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Abstract: Deep neural networks have made great achievements in remote sensing image analyses;
however, previous studies have shown that deep neural networks exhibit incredible vulnerability
to adversarial examples, which raises concerns about regional safety and production safety. In this
paper, we propose an adversarial denoising method based on latent representation guidance for
remote sensing image scene classification. In the training phase, we train a variational autoencoder
to reconstruct the data using only the clean dataset. At test time, we first calculate the normalized
mutual information between the reconstructed image using the variational autoencoder and the
reference image as denoised by a discrete cosine transform. The reconstructed image is selectively
utilized according to the result of the image quality assessment. Then, the latent representation of the
current image is iteratively updated according to the reconstruction loss so as to gradually eliminate
the influence of adversarial noise. Because the training of the denoiser only involves clean data, the
proposed method is more robust against unknown adversarial noise. Experimental results on the
scene classification dataset show the effectiveness of the proposed method. Furthermore, the method
achieves better robust accuracy compared with state-of-the-art adversarial defense methods in image
classification tasks.

Keywords: adversarial denoising; self-supervised learning; latent representation; normalized mutual
information; cross-entropy

1. Introduction

The development of deep learning has led to a revolution in remote sensing image
(RSI) analysis. With their excellent feature extraction capabilities and end-to-end train-
ing mode, deep neural networks can provide more accurate and efficient solutions for
environmental monitoring [1], land use classification [2], object detection [3], and other
application fields. However, recent studies have shown that deep neural networks are
vulnerable to adversarial examples [4], which can mislead or even induce the model’s
predictive behavior through embedded adversarial noise. Normally, adversarial noise does
not cause changes in human perception; however, they can easily attack the intelligent
systems that humans rely upon [5]. Recently, the study of adversarial examples has been
extended to the field of RSI analysis [6–8]. For examples, a well-camouflaged drone [9]
may be recognized as a bird by an intelligent system, and a military installation with an
adversarial patch may avoid aerial detection [10]. Obviously, the existence of adversarial
examples carries hidden dangers in military applications and in other fields that have high
security requirements [11]. For this reason, it is of great significance to carry out research
on adversarial noise defense methods based on the scene classification of RSIs.

Adversarial training (AT) is considered to be a very effective method of adversarial
defense [12–14]. This type of method uses adversarial examples that float on the decision
surface during the expansion of the training set, which improves the generalization ability
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of the model to space the data using high-intensity AT [15,16]. However, these methods
usually require huge computing resources and time, and the adversarial trained model can
still be attacked by novel adversarial examples. In addition, there is a defense method that
resists adversarial attacks by modifying the model structure. Such methods usually require
adding additional network layers or regularization terms to the deployed model and then
retraining it, which may not be suitable in practical application scenarios.

The above two types of methods are designed with the goal of enhancing the general-
ization ability of the DNN model itself. In addition, there are some methods to reduce the
harmfulness of adversarial noise by modifying the input RSI, which are called adversar-
ial preprocessing (AP). In early exploration, some studies used traditional enhancement
operations (e.g., noise addition, grayscale processing, and dithering) to change the visual
characteristics of the image in order to blur out the adversarial noise. However, new noises
or style differences may bring new challenges to deep learning models and may easily
destroy the spatial features and spectral information of RSIs. Later, Gu et al. [17] used
adversarial examples to train an additional denoising encoder and achieve certain results.
Some studies trained advanced generative models (e.g., generative adversarial network,
the energy model, and the diffusion model) to learn the distribution of data spaces, which
they then used to destroy the structure of the adversarial noise.

In addition, through the extensive research and continuous improvement of self-
supervised representation learning, researchers have found that this technology can provide
new ideas for the research on adversarial defense. Hendrycks et al. [18] trained a supervised
learning-based target model and a self-supervised learning-based auxiliary network, which
provide stronger regularization for adversarial training strategies. Kim et al. [19] proposed
a label-independent adversarial attack method and trained the model in the form of self-
supervised adversarial learning to maximize the similarity between the enhancement of the
input sample and its adversarial noise. Wu et al. [20] used the self-supervised representation
to defend against adversarial attacks and designed a layer-wise noise-to-signal ratio to
quantify and measure the effectiveness of the self-supervised model in weakening the
adversarial noise layer-by-layer. He et al. [21] used a self-supervised learning model
to learn feature representations and predicted the labels of the input data; the authors
then detected adversarial examples and their enhanced versions based on representation
similarity and label consistency. These methods show that self-supervised representation
learning has good application prospects in the field of adversarial defense. Nevertheless,
there is no research on adversarial denoising at the latent space level.

In order to improve the robustness of RSI scene classification models, we propose an
adversarial denoising method based on latent representation guidance. This method takes
full advantage of the label-independence of self-supervised representation learning, only
uses clean data to train variational autoencoders (VAEs) [22] in the training phase, and does
not require any form of adversarial examples and target models. After that, a well-trained
model can build a distribution that is determined by latent representations for each input
sample. In the iterative denoising phase, we first use normalized mutual information (NMI)
to evaluate the reconstructed image and then update the latent distribution according to the
reconstruction loss, thereby achieving the purpose of adjusting the latent space distribution.
Experiments on RSI scene classification datasets show that the proposed method is effective
in defending from adversarial noise. Furthermore, our method achieves better defensive
performance compared with state-of-the-art adversarial defense methods in the field of
computer vision.

In summary, we provide the following contributions:

• We introduce self-supervised representation learning into the study of adversarial
defense methods and design an adversarial denoising method. Because only clean
data are used in the training phase, the proposed method is label-independent and
model-independent, which is beneficial for improving the model’s defense ability
against unknown adversarial noise.



Entropy 2023, 25, 1306 3 of 21

• At test time, we use NMI to measure the quality of the reconstructed image and itera-
tively update its latent representation. Because the adversarial denoising operation is
indirectly completed in the latent space, the proposed method has less impact on the
quality and spatial information of images.

• We conduct attack and defense tests on various architectures of RSI scene classification
datasets. The results show that the proposed method can effectively reduce the
impact of adversarial noise on the model and protect the highly vulnerable RSI scene
classification models in the real world.

• To test the performance of our method, we chose state-of-the-art adversarial defense
methods in the field of computer vision for comparative experiments, and the results
show that the proposed method exhibits a competitive defense performance. Further-
more, the proposed method can be combined with other adversarial defense methods
as an additional plugin.

2. Related Works

In this section, we first briefly introduce the adversarial attack methods that are
involved in our experiments and then review the classic adversarial defense methods;
finally, we introduce the principle and development of VAEs.

2.1. Adversarial Attacks

Although physical adversarial attacks are not a threat in most remote sensing appli-
cations, the ultimate goal of studying adversarial attacks is to increase models’ resilience
to overfitting and increase their generalization ability to complex data spaces. Most of
the existing adversarial attack methods used in the field of remote sensing extend from
the research results in the field of computer vision, such as the fast gradient sign method
(FGSM) [4], projected gradient descent (PGD) method [16], Carlini and Wagner (C&W)
method [23], DeepFool method [24], AutoAttack method [25], and backward pass differen-
tiable approximation based on expectation over transformation (BPDA+EOT) method [26].

The FGSM method is a gradient-based adversarial attack method; it generates adver-
sarial examples by computing the gradient of the model to the input data and by adjusting
the input data according to the direction of the gradient. It is a fast and relatively simple
adversarial attack method. The PGD method is an iterative gradient descent adversarial
attack method; it generates adversarial examples by applying FGSM on the input data in
multiple iterations. At each iteration, PGD will slightly perturb the input data within a
certain range to increase the effect of the attack. The C&W method is an optimization-based
adversarial attack method; by performing optimizations in the input space, it aims to find
adversarial examples that maximize the objective function. This method usually has a high
attack success rate but has a high computational cost. The DeepFool method is an iterative
linearization adversarial attack method; it uses a linear approximation in the input space to
find the direction of the smallest perturbation and slightly perturbs the input data in this
direction. DeepFool aims to minimize the magnitude of the perturbation. The AutoAttack
method is a comprehensive adversarial attack evaluation framework that integrates a
variety of adversarial attack methods; in addition to the above four common methods, it
also includes the methods of square attack, boundary attack, etc. It aims to provide users
with a one-stop adversarial attack evaluation tool, which can help researchers more fully
understand the weaknesses and vulnerabilities of models. The BPDA+EOT method is an
adversarial attack method based on back-propagation; it approximates discrete gradient
values by using different transformation functions in the forward and back-propagation
stages. This approach can be computationally more efficient and relatively effective for
attacking.
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2.2. Adversarial Defenses
2.2.1. Adversarial Training

AT is considered to be one of the most effective defense strategies in the field of deep
learning. Its idea is to supplement adversarial examples into the training set as outlier
samples that are close to the decision surface so that the model can explore the decision
space more comprehensively and capture complex decision boundaries. The higher the
quality of adversarial examples during AT, the better the generalization of the model. The
following are several classic AT methods. Xu et al. [27] introduced the FGSM-AT model
into the RSI scene classification application, which effectively improved the adversarial
robustness of the target model. Li et al. [28] used the PGD-AT model to enhance the
synthetic aperture radar interpretable image recognition model. Zhang et al. [29] proposed
an AT method that satisfies the Lipschitz continuity constraints, which was named TRADES.
The model is trained by generating adversarial examples and minimizing the adversarial
loss, which improves the robustness and generalization of the model. Cheng et al. [30]
introduced the generative adversarial network (GAN) into the AT framework to model
the distribution of adversarial noise, aiming to use the pattern discovery ability of GAN
to explore unknown types of adversarial noise. However, the authors hoped to explore
unknown adversarial noise through several known adversarial attacks, which requires
a more detailed demonstration. In order to protect the highly vulnerable salient object
detection model, Sun et al. [31] proposed a remote sensing image defense framework
based on an adversarial cloud, which can be easily added to the deployed object detection
application. Although these methods have achieved good performance, the computational
complexity of AT is relatively large, and problems such as catastrophic overfitting may be
encountered.

2.2.2. Adversarial Preprocessing

Adversarial preprocessing is the operation of detecting or purifying the data to be
tested with the aim of eliminating or modifying samples that contain adversarial noise so
as to ensure the accuracy of the model to the greatest extent [32]. Adversarial detection [33]
methods can be divided into two categories: feature-based methods and energy-based
methods. Feature-based methods mainly judge whether a sample is an adversarial sample
by analyzing the features or attributes of the input sample. For example, Li et al. [34] first
fused the features output by the first and second fully connected layers of the target model
and then used the support vector machine model to find a hyperplane that could separate
positive and negative samples, which was performed to realize the detection of adversarial
examples. Chen et al. [35] first used the feedback results of the target model for positive and
negative samples to additionally train a lightweight classifier; the authors then obtained
the confidence threshold of each category according to the decision boundary, which is a
soft threshold for detecting adversarial examples. Energy-based methods judge whether
a sample is an adversarial sample by calculating the energy or abnormality of the input
sample. Zhang et al. [36] proposed an energy-based adversarial detector that uses energy
regularization to fine-tune the pretrained model. These methods have a small amount of
calculation and are easy to deploy, but have a great impact on the standard accuracy of the
target model.

Research on purification methods is more diverse. Researchers treat adversarial
noise as ordinary noise and adopt traditional denoising methods to deal with it. For
example, Tabacof et al. [37] studied the impact of Gaussian noise with different intensities
and distributions on adversarial examples. Raff et al. [38] randomly combined several
weak transformation methods, including color precision reduction, JPEG noise, swirl,
and FFT perturbations, to destroy the structure of adversarial noise. However, these two
methods have a certain impact on the quality of the image and accuracy of the model.
Gu et al. [17] first added ordinary noise to adversarial examples and then used a denoising
autoencoder to remove adversarial noise. In a later study, the purification framework
proposed by Meng et al. [39] could gradually adapt adversarial examples to real data



Entropy 2023, 25, 1306 5 of 21

manifolds. Moreover, Liao et al. [40] designed a denoising method based on high-level
representation guidance. Xu et al. [41] proposed a denoising network that is guided by
the scene classification task that transforms adversarial examples into images that are
similar to the corresponding clean data based on the feedback from a target model. It
has good performance with respect to removing adversarial noise and improving model
robustness. These methods usually require a certain amount of adversarial examples as
prior experience, which makes it difficult to deal with unknown adversarial noise. To get
rid of the reliance on adversarial examples, Yang et al. [42] designed a denoising method
based on the destruction–reconstruction mode called ME-Net by using matrix estimation.
Shi et al. [43] proposed a self-supervised online adversarial purification (SOAP) strategy.
Similarly, Xu et al. [44] adopted a mode of co-training the target network and additional
distillation network, designed label-independent, instance-wise adversarial attack methods,
and conducted adversarial training. In addition, Hill et al. [45] introduced an energy-based
model (EBM) into the adversarial defense method, and Yoon et al. [46] improved the EBM
model by using the denoising score matching (DSM) method. However, EBM relies on huge
sampling and calculations; the diffusion model is time-consuming, which is not suitable
for applications that require high real-time performance.

2.3. Variational Autoencoders

VAEs [47,48] usually consist of an encoder and a decoder. This method works by
adding constraints during the encoding process so that the latent vectors generated by
the encoder roughly follow a standard normal distribution. Specifically, given a true
distribution p̃(x) of a batch of samples, the form of the generative model is as follows:

p(x, z) = p(z) · p(x|z ), (1)

where p(z) is a prior distribution over latent variables z and p(x|z ) is a likelihood function
or decoder. Variational inference is an approximate inference method where the goal is to
approximate the true posterior distribution p(z|x ) by a tractable approximate distribution
p(z). Because the true posterior p(z|x ) is generally intractable, the generative models are
trained using the aid of an approximate posterior distribution or encoder q(z|x ). However,
in the world of continuous distributions, there are not many distributions that are conve-
nient to sample, and researchers usually choose Gaussian distributions with independent
components to construct q(z|x ), p(z), and p(x|z ). As such distributions are difficult to fit
to complex distributions, the images generated by VAEs are blurry.

To improve the visual quality of the images that are generated by VAEs, there have
been many variants. Some change p(x|z ) to a more general distribution. For example,
Ma et al. [49] introduced VAE-GAN to RSI scene classification applications in the zero-
shot setting, wherein the authors used the discriminator to learn a suitable reconstruction
quality metric for the VAE. Zhang et al. [50] embedded the texture-guided prior infor-
mation into the VAE network and then embedded the spatial-wise attention block into
the discriminator, which can generate remote sensing images with more realistic texture
details. Heydari et al. [51] proposed an IntroVAE-based single image super-resolution
method for learning the latent manifold structure of super-resolved images. Meanwhile,
the introduction of GAN brought the problem of mode collapse and an unstable training
gradient. Cardenas et al. [52] relied on powerful autoregressive priors of the VQ-VAE to
learn the spatial consistency and semantic consistency of images with complex textures.
Du et al. [53] proposed a CVAE that can provide a suitable prior probability distribution
for latent variables by optimizing the Kullback–Leibler divergence between the conditional
prior and approximate posterior probability distribution. Vahdat et al. [22] proposed Nou-
veau VAE (NVAE) based on multi-scale architecture, which improved the quality of image
generation.
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3. Methodology

The architecture of the classical VAE consists of two main components: an encoder
and a decoder. The encoder can capture the basic features of the input data and map it to a
compact cluster of latent space, namely the multivariate Gaussian distribution. In particular,
to sample from the latent space in a differentiable way, VAEs employ reparameterization
techniques to shift the problem into a more general distribution. Meanwhile, the decoder
generates new data samples that are similar to the original data based on the sampled
latent representation. These representations contain most of the important information that
is needed by the data. Analyzing latent representations provides insight into the patterns
or structural similarities between data.

When training the VAE, minimize the reconstruction error to ensure that the generated
new data are similar to the distribution of the original data and optimize the relative
entropy of the latent vector to learn a compact and smooth latent representation. After
properly training with clean data, the encoder’s mapping to normal data deviates from
its mapping to abnormal data; that is, the latent distribution that is obtained by encoding
clean samples and adversarial examples is different.

To fix this “bias”, we adjust the latent distribution during the denoising phase by
iteratively updating the latent features. In addition, because the pictures generated by the
VAE are usually blurry and cannot meet the needs of practical applications, we chose the
derived NVAE [22] model as the engineering implementation.

Figure 1 shows the framework of the proposed adversarial denoising model based
on the latent representation guidance. It mainly consists of two phases: training of a
self-supervised generative model and adversarial denoising at the latent space level. In the
training phase, we use a clean dataset to train a deep hierarchical variational autoencoder
called NVAE; once trained, its encoder is able to build a latent Gaussian distribution for any
input in the sample space. There are a large number of normal samples and a small number
of abnormal samples gathered in this distribution. Then, NVAE’s decoder is able to generate
a new sample that is similar to the input sample based on the latent representation sampled
from the latent distribution. Because NVAE is good at capturing the basic features of input
data, some meaningless but adversarial features will be filtered out after the encoding and
decoding operations. In the denoising phase, we use NVAE as the reconstruction module,
take the DCT denoised image as a reference, and use NMI to evaluate the usability of
the reconstructed image for the current iteration. After this step, the latent representation
is iteratively updated according to the reconstruction loss, thereby changing the latent
distribution of the original sample. After repeated adjustments and sampling and filtering
operations, the structure of the adversarial noise is gradually destroyed. This is the specific
design idea of the adversarial denoising method.

3.1. Training Phase

In this paper, we choose the deep hierarchical NVAE model. We focus on the or-
thogonal direction of neural architectures for hierarchical VAEs, divide the latent vari-
ables into vector groups z = {z1, z2, . . . , zL}, and enhance the prior distribution p(z) and
the approximate posterior distribution q(z|x ) using autoregressive models. The prior

is represented by p(z) =
L
∏
l=1

p(zl |z<l) and the approximate posterior is represented by

q(z|x ) =
L
∏
l=1

q(zl |z<l , x). Then, we use multi-scale architectures and depth-wise separa-

ble convolutions to design a bidirectional encoder and a generative model, as shown in
Figure 2.
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For the input sample x, the encoder performs multi-level encoding on the sample x
and obtains a top-level feature vector z1. Then, the encoding vector zl(l ∈ [1, L)) of the
current layer is sampled to calculate the feature vector zl+1 of the next layer. Finally, the
encoder obtains a set Z = {z1, z2, . . . , zL} of latent variables that are mutually disjoint,
where L is the number of groups. For the lowest-level feature zL, there is an approximate
posterior distribution of the following form:

qΦ

(
zL|x

)
=
∫

qφL

(
zL|zL−1

)
· · · qφ1

(
z1|x

)
dz1 · · · dzL−1, (2)

where Φ =
{

φ1, . . . , φL}.
Because each conditional in the prior p(zl |z<l ) and q(zl |z<l , x) follow factorial normal

distributions, we assume that µ = {m1, m2, . . . , mL} and σ = {n1, n2, . . . , nL} are the
representations of the input sample in the latent space. Additionally, Z is sampled from a
normal distribution that is determined by µ and σ.

The decoder first calculates latent variables z1, z2, . . . , zL from top to bottom according
to the µ and σ output by the encoder. Then, the top-level latent features z1 are sampled. The
feature combination is performed on the sample with the trainable parameter h to obtain a
deterministic feature map. For other layers, the decoder combines the deterministic feature
map output using the upper layer with the sample taken from zl(l ∈ [1, L)) to obtain the
deterministic feature map of the current layer. When decoding to the bottom layer, the
decoder outputs a new sample that has some correlation with x.

When training NVAE, for each sample, we wish to maximize its variational lower
bound on log p(x) as:

L(Φ, θ; x) = EqΦ(z|x)

[
log

pθ(x, z)
qΦ(z|x)

]
(3)

Given pθ

(
x, zL) = pθ

(
x|zL)p

(
zL), we can obtain the following inequality according to the

lemma provided by Im et al. [54]:

log pθ(x) ≥ EqΦ(zL |x)

[
log

pθ(x,zL)
∏L−1

l=0 q
φi (zl+1|zl)

]
≥ EqΦ(zL |x)

[
log

pθ(x,zL)
qΦ(zL |x)

] (4)

The above inequality illustrates that the multi-scale architecture provides a tighter
variational lower bound. Such a design can better fit complex continuous distributions.
When the NVAE model is properly trained, the sample x̃ output by the decoder will be
similar to the initial sample x.

3.2. Testing Phase

As shown in Figure 1, the test time adversarial denoising model consists of four parts:
the reconstruction module, discrete cosine transform (DCT) denoising module, screening
module, and latent representation guidance module. When an NVAE model is properly
trained, it is able to create a mapping from the input space to the latent space. Because
clean samples and adversarial examples have different representations in the latent space,
we iteratively update the features of the latent space to gradually alleviate the impact of
adversarial noise. Therefore, the latent representation guidance module embodies the core
design concept of this method.

Next, we introduce the four modules of the adversarial denoising model sequen-
tially. An input sample x is first fed into both the reconstruction module and the DCT
denoising module.

3.2.1. Reconstruction Module

In the reconstruction module, the well-trained NVAE model encodes the input x to
obtain a latent Gaussian distribution as determined by the latent representations µ0 and
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σ0. In this distribution, samples with relatively less adversarial noise are densely clustered.
Because VAE uses variational inference methods to approximate the posterior probability
distribution, the approximation of the posterior distribution may not be accurate. To this
end, we default to a deterministic sampling of the latent distribution to ensure the fidelity
of the generated data. Then, the decoder generates a reconstructed sample x̃1 based on
the sampled latent representation. It is worth noting that for the subsequent i-th (i > 1)
iteration, NVAE no longer uses the encoder and only uses µi−1 and σi−1 to determine the
reconstruction sample x̃i.

Because NVAE is good at capturing the basic features of input data, some meaningless
but adversarial features will be filtered out after the encoding and decoding operations.

3.2.2. DCT Denoising Module

In the DCT denoising module, we first perform DCT on x to obtain the frequency
domain representation x′ then remove the high-frequency contents to reduce the impact of
adversarial perturbations; finally, we obtain the denoised sample x′ through the inverse
discrete cosine transform (IDCT).

DCT denoising has certain advantages in energy concentration, compressibility, re-
versibility, and applicability. In this paper, the DCT denoised image has the following two
uses: one use is as a reference in the screening module to evaluate the usability of the
reconstructed image generated by NVAE, and the other is to participate in the calculation of
MSE loss in the latent representation guidance module. First, when evaluating the usability
of the reconstructed image, if the abnormal sample is used as the reference, using NMI
to evaluate the similarity between the reconstructed image and the reference image will
make it difficult to make the reconstructed image cleaner. Second, MSE is a pixel-level
evaluation metric that is used to measure the difference between images. The model and
user cannot predict whether the input sample is adversarial. If the abnormal sample is
used to guide the update of latent representation when calculating the reconstruction loss,
it will be difficult for the latent distribution to be better calibrated. For this reason, it is
more conducive to the overall effect of our method to select traditional denoised images
with relatively less adversarial noise as a reference instead of unknown input samples.

3.2.3. Screening Module

After obtaining x̃i and x′, we use the screening module to decide whether to accept the
reconstructed sample x̃i that is output by NVAE. x̃i and x′ are regarded as clustering results,
where each pixel or feature vector can be regarded as a sample. We choose NMI as the image
quality evaluation index to compare the similarity between these two clustering results.
A higher NMI value indicates that the clustering results of two images are more similar,
while a lower NMI value indicates that the clustering results are less similar. In contrast to
peak signal-to-noise ratio (PSNR) and Structural Similarity (SSIM), NMI comprehensively
considers the structural similarity of images and consistency of clustering results, is robust
to nonlinear transformations such as data compression and adversarial attacks, and can
better evaluate the obtained images.

Specifically, we first initialize the recording of the NMI value to zero, i.e., NMI0 = 0.
For the i-th iteration, we calculate the NMI value between x̃i and x′ using the following
formula:

NMIi
(
x̃i, x′

)
=

2× (H(x̃i)− H(x̃i|x′))
H(x̃i) + H(x′)

, (5)

where i ∈ [1, Imax], Imax is the maximum number of denoising iterations and H(·) is the
cross-entropy method. Then, the value is compared with the recording NMIi−1 from the
previous iteration. If NMIi > NMIi−1, we use x̃i as the purified sample xi

′′ and update
the recording of the NMI value. Otherwise, we use xi−1

′′ from the previous iteration
as the purified sample for this iteration and keep the recording of NMI unchanged, i.e.,
NMIi = NMIi−1.
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3.2.4. Latent Representation Guidance Module

Next, we compute the mean square error (MSE) loss Lcal of the purified sample xi
′′

and the denoised sample x′ as the guidance loss of the adversarial denoising model.

Lcal =
1
N
(
xi
′′, x′

)2 (6)

After that, we keep the weights of the NVAE model unchanged and use Lcal to update
the feature representations µi and σi of the latent space during back-propagation, as shown
in Equations (7) and (8). In particular, such a guidance operation updates the feature
representations ml and nl of each layer, where l ∈ [1, L). Whenever we pass µi and σi into
the decoder of NVAE, a calibration of the latent distribution is completed.

µi = µi−1 −
∂Lcal
∂µi−1

(7)

σi = σi−1 −
∂Lcal
∂σi−1

(8)

In this way, the latent representation is iteratively updated, thereby changing the latent
distribution of the original samples. After repeated adjustments and sampling and filtering
operations, the structure of the perturbations is gradually destroyed, and the reconstructed
samples are less deceptive to the target model.

4. Experimental Evaluation
4.1. Datasets and Network Architectures

In this section, we first test the effectiveness of the proposed method for defending
against adversarial noise on the UC Merced (UCM) land use dataset [55]. Then, we compare
our method with baseline adversarial defense methods in the field of computer vision on
the CIFAR-10 dataset [56].

UCM is a remote sensing image dataset for land-use classification and recognition
tasks; it covers 21 different land use categories, such as urban areas, farmlands, forests,
grasslands, lakes, rivers, highways, etc. Each category consists of 100 high-resolution aerial
images with a resolution of 256 × 256 pixels. We randomly split the UCM into the training
set and test set at a ratio of 8:2. Therefore, the training set and test set contain 1680 and
420 remote sensing images, respectively. To this end, the experimental results on the UCM
dataset are based on the average accuracy obtained from five independent experiments.

CIFAR-10 is a computer vision dataset for image classification tasks. It covers 10 dif-
ferent object classes, i.e., airplanes, cars, birds, cats, deer, dogs, frogs, horses, boats, and
trucks. These images have certain complexity and variability, which is challenging for the
training and evaluation of deep learning models. Each category consists of 6000 images
with a resolution of 32 × 32 pixels.

4.2. Experimental Settings

When training target models to be attacked, we first perform preprocessing operations
such as random cropping, scaling, and horizontal flipping on the training set and then
perform 200-epoch training. During this phase, a cosine annealing learning rate adjustment
algorithm with a maximum period of 200 and batch normalization techniques are used to
speed up the optimization of the model.

We compare the proposed method against widely-used AT and AP methods on a
variety of l∞- and l2-bounded attacks: FGSM, PGD, C&W, DeepFool, AutoAttack, and
BPDA+EOT. For UCM, both FGSM, PGD, and AutoAttack are l∞ bounded with ε = 0.01,
and the PGD runs 20 iterations with a step size of 0.002; C&W and DeepFool are l2-bounded
with ε = 2. For CIFAR-10, both FGSM, PGD, AutoAttack, and BPDA+EOT are l∞-bounded
with ε = 8/255, and the PGD runs 20 iterations with a step size of 2/255; C&W and
DeepFool are l2-bounded with ε = 2. In addition, the number of parallel samples used for
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the EOT attack is 15, and the number of parallel purification trials for verifying successful
attacks with EOT defense is set to 150.

Next, we introduce the experimental settings of the proposed algorithm. When
training NVAE, the main parameter settings are listed in Table 1. In the denoising phase,
we choose NMI as the image quality assessment index in the screening module and set the
number of iterations to 200.

Table 1. A summary of the hyperparameters used in training NVAE.

Hyperparameter Value

Epoch 200
Batch size 200

Normalizing flows 0
Latent variable scales 1
Groups in each scale 10

Residual cells per group 1
Channels in Z 20

Initial channels in enc./dec. 32
Preprocessing/postprocessing blocks 2

Cells per block 3
Mixture components in dec. 10

Notes: Z represents the set of latent variables.

4.3. Effectiveness on Remote Sensing Dataset

We conduct experiments on four classic image classification models, i.e., LeNet with a
standard accuracy of 70.00%, VGG16 with a standard accuracy of 77.14%, AlexNet with
a standard accuracy of 77.86%, and ResNet-18 with a standard accuracy of 85.95%. The
accuracy of the target model is equal to the ratio between the number of recognition results
that are consistent with the true label and the total number of the test images. Table 2 shows
the robust accuracy of the adversarial denoising method against different adversarial attack
algorithms on the UCM dataset.

Table 2. The robust accuracy (%) of the proposed method against different adversarial attacks
on UCM.

Model Method No Attack FGSM PGD C&W DeepFool AutoAttack

LeNet No Def 70.00 19.52 10.24 0.00 0.00 8.57
Ours 69.76 35.72 31.67 64.05 61.19 39.52

VGG16 No Def 77.14 20.95 6.19 0.00 0.00 4.29
Ours 76.19 24.05 15.48 52.29 52.38 18.33

AlexNet No Def 77.86 23.57 10.71 0.00 0.00 3.81
Ours 76.19 43.33 42.38 72.14 72.62 46.19

ResNet-18 No Def 85.95 28.33 19.76 0.00 0.00 16.67
Ours 83.33 33.57 26.67 57.38 55.00 31.19

We can see that when the input is clean data, the standard accuracy of the target
model on the reconstructed data is slightly reduced. This is a common problem that is
often associated with adversarial defense methods. Adversarial purification methods may
lead to the loss of meaningful features, and adversarial training methods may lead to the
overfitting of adversarial examples. Meanwhile, when the input is an adversarial example,
the classification accuracy of the target model on the reconstructed data is significantly
improved. In Figure 3, we show examples of the adversarial noise that is produced by
these attack methods, the generated adversarial examples, and the reconstructed images
after denoising.
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4.3.1. Effectiveness across Different Models on CIFAR-10

In this part, we first use classic adversarial attack algorithms to attack advanced
object classification models in the CIFAR-10 dataset. Then, we test the effectiveness of
the proposed adversarial denoising method for defending against adversarial attacks, as
shown in Figure 4.
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Figure 3. Examples of adversarial attacks and adversarial denoising.

The following points can be seen from the Figure 4: first, the proposed method has
good robust accuracy, especially for l2-bounded attacks such as C&W and DeepFool; second,
when tested using clean data, the model still maintains a good standard accuracy; third, as
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the complexity of the model increases, the success rate of adversarial attacks decreases, but
the robustness of our method remains good.
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Figure 4. The defense performance of the proposed method against different adversarial attacks on
CIFAR-10.

4.3.2. Comparison with Adversarial Purification Methods

In this part, we test the adversarial attacks and adversarial purification methods on
CIFAR-10 using WideResNet-28 as the target model, as shown in Table 3. We mark the best
performance for each attack by an underlined and bold value and the second best by a
bold value.

Table 3. The performance comparison of different adversarial purification algorithms.

Method Standard Acc
Robust Acc

BPDA+EOT AutoAttack

No Defence 90.62 0.00 0.00
Me-net 87.20 15.00 26.30

EBM+LD 84.12 54.90 -
DSM+LD 86.14 70.01 -

SOAP 87.00 38.97 7.10
Ours 79.44 72.68 57.31

Notes: CD and AE represent clean data and adversarial examples, respectively.

The adversarial attack algorithms that we chose were BPDA+EOT and AutoAttack.
BPDA+EOT is the main attack method for evaluating adversarial purification algorithms [45,46].
Adversarial purification methods include ME-Net, EBM, DSM, and SOAP. For experiments
using ME-Net, we set the masking probability to [0.4, 0.6] and used the nuclear norm minimiza-
tion method for matrix estimation. For experimental results using EBM and DSM, we borrowed
the results from the paper by Yoon et al.; the authors introduced Langevin dynamics (LD) into
the sampling process when implementing these two methods. For experiments using SOAP,
we first chose label consistency as self-supervised signals and used the auxiliary loss to set the
budget of purification. Then, we tested SOAP with a budget of five iterations and a step size of
4/255.

These methods only require clean data to participate in training. The performance
comparison of these method are shown in Table 3. We can see that ME-Net has the lowest
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impact on the standard accuracy of the target model. This is because this method performs
a large number of masking and reconstruction operations on the clean dataset and then
conducts large-scale generalization training on the model. However, ME-Net is weak
against BPDA+EOT and AutoAttack. Next, SOAP also has less impact on the standard
accuracy of the model, and it achieves an accuracy of 87.00% on the clean dataset. This
is because SOAP adopts a design scheme of joint training of the classification model and
auxiliary model, which reduces the impact on the classification model. Meanwhile, both
the EBM and DSM models have greatly improved the robustness against previous methods.
However, as both methods have optimization or a large number of sampling loops in
their defense process, it is difficult to test their defense capabilities against AutoAttack. In
comparative experiments, the proposed method allows the target model to have the best
defense performance against adversarial examples. After adversarial denoising, the robust
accuracy of the model is as high as 72.68% for adversarial examples that are generated by
BPDA+EOT and 57.31% for adversarial samples that are generated by AutoAttack.

4.3.3. Compatibility with Prior Arts

Because SOAP is trained on classification tasks and self-supervised tasks, we separately
tested the performance of combining the proposed adversarial cleaner as a plugin with
the SOAP framework, as shown in Figure 5. Obviously, after multi-task learning and
purification, the robust accuracy of the model is greatly improved. In particular, when
the proposed denoising method is combined with SOAP, better defense performance is
achieved in various attack tests.
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Figure 5. Compatibility testing of the proposed algorithm with SOAP.

In addition, we tested a classic AT method, TRADES, and conducted experiments that
combined the proposed denoising method with TRADES. When training TRADES, we
set the step size for perturbations to 0.007, the weight decay to 2× 10−4, the number of
perturbation iterations for PGD to 10, and a trade-off regularization parameter β to 6.0. A
10-widen WideResNet-34 was chosen as the architecture of the image classification model.

As shown in Figure 6, when the proposed adversarial denoising model is used as
a plug-in with TRADES, the defense strategy inherits the excellent performance of our
method against AutoAttack and BPDA+EOT. After purification and adversarial train-
ing, the robust accuracy of the model is as high as 58.57% for adversarial samples that
are generated by AutoAttack and 62.41% for adversarial samples that are generated by
BPDA+EOT.
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Figure 6. Compatibility testing of the proposed algorithm with TRADES.

4.4. Ablation on Experimental Settings

Due to the limitation of GPU memory, it is inconvenient for us to use the UCM dataset
to test the larger-scale VAE. Therefore, we first used the CIFAR-10 dataset to test the optimal
parameter settings of the NVAE part and then used the UCM dataset to test the parameters
involved in the proposed denoising method.

4.4.1. Parameters Involved in NVAE

Although Nie et al. have concluded through experiments that NVAE cannot purify
adversarial examples [57], we found that it is feasible to use NVAE as a denoising model as
long as the appropriate parameters are selected. To this end, we first tested the effect of
NVAE on the performance of the adversarial denoising under different parameter settings.

Table 4 tests the impact of tuning important parameters of NVAE on the defense
performance. In this table, Experiment No. 1 completely followed the parameter settings
listed in Table 1 without any changes. For the rest of the experiments, we only adjusted a
certain parameter setting listed in Table 1 and kept the other parameters unchanged. We
considered two metrics to evaluate the performance of the defense approaches: standard
accuracy and robust accuracy. The standard accuracy measures the performance of the
defense method on a clean test set. The robust accuracy measures the performance on
adversarial examples that are generated by different adversarial attack algorithms. In
order to facilitate the observation of the experimental results, we drew the data in Table 4
into a histogram, as shown in Figure 7. It can be seen from the figure that the overall
performances of the three experiments numbered 1, 4, and 15 are better. We selected the
settings of experiment No. 1 with the highest robust accuracy as the configuration of
subsequent experiments.
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Table 4. Effects of different parameters in the NVAE model on the performance of the adversarial
denoising model.

No Change Standard Acc Robust Acc

1 No changes 79.44 53.73
2 Channels in Z = 10 81.57 49.21
3 Channels in Z = 30 76.38 51.88
4 Groups in each scale = 5 79.30 53.08
5 Groups in each scale = 15 71.32 47.72
6 Channels in enc./dec. = 16 65.83 51.17
7 Channels in enc./dec. = 48 78.76 49.47
8 Preprocessing/postprocessing blocks = 1 87.03 10.75
9 Preprocessing/postprocessing blocks = 3 47.88 42.26

10 Cells per block = 2 76.4 52.00
11 Cells per block = 4 78.82 52.70
12 Epoch = 100 81.45 49.74
13 Epoch = 300 75.17 44.79
14 Epoch = 100 71.10 48.61
15 Epoch = 300 82.58 50.65

Notes: Z represents the set of latent variables.

 

0 10 20 30 40 50 60 70 80 90 100

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Accuracy (%)

Ex
pe

rim
en

t N
um

be
r

PGD Clean Data
Figure 7. Influence of different parameter settings of NVAE on the defense performance. The part
with the pattern filling is the standard accuracy and the part without filling is the robust accuracy.

4.4.2. Parameters Involved in Adversarial Denoising

After determining the parameters of NVAE, we tested the parameters involved in the
proposed adversarial denoising model on the UCM dataset. We tested the influence of
the number of iterations, assessment metrics in the screening module, and level of DCT
denoising, as shown in Figure 8. Overall, the robust accuracy under different settings in
Figure 8b is better. Therefore, in the DCT denoising module, we decided to use 1D-DCT
denoising. When using NMI as the image quality assessment in the screening module, the
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proposed algorithm almost achieves a better performance at different iterations. Finally,
it can be seen from Figure 8a,b that when the number of iterations is 200 or 250, the
performance of adversarial defense is better. Therefore, we set the number of iterations
to 200.

(a) No DCT denoising (b) 1D-DCT denoising 

(c) 2D-DCT denoising (d) 3D-DCT denoising 

Figure 8. Influence of different image quality assessment and iterations on the proposed algorithm.

5. Discussion

Remote sensing images have the characteristics of high spatial resolution, rich spectral
information, and unclear foregrounds and backgrounds. It is difficult for traditional image
processing methods to analyze them effectively. Deep learning has the ability to learn
complex feature representation and pattern recognition. This technology has achieved
remarkable results in RSI analysis tasks, such as classification, semantic segmentation, and
the detection of change of land use. However, in the field of remote sensing, factors such as
the atmosphere, clouds, noise, and motion artifacts may reduce the quality of RSIs, thereby
affecting the analysis of DL models. In particular, the existence of adversarial examples
poses a serious threat to the reliability and security of RSIs.

To improve the robustness and reliability of DL models, we proposed an adversarial
denoising method based on latent representation guidance for remote sensing image scene
classification. Our method does not involve the target model and adversarial examples
during the training phase and thus is robust to unknown types of adversarial noise. On the
classic remote sensing dataset UCM, we used a variety of mainstream adversarial attack
methods to conduct attack and denoising tests. The experimental results show that the
proposed adversarial denoising method is effective, especially when defending against
L2-bounded attacks such as C&W and DeepFool. Additionally, from the noisy image in
the examples shown in Figure 3, it can be found that the adversarial noise produced by
the C&W method is relatively concentrated, and it is more suitable for creating physical
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adversarial examples for RSI. In addition, in order to compare the results with state-of-
the-art adversarial defense methods, we also used the computer vision dataset CIFAR-10
for comparative experiments. The experimental results show that the proposed method
achieves competitive robust accuracy and can be combined with other adversarial defense
methods as a preprocessing plugin.

The idea of the proposed method is to first train a self-supervised generative model
and then adjust its latent distribution by updating the latent representation of the data to
achieve the purpose of filtering adversarial noise. Within the process, the deep hierarchical
variational autoencoder is an important part of our method, which may have the following
potential limitations:

• The VAE assumes that the latent space is continuous, which means that samples
corresponding to adjacent points in the latent space should also be similar in the data
space. This may not be true for data in domains such as natural language or drug
molecules.

• The VAE may encounter challenges in sampling and reconstruction when processing
high-dimensional data.

• This paper is a study on the robustness of deep learning models, which is suitable for
slight adversarial noise removal tasks but not for cloud removal [58] and image de-
blurring tasks. For example, we tested the robustness of the target model to impulsive
noise attacks on the CIFAR-10 dataset. The proposed method reduces the prediction
accuracy of the model for these blurred images from 50.10% to 27.45%. Of course,
such performance is normal among the existing adversarial defense methods.

Adversarial denoising technology can remove noise and interference in images by
learning the noise distribution or characteristics of perturbations, thereby improving the
effect and reliability of the RSI analysis. In the future, adversarial denoising technology has
broad application prospects in the generalizability and robustness of DL models, super-
resolution reconstruction, multi-modal image purification, medical image processing, etc.

6. Conclusions

In this paper, we designed an adversarial denoising method for RSI scene classification
using a VAE with a multi-scale architecture. During the training phase, we learned the
intrinsic features and meaningful representations of the clean data in the form of self-
supervised learning. At test time, we first measured the quality of the reconstructed image
output from the decoder according to the NMI. Then, this image was reconstructed under
the guidance of the latent representations. Several iterations were performed to gradually
weaken or eliminate the influence of the adversarial noise. The experimental results
show that the proposed method is effective in RSI scene classification tasks and achieves
adversarial robustness that is competitive with advanced computer vision adversarial
defense methods. In the future, we will continue to seek theoretical innovations in self-
supervised learning-based adversarial defense methods within the field of remote sensing.
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