, and the dimension of
the original information is reconstructed using layer-by-layer one-dimensional transposed
convolution. The 1D transposed convolution operation for each layer is as follows:

x′k = h(w′k ∗ y + b′k) (9)

where y represents the input sequence of the transposed convolution; w′k and b′k represent
the k-th convolution kernel and the corresponding bias of the transposed convolution,
respectively; “∗” represents the transposed convolution operation; and h represents the
activation function.

Compared with the fully connected layer in the ordinary AE network, this paper uses
the convolution layer in the CAE network, which has a stronger nonlinear mapping ability.
The network architecture and parameters of CAE are shown in Table 3.

Table 3. The network architecture and parameters of CAE.

Network Layer Dimensions
Entered

Size of
Convolution Kernel

Number of
Convolution Kernels

Dimensions of
the Output

Convolutional layer 1 4 × 1 2 × 1 5 3 × 5
Convolutional layer 2 3 × 5 2 × 1 5 2 × 3
Convolutional layer 3 2 × 3 2 × 1 1 1 × 1

Transpose convolutional layer 1 1 × 1 2 × 1 4 2 × 4
Transpose convolutional layer 2 2 × 4 2 × 1 4 3 × 4
Transpose convolutional layer 3 3 × 4 2 × 1 2 4 × 1
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2.3. Performance Degradation Prediction

The HI constructed above can reflect the degradation process for the performance of
the monitored object. Therefore, the prediction for the performance degradation trend of
the monitored object is essentially the prediction of the HI value. The HI is one-dimensional
time series data that changes with time. Aiming at the shortcomings of the commonly used
prediction models based on recurrent neural networks, such as low parallel computation
and a small receptive field for input data, this paper builds a performance degradation
trend prediction model for a monitored object using a temporal convolutional network
(TCN) and realizes the prediction. TCN adopts the structure of one-dimensional full
convolution, causal convolution, dilated convolution, and residual connection, which has
the advantages of a large receptive field and strong parallel computing and can weaken the
gradient problem [39,40].

2.3.1. Temporal Convolutional Networks

Figure 4 illustrates the process of representing one-dimensional full convolution,
causal convolution, and dilated convolution with dilated causal convolution, where the
input sequence is X = {x1, x2, · · · , xt−1, xt}, the output sequence after the three-layer
one-dimensional dilated causal convolution operation with a convolution kernel size of
3 is Y = {y1, y2, · · · , yt−1, yt}, and the dilation coefficient in the convolution calculation
d ∈ N∗, generally d = 2.
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The receptive field v is related to the size of the convolution kernel, the number
of layers in the convolution calculation, and the expansion coefficient. Its calculation
formula is:

v = 1 +
l−1

∑
i=0

(k− 1) · bi (10)

where k represents the size of the convolution kernel; l represents the number of convolution
layers in the network; and b represents the base of the expansion coefficient, usually set as
b = 2.

In TCN, given a one-dimensional input sequence x ∈ Rn and a convolution kernel
f : {0, 1 · · · k− 1} → R , the calculation result for the dilated causal full convolution at

position 3 of the sequence is:

F(s) =
k−1

∑
i=0

f (i) · xs−d·i (11)

where xs−d·i represents the (s− d · i)-th element in the previous layer and the other parame-
ters have the same meanings as before.

In addition, TCN uses residual block connection to increase the network depth. By
connecting multiple residual blocks together, the gradient problem can be effectively
weakened, and the model receptive field can be further increased. The form of each
residual block is shown in Figure 5.
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In this paper, the input length of the input sample is 8, the expansion coefficient is
2, the convolution kernel size is 4, the number of convolution kernels is 5, the number
of convolutional layers is 3, and the prediction step size can be modified to 3, 4, and 5
as needed.

2.3.2. Performance Degradation Prediction Based on TCN

Data-driven forecasting can be divided into single-step prediction and multi-step
prediction. Since single-step prediction can only predict the value of the next moment, it is
of little practical engineering significance. Therefore, this paper uses multi-step prediction.

The strategy of multi-step forecasting is divided into direct forecasting and recursive
forecasting [4], as shown in Figure 6. There is only one time point for each prediction in
recursive prediction. Since the errors in each prediction will accumulate, it may eventually
cause a large deviation between the predicted sequence and the actual value. Direct
prediction is used to predict the target sequence at one time. Since there are many time
points for each prediction, the prediction model must be better. Comparing the two
forecasting strategies and considering the engineering application value, this paper uses
direct forecasting.
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The process of using direct multi-step prediction to predict the performance degra-
dation of the monitoring object is as follows: (1) Combine the HI sample numbers of the
monitored objects, divide them into training sets and test sets according to an appropriate
ratio, use spatial phase reconstruction technology to form the training set and test set
for the prediction model, respectively, and set the time step and prediction step for each
input. (2) Set the key parameters of the prediction model and model training, input the
training set into the prediction model, use the obtained predicted value and the actual
value to calculate the error, and optimize the hyperparameters in the model using error
backpropagation. This cycle is repeated until the set number of training times is reached or
the prediction error reaches the threshold. (3) Input the test set into the trained model to
obtain the predicted value, calculate the evaluation index based on the error between the
predicted value and the actual value, and evaluate the prediction ability of the model.

In this paper, RMS error (RMSE) and mean absolute error (MAE) are used as the
evaluation indicators for the model, and their calculation formulas are:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷ− y)2 (12)

MAE =
1
N

N

∑
i=1
|ŷ− y| (13)

where ŷ represents the predicted value of the model and y represents the true value.

3. Verification

The data used in the verification test come from the rolling bearing life data set of the
NSF I/UCR Intelligent System Maintenance Center in the United States. The structure of
the test bench is shown in Figure 7. The DC motor drives the drive shaft to rotate with a
speed 2000 r/min. The applied radial load is 6000 lbs (i.e., 2721.5 kg), and four double-row
cylindrical roller bearings (Rexnord ZA-2115) are installed on the drive shaft. The 353B33
high-sensitivity ICP accelerometer from the PCB company and the 6062E acquisition card
from the NI company are used to collect the vibration signal of the bearing.
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Figure 7. Rolling bearing full life test bench.

The bearing public data contain three test data, and the second test data are used in this
paper. Among them, the sampling frequency of the experiment is 20 kHz, data are collected
every 10 min, and 20,480 sampling points are collected each time. The test ran for a total
of 8 days. The acceleration signals of the four bearings corresponded to the four channels
in the data set, respectively. Finally, the test ended when the outer ring of the 1#bearing
failed. A total of 984 times were collected. Therefore, a total of 984 × 20,480 sampling
points were collected.

The change in the vibration signal during the whole life of the 1#bearing is shown
in Figure 8. It can be seen that: (1) In the early stage of the test, the running state of the
1#bearing was relatively stable, and its vibration signal had no obvious abnormal change.
(2) After a minor fault occurs in the 1#bearing, the amplitude of the vibration signal begins
to increase. (3) With the progress of the test, the failure of the 1#bearing intensified, the
vibration signal began to change abruptly, the amplitude further increased, and finally,
the 1#bearing suffered a serious outer ring failure. The value of the vibration signal at
the corresponding time also reflected this situation more clearly. The above phenomenon
shows that it is feasible to analyze the bearing performance degradation trend using the
vibration signal. However, the degradation trend in the original vibration signal is not
intuitive enough to analyze the performance degradation process of the 1#bearing. The
1#bearing fault will only be reflected in the original vibration signal when it is serious,
which is obviously disadvantageous for the identification of early/weak faults. Therefore,
it is necessary to analyze the performance degradation process of the 1#bearing using
feature extraction.
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3.1. Verification of the Feature Screening Method

Combined with the experimental plan, an eigenvalue is calculated for the 20,480 sam-
pling points collected in a single time, and each eigenindex sequence consists of 984 values.
According to Tables 1 and 2, the change trends in the time domain and frequency domain
characteristics during the whole life cycle of the 1#bearing are shown in Figures 9 and 10, re-
spectively. Figure 11 shows the change trend in the time–frequency domain characteristics
during the whole life cycle of the 1#bearing extracted using Equations (1) and (2). In order
to visualize the change trend in each feature more conveniently, the features are normalized.

According to Figure 9, it can be determined that the time–domain features more
intuitively reflect the performance degradation process of the 1#bearing than the original
vibration signal, but not every time–domain feature describes this process well. The 13 time–
domain features can be divided into the following four categories according to the changing
trend: (1) The first type of feature, such as the mean characteristic, etc., is not sensitive to
the slight and moderate faults of the 1#bearing, although the amplitude fluctuates from
the beginning of the test to the end of the test. Until the 1#bearing fails completely, its
amplitude changes significantly. (2) The second type of feature, such as the skewness and
kurtosis characteristics, is relatively stable in the early stage, which corresponds well with
the running state of the 1#bearing, but it is not sensitive enough to minor faults. After the
1#bearing is slightly damaged, the characteristics are not displayed in time and cannot show
changes until the degree of failure is more serious. (3) The third type of feature, such as the
peak index, margin index and pulse index, etc., fluctuates violently from the beginning and
shows a certain change trend with the operation of the 1#bearing. But the fluctuation in
this type of characteristics is too large, so that the change trend of the characteristics is not
obvious enough to be submerged in it. (4) The changes in the fourth type of feature, such
as the root mean square value, variance, and root square amplitude, are similar to those
of the second type in the early stage, but the difference is that when the 1#bearing has a
slight fault, the amplitude of the characteristics also changes correspondingly. And with a
deepening of the failure degree, this change will be more obvious, which can better reflect
the performance degradation trend of the bearing during its entire life.
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According to Figure 10, it can be determined that the change process of the 12 fre-
quency domain features over time is not the same. Except for the frequency domain
feature 7, the other features change when the 1#bearing fails, which shows that the fre-
quency domain features better reflect the performance degradation process of the 1#bearing.
However, some frequency domain features, such as frequency domain features 1, 2, 5, and
6, decrease in amplitude after the 1#bearing failure and further decrease over time until the
performance degrades sharply and their amplitude fluctuates drastically.

According to Figure 11, it can be determined that most of the time–frequency domain
features do not reflect the performance degradation process of the 1#bearing well, the trend
is not obvious, and the fluctuation is large.

Therefore, feature screening is carried out using the aforementioned method. At this
time, the performance degradation of the 1#bearing is monitored, and α1 = 0.3, α2 = 0.3,
and α3 = 0.4 during the calculation, and the result is shown in Figure 12. If the mean value
of the comprehensive evaluation value of 37 features has 0.4013 as the threshold, then the
comprehensive evaluation value of 25 features is greater than or equal to 0.4013. However,
combined with the changing trends on the aforementioned features, it is found that some
of these 25 features fluctuate greatly or are relatively gentle in the changing process, such
as features f 16 and f 22. Therefore, considering the comprehensive evaluation value, the
degradation process of each feature, and the dimension of the feature set, the features
with a comprehensive evaluation value greater than or equal to 0.48 are reserved to form
the optimal feature set, which includes 14 features such as features f 4, f 5, and f 2. Among
these features, even including the feature f 7 with the smallest comprehensive evaluation
value, when the 1#bearing is running well, its amplitude fluctuation is small. Although it
is not sensitive enough to minor damage, it can also be reflected after the obvious failure
of the 1#bearing. Therefore, these 14 features can be used as the preferred feature set for
performance degradation assessment of the 1#bearing.
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3.2. Verification of the HI Construction Method

The KPCA method is used to reduce the dimensionality of the aforementioned 14
preferred features. First, the features of the low-dimensional space are mapped to the
high-dimensional space. In this paper, the rbf radial basis function is used as the kernel
function. The specific type is the Gaussian kernel function, and its expression is:

k(x1, x2) = exp(
−‖x1 − x2‖2

2σ
) (14)

where x1, x2 can be regarded as two feature sequences and σ is the kernel parameter.
Secondly, the contribution rate of each principal component is calculated in a high-

dimensional space. Taking the previous 10 principal components as an example, the
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respective contribution rates are shown in Figure 13. It can be seen that the first and second
principal components account for 77.32% and 15.26% of the original data information,
respectively. The larger the subsequent principal component number, the smaller the
contribution rate, which gradually approach zero.
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In order to determine the appropriate dimension, the cumulative contribution rate
curve of the principal components is drawn, as shown in Figure 14. It can be seen that:
(1) With an increase in the principal components, the cumulative contribution rate of
principal components becomes smooth after a large increase and finally approaches 1
infinitely. (2) The inflection point on the curve is roughly at the fourth principal component.
After that, even if the number of principal components continues to increase, the cumulative
contribution rate will not increase significantly. Therefore, this paper selects the first four
principal components as the features after dimension reduction, and their cumulative
contribution rate reaches 97.63%. That is to say, the features after dimension reduction
contain 97.63% of the information in the original data, and it is most appropriate that the
dimension is reduced from 14 dimensions to 4 dimensions.
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The variation trends in the first four main elements of the 1#bearing are shown in
Figure 15, which are used as the input value and target value of the CAE network for
training, and the obtained encoded features are used as the HI of 1#bearing. For the
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convenience of comparison, the HI for the 1#bearing is constructed using an autoencoding
(AE) network and a Gaussian mixture model (GMM), respectively. The HI obtained using
the three different methods is shown in Figure 15 after denoising and smoothing.

Entropy 2023, 25, x FOR PEER REVIEW 18 of 33 
 

 

 
Figure 14. The cumulative contribution rate of the principal components of 1#bearing . 

The variation trends in the first four main elements of the 1#bearing are shown in 
Figure 15, which are used as the input value and target value of the CAE network for 
training, and the obtained encoded features are used as the HI of 1#bearing. For the con-
venience of comparison, the HI for the 1#bearing is constructed using an autoencoding 
(AE) network and a Gaussian mixture model (GMM), respectively. The HI obtained using 
the three different methods is shown in Figure 15 after denoising and smoothing. 

 
Figure 15. Variation trend in the top 4 principal components of 1#bearing. 

The comparative analysis shows that: (1) The HI constructed using the three different 
methods shows a consistent degradation trend, and the change process reflects the per-
formance degradation process of the 1#bearing. (2) In the early stage of the test, since the 
running state of the 1#bearing is relatively stable, the amplitude of its HI should be rela-
tively stable on the whole. Considering the actual operation situation, the amplitude of 
the HI slightly fluctuates more in line with reality. Figure 16 shows that the early stage of 
GMM-HI is too stable and has almost no fluctuation. The early stage of AE-HI fluctuates 
greatly, which is different from the actual situation, and the early stage of CAE-HI is in 
line with the expectation of overall stability and slight fluctuation. (3) As the test pro-
gresses, the 1#bearing begins to be damaged, and the amplitude of the HI should show an 
increasing trend. Figure 16 shows that GMM-HI began to increase significantly after the 
5240th min, while AE-HI and CAE-HI began to increase after the 5200th min, which is 40 
min ahead of GMM-HI. It is very important for the actual industrial production to be able 
to detect early damage to a monitored object in time. From this level of analysis, it is ob-
vious that AE-HI and CAE-HI perform better. (4) When the 1#bearing fails, the amplitude 

Figure 15. Variation trend in the top 4 principal components of 1#bearing.

The comparative analysis shows that: (1) The HI constructed using the three differ-
ent methods shows a consistent degradation trend, and the change process reflects the
performance degradation process of the 1#bearing. (2) In the early stage of the test, since
the running state of the 1#bearing is relatively stable, the amplitude of its HI should be
relatively stable on the whole. Considering the actual operation situation, the amplitude of
the HI slightly fluctuates more in line with reality. Figure 16 shows that the early stage of
GMM-HI is too stable and has almost no fluctuation. The early stage of AE-HI fluctuates
greatly, which is different from the actual situation, and the early stage of CAE-HI is in line
with the expectation of overall stability and slight fluctuation. (3) As the test progresses, the
1#bearing begins to be damaged, and the amplitude of the HI should show an increasing
trend. Figure 16 shows that GMM-HI began to increase significantly after the 5240th min,
while AE-HI and CAE-HI began to increase after the 5200th min, which is 40 min ahead
of GMM-HI. It is very important for the actual industrial production to be able to detect
early damage to a monitored object in time. From this level of analysis, it is obvious that
AE-HI and CAE-HI perform better. (4) When the 1#bearing fails, the amplitude of the HI
should fluctuate greatly. Figure 15 shows that AE-HI and CAE-HI began to fluctuate greatly
after the 6820th min, while GMM-HI was delayed by 10 min. (5) As the test continues, the
1#bearing fails completely, and the amplitude of the HI should change sharply. Figure 16
shows that CAE-HI shows a steep change at the 9360th min, while AE-HI and GMM-HI
were delayed at the 9370th and 9400th min, respectively.

Therefore, whether from the qualitative analysis reflecting the early running state of
the 1#bearing or from the quantitative analysis of the 1#bearing damage and failure time
point, the results show that the CAE-HI constructed in this paper is superior to AE-HI and
GMM-HI.

Further characteristic evaluation indicators, such as monotonicity and trend estab-
lished using Equations (4) and (6), were used to evaluate the HI constructed using three
different methods. The results are listed in Table 4. It can be seen that the CAE-HI con-
structed in this paper performs better than AE-HI and GMM-HI.
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Table 4. Performance of the HI constructed using different methods.

Evaluation Indicator CAE-HI AE-HI GMM-HI

Monotonicity 0.2513 0.2411 0.1801
Trend 0.9462 0.9430 0.9454

3.3. Verification of the Performance Degradation Prediction Model

Based on the TCN algorithm, the aforementioned direct multi-step prediction is used
to predict the performance degradation trend of 1#bearing. By comparing the results with
the prediction models constructed using the long short-term memory (LSTM) network and
the gated recurrent unit (GRU) algorithm, the superiority of the performance degradation
prediction method proposed in this paper is verified.

The HI of the 1#bearing has a total of 984 data files, which are divided into a training
set and a test set according to the ratio of 7:3, that is, the first 689 data files and the remaining
295 data files, respectively, form the training set and the test set for the prediction model
using spatial phase reconstruction technology. The time step for each input was set to 8
and the prediction step was set to 3. The size of the convolution kernel in the model was
set to 3, the number of convolution layers was set to 4, and the expansion coefficient was
set to 2. The number of iterations for training the model was 150, and the input batch
size in each training was 10. The prediction results based on the TCN model are shown
in Figure 17, which also shows the prediction results obtained using the LSTM and GRU
models. It should be noted that in order to prevent the model from overfitting, the number
of hidden layers for training the LSTM and GRU models was set to 1, the maximum number
of iterations was 100, and the dropout was 0.3.
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According to Figure 17, it can be seen that: (1) The prediction models established using
the three different methods make accurate performance degradation predictions for the
1#bearing, and the difference between the predicted values of three different methods at
certain time points is very small or even the same. (2) In the failure stage of the 1#bearing,
the deviation between the predicted value and the actual value of the two methods using
the LSTM algorithm and the GRU algorithm is large.

Further, combined with the evaluation indicators established using Equations (12) and
(13), the prediction models constructed using the three different methods were evaluated,
and the results are shown in Table 5. Compared with the other two models, the perfor-
mance degradation trend prediction model constructed in this paper using TCN has better
prediction performance and higher prediction accuracy.

Table 5. Evaluation metrics for the different prediction models.

Evaluation Indicator
Predictive Model

TCN LSTM GRU

RMSE 0.0257 0.0385 0.0366
MAE 0.0187 0.0264 0.0234

4. Application

The feasibility of the performance degradation trend prediction method based on
multi-domain features and TCN proposed in this paper was verified using bearing public
data. In this section, the model is applied to predict the performance degradation trend of
a rolling contact fatigue specimen to further verify the effectiveness of the method.

4.1. Rolling Contact Fatigue Test

According to the “Rolling Contact Fatigue Test Method for Metal Materials” (YB/T
5345.2014) [41], rolling contact fatigue testing is the only way to obtain the contact fatigue
properties of materials. The research group successfully developed the RCF-A machine, as
shown in Figure 18, which solved the technical problems of similar test machines, such as
discontinuous data collection and difficulty in accurately obtaining fatigue strength.

A test was carried out using an RCF-A machine, as shown in Figure 19. The 1A307E
accelerometer is installed on the headstock box with magnetic attraction (as shown in
Figure 20), and the EM9118B-6/ICP data acquisition card is used to collect vibration signals.
The working conditions were set as shown in Table 6, and the control interface of the RCF-A
machine is shown in Figure 21.
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Table 6. Working conditions.

Specimen
Material

Rotational Speed (r/min)

Slip Rate Radial Load
(N)

Sampling

Main Shaft
(Specimen)

Accompanying
Shaft (Ac-

companying
Specimen)

Frequency
(kHz)

Single
Sample

Duration (s)

Sampling
Interval

(min)

40Cr 1000 1100 10% 2071 10 1 2
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Figure 21. The control interface of the RCF-A machine.

Finally, when the test reached 1632 min, the contact fatigue failure of the specimen
occurred. Figure 22 shows the good state and failure state of the specimen before and
after the test. It can be seen that due to rolling contact fatigue, pitting corrosion and crack-
induced spalling occurred at 1 and 2 in Figure 22b, respectively. Although not easily visible
to the naked eye, with the help of the image acquisition system of the testing machine,
the time of fatigue failure was accurately captured. Figure 23 shows the acquired image
information for the contact surface of the specimen at key time points, which truly records
the evolution process in the contact surface of the sample from the initiation of fatigue
damage to the appearance of cracks and then to spalling.
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Figure 23. Fatigue damage and evolution process of the specimen surface. (a) Normal status;
(b) pitting; (c) cracks appear; (d) crack propagation; (e) further crack growth; and (f) flaking occurs.

According to the above-mentioned test process and data collection method, if the
data collected every 1 s is a data file and each file contains 10,000 sampling points, then a
total of 816 data files are obtained until the specimen fails. The vibration signal during the
whole life cycle of the specimen is shown in Figure 24, which contains 8.16 × 106 sampling
points. It can be seen that: (1) From the beginning of the test to about 3 × 106 sampling
points, the value of the specimen vibration signal does not fluctuate much, indicating that
the specimen is in a relatively stable state. (2) From 3 × 106 to 7 × 106 sampling points,
the signal amplitude increases significantly. Fatigue pitting damage should have occurred
in the specimen. (3) After 7 × 106 sampling points, the signal amplitude continued to
increase, indicating that cracks appeared on the surface of the specimen, and the crack area
expanded rapidly. Finally, spalling was formed, and the specimen failed completely.
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4.2. Feature Screening

A feature value is calculated for the 1 × 104 data points obtained at each sampling
time, and each feature sequence has a total of 816 values. The variation trend in the time
domain characteristics of the specimen during the whole life cycle is shown in Figure 25.
It can be seen that: (1) In the dimensioned time domain feature, the mean value feature
is not sensitive to the contact fatigue of the specimen, and the amplitude changes in the
other features can better reflect the state change in the specimen compared with the original
vibration. The signal is more timely and clear. (2) Among the dimensionless time domain
features, in addition to the skewness index feature, te other features can also better reflect
the change process in the specimen from normal to failure.
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Figure 26 shows the variation trend in the frequency domain characteristics of the
specimen during the whole life cycle. It can be found that in terms of reflecting the operating
state of the specimen, the overall performance of the frequency domain features is not as
good as the time domain features. Except for the amplitude mean and amplitude variance,
the other frequency domain features have large fluctuations during the whole life cycle.
Although there is a certain trend in the performance degradation process of the specimen,
this trend is not stable, and even jumps at some time points.

Three-layer wavelet packet decomposition is performed on the vibration signal of the
specimen, and the obtained energy changes in each frequency band in the second layer
and the third layer are shown in Figure 27. It can be seen that most of the time–frequency
domain features do not reflect the performance degradation process of the specimen well,
the trend is not obvious, and the fluctuation is large.

Similarly, in order to obtain the features that are sensitive to the contact fatigue
degradation process of the specimen, the monotonicity, correlation mean and trend of
37 multi-domain features are calculated using Equations (4)–(6). On this basis, the compre-
hensive evaluation index for each feature is calculated using Equation (3), and the result
is shown in Figure 28. Considering the comprehensive evaluation value and degradation
process of each feature, and considering the dimension of the feature set, the features
with comprehensive evaluation value greater than or equal to 0.4 are reserved to form the
optimal feature set, which includes 14 features such as feature f 9, feature f 13, and feature f 7.
These preferred features better reflect the performance degradation process of the specimen.
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4.3. Feature Dimensionality Reduction

The rolling contact fatigue performance of the specimen is degraded, and its vibration
signal also has non-stationary and nonlinear characteristics. Dimensionality reduction of
the aforementioned 14 preferred features was carried out using KPCA method.

When mapping the features of the low-dimensional space to the high-dimensional
space, the Gaussian kernel function, shown in Equation (14), is used, and the respective
contribution rates of the first 10 principal components are calculated, as shown in Figure 29.
The plotted pivotal cumulative contribution rate curve is shown in Figure 30. It can be seen
that: (1) As the number of principal components increases, the cumulative contribution
rate of the principal components also increases, and more information is contained. (2) The
inflection point on the curve is roughly at the fourth principal component. At this time,
even if the number of principal components continues to increase, the cumulative contri-
bution rate will not increase significantly. Therefore, it is most appropriate to reduce the
dimensions from 14 to 4.

The variation trends in the first four principal components of the specimen are shown
in Figure 31. Using feature dimensionality reduction, the optimal feature set of the specimen
is reduced from 14 dimensions to 4 dimensions. After dimensionality reduction, the feature
set contains 98.33% of the information in the optimal feature set, achieving the purpose of
reducing the dimension without losing a lot of information.
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4.4. Construction of the HI

The dimensionality-reduced features are used as the input value and target value for
the CAE network for training, and the obtained encoded features are used as the HI for
the specimen. Similarly, the AE network and the GMM are used to construct the HI for the
specimen, respectively, for comparison. The HI obtained using the three different methods
were denoised and smoothed, as shown in Figure 32.

The comparative analysis shows that: (1) The HI constructed using the three different
methods show a consistent degradation trend, and the change process reflects the perfor-
mance degradation process of contact fatigue in the specimen, which is consistent with the
process of rolling contact fatigue in the specimen in Figure 23. (2) In the early stage of the
test, due to the relatively stable running state of the specimen, the amplitudes of the HI
were generally stable, but slightly fluctuated due to the influence of the test environmental
conditions. (3) With the progress of the test, the specimen became damaged, and the
amplitude of the HI showed an increasing trend. Figure 32 shows that AE-HI and GMM-HI
began to increase significantly after 520 min and 600 min, respectively, while CAE-HI began
to show an increasing trend after 502 min, i.e., compared with AE-HI and GMM-HI, it
was advanced by 18 min and 98 min, respectively. Therefore, the HI construction method
proposed in this paper has more advantages. (4) When the specimen has serious fatigue
damage such as a crack, the amplitude of the HI should fluctuate greatly. Figure 32 shows
that CAE-HI began to fluctuate greatly after 1224 min, while the large fluctuations in AE-HI
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and GMM-HI were delayed by 24 min and 10 min, respectively. (5) With the continuous
progress of the test, the fatigue failure of the specimen occurred, and the amplitude of the
HI changes sharply. Figure 32 shows that CAE-HI and GMM-HI had a steep change at
1424 min, while the abrupt change in AE-HI appeared at 1432 min, and there was a lag.
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In a word, whether from the qualitative analysis reflecting the early running state of
the specimen or from the quantitative analysis of the time point of the fatigue damage and
fatigue failure of the specimen, the results show that the CAE-HI constructed in this paper
is superior to AE-HI and GMM-HI. Therefore, the method of constructing HI based on CAE
network is reasonable and effective, and this method has obvious advantages compared
with the AE network and GMM, two commonly used methods of constructing an HI.

4.5. Performance Degradation Prediction of Rolling Contact Fatigue

Based on the TCN algorithm, the direct multi-step prediction is also used for perfor-
mance degradation prediction of the rolling contact fatigue specimen. After comparing
the results with the prediction models using the LSTM algorithm and the GRU algorithm,
the superiority of the proposed performance degradation trend prediction method is fur-
ther verified.

The HI of the specimen has a total of 816 data files, which are divided into a training set
and a test set according to the ratio of 7:3, that is, the first 571 data files and the remaining
245 data files, respectively, form the training set and the test set, respectively, for the
prediction model using spatial phase reconstruction technology. The other parameters are
the same as that of the performance degradation prediction of the 1#bearing.

The prediction results obtained using the TCN model are shown in Figure 33, and the
prediction starts from the 580th sampling time, that is, the 1160th min. In order to illustrate
the superiority of the method, the prediction results obtained using two commonly used
time series data prediction models, LSTM network and GRU, are also shown in Figure 33.
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The evaluation indicators for three different prediction models are listed in Table 7. It can
be seen that the prediction model based on the TCN predicts the performance degradation
of the rolling contact fatigue specimen well. Moreover, it has the best fit with the actual
performance degradation curve, and the prediction accuracy is higher. At the same time,
the model evaluation index is also the best among the three models.
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Table 7. Evaluation index for the different prediction models.

Evaluation
Indicators

Predictive Model

TCN GRU LSTM

RMSE 0.0146 0.0555 0.0744
MAE 0.0105 0.0308 0.0423

5. Discussion

In practical applications, the number of predicted steps can be appropriately increased
according to demand. Figure 34 shows the prediction results obtained using the TCN
model in the prediction time period when the prediction steps are 3, 4, and 5, respectively.
It can be seen that: (1) In the early stage of prediction, the difference between the predicted
values under different prediction step sizes is small and close to the actual value. (2) With
the passage of time, the variation range of the HI increases, and the predicted value begins
to deviate from the actual value. (3) In the later stage of prediction, the prediction error
increases. The larger the prediction step size, the larger the error.
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Further, the evaluation indicators RMSE and MAE are used to quantitatively evaluate
the prediction effect of the model. The evaluation index values for the models under the
aforementioned three prediction steps are listed in Table 8. It can be seen that under the
same other conditions, with an increase in the prediction step size each time, the error in
the prediction results increases. Therefore, when predicting the performance degradation
trend of the monitored object, the prediction step size can be reasonably selected according
to the actual demand under the premise of satisfying the prediction accuracy.

Table 8. Evaluation index for TCN model under different prediction step size.

Evaluation
Indicator

1#Bearing Specimen

Prediction Step Size

3 4 5 3 4 5

RMSE 0.0257 0.0333 0.0418 0.0146 0.0259 0.0393
MAE 0.0187 0.0243 0.0305 0.0105 0.0164 0.0270

6. Conclusions

In this paper, a performance degradation prediction method based on multi-domain
features and TCN is proposed and implemented, comprehensively using theories and
methods such as multi-feature fusion, feature space transformation, and machine learning.

(1) In terms of HI construction, in view of the information loss problem faced by the
construction of one-dimensional HI using multi-domain feature extraction, on the basis of
multi-domain feature extraction, a method using KPCA to reduce feature dimensionality
and CAE network to construct performance degradation HI is proposed. The results show
that KPCA can reduce the dimension of the feature set and retain more than 97% of the
information in the original data. Furthermore, the change process of the HI constructed
using the CAE network truly reflects the performance degradation process of the monitored
object. Compared with the AE network and GMM, this method has obvious advantages.

(2) Regarding prediction model construction, in view of the shortcomings of the
commonly used prediction model based on recurrent neural networks, such as low parallel
computation and small receptive field of input data, a performance degradation trend
prediction method based on multi-domain features and TCN is proposed. The results show
that the prediction model constructed using the TCN algorithm can accurately predict the
performance degradation trend of the monitored object, and the constructed prediction
model has better performance and higher accuracy than the prediction models using the
LSTM network and GRU.

The verification results for the bearing public data and the application results for the
rolling contact fatigue show that the performance degradation prediction method based
on multi-domain features and TCN proposed in this paper is feasible and effective. This
method has general significance and can be extended to the performance degradation
prediction of other mechanical equipment/components.

Currently, big data technology and machine learning are booming. In future research,
an intelligent extraction method for health indexes should be considered to directly obtain
health indexes from feature sets or even from the raw vibration signal without influencing
the calculation speed. At the same time, it is necessary to simplify the implementation
process of forecasting methods, improve computing efficiency, and meet real-time forecast-
ing needs.

Author Contributions: Y.L.(Yu Liu) conceived this research; Y.L. (Yuanbo Liu) built model and
performed the experiments and data processing; Y.L.(Yu Liu) and Y.L. (Yuanbo Liu) wrote the original
draft; the editing and review on this article were completed by Y.L.(Yu Liu) and Y.Y.; Y.Y. was
responsible for overseeing the progress and visualization of this article. All authors have read and
agreed to the published version of this manuscript.



Entropy 2023, 25, 1316 32 of 33

Funding: This research was funded by the National Natural Science Foundation of China (No.
52075062) and Chongqing Municipal Education Commission Major Project of China (No. KJZD-
M202001101).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of thus study; in the collection, analyses, or interpretation of data; in the writing of this manuscript,
or in the decision to publish the results.

References
1. Pei, H.; Hu, C.H.; Si, X.S.; Zhang, J.X.; Pang, Z.N.; Zhang, P. Review of machine learning based on remaining useful life prediction

methods for equipment. J. Mech. Eng. 2019, 55, 1. [CrossRef]
2. Li, X.D.; Zhang, S.C.; Liu, Y. Review of Rolling Contact Fatigue Life Prediction. Aviat. Precis. Manuf. Technol. 2017, 53, 1–4.
3. Lei, Y.; Jia, F.; Zhou, X.; Lin, J. A deep learning-based method for machinery health monitoring with big data. J. Mech. Eng. 2015,

51, 49–56. [CrossRef]
4. Liu, Z.Y.; Liu, Y.B.; Yang, F.; Lu, K.X.; Liu, Y. Remaining life prediction of contact fatigue based on optimized BP neural network

model on Spark platform. J. Chongqing Univ. Technol. (Nat. Sci.) 2021, 35, 111–119.
5. Ahmad, W.; Khan, S.A.; Kim, J.M. A hybrid prognostics technique for rolling element bearings using adaptive predictive models.

IEEE Trans. Ind. Electron. 2017, 65, 1577–1584. [CrossRef]
6. Wu, J.; Wu, C.Y.; Cao, S.; Or, S.W.; Deng, C.; Shao, X.Y. Degradation data-driven time-to-failure prognostics approach for rolling

element bearings in electrical machines. IEEE Trans. Ind. Electron. 2018, 66, 529–539. [CrossRef]
7. Zhu, J.K. Research on Prediction Method of Rolling Bearing Performance Degradation Trend Based on Deep Learning. Master’s

Thesis, Chongqing Jiaotong University, Chongqing, China, 2021.
8. Liu, J.H. Research on Prediction of Performance Degradation Trend of Wind Turbine Bearings. Master’s Thesis, North China

Electric Power University, Beijing, China, 2020.
9. Wang, F.T.; Chen, X.T.; Liu, C.X. Reliability evaluation and life prediction of rolling bearing based on KPCA and WPHM. J. Vib.

Meas. Diagn. 2017, 37, 476–483 + 626.
10. Zhang, Y.Q.; Zou, J.H.; Ma, J. Rolling Bearing Residual Life Prediction Based on Grey Prediction Model with Multiple Degenerate

Variables. J. Detect. Control 2019, 41, 112–120.
11. Qiao, W.; Ni, X.; Wang, L.; Lv, X.; Chen, L.; Sun, F. New degradation feature extraction method of planetary gearbox based on

alpha stable distribution. J. Mech. Sci. Technol. 2021, 35, 1–19. [CrossRef]
12. Zhang, B.; Zhang, S.; Li, W. Bearing performance degradation assessment using long short-term memory recurrent network.

Comput. Ind. 2019, 106, 14–29. [CrossRef]
13. Zheng, X.X.; Qian, Y.Q.; Wang, S. GRU prediction for performance degradation of rolling bearings based on optimal wavelet

packet and Mahalanobis distance. J. Vib. Shock 2019, 106, 14–29.
14. Fang, B. Research on Health Status Assessment Method of Rolling Bearings. Master’s Thesis, Harbin Institute of Technology,

Harbin, China, 2019.
15. Yang, C.; Yang, X.X.; Li, L.F. Prediction of Bearing Performance Degradation Trend Based on Grey Relational Degree and ELM.

Modul. Mach. Tool Autom. Manuf. Tech. 2019, 4, 105–108.
16. Zhai, W.R. Study on Performance Degradation Evaluation of Shearer. Master’s Thesis, China University of Mining, Beijing,

China, 2020.
17. Jin, Q.; Wang, Y.R.; Wang, J. Planetary Gearbox Fault Diagnosis Based on Multiple Feature Extraction and Information Fusion

Combine with Deep Learning. China Mech. Eng. 2019, 30, 196–204.
18. Chen, X.L.; Wu, C.Z. Prediction for Rolling Bearing Performance Degradation Based on 1-DCNN. Chin. J. Ordnance Equip. Eng.

2021, 42, 222–227.
19. Yu, J.; Wen, Y.; Yang, L.; Zhao, Z.B.; Guo, Y.J.; Guo, X. Monitoring on Triboelectric Nanogenerator and Deep Learning Method.

Nano Energy 2022, 92, 106698. [CrossRef]
20. Zhao, G.Q.; Ge, Q.Q.; Liu, X.Y.; Peng, X.Y. Fault feature extraction and diagnosis method based on deep belief network. Chin. J.

Sci. Instrum. 2016, 37, 1946–1953.
21. Dai, S.W.; Chen, Q.Q.; Ding, Y. Prediction for Rolling Bearing Remaining Life Based on Time Domain Features. Comput. Meas.

Control 2019, 27, 60–63.
22. Shen, Z.J.; Chen, X.F.; He, Z.J.; Sun, C.; Zhang, X.L.; Liu Z., W. Remaining Life Predictions of Rolling Bearing Based on Relative

Features and Multivariable Support Vector Machine. J. Mech. Eng. 2013, 49, 183–189. [CrossRef]
23. Chen, Q.Q.; Dai, S.W.; Dai, H.D.; Zhu, M.; Sun, Y.Y. Performance degradation trend prediction of rolling bearings based on

SPA-FIG and optimized ELM. J. Vib. Shock 2020, 39, 187–194.
24. Mei, W.J.; Gao, Y.; Du, L.; Liu, Z.; Wang, H.J. Online sequential regularized correntropy criterion extreme learning machine on

spark streaming signal prediction for electronic device degradation. Chin. J. Sci. Instrum. 2019, 40, 212–224.

https://doi.org/10.3901/JME.2019.08.001
https://doi.org/10.3901/JME.2015.21.049
https://doi.org/10.1109/TIE.2017.2733487
https://doi.org/10.1109/TIE.2018.2811366
https://doi.org/10.1007/s12206-020-1201-5
https://doi.org/10.1016/j.compind.2018.12.016
https://doi.org/10.1016/j.nanoen.2021.106698
https://doi.org/10.3901/JME.2013.02.183


Entropy 2023, 25, 1316 33 of 33

25. Zhou, F.N.; Gao, Y.L.; Wang, J.Y.; Wen, C.L. Early Diagnosis and Life Prognosis for Slowly Varying Fault Based on Deep Learning.
J. Shandong Univ. (Eng. Sci.) 2017, 47, 30–37.

26. Zhang, N. A Method of Rolling Bearings Life Prediction Based on Deep Belief Network. Master’s Thesis, Hunan University,
Changsha, China, 2018.

27. Yang, Y.; Zhang, N.; Cheng, S.J. Global parameters dynamic learning deep belief networks and its application in rolling bearing
life prediction. J. Vib. Shock 2019, 38, 199–205 + 249.

28. Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional
neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef]

29. Sun, S.E.; Yao, L.; Zhao, Y. Time Series Data Fusion Algorithm Based on Convolutional Neural Network. J. Xi’an Shiyou Univ.
(Nat. Sci. Ed.) 2021, 36, 136–142.

30. Wang, X.; Wu, J.; Liu, C.; Yang, H.Y.; Du, Y.L.; Niu, W.S. Fault Time Series Prediction Based on LSTM Recurrent Neural Network.
J. Beijing Univ. Aeronaut. Astronaut. 2018, 44, 772–784.

31. Li, F.; Chen, Y.; Xiang, W.; Wang, J.X.; Tang, B.P. State degradation trend prediction based on quantum weighted long short-term
memory neural network. Chin. J. Sci. Instrum. 2018, 39, 217–225.

32. Wang, P.; Deng, L.; Tang, B.P.; Han, Y. Degradation trend prediction of rolling bearing based on auto-encoder and GRU neural
network. J. Vib. Shock 2020, 39, 106–111 + 133.

33. Lei, Y.G.; Jia, F.; Lin, J.; Xing, S.B.; Ding, S.X. An intelligent fault diagnosis method using unsupervised feature learning towards
mechanical big data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef]

34. Li, J. Research on State Evaluation Based on Similarity Analysis of Principal Curves in Manifold Space. Master’s Thesis,
Chongqing University, Chongqing, China, 2017.

35. Lei, Y.G.; Li, N.P.; Guo, L.; Li, N.B.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to
RUL prediction. Mech. Syst. Signal Process. 2018, 104, 799–834.

36. Schölkopf, B.; Smola, A.J.; Müller, K.R. Kernel principal component analysis. In Proceedings of the International Conference on
Artificial Neural Networks, Lausanne, Switzerland, 8–10 October 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 583–588.

37. Lee, J.M.; Yoo, C.K.; Choi, S.W.; Vanrolleghem, P.A.; Lee, I.B. Nonlinear process monitoring using kernel principal component
analysis. Chem. Eng. Sci. 2004, 59, 223–234. [CrossRef]

38. Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; pp. 586–590.
39. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.

Arxiv Prepr. 2018, arXiv:1803.01271.
40. Yu, C.C.; Ning, Y.Q.; Qin, Y.; Gao, K.K. Prediction of rolling bearing state degradation trend based on T-SNE sample entropy and

TCN. Chin. J. Sci. Instrum. 2019, 40, 39–46.
41. YB/T 5345.2014; Test Method for Rolling Contact Fatigue of Metallic Materials. Ministry of Industry and Information Technology

of the People’s Republic of China: Beijing, China, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jsv.2016.05.027
https://doi.org/10.1109/TIE.2016.2519325
https://doi.org/10.1016/j.ces.2003.09.012

	Introduction 
	Theory and Method 
	Multi-Domain Feature Extraction and Feature Screening 
	Multi-Domain Feature Extraction 
	Feature Screening 

	Construction of Health Indexes 
	Feature Dimensionality Reduction Based on KPCA 
	Construction of the HI Based on a CAE Network 

	Performance Degradation Prediction 
	Temporal Convolutional Networks 
	Performance Degradation Prediction Based on TCN 


	Verification 
	Verification of the Feature Screening Method 
	Verification of the HI Construction Method 
	Verification of the Performance Degradation Prediction Model 

	Application 
	Rolling Contact Fatigue Test 
	Feature Screening 
	Feature Dimensionality Reduction 
	Construction of the HI 
	Performance Degradation Prediction of Rolling Contact Fatigue 

	Discussion 
	Conclusions 
	References

