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Abstract: Unmanned aerial vehicles (UAVs) providing additional on-demand communication and
computing services have become a promising technology. However, the limited energy supply of
UAVs, which constrains their service duration, has emerged as an obstacle in UAV-enabled networks.
In this context, a novel task offloading framework is proposed in UAV-enabled mobile edge computing
(MEC) networks. Specifically, heterogeneous UAVs with different communication and computing
capabilities are considered and the energy consumption of UAVs is minimized via jointly optimizing
user association and UAV deployment. The optimal transport theory is introduced to analyze the user
association sub-problem, and the UAV deployment for each sub-region is determined by a dragonfly
algorithm (DA). Simulation results show that the energy consumption performance is significantly
improved by the proposed algorithm.

Keywords: UAV; MEC; UAV deployment; user association; energy-efficient; optimal transport theory;
dragonfly algorithm

1. Introduction

The emergence of intelligent applications, such as intelligent transportation systems,
VR (virtual reality) and AR (augmented reality), has led to an increasing demand for on-
demand communication and computing services beyond 5G/6G [1]. However, mobile
devices still face challenges due to limited resources, such as battery life and computing
power. This can be particularly difficult in emergency scenarios where infrastructure is
lacking, making it difficult for mobile devices to be covered by terrestrial base stations and
process computation-intensive and delay-sensitive applications [2]. To address these chal-
lenges, a new platform is needed that can provide high computation and communication
resources, support massive connectivity, and ensure ultra-reliability and high throughput
in remote areas or during disasters.

1.1. Related Works

To this end, Unmanned Aerial Vehicle (UAV)-aided Mobile Edge Computing (MEC)
has obtained significant attention. This approach involves equipping UAVs with com-
munication devices and computing servers to offer ground users ubiquitous and flexible
services [3,4]. UAVs can adjust their location for specific purposes such as energy conserva-
tion and increased throughput. In addition, UAVs can also be less affected by fewer channel
impairments due to their high altitude, which creates high possibility of line-of-sight (LoS)
links with ground users and strengthens their coverage.

User association, as a widely used technique in wireless networks, has attracted a lot
of research interest in UAV-aided wireless networks. It involves selecting users or groups of
users to grant access to the available resources at a given time based on various criteria such
as channel conditions, quality of service requirements, or fairness considerations. In [5],
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Qiu et al. studied a joint placement, resource allocation, and user association problem for
UAV-aided wireless networks with constrained backhaul links. In [6], Zhu et al. proposed
a multi-agent deep deterministic policy-gradient-based solution to optimize the flight
trajectory, the association between the UAVs and user devices, and the task association
of the user devices. In [7], Mozaffari et al. first introduced optimal transport theory to
optimize cell association in UAV-enabled wireless networks, which yields improvements in
terms of the average network delay. On this basis, ref. [8] extended the application of the
optimal transport theory to the field of UAV-enabled MEC networks to minimize the total
energy consumption.

The deployment locations of UAVs greatly affect system performance. In [9], Sun et al.
proposed an improved evolutionary method to deploy UAVs forming a virtual antenna
array. In addition, UAV deployment and user association are often jointly optimized to
improve system performance. Researchers in [10,11] utilized UAVs as aerial base stations
to deliver content to users. They employed the K-means algorithm to cluster users, and
positioned UAVs at the centroid of each cluster while serving the corresponding user group.

1.2. Our Work and Contributions

Most previous studies [5,9–11] primarily focused on UAV-enabled wireless commu-
nication networks, overlooking the computing requirements of users. Furthermore, few
previous studies [5–11] considered heterogeneous UAV-enabled networks, i.e., deploying
UAVs with different communication and computing capabilities. Motivated by these issues,
in this paper, we study the UAV deployment and user association problem to save the
energy consumption of UAVs in a more extensive heterogeneous multi-UAV-enabled MEC
networks. Here, we note that our work is different from [8] in terms of the system model,
optimization variables, algorithms, as well as analytical results. Different from the fixed
hovering positions of single UAV in [8], multiple heterogeneous UAVs are considered and
the deployment of UAVs are jointly optimized with user association, aiming to achieve
further system performance improvement. The main contributions of this work are listed
as follows.

• Firstly, we consider heterogeneous UAV-enabled MEC networks and formulate a
problem to minimize the UAV energy consumption, where UAVs with varying com-
munication and computing capabilities co-exist. The problem is decomposed into two
parts, i.e., user association sub-problem and UAV deployment sub-problem, which
are solved jointly.

• Secondly, the user association sub-problem is modeled as a semi-discrete optimal
transport problem. We prove the existence of the optimal solution by using optimal
transport theory (OTT) and characterize the solution space. The dragonfly algorithm
(DA) is introduced to find the optimal deployment of multiple UAVs. The fitness of the
DA is determined by formulating the optimal association scheme and subsequently
computing the corresponding energy consumption.

• Finally, we test the performance of the proposed algorithm with different user distri-
bution models. Compared with the benchmarks, the proposed algorithm that jointly
optimizes user association and UAV deployment reduces the energy consumption
by up to 39%. Moreover, the convergence and complexity analysis of our algorithms
are provided.

2. System Model and Problem Formulation

In our proposed system, as shown in Figure 1, a geographical area D ⊂ R2 is con-
sidered, where N users are located according to a given distribution f (x, y) over the
two-dimensional plane. The network capacity is supported by K heterogeneous UAVs,
equipped with communication devices and computing servers. As the users’ computation
capability is limited, their computing tasks are uploaded to MEC servers equipped on
UAVs, which results in K disjoint UAV-serving sub-regions. We use the three-dimensional
(3D) coordinate (xk, yk, hk), k ∈ K to denote the UAV and Dk to denote the corresponding
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serving region. In each sub-region Dk, k ∈ K, users first upload their computation tasks
to the associated UAV, then wait for the MEC server to calculate these tasks, and finally
receive the results.

Sub-region  !

Users’ distribution "(#, $)

UAV
MEC server

Figure 1. System model.

2.1. Computing and Computing Model

In this study, we consider the UAV-enabled networks within urban environments.
To achieve this, we utilize the probabilistic channel model presented in [12], which includes
both LoS and non-line-of-sight (NLoS) transmission models. In UAV-to-ground communi-
cations, the probability of LoS links is dependent on the elevation angle between the user
and UAV, as well as the density and height of obstacles. Therefore, we express the path loss
between UAV i and a user located at (x, y) as

PLuav
i (x, y) = Kod2

i (x, y)
[

PLoS
i µLoS + PNLoS

i µNLoS

]
, (1)

where Ko =
(

4π fc
c

)2
, c is the speed of light, fc is the carrier frequency, di(x, y) is the distance

between the user at (x, y) and UAV i expressed as

di(x, y) =
√
(x− xi)

2 + (y− yi)
2 + h2

i , (2)

where µLoS and µNLoS are the shadow fading random variable for LoS link and NLoS link,
respectively. The probability of the LoS and NLoS link can be expressed as

PLoS
i =

1
1 + a exp(−b(θi − a))

, (3)

and
PNLoS

i = 1− PLoS
i , (4)

where a and b denote the environment constants, θi = sin−1
(

hi
di(x,y)

)
is the elevation

angle. With knowledge of the path loss PLk(x, y) from the UAV, the rate of a user at (x, y)
uploading tasks to a UAV k is expressed as

Rk =
Bk
Nk

log2

(
1 +

Puser

PLk(x, y)σ2

)
, (5)

where Bk is the bandwidth available for UAV k, Nk is the number of user served by UAV k,
σ2 is the power of AWGN, Puser is the transmit power of the user. In our analysis, we denote
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the location of user as e = (x, y), and the location of UAV as sk, where k ∈ K. The task
uploading time in sub-region Dk can be calculated as [13]

tc(e, sk) =
∫∫
Dk

M
Rk

f (x, y)dxdy, (6)

where M is the average size of a task. Similar to [14], the computing time for UAV k
processing tasks in area Dk, k ∈ K is calculated as

te(e, sk) =
(LNk)

α

Ck
, (7)

where L is the average computational load for a task, Ck is the computing ability of UAV k,
α is the computing parameter and α > 1.

2.2. Energy Consumption Model

The energy consumption of UAV primarily includes three main components: commu-
nication, computation and hovering. In practical scenarios, the energy consumed by UAV
communication is significantly lower than that consumed by the other two [15]. Therefore,
this paper does not focus on the energy consumed by UAV communication and instead
provides detailed models for the remaining components.

The energy consumption of the UAV for computation at sub-area k is expressed as

Ee
k = Pk

e te(e, sk), (8)

where Pk
e = κ( fk)

3, κ is the effective capacitance coefficient [15], and fk is the central
processing unit (CPU) frequency of MEC server on UAV k.

While the UAV hovers over sub-region Dk, the duration it spends is mainly commu-
nication time and computation time. Communication time is associated with users from
sub-region Dk offloading their tasks to the UAV. Computation time, on the other hand,
represents the duration the UAV takes to process these offloaded tasks. Similar to [16],
the minimum power required for n rotors of diameter d to hover can be expressed as

Ph =
T3/2√
1
2 πnd2ρ

, (9)

with ρ denoting air density, T = mg denoting the gravity of UAV, g being the gravita-
tional constant. Thus, the energy consumption of the UAV for hovering at sub-area k is
expressed as

Eh
k = Ph(tc(e, sk) + te(e, sk)). (10)

2.3. Problem Formulation

In the UAV-aided MEC networks, we try to minimize the energy consumption by
optimizing the user association and the UAV depolyment. The total energy consumed by
the UAV while serving all user devices in the whole region D is dependent on the set of
partitioned sub-areas D = {Dk, k ∈ K} and the UAV deployment location L = {lk, k ∈ Ku},
which can be formulated as

E(D, L) =
K

∑
k=1

(
Ee

k + Eh
k

)
. (11)
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The optimization problem can be formulated as

P1 : min
D,L

111111E(D, L), (12a)

s.t. 111Dm ∩Dn = ∅ ∀m, n ∈ K, (12b)

111
⋃

k∈K
Dk = D, (12c)

111xmin
u ≤ xk ≤ xmax

u , 1∀k, (12d)

111ymin
u ≤ yk ≤ ymax

u , 1∀k, (12e)

111hmin
u ≤ hk ≤ hmax

u , 1∀k, (12f)

where (12b) and (12c) are the constrains that the sub-regions do not overlap and cover the
entire area, and [xmin

u , xmax
u ]× [ymin

u , ymax
u ]× [hmin

u , hmax
u ] restricts the horizontal location of

the UAVs in (12d), (12e) and (12f).

3. Problem Analysis and Algorithm Design

Problem P1 is an NP-hard problem, with the coupled region partition variable D and
UAV deployment L. To solve this problem, we partition problem P1 into two subproblems,
namely user association optimization and UAV deployment optimization. The procedure
is described below.

3.1. Optimization of User Association

The region partitions Dk, ∀k ∈ K are continuous and coupled in the sub-problem P2.
To solve this sub-problem, we first prove the optimal solution exists via introducing optimal
transport theory [17], and then characterize the optimal solution. At last, we propose a
low-complexity iterative algorithm to approach the optimal region partitioning. The user
association sub-problem can be rewritten as

P2 : min
D

111111E(D, L̂), (13a)

s.t. 111(12b)(12c). (13b)

As users follow a continuous distribution f (x, y), and UAVs can be regarded as discrete
points, sub-problem P2 with fixed UAV location L can be seen as a semi-discrete optimal
transport problem. Thus, sub-problem P2 is equivalent to matching users to the UAVs with
the minimum energy consumption.

Theorem 1. Problem P2 has an optimal solution.

Proof. Let dk =
∫

Dk
f (x, y)dxdy, for ∀k ∈ K, F(e, sk) = M

log2

(
1+ Puser

PLk(x,y)σ2

) and c(e, sk) =

PhF(e, sk). For any given sk, c(e, sk) is continuous. We have lim inf
e→e0

c(e, sk) ≥ c(e0, sk),

so c(e, sk) is lower semi-continuous. Then, Lemma 1 is used from optimal transport
theory [18]:

Lemma 1. Consider continuous probability measure f and discrete probability measure λ in Ω.
Let L : Ω → Ω be a transport map from f to λ and C(x, E(x)) : Ω×Ω → [0, ∞) be the cost
function of L. Then, for any semi-continuous cost function, the optimal transport map from f to λ
exists, which minimizes the total transport cost

∫
Ω

C(x, E(x)) f (x)dx.

According to Lemma 1, the sub-problem P2 has an optimal solution.

Theorem 2. To achieve minimum energy consumption in the UAV aided MEC networks, the
optimal region partition is given by
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D∗k = {(x, y) : Ph
Nk
Bk

F(e, sk) +
αLαNα−1

k
Ck

(Ph + Pe) ≤ Ph
Nn

Bn
F(e, sn) +

αLαNα−1
k

Cn
(Ph + Pe), ∀n 6= k ∈ K}, (14)

Proof. According to Theorem 1, optimal region partitions D∗k , k ∈ K exist, which are the
solutions to problem (13). Now, we consider another region partition scheme D̃k, k ∈ K as
an example. Taking a coordinate z0 = (x0, y0) ∈ Dm and a circle area Bτ with the center z0
and radius τ > 0, the region partition D̃k, k ∈ K is generated from the optimal partition as

D̃m = Dm\Bτ(v0),
D̃n = Dn ∪ Bτ(v0),
D̃k = Dk, k 6= m, n.

(15)

We denote dτ =
∫∫

Bτ
f (x, y)dxdy and d̃k =

∫∫
D̃k

f (x, y)dxdy. As the region partition
D∗k , k ∈ K is optimal, a better solution cannot be achieved by any variation of the optimal
partitions D̃k, k ∈ K. We have

K

∑
k=1

∫
Dk

(
Ep

k + Eh
k

)
≤

K

∑
k=1

∫
D̃k

(
Ep

k + Eh
k

)
. (16)

Now, we subtract the common items on both sides of the equation, yielding∫
Dm

(
Ep

m + Eh
m

)
+
∫

Dn

(
Ep

n + Eh
n

)
≤
∫

Dm\Bτ(v0)

(
Ep

m + Eh
m

)
+
∫

Dn∪Bτ(v0)

(
Ep

n + Eh
n

)
. (17)

We denote h(dk) =
(Ldk)

α

Ck
; (17) can be simplified as

∫∫
Bτ

PhF(e, sk)

Bk
dxdy + (Ph + Pk

e )(h(dm)− h(dm − dτ))

≤
∫∫

Bτ

PhF(e, sk)

Bk
dxdy + (Ph + Pk

e )(h(dn)− h(dn − dτ)).
(18)

We divide both sides of the inequality by dτ and take the limit when τ → 0. We have

D∗k = {(x, y) : Ph
Nk
Bk

F(e, sk) + (Ph + Pk
e )h
′(dm) ≤ Ph

Nn

Bn
F(e, sn) + (Ph + Pk

e )h
′(dn), ∀n 6= k ∈ K}, (19)

and (19) shows that we assign a user at (x0, y0) to a cell. Consequently, a tractable expression
of the optimal region partition is given in Theorem 2.

An explicit characterization for the optimal region partition is easily given, but this
expression is not practical. Therefore, Algorithm 1 is proposed to approximate the optimal
region partition, the main idea of which is to introduce an damping argument γ to make
the algorithm converge. Specifically, Z is the maximum number of iterations, continuous
variable φt

i (x, y) ∈ [0, 1] indicates whether the user at (x, y) is served by the UAV i. For
example, φt

i (x, y) = 1 represents the fact that user at (x, y) belongs to sub-region Di, while
φt

i (x, y) = 0 means the opposite. At iteration t, if user at (x, y) associates with UAV i,

then φ
(t+1)
i (x, y) = 1− γ

(
1− φt

i (x, y)
)
; otherwise, φ

(t+1)
i (x, y) = γφt

i (x, y). After that, the

percentage of users in sub-region Di is calculated by di =
∫
D φ

(t+1)
i (x, y) f (x, y)dxdy, ∀i ∈

K and assigns each user according to (14). With the increase in t, φi converges, and region
partition approaches the optimal region partition.
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Algorithm 1 Iterative Algorithm for User Association

Input: Total number of users N and distribution function f (x, y), the UAV location set L.
Output: The optimal region partition Dt

i , ∀i ∈ K.
1: Let t = 1, initialize user association Ω and let φt

i (x, y) = 0, ∀i ∈ K.
2: while t ≤ Z do
3: γ← 1− 1/t
4: Compute φt+1

i (x, y)

=

{
1− γ

(
1− φt

i (x, y)
)
, if (x, y) ∈ Dt

i .
γφt

i (x, y), otherwise.

5: Compute di =
∫
D φ

(t+1)
i (x, y) f (x, y)dxdy, ∀i ∈ K

6: t← t + 1
7: Update user association using (14).
8: end while
9: D∗i ← Dt

i , ∀i ∈ K.

3.2. Optimization of UAV Deployment

The sub-problem of deployment optimization for UAVs is given as P3. Problem
P3 is an NP-hard problem. As computing gradients of L in E(D̂, L) is computationally
difficult, using some gradient-based methods, e.g., convex optimization, alternating direc-
tional method of multipliers (ADMM), successive convex approximation (SCA), etc., is not
suitable for this situation. Evolutionary algorithms, as a representative of non-gradient opti-
mization, have received widespread attention. Evolutionary algorithms study the complex
collective behavior of systems composed of multiple simple agents that can interact with
other agents locally and with their surrounding environment. Among these algorithms,
the dragonfly algorithm has shown superiority and outperformance compared to other
evolutionary algorithms [19]. Therefore, we use the DA to solve the sub-problem P3.

P3 : min
L

111111E(D̂, L), (20a)

s.t. 1111111(12d)(12e)(12f). (20b)

In Algorithm 2, our proposed algorithm operates with a swarm of dragonflies, where each
dragonfly represents a possible solution Xi, i.e., a UAV deployment scheme. These solutions
are updated iteratively to find the best scheme according to a given fitness function,
which quantifies how well a potential solution performs with respect to the specific aim.
For the purpose of UAV location optimization, the fitness function is set as the energy
consumption E(D, L). The positions and velocities of the dragonflies are updated by
separation, alignment, cohesion, food attraction, and enemy avoidance, as well as migration
behavior. The position update of the dragonfly i in the iteration t is given by

Xi,t+1 = Xi,t + Vi,t+1, (21)

where Xi,t is the position of the dragonfly i in the iteration t and Vi,t+1 is the velocity
update for the iteration t + 1. The velocity of each dragonfly is updated according to the
following formula:

Vi,t+1 = w×Vi,t + Si + Ai + Ci + Fi + Ei + Mi, (22)

where term w ∗Vi,t captures the dragonfly’s inertia, reflecting its tendency to persist in its
current motion. Si, Ai, and Ci correspond to the dragonfly’s separation, alignment, and
cohesion behaviors, respectively. Within a neighborhood radius r, the dragonfly maintains
distance from neighbors (separation), aligns its direction with the average heading of
neighbors (alignment), and is pulled towards the average position of neighbors (cohesion).
The remaining terms, Fi, Ei, and Mi, guide the dragonfly towards food sources, away from
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threats, and towards migration points, representing food attraction, enemy avoidance, and
migration behaviors, respectively [19].

In order to enhance the randomness, unpredictability, and exploration capability of
the dragonflies, they are programmed to search space via a random walk (known as Levy
flight) in the absence of neighboring solutions. In this case, the position of the dragonflies
is updated using the following equation:

Xt+1 = Xt + Levy×Xt, (23)

where Levy is determined by the dimension of the position vectors given in [19]. The joint
user association and UAV deployment optimization is shown in Algorithm 2.

Algorithm 2 Joint User association and Deployment Optimization for Energy-efficient
UAV-aided MEC Networks
Input: Population size, termination condition z and distribution function f (x, y).
Output: UAV location L∗ = Gbest, the optimal region partition D∗ with L∗.

1: Initialize population of dragonflies
2: for each dragonfly i do
3: Initialize position Xi with a random vector.
4: Initialize velocity Vi with a random vector.
5: Evaluate Xi by f itness(X0

i ) = E(D̂, X0
i ), ∀i.

6: end for
7: while t ≤ Z do
8: for each dragonfly i do
9: Optimize user association D with fixed UAV location Xt

i by Algorithm 1.
10: Calculate fitness of all dragonflies f itness(Xt

i ) = E(D̂, Xt
i), ∀i.

11: Calculate St
i , At

i , Ct
i , Ft

i , Et
i , and Mt

i according to [19].
12: if a dragonfly has at least one neighbouring dragonfly then
13: Update velocity Vt

i according to (22).
14: Update position Xt

i according to (21).
15: else
16: Update velocity Vt

i according to (23).
17: end if
18: end for
19: end while
20: Return the best solution Gbest

4. Numerical Results

In our simulations, we assume that four UAVs with different capabilities are deployed
to serve users in a region of size 1 km × 1 km, where two UAVs are Low-capability UAVs
(sUAVs), one UAV is Medium-capability UAV (mUAV) and one UAV is Large-capability
UAV (lUAV). The transmit power of UAVs is 10 W, the bandwidth of sUAV, mUAV and
lUAV is 5 MHz, 8 MHz, and 10 MHz, the CPU frequency of MEC servers on sUAV, mUAV
and lUAV is 5 GHz, 8 GHz, and 10 GHz, respectively. Also, the computation capacities
of sUAV, mUAV and lUAV are 5000 GFLOPs/s, 8000 GFLOPs/s and 10, 000 GFLOPs/s,
respectively [20]. Other simulation parameters are listed in Table 1.

In all simulations, three classical user distributions are considered: uniform, unimodal [21],
and bimodal [22]. We first offer the probability density function for uniform distrition as

f (x, y) =
N
|D| , (24)
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where D represents the total area of the UAV-serving network. The uni-modal user prob-
ability density function is characterized using a two-dimensional truncated Gaussian
distribution [21] as

f (x, y) =
N
η

exp

[
−
(

x− µx√
2σx

)2
]

exp

−(y− µy√
2σy

)2
, (25)

where η = 2πσxσy erf
(

Lx−µx√
2σx

)
erf
(

Ly−µy√
2σy

)
, µx, σx, µy, and σy are the mean and standard

deviation values of x and y coordinates, and erf(z) = 2√
π

∫ z
0 e−t2

dt. (µx, µy) represents
the center of the hotspot, and the density of the users around the center is inversely
proportional to the values σx and σy. Similarly, the bi-modal user distribution can be
viewed as a combination of two truncated Gaussian distributions [22], with its probability
density function expressed as

f (x, y) = λ f1(x, y) + (1− λ) f2(x, y), (26)

where 0 ≤ λ ≤ 1 represents a weight factor. f1(x, y) and f2(x, y) represent two truncated
Gaussian distribution models. In our bimodal user distribution, we set mean values as
µx1 = µy1 = 330, µx2 = µy2 = 660; the variance values are σ2 = σ2

x1
= σ2

y1
= σ2

x2
= σ2

y2
=

20, 000, and λ = 0.5. These three models correspond to user uniformly distributed scenario,
single hot spot scenario and multiple hot spots scenarios such as carnival in a park or sports
events. The user distributions are shown in Figure 2.

Table 1. Simulation parameters.

Parameters Description Value

fc Carrier frequency for UAVs 2 GHz
c Speed of light 3× 108 m/s
m Weight of UAVs 50 kg
N Total number of users 100
M Data size of each task 1 Mb
κ Effective capacitance coefficient 10−28

α Computing parameter 1.2
ρ Air density 1.29 Kg/m3

n Rotor numbers of UAVs 4
d Rotor diameter 1 m
L Average computational load for a task 60 GFLOPs

Puser User transmit power 2 W
σ2 Noise power −110 dBm

µLoS Additional path loss for LoS 3 dB
µNLoS Additional path loss for NLoS 23 dB

a The LoS probability constant 8.96
b The LoS probability constant 0.04

Figure 3 shows the convergence performance of Algorithms 1 and 2. It can be observed
that the total energy consumption of the UAVs is 6.5× 105 J after the initial iteration. As
the number of iterations progresses, the UAV energy consumption first increases and then
starts to decline. By the 10th iteration, the consumption stabilizes, settling at approximately
5.5× 105 J. Also, Algorithm 2 converges within 200 iterations. The computational complexities
for each iteration in Algorithms 1 and 2 are given by O(KN) and O

(
SK2N

)
[23], where S

represents the number of dragonflies. Then, the proposed Algorithms 1 and 2 is compared
with the benchmarks as follows (SNR is short for signal-to-noise ratio):

• Uniform+OTT: UAVs are deployed uniformly and users access the BS by the OTT
algorithm.
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• Uniform+SNR: UAVs are deployed uniformly and users access the BS with the
largest SNR.

• K-means: The UAV deployment and user association are determined by the K-means
algorithm [11].

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 2. User distribution with (a) uniform distribution, (b) unimodal distribution, (c) bimodal dis-
tribution.
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Figure 3. Convergence speed of Algorithms 1 and 2. (a) Algorithm 1 convergence speed. (b) Algorithm 2
convergence speed.

4.1. Superiority of the Proposed OTT-Based User Association Algorithm

This subsection investigates the proposed OTT-based user association algorithm, focus-
ing on its corresponding energy consumption across three distinct scenarios. To highlight
the advantages of this approach, the classical SNR-based association scheme, a prevalent
method in wireless networks, is used as a benchmark. The SNR method follows the maxi-
mum signal-to-noise rule to associate users with UAVs. Furthermore, in all the considered
scenarios, UAVs are uniformly deployed in the target area. The setup includes two sUAVs
located at coordinates (100, 100) and (100, 900), a mUAV at (900, 100), and a lUAV at (900,
900). The outcome of these evaluations is visualized in Figures 4 and 5, illustrating the
performance and benefits of the proposed OTT-based user association algorithm.
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Figure 4. User association with (a) uniform distribution, (b) unimodal distribution, (c) bimodal
distribution. UAVs are represented by black stars, users are represented by dots, and different colored
dots represent users belonging to different UAV serving regions.

In Figure 4a corresponding to Scenario 1, we observe that the target region is parti-
tioned into four sectors. Each of these cell boundaries is primarily determined by the signal
power strength received from different UAVs. This approach, however, fails to leverage
the significant difference in bandwidth and computational resources across the varying
UAVs. Illustrated in the middle part of Figure 4a, the OTT-based scheme adjusts the cell
boundaries of each UAV, taking into account their distinct capabilities. Consequently, under
the OTT-based association, the proportion of users served by sUAV1 and sUAV2 reduces
from 24% and 27% to 17.5% and 20%, respectively. Concurrently, the fraction of users
within the coverage area of lUAV increases from approximately 22% to 33%. This shows
how the OTT-based scheme optimizes user association by effectively leveraging the unique
capabilities of each UAV.

In Scenario 2 depicted in the top of Figure 4b, only approximately 24% of users fall
within the coverage area of the lUAV. This uneven distribution results in unbalanced
communication and computing loads. In contrast, as shown in the middle of Figure 4b,
the proposed OTT-based association scheme manages more balanced loads. This balance
arises from its capacity to perceive and adapt to the user distribution. Particularly, the
regions covered by the lUAV expand to shoulder more communication and computing
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loads. More specifically, the proportion of ground users served by the lUAV increase from
24% to 34%. Simultaneously, the user coverage by sUAV1 and sUAV2 decreases from about
21% to 17.5%, and from 25% to 17.5%, respectively. This representation of the OTT-based
scheme further demonstrates its ability to efficiently distribute network resources and
maintain balanced loads across various UAVs.

Scenario 1 Scenario 2 Scenario 3

User distribution

0

1

2

3

4

5

6

7

8

9

10
T

o
ta

l 
en

er
g
y
 c

o
n

su
m

p
ti

o
n
 o

f 
U

A
V

s(
J)

10
5

OTT

SNR

Figure 5. Comparison of total energy in different scenarios.

In Scenario 3, we note that a significant proportion of users (about 75%) is associated
with the small UAVs (sUAVs) under the SNR-based scheme from the top of Figure 4c.
However, when the OTT-based association scheme is employed, the medium (mUAV)
and large UAVs (lUAV) extend their coverage areas to alleviate the computing pressure
on the sUAVs located near the hotspots. Specifically, the proportion of users served
by the mUAV and lUAV rises from 12.5% to 27%, and from 12.5% to 33%, respectively.
Concurrently, the number of users covered by sUAV1 and sUAV2 decreases from around
39% to 20%, and from 36% to 20%, respectively. These changes occur because the OTT-
based association scheme considers not only the signal strength received by users but also
the user distribution and UAV location. The results drawn from this scenario affirm that
the proposed OTT scheme can significantly balance the load among UAVs with diverse
capabilities, offering a marked improvement over the baseline scheme.

The energy consumption simulations also verify our analysis about the SNR-based
scheme and the proposed OTT-based association scheme shown in Figure 5. As discussed
above, due to the comprehensive consideration of bandwidth, power, and communication
resources, the OTT-based association demonstrated lower energy consumption in all sce-
narios. In Scenario 1, the energy consumption for OTT-based association is 6× 105 J versus
6.6× 105 J for SNR; in Scenario 2, it is with 6.5× 105 J for OTT and 6.95× 105 J for SNR.
The most substantial difference occurred in Scenario 3, where the OTT approach consumes
6.4× 105 J, while the SNR approach consumes 9× 105 J. Specifically, there was a decrease
of approximately 10% in Scenario 1, 6.5% in Scenario 2, and an impressive 28.9% reduction
in Scenario 3 compared to the SNR-based method. These quantifiable results highlight
the OTT-based user association algorithm as more energy efficient for UAV-enabled MEC
networks, confirming its advantages over the traditional SNR-based approach.
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4.2. Superiority of the Proposed Joint User Association and UAV Deployment Optimization Algorithm

Figure 6 shows the superiority of Algorithm 2 which jointly optimizes user association
and UAV deployment. In Scenario 1, sUAV1, sUAV2, sUAV1 and lUAV are placed at
(443.7, 224.3), (161.4, 94.3), (202.6, 770.4) and (888.5, 377.2), respectively, which scatter on
the target region as users are uniformly distributed. The proposed algorithm outperforms
the ’Uniform + OTT’, ’Uniform + SNR’ and ’K-means’ benchmarks by about 3%, 6.5% and
13.1%, respectively. In Scenario 2, sUAV1, sUAV2, sUAV1 and lUAV are placed at (584,
515.4), (783.2, 489.2), (389.4, 672.3) and (450.3, 426.5), respectively, which converge to the the
hotspot area. The proposed Algorithm outperforms the ’Uniform+OTT’, ’Uniform+SNR’
and ’K-means’ benchmarks by about 12.1,%, 20% and 11.1%, respectively. In Scenario 3,
sUAV1, sUAV2, sUAV1 and lUAV are placed at (277, 401.4), (210.2, 299.5), (672.3, 722.8)
and (539,391), respectively, which are optimized to approach the two hotspot areas. The
proposed algorithm outperforms the ’Uniform + OTT’, ’Uniform + SNR’ and ’K-means’
benchmarks by about 10.3,%, 38.31% and 26.4%, respectively. In addition, compared to the
uniform + SNR scheme, optimizing user association with the OTT-based algorithm can
reduce energy consumption by 31.3%, and the proposed Algorithm 2 can reduce energy
consumption by 39%. The results indicate that the system performance can be improved by
individually using OTT-based user association algorithm, with the given UAV deployment
location. For further enhancement of system performance, it is crucial to jointly optimize
both the association of users and the deployment of UAVs. In all scenarios, the overall
energy consumption of UAVs increases as the number of users grows.
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Figure 6. User association, UAV deployment and the energy consumption of Algorithm 2 versus
different scenarios. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3. UAVs are represented by black stars,
users are represented by dots, and different colored dots represent users belonging to different UAV
serving regions.

5. Conclusions

In this paper, we investigated the energy consumption minimization problem in het-
erogeneous UAV-aided MEC networks, where UAVs have different communication and
computing capabilities. In particular, we proposed an algorithm to jointly optimize user
association and UAV deployment. In doing so, the DA algorithm was adopted to find
the deployment of multiple UAVs. The fitness in DA was determined by formulating the
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optimal association scheme and subsequently computing the corresponding energy con-
sumption. The existence and characteristics of the optimal user association were obtained
by using optimal transport theory, and an iteration algorithm was developed to approach
the optimal user association. Numerical results showed that the proposed algorithm can
reduce the energy consumption by up to 39%.
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