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Abstract: Due to the difficulty of decentralized inference with conditional dependent observations,
and motivated by large-scale heterogeneous networks, we formulate a framework for decentralized
detection with coupled observations. Each agent has a state, and the empirical distribution of all
agents’ states or the type of network dictates the individual agents’ behavior. In particular, agents’
observations depend on both the underlying hypothesis as well as the empirical distribution of the
agents’ states. Hence, our framework captures a high degree of coupling, in that an individual agent’s
behavior depends on both the underlying hypothesis and the behavior of all other agents in the
network. Considering this framework, the method of types, and a series of equicontinuity arguments,
we derive the error exponent for the case in which all agents are identical and show that this error
exponent depends on only a single empirical distribution. The analysis is extended to the multi-class
case, and numerical results with state-dependent agent signaling and state-dependent channels
highlight the utility of the proposed framework for analysis of highly coupled environments.

Keywords: heterogeneous networks; method of types; large-scale networks; information measures

1. Introduction

Decentralized detection is an important element in a wide range of modern applica-
tions, such as the Internet of Things [1], smart grids [2], cognitive radio [3], and millimeter-
wave communications [4]. However, many classical results in decentralized detection
assume that agents’ observations are independent, conditioned on the underlying hypoth-
esis. This assumption fails to hold in many of these recent applications, such as human
decision-making [5], sensor networks with correlated observations [6], and quorum sensing
in microbial communities [7]. Unfortunately, the problem of decentralized detection with
correlated observations is NP-Hard [8], and many of the classical results are not appli-
cable in this case (for examples, see [9–11]). Recent work in decentralized detection has
placed greater attention on the case of correlated observations [12–15]. Although recent
advancements have been promising, the inherent difficulty of the problem has resulted in
approximations and relaxations [13,15]. In this work, we build upon the state-dependent
formulation introduced in [16] by allowing agents’ observations to depend on both the
underlying hypothesis as well as the empirical distribution, or type, of their states. The
notion of type has a rich history in information theory and statistics, being first introduced
by Csiszar [17]. Today, the method of types has been further developed [18] and is used in
a variety of fields, such as control [19], machine learning [20], statistics [21], and even DNA
storage channels [22].

Conditionally correlated observations can be handled under specific signal models [15]
and assumptions [12,16,23–25]. In particular, Ref. [15] studied bandwidth-constrained de-
tection under the Neyman–Pearson criterion and solved a relaxation of the problem. Several
works [23–25] have studied the problem under communication constraints, with [23] show-
ing that the network learns the hypothesis exponentially quickly under constrained [23]
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and randomized [24] communication. Moreocer, [25] developed a deep learning algorithm
for real-time industry constraints. Other works have attempted to decouple agents’ obser-
vations via algorithms [13] and specific models [12,16,26]. In [12], a hidden variable was
introduced that allows the observations of the agents to be independent, conditioned on
the hidden variable, and it was proved that threshold-based decisions are optimal under
certain model assumptions. Unfortunately, even if a problem of interest falls under this
framework, the assumptions are rather strong and fail in a number of applications. In our
prior work [16,26], we introduced a state variable for each agent and allowed the agents’
observations to be independent conditioned on both the hypothesis and the agent’s state.
We proved similar results to those of [12,27] under much weaker conditions. However,
the model proposed in [16,26] grants each agent its own individual state, whereas in [12]
agents may share a common hidden variable.

The framework was extended in [16,26]; herein agents’ observations, depend on a
common variable, i.e., the type of the agents’ states. In [16], it was assumed that agents know
their individual state and that the fusion center knows the states of all agents. We strongly
relax this assumption; agents do not know their state, and the fusion center only knows
the empirical distribution of the agents’ states. Another key difference is that in [16,26] the
state variable is sufficient to decouple agents’ observations, whereas in this work all agent states
are necessary to decouple observations, allowing this formulation to handle stronger forms
of coupling. The need for the empirical distribution calls for different analysis techniques
from those in [12,16,26] via the method of types. We further introduce a communication
link between the agents and the centralized decision-maker (called the fusion center) which
is not present in [12,16,26] .

Many works in decentralized detection include a communication link between the
agents and the fusion center; the idea itself is not new [28–30]. However, in prior works the
statistical properties of the communication channel were assumed to be independent of
the network’s behavior. A contribution of our current work is that we allow the quality of
the communication channel to vary with the network’s behavior. This is again accomplished by
allowing the channel to vary with the type of the agents’ states. The concept of a channel
with state-dependent noise has been previously considered in information theory [31],
and is in use today [32–34]. However, most of the aforementioned works involving the
notion of state have focused primarily on communication over channels with state, and
have not examined joint detection and communication. While recent works on estimation
exist, they were the context of estimating the channel state to improve communication
performance [34–36]. Notably, signal-dependent noise [37] can be accommodated in our
proposed model. In particular, these models are relevant to visible light communication [38],
magnetic recording [39,40], and imaging applications [41,42].

As an example, we may consider the occurrence of such forms of coupling in microbial
systems. Microbial communities synthesize signaling molecules [7]; when sensed in the
environment, these can result in individual gene expressions that lead to new collective
behaviors through a process called quorum sensing. Specifically, cell i only engages in
quorum sensing when the received number of autoinducer molecules from the environment
Ai exceeds a certain threshold τA. A common model involves assuming that Ai follows a
Poisson distribution conditioned on the total number of synthases (synthases are enzymes
within a cell that are responsible for the production of autoinducer molecules) in the
community and the number of receptors in a cell i, provided as Ri [43]:

P(Ai = k|Ri, S1, . . . ; Sn) =

(
λRi ∑n

j=1 Sj

)k

exp
(
− λRi ∑n

j=1 Sj

)
k!

where Si is the number of synthases present in cell i and λ > 0 is a normalizing term.
Hence, we can think of the number of synthases and receptors in cell i as being the state
of cell i. Then, the observation of cell i depends on the states of all other cells through the
summed total of synthases across the cells. This example illustrates the need for the current



Entropy 2023, 25, 1313 3 of 27

approach, as the models proposed in [12,16] cannot handle this form of coupling and do
not lead to tractable asymptotic results.

In this work, we derive the error exponent as the network size grows. Assuming that all
priors are known, the optimal asymptotic decay rate of the probability of error is provided
by the Chernoff information [27,44,45], regardless of whether conditional independence
holds. Using the Chernoff information, Ref. [27] proved that identical rules are asymptot-
ically optimal for identical agents, while [45] showed that identical binary quantizers are
asymptotically optimal in power-constrained networks. The works in [27,45] both relied
on conditional independence. A contribution of the present study is to remove the need
for conditional independence through the development of a measure that is asymptoti-
cally equivalent to the Chernoff information and tractable in our scenario. The primary
argument comes from the method of types, which, combined with a series of equiconti-
nuity arguments, shows that asymptotic performance is dominated by a single distribution.
Surprisingly, this dominating distribution is generally not the true distribution of the agents’
states.

Using the network type to decouple agents’ observations can be extended beyond pure
decentralized detection. For instance, consensus algorithms used in blockchain applications
often need to deal with faulty or nonconforming nodes [46]. Hence, it is possible to consider
whether the node is conforming or not as the state and the total percentage of conforming
nodes as the network type. Then, the problems of jointly estimating the network type (the
consensus problem) and detecting the underlying hypothesis (the detection problem) can
be considered. Much of the structure herein applies to such problems, as observations
received by agents depend on the other agents’ states. Moreover, the hypothesis and
network type are correlated; when more agents are faulty or nonconforming, an attack is
more likely to be present.

Our contributions in this paper are as follows:

1. We formulate a framework for distributed inference in which the agents’ observations
are correlated through both the hypothesis and the empirical distribution (or type) of
the network state. This formulation captures a high level of coupling between agents.

2. We consider a distributed inference problem with a communication link between
the agents and the fusion center, with the additional caveat that the noise over the
link is dependent on the agents. Hence, our framework captures joint sensing with
correlated observations as well as joint communications with correlated noise.

3. We derive expressions for the error exponent for a single class of agents, then extend
our results to the case of heterogeneous groups of identical agents. In particular,
assuming that identical agents use a common rule, the optimal error exponent depends
only on the ratios of the groups, not on the actual size of the groups themselves. This
allows a wide range of problems to be studied in which there are multiple classes of
agents that interfere with each other.

4. We present a numerical example for a three-class case to highlight the utility of
the proposed expression for the error exponent. In particular, we show how this
expression can be used to optimize the ratios of heterogeneous groups in the presence
of cross-class interference. This example further illustrates the fact that the true
distribution may not dominate the asymptotics. The effect of the channel is observed
as well.

Notation

Random variables are denoted by capital letters X and specific realizations are de-
noted as lowercase letters x. Random vectors are denoted as boldface capital letters X
and specific realizations are denoted with lowercase boldface letters x. Given a random
vector (realization) X (x), X\k (x\k) denotes the vector X (x) with the kth element removed.
Calligraphic letters X denote sets. The symbol P denotes probabilities of events, and EX
denotes expectations with respect to the random variable X.
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2. Materials and Methods

The details concerning how plots are generated are provided in Section 5, along with
a discussion of a specific example.

3. Problem Formulation, Definitions, and Assumptions
3.1. Problem Setup

Consider a set of n agents. The global environmental variable H is the binary H ∈
{0, 1}. Agent k (k = 1, 2, . . . ; n) receives a signal Yk ∈ Y , with Y being the signal space.
The probability density of Yk conditioned on H = h is denoted as pk

h(y). In addition, each
agent takes a state Sk ∈ {1, 2, . . . ; m}, where m is a finite integer. The prior for the state of
agent k is pk(s), and we define the vector pk = [pk(1), . . . , pk(m)]T . The collection of states
S = [S1, · · · , Sn]T is called the network state, with joint density p(s). For a given network
state, we denote the empirical distribution (or the type) of S as Qn

S, that is,

Qn
S(i) =

1
n

n

∑
k=1

1{Sk=i}, i ∈ {1, . . . ; m}, (1)

where 1{Sk=i} is the indicator that agent k is in state i. Let Qn denote the set of all empirical
distributions corresponding to sequences of length n; then, for a given qn ∈ Qn, T (qn) is
the type-class of qn, i.e.,

T (qn) = {s ∈ {1, 2, . . . ; m}n : Qn
s = qn}, (2)

where {1, 2, . . . ; m}n is the Cartesian product of {1, 2, . . . ; m} with itself n times. Note that
Qn

S is a random vector with realization qn, that is,

p(qn) = P(Qn
S = qn) = P(T (qn)) = ∑

s∈T (qn)

p(s). (3)

The joint probability distribution of Yk and the network type under hypothesis H = h is
provided by pk

h(y, qn). The associated conditional density is denoted as pk
h(y|q

n). Let Pm

denote the probability simplex in Rm:

Pm = {q ∈ Rm : qi ≥ 0, ∑
i

qi = 1}. (4)

For q ∈ Pm, the conditional density pk
h(y|q) is called the signal model for agent k. When

we write densities conditioned on q ∈ Pm, we are assuming that these densities have a
functional dependence on q in order to avoid issues with measurability, as certain types
may not be observable regardless of the size of the network. For a simple example, consider
[ 1

e , 1− 1
e ]

T ∈ P2, which is never inQn for any n due to the fact that 1
e is irrational. We define

Y = [Y1, · · · , Yn]T , while the joint density of Y and Qn and the density of Y conditioned on
Qn = qn under H = h are denoted as ph(y, qn) and ph(y|qn), respectively. The joint density
ph(y|q) is called the joint signal model. For brevity, we call the conditional distribution
p(H = h|qn) the hypothesis model. It is important to note that we do not assume conditional
independence of the agents’ observations, i.e., we can have ph(y) 6= ∏k pk

h(yk) for h ∈ {0, 1};
we do, however, assume that the structure described below holds.

Assumption 1. The joint signal model obeys the following: ∀y, ∀q ∈ Pm, ∀h ∈ {0, 1},

ph(y|q) =
n

∏
k=1

pk
h(yk|q). (5)

Equation (5) states that the signal Yk of agent k is independent of Y\k conditioned on
both H and Qn.
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Assumption 2. ∀y, ∀qn ∈ Qn, h ∈ {0, 1}, ph(y, qn) > 0; the joint densities have the same
support under both hypotheses.

Upon receiving observation Yk, agent k makes a decision Uk ∈ {1, 2, . . . ; b} according
to a rule, which is a (possibly randomized) function from Y to the decision space U . We
denote the possibly randomized rule used by agent k as γk,

Uk = γk(Yk) ∼ pk(u|y). (6)

The collection of rules γ = [γ1, · · · , γn]T is called a strategy. After agent k has made its
decision, it sends Uk to the fusion center through a noisy communication link which is
allowed to depend on the type qn. Upon sending Uk, the fusion center receives the message
Xk with

Xk ∼ pk(x|u, qn). (7)

Given q ∈ Pm, the conditional density pk(x|u, q) is the channel model for agent k. We define
X = [X1, · · · , Xn]T , and the joint conditional density p(x|u, q) is called the joint channel
model.

Assumption 3. The joint channel model obeys the following: ∀x, u, ∀q ∈ Pm,

p(x|u, q) =
n

∏
k=1

pk(xk|uk, q). (8)

Assumption 4. ∀x, u, ∀q ∈ Pm, p(x|u, q) > 0.

The fusion center does not know the network state S, however, we assume that it knows
Qn

S. This assumption is not strong, as the empirical distribution Qn
S can be estimated via

consensus methods [47]. Upon receiving messages X and Qn
S, the fusion center makes an

inference as to which hypothesis is true, denoted by Ĥ. We seek to minimize the asymptotic
decay rate of the probability of the error (as defined in Equation (10)). We assume that the
fusion center is using the maximum a posterori (MAP) rule, i.e.,

Ĥ =

{
1, (x, qn) ∈ Aγ

0, (x, qn) ∈ Aγc , where Aγ =

{
(x, qn) :

p1(x|qn)

p0(x|qn)
≥ p(H = 0|qn)

p(H = 1|qn)

}
, (9)

which minimizes the probability of error for a given strategy γ. The set Aγ depends on the
specific strategy γ selected; given γ, it is possible to compute the optimal inference rule as a
deterministic function of γ using Equation (9). The complete problem setup is summarized
in Figure 1.

Figure 1. A set of n agents receive signals Yk and states Sk. Each agent is characterized by a decision
rule γk and sends a message Xk to the fusion center, which outputs Ĥ. The empirical distribution of
the states Qn

S governs the behavior of the signals Yk as well as the communication channels.
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3.2. Definitions

We now introduce several definitions and concepts that are used throughout the paper.

Definition 1. Let Pγ(Ĥ 6= H) be the probability of error under strategy γ. We define the error
exponent Λ (provided the limit exists) as:

Λ = − lim
n→∞

inf
γ

1
n

logPγ,ψ(Ĥ 6= H). (10)

The limit Λ depends on the strategy γ. Thus, the strategy γ∗ that achieves the infimum
may be such that the limit does not exist. Moreover, (10) makes no assumption as to
how the statistical properties of the agents vary with n; in general, it is not possible to
say anything about the existence of Λ. However, in many practical settings, such as
homogeneous networks and power-constrained networks, Λ exists and has a nice closed-
form solution [16,27,45]. The main result of this work is an equivalent characterization of
the error exponent defined above, showing that in our scenario the limit does exist. This
equivalent expression has several desirable properties, and we can directly optimize the
equivalent expression.

Definition 2. The Kullback–Leibler Divergence between two distributions q and p is provided as
follows:

D(q||p) = ∑
x

q(x) log
q(x)
p(x)

.

Here, we are interested in understanding the interactions between different classes of
agents, where members of a given class are identical, defined as follows.

Definition 3. Given a collection of n agents, these agents are identical if the following condi-
tions hold:

1. pk
h(y|q) = pj

h(y|q) for all k, j ∈ {1, 2, . . . ; n}, h ∈ {0, 1}, y ∈ Y , q ∈ Pm.
2. pk(x|u, q) = pj(x|u, q) for all k, j ∈ {1, 2, . . . ; n}, x ∈ X , u ∈ {1, 2, . . . ; b}, q ∈ Pm.
3. The agent states Sk are i.i.d. a priori, i.e., p(s) = ∏k pk(sk) = ∏k p(sk).

Condition (1) states that, conditioned on the hypothesis H and the network type Qn
S,

the probability distributions on the received signals for all agents are the same. Simi-
larly, Condition (2) states that, conditioned on the network type Qn

S and Uk = u for all
k ∈ {1, 2, . . . ; n}, the probability distributions on the received messages are the same for
all agents.

Definition 4. A class is a collection of agents that are all identical.

3.3. Key Assumptions

We first derive the error exponent for the single-class case in Theorem 1, which is then
generalized to the case of multiple classes.

Assumption 5. Our key assumptions for Theorem 1 are as follows:

(a) All agents are identical, as provided in Definition 3. Hence, we remove the notational
dependence on k in the sequel.

(b) The hypothesis model obeys the following:

lim
n→∞

1
n

log min
qn

min{p(H = 1|qn), p((H = 0|qn)} = 0. (11)
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(c) The signal model is continuous in q for all agents, that is, if {αi}i∈Z is a sequence in Pm

such that limi→∞ αi = q, then ∀y,

lim
i→∞

ph(y|αi) = ph(y|q), h ∈ {0, 1}. (12)

(d) The channel model is continuous in q for all agents. That is, if {αi}i∈Z is a sequence in Pm

such that limi→∞ αi = q, then ∀x, ∀u,

lim
i→∞

p(x|u, αi) = p(x|u, q). (13)

Remark 1. Recall that the fusion center knows the empirical distribution qn and that the optimal
rule is provided by (9). Hence, if (33) does not hold, then the threshold p(H=0|qn)

p(H=1|qn)
may either grow

or decay exponentially quickly, biasing the fusion center to the point that the decisions u become
irrelevant. Hence, if the empirical distribution of the state carries too much information about
the hypothesis, then the probability of error can be driven to zero exponentially quickly by simply
looking at the network state, regardless of the rules used by the agents, leading to the need for
Assumption 5.b. Assumptions 5.c and 5.d imply that if two distributions in Pm are close with
respect to the standard Euclidean metric, then the resulting signal and channel models should be
close for all y and x, respectively.

4. Main Results and Important Corollaries

We first consider the single-class result (Theorem 1). We discuss its implications and
outline the needed proof techniques, then turn our attention to the multi-class case, which
begins by extending Theorem 1 to Lemma 1 and then stating Theorem 2 and its implications.
For the main theorems, we provide proof outlines in this section and the complete proofs
in Section 6. The extension of Theorem 1 to Lemma 1 is provided in Appendix A.2.

4.1. Single-Class Results

Theorem 1. Subject to Assumptions 5.a–5.d,

Λ = − lim
n→∞

inf
γ

min
λ∈[0,1]

max
q∈Pm

−D(q||p) + 1
n

log
∫

x
p0(x|q)1−λ p1(x|q)λ, (14)

where D(q||p) is the Kullback–Leibler (KL) divergence between the distribution q ∈ Pm and the
true state distribution p.

Theorem 1 provides an alternative asymptotically equivalent expression for the error
exponent. In particular, Theorem 1 states that a single distribution dominates the asymptotic
performance. Interestingly, the dominating distribution is in general not the true distribution
of the agents’ states, despite the fact that the empirical distribution of the states converges
towards the true distribution. We then extend Theorem 1 to multiple classes; if agents with
a single class use a common rule, the error exponent for each class depends only on the
ratios of numbers of agents between classes.

We underscore why the Chernoff information is challenging to compute for our
problem framework:

Λ = − lim
n→∞

inf
γ

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(x, qn)1−λ p1(x, qn)λ. (15)

As n grows, so does the space of potential strategies γ, possible messages x, and possible
typesQn. Even if we have identical agents using the same rule, the complexity and coupling
due to the summation over qn remains. If agents use the same rule
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1
n

log
∫

x
∑
qn

p0(x, qn)1−λ p1(x, qn)λ =
1
n

log
∫

x
∑
qn

p0(x|qn)1−λ p1(x|qn)λ p(qn|H = 0)1−λ p(qn|H = 1)λ (16)

=
1
n

log ∑
qn

p(qn|H = 0)1−λ p(qn|H = 1)λ
∫

x
∏

k
pk

0(xk|qn)1−λ pk
1(xk|qn)λ (17)

=
1
n

log ∑
qn

p(qn|H = 0)1−λ p(qn|H = 1)λ ∏
k

∫
x

pk
0(x|qn)1−λ pk

1(x|qn)λ (18)

(a)
=

1
n

log ∑
qn

p(qn|H = 0)1−λ p(qn|H = 1)λ

( ∫
x

p1
0(x|qn)1−λ p1

1(x|qn)λ

)n

, (19)

where (a) is due to the fact that agents are identical and use the same rule, then all terms in
the product are identical. Note that due to the summation over qn, as previously stated, the
complexity of calculating the Chernoff information grows with n, leading to the need for
Theorem 1.

There are a few key remarks that must be made here about Theorem 1:

1. The maximization occurs over Pm instead of Qn; hence, we have directly removed
the dependence on qn. Because the expression in Theorem 1 is continuous over the
compact set Pm, it always achieves its maximum (versus supremum). This is due to
Assumptions 5.c and 5.d.

2. Note that the second term is the classical Chernoff information corresponding to
the fixed distributions ph(x|q), h ∈ {0, 1} and that the KL divergence term can be
thought of as a bias. Hence, we only need to consider the m-dimensional probability
vector that yields the worst Chernoff information biased by the KL divergence. In
a certain sense, q is sufficiently close to the true state distribution p, such that its
poor performance (under strategy γ) cannot be ignored even in asymptotically large
networks. Only one distribution in Pm dominates the asymptotic performance, as expected,
although it may not be the true distribution p. An instantiation of this is provided in
the numerical results.

3. The maximization for q takes place over all of Pm; however, it is only necessary to
search a subset of Pm to find the maximum, thereby reducing the computational cost.
To determine the subset of interest, observe that

min
q∈Pm

D(q||p)− 1
n

log
∫

x
p0(x|q)1−λ p1(x|q)λ ≤ D(p||p)− 1

n
log

∫
x

p0(x|p)1−λ p1(x|p)λ (20)

= − 1
n

log
∫

x
p0(x|p)1−λ p1(x|p)λ (21)

(a)
≤ − 1

n
log ∑

u
p0(u|p)1−λ p1(u|p)λ (22)

(b)
≤ − 1

n
log

∫
y

p0(y|p)1−λ p1(y|p)λ, (23)

where both (a) and (b) are due to Hölder’s inequality. Using the fact that the Chernoff
information is non-negative [44], it can be seen that the distribution q∗ that achieves
the maximum over Pm must satisfy

D(q∗||p) ≤ − 1
n

log
∫

y
p0(y|p)1−λ p1(y|p)λ = c(λ, p). (24)

The right-hand side of (24) is the Chernoff information for the signal model under
distribution p; hence, the maximizing q∗ must live in a ball defined by the Kullback–
Leibler divergence centered at the distribution p with radius c(λ, p), thereby reducing
the search space for the optimization. In fact, the Chernoff information admits a closed-
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form solution for a wide range of distributions, such as members of the exponential
family [48]

4. The expression in Theorem 1 admits the following property: for all q ∈ Pm and
λ ∈ [0, 1],

1
n

log
∫

x
p0(x|q)1−λ p1(x|q)λ (a)

=
1
n

log
∫

x

[ n

∏
k=1

pk
0(xk|q)

]1−λ[ n

∏
k=1

pk
1(xk|q)

]λ (25)

=
1
n

log
n

∏
k=1

∫
xk

pk
0(xk|q)1−λ pk

1(xk|q)λ =
1
n

n

∑
k=1

log
∫

xk

pk
0(xk|q)1−λ pk

1(xk|q)λ, (26)

where (a) holds due to both Equations (5) and (8). Then, for agents using a common
rule, all terms in the sum are equal; thus,

1
n

log
∫

x
p0(x|q)1−λ p1(x|q)λ = log

∫
x

p1
0(x|q)1−λ p1

1(x|q)λ, (27)

which does not depend on n, helping to simplify analysis.

We next sketch the proof of Theorem 1. We start from the classical Chernoff information
and use it to show that

Λ = − lim
n→∞

inf
γ

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(x|qn)1−λ p1(x|qn)λ p(qn). (28)

To prove the result, we wish to show that∣∣∣∣ 1n log

∫
x ∑qn p0(x|qn)1−λ p1(x|qn)λ p(qn)

maxq∈Pm
∫

x p0(x|q)1−λ p1(x|q)λ2−nD(q||p)

∣∣∣∣ < ε. (29)

uniformly in λ and γ, that is, we wish to show that for any ε > 0 there exists an integer nε

that is independent of λ and γ such that (29) holds for all n ≥ nε. Uniform convergence in λ
and γ enables determination of the minimum and infimum, respectively, yielding

inf
γ

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(x|qn)1−λ p1(x|qn)λ p(qn)

− inf
γ

min
λ∈[0,1]

max
q∈Pm

−D(q||p) + 1
n

log
∫

x
p0(x|q)1−λ p1(x|q)λ → 0,

(30)

as n→ ∞, which is the desired assertion. Equivalently, it can be shown that

(1− ε) <

[ ∫
x ∑qn p0(x|qn)1−λ p1(x|qn)λ p(qn)

maxq∈Pm
∫

x p0(x|q)1−λ p1(x|q)λ2−nD(q||p)

] 1
n

< (1 + ε), (31)

uniformly in λ and γ.

4.2. Multi-Class Results

We now discuss extending the results in the previous section to the case of multiple
classes. Consider a set of nc < ∞ classes. For a given class c ∈ {1, 2, . . . ; nc}, let ck be
the number of agents that belong to class c. Then, let Yc,k ∈ Y and Sc,k ∈ {1, 2, . . . ; m} be
the signal and state, respectively, of the kth agent in class c. Without loss of generality,
assume that the signal space Y and state space {1, 2, . . . ; m} are the same for all classes.
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Furthermore, for a given network state S, let Qn
c,S denote the type of the states of the agents

belonging to class c, i.e.,

Qn
c,S(i) =

1
ck

ck

∑
k=1

1{Sc,k=i}, i ∈ {1, . . . ; m}. (32)

For given realizations of the class types qn
1 , . . . ; qn

nc
, the signal model and state prior for class

c are denoted as pc(y|qn
1 , . . . ; qn

nc
) and pc(s), respectively, and with pc = [pc(1), . . . , pc(m)]T .

Recall that per Definition 4, all agents in a given class are identical; thus, the signal models
and state priors are the same within the class. Let Uc,k ∈ {1, 2, . . . ; b} be the decision made
by the kth agent in class c distributed according to pc,k(u|y), with γc

k being the rule of the
kth agent in class c (again assuming that, without loss of generality, the decision space
{1, 2, . . . ; b} is the same for all classes). The message of the kth agent in class c received by
the fusion center is denoted as Xc,k and distributed according to pc(x|u, qn

1 , . . . ; qn
nc
). Again,

because agents in the same class are identical, the channel model is the same throughout
the class. Moreover, let Xc = [Xc,1, . . . ; Xc,ck ]

T be the vector of received messages from all
agents in class c. We can then extend Assumption 5 to the case of c classes.

Assumption 6. The following assumptions hold for all classes. Hence, for notational simplicity,
when referring to class c we remove the k superscript.

(a) The hypothesis model obeys the following.

lim
n→∞

1
n

log min
qn

1 ,...,qn
nc

min{p(H = 1|qn
1 , . . . , qn

nc
), p(H = 0|qn

1 , . . . , qn
nc
)} = 0. (33)

(b) The signal model is continuous in q1, . . . ; qnc
for all classes, that is, if {α1,i}i∈Z, . . .;

{αnc ,i}i∈Z are sequences in Pm such that limi→∞ αj,i = qj, j = 1, 2, . . . ; nc, then ∀y,

lim
i→∞

pc
h(y|α1,i, . . . ; αnc ,i) = pc

h(y|q1, . . . ; qnc
), h ∈ {0, 1}. (34)

(c) The channel model is continuous in q1, . . . ; qnc
for all classes, that is, if {α1,i}i∈Z, . . .;

{αnc ,i}i∈Z are sequences in Pm such that limi→∞ αj,i = qj, j = 1, 2, . . . ; nc, then ∀x, ∀u,

lim
i→∞

pc(x|u, α1,i, . . . ; αnc ,i) = pc(x|u, q1, . . . ; qnc
) h ∈ {0, 1}. (35)

The conditions of Assumption 6 closely resemble those of Assumption 5. Namely,
Assumption 6.a retains the assumption that the network type for each class should not
carry too much information about the hypothesis, while Assumptions 6.b and 6.c extend
the assumption that the signal and channel models are continuous in the univariate case to
the multi-dimensional case. Before, the models were continuous only in q1, whereas we
now assume that are continuous in q1, . . . ; qnc

.

Lemma 1. Assume that ∀k and limn→∞
ck
n > 0; then, under Assumptions 6.a–6.c,

Λ = − lim
n→∞

inf
γ

min
λ∈[0,1]

max
q1,...;qnc

1
n

nc

∑
c=1
−ckD(qc||p

c) + log
∫

xc
p0(xc|q1, . . . ; qnc

)1−λ p1(xc|q1, . . . ; qnc
)λ. (36)

Lemma 1 implies that all agents within a given class c use the same rule γc. When
referring to the rule used by all agents in class c, we use superscripts to avoid confusion
with previously defined notation, where a subscript indicates the rule used by a specific
agent. Then, the error exponent takes on a form that allows heterogeneous networks with a
high degree of interference to be examined. The details of the extensions of Theorem 1 are
provided in Appendix A.2; Lemma 1 leads to the following theorem.
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Theorem 2. Let rc ∈ [0, 1] be the fraction of agents that belong to class c ∈ {1, 2, . . . ; nc}, i.e.,
ck = brcnc, with ∑nc

c=1 rc = 1 and where bxc denotes the largest integer that is less than or equal
to x. Moreover, suppose that all rc are held constant as n → ∞ and that agents in the same class
use a common rule. Then, under Assumptions 6.a–6.c,

Λ = − inf
γ1,...;γnc

min
λ∈[0,1]

max
q1,...;qnc

nc

∑
c=1

rc

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
. (37)

Because identical agents with a common rule may not be optimal, Theorem 2 provides
a lower bound on the optimal error exponent. We highlight several important points of
Theorem 2 below:

1. Observe that all agents are coupled through the distributions q1, . . . ; qnc
, and recall

that for a given class c, qc depends on all agents in class c through their states Sc,k. Hence,
the distributions q1, . . . ; qnc

collectively depend on all agents in the network, meaning
that the received signal, decision, and message for a given agent are dependent on all
agents in the network. As a result, Theorem 2 captures a very strong form of coupling.

2. Note that the expression in Theorem 2 is not expressed as a limit, does not depend on
n, and does not depend on the actual size of the classes. Hence, Theorem 2 provides
an objective function that can be used to design rules γ1, . . . ; γnc that do not depend on
the size of the network.

3. Theorem 2 depends only on the ratios of the classes; that is, Theorem 2 provides an
explicit objective function to find the optimal ratios for asymptotically large networks.
Specifically, to find the optimal ratios we can solve

min
r1,...;rnc

inf
γ1,...;γnc

min
λ∈[0,1]

max
q1,...;qnc

nc

∑
c=1

rc

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
. (38)

In the next section, we present a numerical example that highlights the utility of the
proposed framework.

5. Numerical Example

We design an example that highlights the different forms of coupling captured by our
framework. Note that the total number of agents is never specified, as it is only the fraction
of agents in each class (ratio) that matters. However, considering our asymptotic analysis,
the network size must be sufficiently large. Consider a three-class system where all agents
take one of two states (1 or 2) with p1(S = 1) = 0.5 and p2(S = 1) = p3(S = 1) = 0.9,
under each hypothesis all classes observe a Gaussian random variable with signal models

p1
h(y|q1, q2, q3) =

1√
2π

exp
(
− 1

2
(
y− µ(h, q2)

)2
)

,
[

µ(0, q2)
µ(1, q2)

]
=

[
0

αr1q2(1)

]
(39)

and

pc
h(y|q1, q2, q3) =

1√
2π

exp
(
− 1

2
y2
)

, c ∈ {2, 3}, (40)

where µ(h, q2) is the mean of the signal model when H = h ∈ {0, 1}, q2 is the empirical
distribution of Class 2, α is a constant that determines the separation between the means of
the two hypotheses, and ri = ik/

(
∑3

c=1 ck

)
is the ratio for Class i.

Important notes about the signal models are as follows:

1. When H = 1, the signal model for Class 1 depends only on the number of agents in
Class 2 that are in State 1.

2. The signal models for Classes 2 and 3 are constant with respect to the underlying
hypothesis as well as the distributions q1, q2, and q3; hence, agents in Class 2 or 3
cannot distinguish between the two hypotheses.
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Upon receiving the signal, each agent in class 1 makes a binary decision according to a
threshold test, i.e., u1,k = 1 ⇐⇒ y1,k ≤ τ. Observe that because agents in the other two
classes cannot distinguish between hypotheses, their decisions do not matter. Note that
the agents belonging to class 1 use identical thresholds; while these may not be optimal,
they simplify both design and analysis. Each agent then sends its decision over a binary
symmetric channel with the following crossover probability:

pc(x = 1|u = 0, q1, q2, q3) = pc(x = 0|u = 1, q1, q2, q3)

= max
{
|1
2
− r3q3(1)|, ρ

}
c ∈ {1, 2, 3}, 0 < ρ <

1
2

.
(41)

The parameter ρ governs the minimum achievable crossover probability of the channel.
Note that because | 12 − r3q3(1)| ≤ 1

2 , the crossover probability can never be lower than
ρ; thus, as ρ increases the channel becomes worse. It can be seen that while Class 2 aids
Class 1 in distinguishing between the two hypotheses, Class 3 controls the quality of the
channel between the agents and the fusion center. Moreover, if r2 = 0 then agents cannot
distinguish the two hypotheses; thus, the error exponent is zero. Similarly, if r3 = 0, the
crossover probability for all channels becomes 1

2 ; thus, the channel output becomes random
and the error exponent becomes zero. This example underscores the impact of cross-class
interference on proper optimization of the system. To determine the optimal class ratios,
we can solve

(r∗1 , r∗2 , r∗3) = arg min
r1,r2,r2

max
q1,q2,q3

3

∑
c=1

rc

[
− D(qc||p

c) + log
2

∑
x=1

√
pc

0(x|q1, q2)pc
1(x|q1, q2)

]
, (42)

with r∗1 + r∗2 + r∗3 = 1. For computational simplicity, we set τ = 15 and λ = 1
2 . These values

can be further optimized.
In Figure 2a, we compute the optimal error exponent as a function of the channel

quality ρ for various values of α. Note that the class ratios are optimized for each data
point. Recall that as ρ increases, so does the interference, causing the channel to worsen.
The importance of the channel on the overall system performance can be clearly seen. As
ρ increases, the minimum achievable crossover probability increases and the best-case
quality of the channel decreases; hence, the optimal error exponent decreases along with
the quality of the channel. In fact, when ρ = 0.4, the optimal error exponent is 0.0136, an
entire order of magnitude less than when ρ = 0.1. The impact of the signal mean for Class 1
is determined by α. Not surprisingly, as the mean increases, the error exponent increases as
well; however, we begin to see diminishing returns as we move from α = 100 to α = 150.

In Figure 2b, the optimal ratio between the three classes is determined as a function
of channel quality when α = 150. Figure 2b reveals the impact of cross-class interactions.
Recall that each class serves a different purpose; Class 1 is the only class that can distinguish
between hypotheses, Class 2 controls the sensing capabilities of Class 1, and Class 3
controls the channel quality for Class 1. Hence, the performance of the system relies on
the interactions between the three classes. In particular, as ρ increases Class 3 becomes less
important to the overall system, as the quality of the channel degrades. This can be seen
in Figure 2b by the decreasing r∗3 and the fact that Class 1 becomes more important to the
system, hence the increasing r∗1 .

Finally, we examine the optimizing distribution for computing the error exponents
when α = 100. As previously noted, the true class distributions of the states (pc) do not
necessarily dominate asymptotic performance. This can be seen in Figure 2c, which shows
that the optimal types are sometimes different from the true distributions. Recall that under
S = 1 we have p1 = 0.5 and p2 = p3 = 039; thus, in this three-class example, it is only
when ρ = 0.06 that we see the optimizing distribution aligning with the true distribution.
We underscore that the network type converges to the true state distribution. Recall
that we assume the signal and channel models to be continuous; hence, as the network
types converge to the true distributions, the performances of all other distributions in a
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neighborhood around the true distributions are relatively close. Then, it may be beneficial
to design the rule γ to optimize detection for a distribution close to the true distributions,
as the performance difference is small. This trade-off is captured by our result, where the
closeness to pc is captured by the KL divergence and the asymptotic detection performance
is captured by the Chernoff information term. Hence, the dominating distribution is the
one that offers the best trade-off.
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Figure 2. Three-class example with coupled signaling and state-dependent channels: (a) the optimal
error exponent as a function of ρ, highlighting the importance of the channel on the overall system;
(b) the optimal class ratios for α = 150 (as ρ increases, Class 3 becomes less important to the
overall system); and (c) the dominating distributions α = 100, which may be different from the true
distributions.

6. Proofs
6.1. Proof of Theorem 1

Before we begin the proof, we must introduce a number of important definitions
and lemmas. There are two sets of lemmas. The first set of lemmas is a series of well-
known mathematical facts. Because these are not our contributions but are necessary for
the proof of Theorem 1, we omit the proofs, though we provide appropriate citations as
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necessary. The second set of lemmas is a series of results that, while necessary, are not
major contributions of this work; these proofs are provided in Appendix A.1.

6.1.1. Definitions

Definition 5. A family of functions F defined on a common domain is equicontinuous at a point
xo if for any ε > 0 there exists a δ > 0 (possibly a function of ε and xo) such that whenever
|x− xo| < δ we have | f (x)− f (xo)| < ε for all f ∈ F .

Observe that while the δ above may depend on ε and the specific point xo, it is not
allowed to depend on the specific function f , i.e., the chosen δ must work for all functions
in F . The next definition removes the dependence on xo.

Definition 6. A family of functions F is uniformly equicontinuous if for any ε > 0 there exists
a δ > 0 (possibly a function of ε) such that whenever |x− y| < δ we have | f (x)− f (y)| < ε for
all f ∈ F .

The above definition states that the same δ must work for all functions f ∈ F at all
points in the domain.

Definition 7. Given a family of Lebesgue measurable functions F with
∫

x | f (x)| < ∞ for all
f (x) ∈ F , the integrals

∫
x f (x) are uniformly absolutely continuous if ∀ε > 0 and ∃δ > 0

such that for all Lebesgue measurable sets A with ν(A) < δ∫
A
| f (x)| < ε, (43)

for all f ∈ F , where ν denotes the Lebesgue measure. Of course, these definitions can be extended to
any general measure space; however, we focus on the Lebesque measure here for simplicity and to
avoid endlessly defining notation. For a thorough discussion of abstract measure spaces, see [49].

Again, it is important to distinguish that the same δ must work for all functions f ∈ F
for a given ε.

Definition 8. Assume that we have a family of measurable functions F with
∫

x | f (x)| < ∞ for
all f ∈ F . Moreover, define Ia = [−a, a]. Then, the integrals

∫
x f (x) are said to be uniformly

absolutely convergent if

lim
a→∞

∫
Ia
| f (x)| =

∫
x
| f (x)|, (44)

uniformly in F .

This is a powerful property, stating that for a given ε > 0 there is a large enough a that
all functions in F satisfy ∣∣∣∣∣

∫
Ia
| f (x)| −

∫
x
| f (x)|

∣∣∣∣∣ < ε. (45)

6.1.2. Key Lemmas

The following lemmas are needed to prove Theorem 1. However, because most are
simply known mathematical facts (except Lemma 3, the proof of which is provided in
Appendix A.1), we omit the proofs.

Lemma 2. Let F be an equicontinuous and pointwise-bounded family of functions defined on a
common domain D. If D is compact, then F is uniformly equicontinuous on D.
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Observe that Pm is compact due to it being closed and bounded; because all of our
functions (signal models, channel models, etc.) are defined on this space, Lemma 2 allows
us to simplify the proof.

Lemma 3. Let F and G be families of equicontinuous strictly positive functions defined on a common
domain D; furthermore, assume that for each point x ∈ D we have inf f∈F f (x) > 0, infg∈G g(x) >
0, sup f∈F f (x) < ∞, and supg∈G g(x) < ∞. Then, the family { f (x)λg(x)1−λ} f ,g,λ for f ∈ F ,
g ∈ G, and λ ∈ [0, 1] is equicontinuous on D.

The next lemma is taken from [49], Theorem 21.

Lemma 4. Let { fi} be a sequence of real measurable functions with
∫

x | fi(x)| < ∞. Assume that
the integrals

∫
x fi(x) are uniformly absolutely continuous and uniformly absolutely convergent.

Moreover, assume that fi → f almost everywhere (a.e.); then,
∫

x f (x) < ∞ and

lim
i→∞

∫
x
| fi(x)− f (x)| = 0. (46)

Lemma 4 provides a nice immediate result. In particular, suppose we have a function
of two variables f (x, y) with

∫
x | f (x, y)| < ∞ for all y and with

∫
x | f (x, y)| uniformly

absolutely continuous and uniformly absolutely convergent with respect to y. In this case,
Lemma 4 states that the integral

∫
x f (x, y) is continuous in y. To see this, observe that if {yi}

is a sequence with yi → y, then, per the triangle inequality,

lim
i→∞

∣∣∣∣∣
∫

x
f (x, yi)−

∫
x

f (x, y)

∣∣∣∣∣ ≤ lim
i→∞

∫
x
| f (x, yi)− f (x, y)| = 0. (47)

6.2. Intermediate Lemmas

We next present several intermediate results. The proofs of all these results can be
found in Appendix A.1. Moreover, recalling that we assume all agents to be identical, we
consequently omit the k superscript in the following lemmas as well as in the proof.

Lemma 5. Subject to Assumptions 5.a–5.d, the following two statements hold:

(a) There exists a non-negative function g(x) such that
∫

x g(x) < ∞ and ∀x, h ∈ {0, 1}, ∀γ,
∀q ∈ Pm, and

∑
u

∫
y

p(x|u, q)p(u|y)ph(y|q) = ph(x|q) ≤ g(x). (48)

(b) We have

inf
γ

min
λ∈[0,1]

min
q∈Pm

∫
x

p0(x|q)1−λ p1(x|q)λ > 0. (49)

Lemma 6. For all ε > 0, there exists a δ > 0 (which depends only on ε and h) such that whenever
α and β are two distributions in Pm with ‖α− β‖2 < δ, then

∫
y |ph(y|α)− ph(y|β)| < ε for all

h ∈ {0, 1}.

Lemma 7. For a fixed x ∈ X and h ∈ {0, 1}, the family {ph(x|q)2−D(q||p)}γ which is indexed
by γ is uniformly equicontinuous on Pm.

Lemma 8. For a fixed x ∈ X , the family {p0(x|q)1−λ p1(x|q)λ2−D(q||p)}γ,λ which is indexed by
γ and λ ∈ [0, 1] is uniformly equicontinuous on Pm.

Lemma 9. For any ε > 0, there exists a δ > 0 (which depends only on ε) such that whenever α
and β are two distributions in Pm with ‖α− β‖2 < δ, then
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∫
x
|p0(x|α)1−λ p1(x|α)λ2−D(α||p) − p0(x|β)1−λ p1(x|β)λ2−D(β||p)| < ε,

for all γ and λ ∈ [0, 1].

An immediate consequence of Lemma 9 follows.

Lemma 10. For any ε > 0, there exists a δ > 0 (which depends only on ε) such that, whenever α
and β are two distributions in Pm with ‖α− β‖2 < δ, we have∣∣∣∣∣

∫
x p0(x|α)1−λ p1(x|α)λ2−D(α||p)∫
x p0(x|β)1−λ p1(x|β)λ2−D(β||p) − 1

∣∣∣∣∣ < ε, (50)

for all γ and λ ∈ [0, 1].

The final lemma provides us with a starting point for the proof.

Lemma 11.

Λ = − lim
n→∞

inf
γ

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(x|qn)1−λ p1(x|qn)λ p(qn).

Hence, rather than starting directly with the Chernoff information, we start from the
expression in Lemma 11. We are now ready to begin the proof.

Proof of Theorem 1. Define

q∗ = arg max
q∈Pm

−D(q||p) + 1
n

log
∫

x
p0(x|q)1−λ p1(x|q)λ. (51)

and note that q∗ depends on n, γ, and λ; then, for any 0 < ε < 1, per Lemma 10, ∃δ > 0,
which depends only on ε, such that whenever ‖q− q∗‖2 < δ,∣∣∣∣∣

∫
x pk

0(x|q)1−λ pk
1(x|q)λ2−D(q||p)∫

x pk
0(x|q∗)1−λ pk

1(x|q∗)λ2−D(q∗ ||p) − 1

∣∣∣∣∣ < 1−
√

1− ε, (52)

for all γ and λ ∈ [0, 1]. Because the agents are identical, they differ only by the rules they
use; hence, the same δ works for all agents. For this δ, define

T n
δ = {qn ∈ Qn : ‖qn − q∗‖2 < δ}, (53)

that is, T n
δ is the set of all types that are less than δ away from q∗ based on the Euclidean

distance. There are two important points to make here regarding T n
δ :

1. Because both Qn and q∗ depend on n, T n
δ does as well; however, because δ depends

only on ε, any type in T n
δ satisfies Equation (52) regardless of n or q∗.

2. Observe that for any q ∈ Pm there exists a type qn such that ‖q− qn‖2 < 1
n . Hence,

∃no such that for all n ≥ no and for any q ∈ Pm, ∃qn such that ‖q− qn‖2 < δ. That is,
T n

δ is non-empty for all n ≥ no. Because no depends only on δ and δ depends only on
ε, no depends only on ε, and the same no works for all agents and all λ ∈ [0, 1].

The following argument holds for any n ≥ no. We begin by observing that
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∫
x p0(x|qn)1−λ p1(x|qn)λ∫

x p0(x|q∗)1−λ p1(x|q∗)λ2−nD(q∗ ||p) =

∫
x

[
∏k pk

0(xk|qn)
]1−λ[

∏k pk
1(xk|qn)

]λ∫
x

[
∏k pk

0(xk|q∗)
]1−λ[

∏k pk
1(xk|q∗)

]λ2−nD(q∗ ||p)
(54)

=

∫
x ∏k pk

0(xk|qn)1−λ pk
1(xk|qn)λ∫

x ∏k pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) (55)

= ∏
k

∫
x pk

0(xk|qn)1−λ pk
1(xk|qn)λ∫

x pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) . (56)

Then, we have the following:

∑
qn

∫
x p0(x|qn)1−λ p1(x|qn)λ∫

x p0(x|q∗)1−λ p1(x|q∗)λ2−nD(q∗ ||p) p(qn) = ∑
qn

∏
k

∫
x pk

0(xk|qn)1−λ pk
1(xk|qn)λ∫

x pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) p(qn) (57)

(a)
≤ ∑

qn
∏

k

∫
x pk

0(xk|qn)1−λ pk
1(xk|qn)λ∫

x pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) 2−nD(qn ||p) (58)

= ∑
qn

∏
k

∫
x pk

0(xk|qn)1−λ pk
1(xk|qn)λ2−D(qn ||p)∫

x pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) (59)

(b)
≤ ∑

qn
1
(c)
≤ (n + 1)m, (60)

where (a) holds, as p(qn) ≤ 2−nD(qn ||p) [17,50], where (b) is due to the definition of q∗

and (c) holds because for any n the number of types is upper-bounded by (n + 1)m ([50],
Theorem 11.1.1). Then, taking the n-th root yields the upper bound[

∑qn
∫

x p0(x|qn)1−λ p1(x|qn)λ p(qn)∫
x p0(x|q∗)1−λ p1(x|q∗)λ2−nD(q∗ ||p)

] 1
n

≤ (n + 1)
m
n . (61)

Observe that (n + 1)
m
n → 1; thus, ∃n1 such that ∀n ≥ n1, (n + 1)

m
n ≤ 1 + ε. Turning our

attention to the lower bound,

∑
qn

∏
k

∫
x pk

0(xk|qn)1−λ pk
1(xk|qn)λ∫

x pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) p(qn) (62)

≥ ∑
qn∈T n

o

∏
k

∫
x pk

0(xk|qn)1−λ pk
1(xk|qn)λ∫

x pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) p(qn) (63)

(a)
≥ 1

(n + 1)m ∑
qn∈T n

o

∏
k

∫
x pk

0(xk|qn)1−λ pk
1(xk|qn)λ∫

x pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) 2−nD(qn ||p) (64)

=
1

(n + 1)m ∑
qn∈T n

o

∏
k

∫
x pk

0(xk|qn)1−λ pk
1(xk|qn)λ2−D(qn ||p)∫

x pk
0(xk|q∗)1−λ pk

1(xk|q∗)λ2−D(q∗ ||p) (65)

(b)
≥ 1

(n + 1)m ∑
qn∈T n

o

(1− ε)n
(c)
≥ 1

(n + 1)m (1− 1 +
√

1− ε)n, (66)

where (a) holds because p(qn) ≥ 1
(n+1)|S|

2−nD(qn ||p) [17,50], (b) is due to the definition of

T n
o , and (c) holds because T n

o is non-empty for n ≥ no. Taking the n-th root provides

[
∑qn

∫
x p0(x|qn)1−λ p1(x|qn)λ p(qn)∫

x p0(x|q∗)1−λ p1(x|q∗)λ2−nD(q∗ ||p)

] 1
n

≥ (n + 1)
−m

n (1− 1 +
√

1− ε). (67)
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Observe that (n + 1)
−m

n → 1; thus, ∃n2 such that ∀n ≥ n2, (n + 1)
−m

n (1− 1 +
√

1− ε) ≥
(1 − 1 +

√
1− ε)(1 − 1 +

√
1− ε) = 1 − ε. Then, we can take nε = max{no, n1, n2},

meaning that for all n ≥ nε we have

1− ε ≤
[

∑qn
∫

x p0(x|qn)1−λ p1(x|qn)λ p(qn)∫
x p0(x|q∗)1−λ p1(x|q∗)λ2−nD(q∗ ||p)

] 1
n

≤ 1 + ε. (68)

Because none of no, n1, or n2 depend on q∗, γ, or λ, it is the case that nε does not depend
on q∗, γ, or λ; hence, we have uniform convergence, which completes the proof.

6.3. Proof of Theorem 2

Because we assume that agents of the same class use the same rule, if we focus on
class c we have

ph(xc|q1, . . . ; qnc
) =

ck

∏
k=1

pc,k(xc,k|qn
1 , . . . ; qn

nc
), (69)

which is a consequence of Equations (5) and (8). Then, we have

− ckD(qc||p
c) + log

∫
x

p0(xc|q1, . . . ; qnc
)1−λ p1(xc|q1, . . . ; qnc

)λ

=
ck

∑
k=1
−D(qc||p

c) + log
∫

x
pc,k

0 (x|q1, . . . ; qnc
)1−λ pc,k

1 (x|q1, . . . ; qnc
)λ,

(70)

with

pc,k
h (x|q1, . . . ; qnc

) =
b

∑
u=1

pc(x|u, q1, . . . ; qnc
)
∫

y
pc,k(u|y)pc

h(y|q1, . . . ; qnc
), h ∈ {0, 1}. (71)

If all agents in Class c use rule γc, then every term in the sum of Equation (70) is equal.
Hence,

1
n

nc

∑
c=1
−ckD(qc||p

c) + log
∫

x
p0(xc|q1, . . . ; qnc

)1−λ p1(xc|q1, . . . ; qnc
)λ

=
nc

∑
c=1

ck
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
.

(72)

We now turn our attention to the difference

nc

∑
c=1

rc

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
−

nc

∑
c=1

ck
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
,

(73)

which is equivalent to

nc

∑
c=1

rcn− brcnc
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
. (74)

Observe that

−D(qc||p
c) + log

∫
x

pc,1
0 (x|q1, . . . ; qnc

)1−λ pc,1
1 (x|q1, . . . ; qnc

)λ

]
≤ 0, (75)

for all classes, which is a consequence of the non-negativity of the KL divergence [50]
and the non-positivity of the Chernoff information [44]. Combining this with the fact that



Entropy 2023, 25, 1313 19 of 27

rcn−brcnc
n ≥ 0, we see that (74) is upper-bounded by zero. For a lower bound, observe that

rcn−brcnc
n ≤ 1

n , which yields the result that Equation (74) is lower-bounded by

nc

∑
c=1

1
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
(76)

≥
nc

∑
c=1

1
n

[
−max

q
D(q||pc) + inf

γ
min

λ∈[0,1]
min

q1,...;qnc
log

∫
x

pc,1
0 (x|q1, . . . ; qnc

)1−λ pc,1
1 (x|q1, . . . ; qnc

)λ

]
. (77)

The KL divergence (for finite alphabets) is bounded, and repeating the proof of Lemma
5 for the multi-class case using Assumptions 6.b and 6.c guarantees that the logarithm
terms are finite. Hence, Equation (77) goes to zero as n → ∞. Moreover, note that this
lower bound is independent of the strategies γ and λ and the distributions q1, . . . ; qnc

. This
means that Equation (74) converges uniformly in γ and λ and the distributions q1, . . . ; qnc

,
which allows us to take the infimum, minimum, and maximum, respectively. To see this,
observe that the upper bound provides

max
q1,...;qnc

nc

∑
c=1

ck
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
≥

nc

∑
c=1

ck
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
≥

nc

∑
c=1

rc

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
.

(78)

As this is true for all q1, . . . ; qnc
, we have

max
q1,...;qnc

nc

∑
c=1

ck
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
≥ max

q1,...;qnc

nc

∑
c=1

rc

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
.

(79)

The same argument can be repeated to obtain

max
q1,...;qnc

nc

∑
c=1

rc

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
≥ max

q1,...;qnc

nc

∑
c=1

ck
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
+

nc

∑
c=1

1
n

[
−max

q
D(q||pc) + inf

γ
min

λ∈[0,1]
min

q1,...;qnc
log

∫
x

pc,1
0 (x|q1, . . . ; qnc

)1−λ pc,1
1 (x|q1, . . . ; qnc

)λ

]
.

(80)

Hence, the difference

max
q1,...;qnc

nc

∑
c=1

rc

[
−D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
− max

q1,...;qnc

nc

∑
c=1

ck
n

[
− D(qc||p

c) + log
∫

x
pc,1

0 (x|q1, . . . ; qnc
)1−λ pc,1

1 (x|q1, . . . ; qnc
)λ

]
,

(81)

goes to zero as n→ ∞. Repeating the same argument with the minimum over λ followed
by the infimum over γ completes the proof.

7. Conclusions

In this paper, we have introduced a new framework for decentralized inference
that captures a high degree of coupling between the agents. Under our framework, the
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empirical distribution of the network state induces a global coupling across agents. We
find an asymptotically equivalent expression to the Chernoff information and unveil a
number of interesting properties, such as the fact that the true state distribution does not
always dominate asymptotic performance. For the multi-class case, we characterize how
ratios of classes of agents affect performance. We further allow for a lossy communication
link between the agents and the fusion center and investigate the effects of the channel on
overall performance. Our work extends prior work on distributed detection, and is able
to break the requirement of conditionally independent observations when correlation is
present. In future work, we will remove the fusion center from the system and require
agents to directly communicate with each other, as in a purely decentralized ad hoc system.
In addition, we will consider the introduction of actions by the agents which can affect
observations by other agents to enable the consideration of active hypothesis testing in a
distributed setting.

Author Contributions: J.S. and U.M. made serious contributions to the work and have had thorough
discussions together on the problem formulation, proof techniques, and technical challenges. All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been funded in part by one or more of the following grants: NSF CCF-
1817200, ARO W911NF1910269, DOE DE-SC0021417, Swedish Research Council 2018-04359, NSF
CCF-2008927, NSF CCF-2200221, ONR 503400-78050, ONR N00014-15-1-2550, USC + Amazon Center
on Secure and Trusted Machine Learning.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors have no conflicts of interest to report.

Appendix A

Appendix A.1. Proofs of Lemmas for Theorem 1

Proof of Lemma 3. Fix a point xo ∈ D. For ε > 0, let δ > 0 (which can depend on ε and

xo) be such that | f (xo)− f (x)| < min{inf f∈F f (xo),1}ε
2 for all f ∈ F whenever |xo − x| < δ.

Assume w.l.o.g. that f (xo) ≥ f (x); then,

f (xo)
λ − f (x)λ = f (xo)

λ − f (x)λ f (xo)1−λ + f (x)1−λ

f (xo)1−λ + f (x)1−λ
(A1)

=
f (xo)− f (x) + f (xo)λ f (x)1−λ − f (xo)1−λ f (x)λ

f (xo)1−λ + f (x)1−λ
(A2)

(a)
≤ 2( f (xo)− f (x))

f (xo)1−λ
(A3)

(b)
≤ 2( f (xo)− f (x))

min{ f (xo), 1} (A4)

≤ 2( f (xo)− f (x))
min{inf f∈F f (xo), 1} < ε, (A5)

where (a) follows from

( f (xo)
λ + f (x)λ)( f (x)1−λ − f (xo)

1−λ) ≤ 0, (A6)

and (b) follows from minλ∈[0,1] f (xo)1−λ = f (xo) if f (xo) < 1 and minλ∈[0,1] f (xo)1−λ = 1
if f (xo) ≥ 1. Hence, we have just shown that for every ε > 0, ∃δF (xo) > 0 (independent
of λ and f ) such that ∀λ ∈ [0, 1] and ∀ f ∈ F , we have | f (xo)λ − f (x)| < ε whenever
|xo − x| < δ f (xo). A similar argument holds for g1−λ.
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Then, for any ε > 0 let δF (xo) and δG(xo) be such that | f (xo)λ − f (x)λ| <
ε

2(max{supg∈G g(xo),1}+ε)
and |g(xo)1−λ − g(x)1−λ| < ε

2(max{sup f∈G f (xo),1}) for all λ f and g

whenever |xo − x| < δF (xo) and |xo − x| < δG(xo), respectively. Take
δ(xo) = min{δ f (xo), δg(xo)}; then, if |xo − x| < δ(xo) for all λ we have

| f (xo)
λg(xo)

1−λ − f (x)λg(x)1−λ| = | f (xo)
λg(xo)

1−λ − f (xo)
λg(x)1−λ + f (xo)

λg(x)1−λ − f (x)λg(x)1−λ| (A7)
(a)
≤ f (xo)

λ|g(xo)
1−λ − g(x)1−λ|+ g(x)1−λ| f (xo)

λ − f (x)λ| (A8)
(b)
≤ f (xo)

λ|g(xo)
1−λ − g(x)1−λ|+ (g(xo)

1−λ + ε)| f (xo)
λ − f (x)λ| (A9)

≤ f (xo)
λ ε

2(max{sup f∈F f (xo), 1}) + (g(xo)
1−λ + ε)

ε

2(max{supg∈G g(xo), 1}+ ε)
(A10)

(c)
≤ max{ f (xo), 1} ε

2(max{sup f∈F f (xo), 1}) + (max{g(xo), 1}+ ε)
ε

2(max{supg∈G g(xo), 1}+ ε)
(A11)

≤ max{sup
f∈F

f (xo), 1} ε

2(max{sup f∈F f (xo), 1}) + (max{sup
g∈G

g(xo), 1}+ ε)
ε

2(max{supg∈G g(xo), 1}+ ε)
(A12)

= ε, (A13)

where (a) is due to the triangle inequality, (b) is due to g(x)1−λ = g(x)1−λ − g(x0)
1−λ

+ g(xo)1−λ < ε + g(xo)1−λ, and (c) is due to the fact that maxλ∈[0,1] f (xo)1−λ = 1 if
f (xo) < 1 and maxλ∈[0,1] f (xo)1−λ = f (xo) if f (xo) ≥ 1.

Proof of Lemma 5. The function g(x) = ∑u supq p(x|u, q) will always satisfy part (a). To
see this, first observe that

∑
u

∫
y

p(x|u, q)p(u|y)ph(y|q) ≤∑
u

p(x|u, q) ≤∑
u

sup
q

p(x|u, q). (A14)

for all h, γ, and q. Moreover, for each x and u, per Assumption 5.d the channel model is
continuous in q, and because Pm is compact, p(x|u, q) attains its maximum, meaning that
supq p(x|u, q) = maxq p(x|u, q) is a valid density; thus,

∫
x g(x) =

∫
x ∑u maxq p(x|u, q) =

b < ∞. For b), repeated use of Hölder’s inequality provides∫
x

p0(x; q)1−λ p1(x; q)λ ≥
∫

y
p0(y|q)1−λ p1(y|q)λ

(a)
≥
∫

y
min{p0(y|q), p1(y|q)} ≥

∫
y

inf
q∈Pm

min{p0(y|q), p1(y|q)},
(A15)

where (a) holds, as for any two numbers a and b we have a1−λbλ ≥ min{a, b} for any
λ ∈ [0, 1]. Per Assumption 5.c, the signal model is continuous in q for h as well as all y;
thus, min{p0(y|q), p1(y|q)} is continuous and attains its minimum. Moreover, we assume
that ph(y|q) is always strictly positive for any h, y, and q, meaning that∫

x
p0(x; q)1−λ p1(x; q)λ ≥

∫
y

min
q∈Pm

min{p0(y|q), p1(y|q)} > 0. (A16)

Because this lower bound holds for all γ, λ, and q, part b) holds.

Proof of Lemma 6. Fix q ∈ Pm and let {αi} be any sequence that converges to q. Per
Assumption 5.c, ph(y|αi)→ ph(y|q) for each y. Moreover,

∫
y ph(y|αi) =

∫
y ph(y|q) = 1 for

all i; thus, per Scheffé’s lemma [51],∫
y
|ph(y|αi)− ph(y|q)| → 0. (A17)
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The remainder of the proof proceeds via proof by contradiction. Suppose that ∃ε > 0 and
that there exist two sequences {αi} and {βi} such that αi − βi → 0 and that for all i,∫

y
|ph(y|αi)− ph(y|βi)| > ε. (A18)

Because Pm is bounded, per the Bolzano–Weierstrass theorem [52], {αi} and {βi} have
convergent subsequences {αik} and {βik

} that converge to some point θ. Because Pm is
closed, θ must be in Pm. Then, Equation (A17) provides∫

y
|ph(y|αik )− ph(y|βik

)| ≤
∫

y
|ph(y|αik )− ph(y|θ)|+

∫
y
|ph(y|βik

)− ph(y|θ)| → 0, (A19)

which contradicts Equation (A18).

Proof of Lemma 7. Recall that Assumption 5.d states that p(x|u, q) is continuous in q
for any x and u ∈ {1, 2, . . . ; b}; thus, maxu p(x|u, q) is continuous in q for a fixed x.
Moreover, because Pm is compact, maxu p(x|u, q) achieves its maximum on Pm; thus,
0 < maxq∈Z maxu p(x|u, q) < ∞. Then, per Lemma 6, for any ε > 0 ∃δ0 > 0 such that
whenever ‖α− β‖2 < δ0 we have

∫
y |ph(y|α)− ph(y|β)| < ε

2b maxq∈Z maxu p(x|u,q) . Then, for

all u and γ we have

|ph(u|α)− ph(u|β)| =
∣∣∣∣∣
∫

y
p(u|y)ph(y|α)−

∫
y

p(u|y)ph(y|β)
∣∣∣∣∣

(a)
≤
∫

y
p(u|y)|ph(y|α)− ph(y|β)|

(b)
≤
∫

y
|ph(y|α)− ph(y|β)| <

ε

2b maxq∈Z maxu p(x|u, q)
,

(A20)

where (a) holds due to the triangle inequality and (b) holds because p(u|y) ≤ 1 for all u
and γ. Moreover, because p(x|u, q) is uniformly continuous in q for each u ∈ {1, 2, . . . ; b},
∃δu > 0 (which depends only on ε, x, and u) such that whenever ‖α− β‖2 < δu, |p(x|u, α)−
p(x|u, β)| < ε

2b . For a fixed x, take δ = min{δ0, δ1, . . . ; δb}; thus, δ depends only on ε, h,
and x, and does not depend on γ or u. Then, whenever ‖α− β‖2 < δ,

|ph(x|α)− ph(x|β)| =
∣∣∣∣∣ b

∑
u=1

p(x|u, α)ph(u|α)−
b

∑
u=1

p(x|u, β)ph(u|β)
∣∣∣∣∣ (A21)

(a)
≤

b

∑
u=1
|p(x|u, α)ph(u|α)− p(x|u, β)ph(u|β)| (A22)

=
b

∑
u=1
|p(x|u, α)ph(u|α)− p(x|u, α)ph(u|β) + p(x|u, α)ph(u|β)− p(x|u, β)ph(u|β)| (A23)

(b)
≤

b

∑
u=1

p(x|u, α)|ph(u|α)− ph(u|β)|+ ph(u|β)|p(x|u, α)− p(x|u, β)| (A24)

(c)
≤

b

∑
u=1
|ph(u|α)− ph(u|β)|max

q∈Z
max

u
p(x|u, q) + |p(x|u, α)− p(x|u, β)| (A25)

≤
b

∑
u=1

ε

2b maxq∈Z maxu p(x|u, q)
max
q∈Z

max
u

p(x|u, q) +
ε

2b
= ε, (A26)

where (a) and (b) are due to the triangle inequality and (c) is due to ph(u|β) < 1. Now,
because D(q||p) is continuous in q (for finite alphabets) and Pm is compact, D(q||p) is
uniformly continuous. Clearly, D(q||p) does not depend on γ; hence, we may repeat the
exact same argument with ph(x|q)2−D(q||p), providing the desired result.

Proof of Lemma 8. In order to use Lemma 3, we need to show that for each q ∈ Pm and
h ∈ {0, 1} it is the case that infγ ph(x|q)2−D(q||p) > 0 and supγ ph(x|q)2−D(q||p) < ∞.
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Because 0 < 2−D(q||p) ≤ 1 (due to D(q||p) being bounded for finite alphabets), it suffices
to show that infγ ph(x|q) > 0 and supγ ph(x|q) < ∞. For any γ, observe that

ph(x|q) = ∑
u

p(x|u, q)ph(u|q) ≥ min
u

p(x|u, q)∑
u

ph(u|q) = min
u

p(x|u, q)
(a)
> 0, (A27)

where (a) is due to Assumption 4. Taking the infimum over γ provides us with infγ ph(x|q)
≥ minu p(x|u, q) > 0. A similar argument shows that supγ ph(x|q) < ∞. Then, Lemma 3
yields the desired assertion.

Proof of Lemma 9. We proceed via proof by contradiction. Suppose that ∃ε > 0 and that
we have sequences {αi}, {βi}, and {λi} such that αi − βi → 0 and∫

x
|p0(x|αi)

1−λi p1(x|αi)
λi 2−D(αi ||p) − p0(x|βi)

1−λi p1(x|βi)
λi 2−D(βi ||p)| ≥ ε, (A28)

for all i. Then, let fi(x) = |p0(x|αi)
1−λi p1(x|αi)

λi2−D(αi||p) − p0(x|βi)
1−λi p1(x|βi)

λi2−D(βi||p)|.
Per Lemma 8, fi → 0 a.e.; then, in order to use Lemma 4 we must show the integrals

∫
x fi(x)

are uniformly absolutely continuous, uniformly absolutely convergent, and
∫

x | fi(x)| < ∞
for all i. Recall that per Lemma 5 there exists a function g(x) such that for all q and h we
have ph(x|q) ≤ g(x) and

∫
x g(x) < ∞. Then,

∫
x

fi(x) =
∫

x
|p0(x|αi)

1−λi p1(x|αi)
λi 2−D(αi ||p) − p0(x|βi)

1−λi p1(x|βi)
λi 2−D(βi ||p)| (A29)

(a)
≤
∫

x
|p0(x|αi)

1−λi p1(x|αi)
λi 2−D(αi ||p)|+

∫
x
|p0(x|βi)

1−λi p1(x|βi)
λi 2−D(βi ||p)| (A30)

≤
∫

x
|p0(x|αi)

1−λi p1(x|αi)
λi |+

∫
x
|p0(x|βi)

1−λi p1(x|βi)
λi | (A31)

(b)
≤
∫

x
max{p0(x|αi), p1(x|αi)}+

∫
x

max{p0(x|βi), p1(x|βi)} (A32)

≤
∫

x
g(x) +

∫
x

g(x) = 2
∫

x
g(x) < ∞, (A33)

where (a) is due to the triangle inequality, (b) holds due to aλb1−λ ≤ max{a, b} for any
two real numbers a, b, and λ ∈ [0, 1]. Furthermore, due to the absolute continuity of the
Lebesgue integral, ∃δ > 0 for any ε > 0 such that for any measurable set A with Lebesgue
measure ν(A) < δ we have

∫
A g(x) < ε

2 . Then, we have∫
A

fi(x) ≤ 2
∫
A

g(x) < ε (A34)

for all i, meaning that the integrals
∫

x fi(x) are uniformly absolutely continuous. Moreover,
because

∫
x g(x) < ∞, defining Ia = [−a, a], we have lima→∞

∫
Ia

g(x) =
∫

x g(x) from the
Dominated Convergence theorem [52]. Let Īa = (−∞,−a) ∪ (a, ∞); then, for all ε > 0 we
have ∃ao such that for all a ≥ ao we have

∫
Īa

g(x) < ε
2 , which provides

0 ≤
∫

x
fi(x)−

∫
Ia

fi(x) =
∫
Īa

fi(x) ≤ 2
∫
Īa

g(x) < ε, (A35)

for all i, making the integrals uniformly absolutely convergent. Then, per Lemma 4 we
have

∫
x fi(x)→ 0, which contradicts Equation (A28).

Proof of Lemma 10. For any ε > 0, per Lemma 9 we have ∃δ > 0, which does not depend on
γ, λ, or q, such that whenever ‖α− β‖2 < δ we have
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∫
x
|p0(x|α)1−λ p1(x|α)λ2−D(α||p) − p0(x|β)1−λ p1(x|β)λ2−D(β||p)|

< ε inf
γ

min
λ∈[0,1]

min
q∈Pm

2−D(q||p)
∫

x
p0(x|q)1−λ p1(x|q)λ,

(A36)

where the right side is strictly positive due to Lemma 5. This leads us to∣∣∣∣∣
∫

x p0(x|α)1−λ p1(x|α)λ2−D(α||p)∫
x p0(x|β)1−λ p1(x|β)λ2−D(β||p) − 1

∣∣∣∣∣ (A37)

=
1∫

x p0(x|β)1−λ p1(x|β)λ2−D(β||p)

∣∣∣∣∣
∫

x
p0(x|α)1−λ p1(x|α)λ2−D(α||p) − p0(x|β)1−λ p1(x|β)λ2−D(β||p)

∣∣∣∣∣ (A38)

≤ 1∫
x p0(x|β)1−λ p1(x|β)λ2−D(β||p)

∫
x
|p0(x|α)1−λ p1(x|α)λ2−D(α||p) − p0(x|β)1−λ p1(x|β)λ2−D(β||p)| (A39)

≤
ε infγ minλ∈[0,1] minq∈Pm 2−D(q||p) ∫

x p0(x|q)1−λ p1(x|q)λ∫
x p0(x|β)1−λ p1(x|β)λ2−D(β||p) (A40)

≤
ε infγ minλ∈[0,1] minq∈Pm 2−D(q||p) ∫

x p0(x|q)1−λ p1(x|q)λ

infγ minλ∈[0,1] minq∈Pm 2−D(q||p) ∫
x p0(x|q)1−λ p1(x|q)λ

= ε. (A41)

Proof of Lemma 11. As long as the fusion center implements the MAP rule, the error
exponent is characterized by the Chernoff information [27,44]. Moreover, assuming that
the fusion center knows the network type, the Chernoff information becomes

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(x, qn)1−λ p1(x, qn)λ. (A42)

Then, for any strategy γ and λ ∈ [0, 1],

1
n

log
∫

x
∑
qn

p0(x, qn)1−λ p1(x, qn)λ (A43)

=
1
n

log
∫

x
∑
qn

(
p0(x|qn)

p(H = 0|qn)

P(H = 0)
)1−λ(p1(x|qn)

p(H = 1|qn)

P(H = 1)
)λ p(qn). (A44)

Now, we have

1
n

log
∫

x
∑
qn

p0(x, qn)1−λ p1(x, qn)λ (A45)

≤ − 1
n

logP(H = 0)− 1
n

logP(H = 1) +
1
n

log
∫

x
∑
qn

p0(u|qn)1−λ p1(u|qz)λ p(qn). (A46)

Because this argument holds for any γ and λ ∈ [0, 1], we have

inf
γ

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(x, qn)1−λ p1(x, qn)λ − inf
γ

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(u|qn)1−λ p1(u|qz)λ p(qn) (A47)

≤ − 1
n

logP(H = 0)− 1
n

logP(H = 1)→ 0. (A48)

Turning our attention to the lower bound,
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1
n

log
∫

x
∑
qn

(
p0(x|qn)

p(H = 0|qn)

P(H = 0)
)1−λ(p1(x|qn)

p(H = 1|qn)

P(H = 1)
)λ p(qn) (A49)

≥ 1
n

log
∫

x
∑
qn

(
p0(x|qn)p(H = 0|qn)

)1−λ(p1(x|qn)p(H = 1|qn)
)λ p(qn) (A50)

≥ 1
n

log min
qn
{p(H = 0|qn), p(H = 1|qn)}

∫
x
∑
qn

p0(x|qn)1−λ p1(x|qn)λ p(qn) (A51)

=
1
n

log min
qn
{p(H = 0|qn), p(H = 1|qn)}+ 1

n
log

∫
x
∑
qn

p0(x|qn)1−λ p1(x|qn)λ p(qn) (A52)

≥ 1
n

log min
qn
{p(H = 0|qn), p(H = 1|qn)}+ inf

γ
min

λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(x|qn)1−λ p1(x|qn)λ p(qn). (A53)

Because this argument holds for any γ and λ ∈ [0, 1], we have

inf
γ

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(x, qn)1−λ p1(x, qn)λ − inf
γ

min
λ∈[0,1]

1
n

log
∫

x
∑
qn

p0(u|qn)1−λ p1(u|qz)λ p(qn) (A54)

≥ 1
n

log min
qn
{p(H = 0|qn), p(H = 1|qn)} → 0, (A55)

per Assumption 5.b. This completes the proof.

Appendix A.2. Extension of Theorem 1

We begin by defining

(q∗1 , . . . ; q∗nc
) = arg max

q1,...;qnc

1
n

nc

∑
c=1
−ckD(qc||p

c) + log
∫

x
p0(xc|q1, . . . ; qnc

)1−λ p1(xc|q1, . . . ; qnc
)λ. (A56)

Then, for any 0 < ε < 1, in order for the argument in the proof of Theorem 1 to hold, there
must exist an nc,o for each class such that the set

T n
c,δ = {qn

c ∈ Z
n : ‖qn

c − q∗c ‖2 < δ} (A57)

is non-empty for all n ≥ nc,o. Recall that we assume limn→∞
ck
n > 0 for all classes, meaning

that nc,o are guaranteed to exist. This means that ∩cT n
c,δ is non-empty for all n ≥ maxc{nc,o}.

Then, repeating the exact same argument as before for each class, we can show that there
exists nδ such that for all n ≥ nδ we have

1− ε ≤ (1− 1 +
√

1− ε)
nc

∏
c=1

(ck + 1)
−m

n ≤

[
∑

qn
1 ,...;qn

nc

nc

∏
c=1

∫
xc p0(xc|qn

1 , . . . ; qn
nc
)1−λ p1(xc|qn

1 , . . . ; qn
nc
)λ p(qn

c )∫
xc p0(xc|q∗)1−λ p1(xc|q∗)λ2−nD(q∗ ||p)

] 1
n

≤
nc

∏
c=1

(ck + 1)
m
n ≤ 1 + ε.

(A58)
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