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Abstract: In this paper, stability is studied for a class of switched singular systems containing both
stable and unstable modes. By introducing a time-varying piecewise Lyapunov function (TVPLF) and
a mode-dependent average dwell time (ADT) switching rule, the computable sufficient conditions
for system stability are derived. The time-varying piecewise Lyapunov functions are piecewise
continuously differentiable on every mode (but may not be differentiable at the interpolating points
of the dwell time). This Lyapunov function method is particularly advantageous in overcoming the
limitations of traditional multiple Lyapunov function (MLF) methods, which may not have a feasible
solution when dealing with switched systems containing only unstable modes. As such, the TVPLF
offers greater flexibility in application. Compared with the conventional ADT switching rule, the
mode-dependent ADT switching rule not only enables each mode to have its own ADT but also
allows for its own switching strategy. Specifically, the stable mode adopts a slow switching strategy
while the unstable mode adopts a fast one, thereby reducing the conservatism of the ADT switching
rule. Furthermore, based on the stability analysis, the time-varying controllers are proposed to
stabilize the switched singular system, which can be expressed as the sequential linear combination of
a series of linear state feedback on each mode. The proposed controllers are continuous for each mode,
which are different from the controllers designed through the traditional MLF and MDLF methods,
where the controllers designed by traditional MLF are the time-invariant linear state feedback in each
mode while the controllers designed by the MDLF are piecewise continuous for each mode.

Keywords: switched systems; stability analysis; singular systems; time-varying piecewise Lyapunov
function

1. Introduction

Switched systems are usually composed of the subsystems and the switching rules
that regulate the operation of each mode. As a versatile modeling tool, switched systems
are widely used in industrial electronics, traffic congestion, network control, aircraft control
systems, and other fields. Therefore, research on switched systems has important theoreti-
cal and practical significance. In recent decades, scholars have devoted themselves to the
study of switched systems and have made many achievements [1–11]. Stability analysis is
one of the main research topics of switched systems. A common approach to determine
the stability of a switched system is by using the common Lyapunov function (CLF) [1–3].
In [1], some necessary and sufficient conditions were given to ensure the existence of a
common quadratic Lyapunov function for switched linear systems with special structures.
Then, some algebraic criteria were proposed to ensure the existence of a common quadratic
Lyapunov function for switched systems in [2,3]. When the CLF method is used to analyze
the stability of the switched systems, the switching rules are ignored—that is, the switched
systems are stable under arbitrary switching rules if there exist common Lyapunov func-
tions. However, switching rules play an important role in the stability analysis of switched
systems. Also, it should be noted that even in cases where no CLF exists for the systems,
stability can still be achieved [4,5] via some proper switching rules. Therefore, when dealing
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with constrained switching rules, the CLF method is proved to be too conservative. To ad-
dress this limitation, the MLF approach has been proposed as an effective means to mitigate
the conservatism inherent of CLF [6,7]. Based on the multiple linear copositive Lyapunov
functions approach, the asymptotic stability of switched positive systems was investigated
in [6,7]. However, when dealing with switched systems containing only unstable modes, it
may not be feasible to find a MLF. Since all the modes are unstable, the Lyapunov function
Vi of each mode has an increment, where the subscript i is the label of the mode. To ensure
the stability of the switched systems, the Lyapunov function is attenuated at the switching
instant to suppress the increment—that is, there exists 0 < µ < 1 such that Vj < µVi,
supposing the mode i switch to mode j at the switching instant. When the system switches
to mode i again, one has Vi < µVk < · · · < µs−1Vj < µsVi, where the integer s is the
switching time. Vi < µsVi is a contradiction. In order to address this problem, a multiple
discontinuous Lyapunov function (MDLF) approach was introduced in previous works [8].
The MDLF allows multiple Lyapunov functions for each mode instead of one Lyapunov
function. During the dwell time of each mode, the discontinuous MLF is piecewise contin-
uous. Based on this method, some new sufficient stability conditions were proposed for
switched systems in [8]; then, the results were extended to the switched singular linear
systems [9]. In [10], a type of time-varying Lyapunov function, in quadratic forms, was
introduced to investigate the stability of switched linear systems. Base on this method,
some sufficient conditions were derived to guarantee the globally asymptotic stability.
Then, the asymptotic stability of the switched linear system in [11] with all unstable modes
was studied by the method proposed in [10]. The exponentially stabilization problem for
switched positive systems was investigated based on a type of multiple time-varying linear
co-positive Lyapunov function method in [12].

Switched singular systems are a specific type of switched system, where each mode
is represented by a singular system. Singular systems, also known as descriptor systems
or algebraic differential equations, have been extensively researched by scholars. Readers
can refer to citations [13–21] and the references therein. The singular system consists of
a slowly varying dynamic part described by differential or difference equations and a
rapidly varying static part described by algebraic equations [13,14]. The characteristics
of singular system structure determine that it is more widely used than normal systems
and has a more natural representation than normal dynamic systems [15,16]. Singular
systems typically exhibit pulsing and switching behaviors characterized by abrupt changes
in state or state transitions at a given time [17]. Guan et al. established necessary and
sufficient conditions for the controllability and observability of a class of time-varying
impulsive systems [18]. Then, the authors of [19] provided sufficient conditions for robust
exponential stability in large-scale uncertain impulsive dynamic systems. The H∞ control
problem of singular impulsive systems was discussed in [20,21]. However, the methods
commonly used to study regular switched systems and singular system are generally
not applicable to switched singular systems because the system state is discontinuous
at the switching instant. The state jump can lead to instability or inconsistency in the
system. Therefore, the study of switched singular systems should not only consider the
role of switching mechanism but also consider the regularity and non-impulsiveness of
singular systems. These characteristics make the study of switched singular systems a more
challenging task. On switched singular systems, the stability issues for the systems with
state jumps were discussed in [22]. The state jumps at the switching times were redefined
using the dynamic decomposition technique in [23]. Based on the refined state jumps, new
sufficient conditions for exponential stability were proposed. In [24], the theory of H∞
control for singular systems was extended to switched impulsive singular systems. Two
controllers were designed to ensure the stability of each mode and can remove impulses
when switching occurs [25]. The exponential stability and L2 performance of discrete-
time singular switched systems are considered via the multiple discontinuous Lyapunov
functions [9].
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However, the previous literature focused on the stability of switched systems with
only stable modes or unstable modes. As far as we know, few results have been obtained
regarding the stability of switched systems with both stable and unstable modes [26,27].
By introducing a unit switching sequence and sequence generator, a unified stability
framework for two-dimensional discrete-time switched systems was established in [26].
The exponential stability of switched positive systems with both stable and unstable
modes was discussed through a multiple piecewise continuous linear copositive Lya-
punov function method in [27]. This paper focuses on the globally exponential stability
of the continuous-time switched singular systems with both stable and unstable modes.
Inspired by the method proposed in [10], a novel TVPLF is introduced to investigate the
exponential stability under the mode-dependent average time switching rules. This method
can be extended to address systems with all unstable modes.

The main contributions of this paper are as follows: (1) A novel TVPLF is proposed,
which is piecewise continuously differentiable on every mode (but may not be differentiable
at the interpolating points of the dwell time). This Lyapunov function method is particularly
advantageous in overcoming the limitations of traditional MLF methods, which may not
have a feasible solution when dealing with switched systems containing only unstable
modes. (2) Dividing the mode-dependent ADT switching rules into fast and slow switching
rules, by which a tighter bound of the critical dwell time is obtained. Applying the
slow and fast switching rules to stable and unstable modes, respectively. (3) Based on
the stability analysis, the time-varying controllers are proposed to stabilize the switched
singular system, which can be expressed as the sequential linear combination of a series of
linear state feedback on each mode. The proposed controllers are continuous for each mode,
which are different from the controllers designed through the traditional MLF and MDLF
methods, where the controllers designed by traditional MLF are time-invariant linear
state feedback in each mode, while the controllers designed by the MDLF are piecewise
continuous for each mode.

2. Preliminaries

Consider the switched linear singular system described as follows:

Eσ(t) ẋ(t) = Aσ(t)x(t) (1)

where x(t) ∈ Rn is the state vector and σ(t) : R+ → H = {1, 2, · · · , m} is the switching
rule, which is a piecewise constant function from the right of time and takes its values
in the finite set H, where m ≥ 1 is the number of the mode. H = S̄

⋃
Ū, where S̄ is the

set of stable modes and Ū is the set’s unstable modes. For a positive integer d ∈ H, if
σ(t) = d during some time interval, it means the dth mode is active on this time interval.
Correspondingly, the matrix Ed ∈ Rn×n may be singular, the rank of Ed cannot exceed
n, and Ad are known real constant matrices of appropriate dimensions. For the sake of
simplicity, set rank(Ed) = r and Ed = [Ir, 0; 0, 0], where Ir is an r dimensional identical
matrix and r is a positive integer not exceeding n.

Definition 1 ([8,9]). During the time interval [t0, t f ], denote Nd(t0, t f ) as the number of ac-
tivations for the dth mode, and Td(t0, t f ) serves the sum of the operation time of the dth mode.
The switching rules are said to be slow switchings and have an average dwell time TAd in dth mode
if there exist two positive numbers Nod and TAd such that

Nd(t0, t f ) ≤ Nod +
Td(t0, t f )

TAd
, ∀t f ≥ t0 ≥ 0. (2)

The switching rules are said to be fast switchings and have an average dwell time TAd in dth mode if
there exist two positive numbers Nod and TAd such that
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Nd(t0, t f ) ≥ Nod +
Td(t0, t f )

TAd
, ∀t f ≥ t0 ≥ 0. (3)

Remark 1. The positive number Nod is called the chatter bound. Inequation (2) implies the dth

mode will be activated at most Nod times in every time interval with the length TAd. Analogously,
inequation (3) implies the dth mode will be activated at least Nod times in every time interval with
the length TAd. In the following sections, we adopt slow switching rules in the stable modes and fast
switching rules in the unstable modes.

Definition 2 ([15]). For every d ∈ H, the singular system (Ed, Ad) is said to be

• regular if det(sEd − Ad) is not identically zero;
• impulse-free if deg(det(sEd − Ad)) = rank(Ed).

Assumption 1. For every d ∈ H, the singular system (Ed, Ad) is regular and impulse-free.

This is a general assumption for singular systems.

Definition 3 ([9,21]). System (1) is deemed E-exponentially stable if there exist two positive
constants a, b such that the solution x(t) of the system (1) satisfies

‖ Eσ(t)x(t) ‖≤‖ Eσ(t0)
x(t0) ‖ a exp(−b(t− t0)), t > t0. (4)

For singular systems, E-exponential stability and exponential stability are equiva-
lent [9,21]. With the setting Ed = [Ir, 0; 0, 0], each mode is with the same dynamics de-
composition form [15]. By Assumption 1, the rapidly varying static part of the state is
determined by the slowly varying dynamic part. Thus, the exponential stability of the
dynamic part of the system will deduce the stability of the static part. In this sense, the state
jumps only affect the transient process and do not change the stability of the systems. To
some extent, the state jumps can be ignored in the stability analysis with the assumptions
for simplicity.

3. Time-Varying Piecewise Lyapunov Function

This section proposes a class of Lyapunov function, which is called TVPLF. Firstly,
we divide each dwell time interval [ti, ti+1) into two subsections—that is, [ti, ti+1) =
[ti, ti + Tad)

⋃
[ti + Tad, ti+1), where Tad is the critical dwell time in dth mode. Next, we

divide [ti, ti + Tad) equally into G segments—that is, [ti, ti + Tad) =
⋃G−1

q=0 [ti + Jq, ti + Jq+1),

and every segment length is l = Tad
G , where G is a fixed positive integer and Jq = q× l, q =

0, 1, · · · , G. Based on the above segmentation, we construct a TVPLF:

Vσ(t)(x(t)) = xT(t)ET
σ(t)Pσ(t)(t)x(t), d ∈ H,

where Pσ(t)(t) is an n-dimensional time-varying positive definite real matrix. For switched
singular systems (1), when the switching rule switches to the dth mode, the above Lyapunov
function is

Vd(x(t)) = xT(t)ET
d Pd(t)x(t), d ∈ H, Pd(t) ∈ Rn×n, (5)

where Pd(t) is a time-varying matrix, which is defined as follows:
When t ∈ [ti + Jq, ti + Jq+1), q = 0, 1, · · · , G− 1

Pd(t) = (1− εq(t))Pd,q + εq(t)Pd,q+1, (6)

where εq(t) = (t− ti − Jq)/l and Pd,q are n-dimensional positive definite real matrices to
be determined with q = 0, 1, · · · , G− 1. When t ∈ [ti + Tad, ti+1),

Pd(t) = Pd,G. (7)
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Owing to the above description, the TVPLF can be described as

Vd(t) =
{

xT(t)ET
d [(1− εq(t))Pd,q + εq(t)Pd,q+1]x(t), t ∈ [ti + Jq, ti + Jq+1),

xT(t)ET
d Pd,Gx(t), t ∈ [ti + Tad, ti+1).

(8)

for q = 0, 1, · · · , G− 1.

Remark 2. The TVPLF has the following characteristics:

• The time-varying Lyapunov function depends on mode d and different modes have different
functions.

• During the time period [ti, ti + Tad), it is a linear interpolation function, whose value at the
interpolation point is xT(t)ETPd,qx(t) and piecewise continuously differentiable on every
mode. However, it may not be differentiable at the interpolating points of the dwell time. This
is different to the general multiple Lyapunov function, which has a single constant Pd for each
mode d and is continuously differentiable during the dwell time.

4. Stability Analysis

Next, we will provide the exponential stability conditions for system (1) via the TVPLF
method.

Lemma 1 ([9]). If ET P = PE ≥ 0, where E is a singular matrix and P is a positive definite matrix,
there exists a positive matrix M such that ET P = ET ME is satisfied.

Theorem 1. Let system (1) satisfy Assumption 1, given the constants λd < 0, µd > 1, d ∈ S̄ and
λd > 0, 0 < µd < 1, d ∈ Ū. If there exists Pd,q > 0 in Rn×n, d ∈ H, q = 0, 1, 2, · · · , G− 1, the
following conditions hold:

ET
d Pd,q = Pd,qEd ≥ 0, (9)

AT
d Pd,q + Pd,q Ad + Θq

d − λdET
d Pd,q ≤ 0, (10)

AT
d Pd,q+1 + Pd,q+1 Ad + Θq

d − λdET
d Pd,q+1 ≤ 0, (11)

AT
d Pd,G + Pd,G Ad − λdET

d Pd,G ≤ 0, (12)

ET
p Pp,0 − µdET

d Pd,G ≤ 0, (d, p) ∈ H × H, d 6= p, (13)

where Θq
d = ET

d
(Pd,q+1−Pd,q)

l . Then, system (1) is exponentially stable under the arbitrary mode-
dependent ADT switching rule and satisfies{

TAd ≥ Tad = − ln µd
λd

, d ∈ S̄

TAd ≤ Tad = − ln µd
λd

, d ∈ Ū.
(14)

Proof. For the switched singular system (1), set the dth mode is activated when t ∈ [ti, ti+1)
and set the candidate Lyapunov function

Vd(x(t)) = xT(t)ET
d Pd(t)x(t). (15)

On the one hand, during the dwell time period [ti, ti+1), by computing the derivative
with respect to time of (15), one can derive

V̇d(x(t)) = ẋT(t)ET
d Pd(t)x(t) + xT(t)ET

d Ṗd(t)x(t) + xT(t)ET
d Pd(t)ẋ(t)

= xT(t)AT
d Pd(t)x(t) + xT(t)ET

d Ṗd(t)x(t) + xT(t)Pd(t)Adx(t)

= xT(t)[AT
d Pd(t) + ET

d Ṗd(t) + Pd(t)Ad]x(t). (16)
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When t ∈ [ti + Jq, ti + Jq+1), q = 0, 1, · · · , G− 1, according to (6), one can obtain

Ṗd(t) =
Pd,q+1 − Pd,q

l
, l =

Tad
G

. (17)

By (6), (16) and (17), let Θq
d = ET

d
(Pd,q+1−Pd,q)

l ; one can obtain

AT
d Pd(t) + ET

d Ṗd(t) + Pd(t)Ad = (1− εq(t))ψd,q + εq(t)ψd,q+1, (18)

where ψd,q = AT
d Pd,q + Pd,q Ad + Θq

d and ψd,q+1 = AT
d Pd,q+1 + Pd,q+1 Ad + Θq

d . Thus, by (10)
and (11) , when t ∈ [ti, ti + Tad), one can find that

V̇d(t)− λdVd(t) = (1− εq(t))xT(t)[ψd,q − λdET
d Pd,q]x(t)

+εq(t)xT(t)[ψd,q+1 − λdET
d Pd,q+1]x(t)

≤ 0. (19)

When t ∈ [ti + Tad, ti+1), according to (12), one has

V̇d(t)− λdVd(t) = xT(t)[AT
d Pd,G + Pd,G Ad − λdET

d Pd,G]x(t) ≤ 0. (20)

As a result, during the dwell time interval [ti, ti+1), i = 0, 1, · · · , one can derive that

V̇d(t)− λdVd(t) ≤ 0, d ∈ H. (21)

Integrating both sides of (21) simultaneously on [ti, t), where t ∈ [ti, ti+1), one
can obtain

Vd(t) ≤ Vd(ti) exp{λd(t− ti)}. (22)

On the other hand, suppose system (1) jumps from the dth mode to pth mode at the
switching instant ti. Denote Vd(t−i ) = lim

t→t−i
Vd(t). Then, one has

Vp(ti)− µdVd(t−i ) = xT(ti)[ET
p Pp(ti)− µdET

d Pd(t−i )]x(ti)

= xT(ti)[ET
p Pp,0 − µdET

d Pd,G]x(ti), (23)

By observing (13), it shows that

Vp(ti)− µdVd(t−i ) ≤ 0 (24)

In the following, the Lyapunov characteristic through the entire operation process will be
investigated. Assume that t1, t2, · · · , tN are switching instants of time interval [t0, s], where N
denotes the total number of switching times in [t0, s]. Combine (22) and (24), one can obtain

Vσ(tNσ)
(s) ≤ eλσ(tN )(s−tN)Vσ(tN)(tN)

≤ µσ(tN−1)e
λσ(tN )(s−tN)Vσ(tN−1)

(tN)

≤ µσ(tN−1)e
λσ(tN )(s−tN)eλσ(tN−1)

(tN−tN−1)Vσ(tN−1)
(tN−1)

≤ µσ(tN−1)µσ(tN−2)
eλσ(tN )(s−tN)eλσ(tN−1)

(tN−tN−1)Vσ(tN−2)
(tN−1) (25)

≤ · · ·

≤
N−1

∏
i=0

µσ(ti)
exp{λσ(tN)(s− tN) + λσ(tN−1)

(tN − tN−1)

+ · · ·+ λσ(t0)
(t1 − t0)}Vσ(t0)

(t0)

= ∏
d∈H

µ
Nd
d exp{

m

∑
d=1

λdTd(t0, s)}Vσ(t0)
(t0),
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where Nd shows that the dth mode is activated Nd times on time interval [t0, s]. Td(t0, s)
describes the total running time of dth on time interval [t0, s], d ∈ H. Because H = S̄

⋃
Ū,

µ
Nd
d > 1, d ∈ S̄, 0 < µ

Nd
d < 1, d ∈ Ū, slow switching is used in stable modes and fast

switching is used in unstable modes; combining (2) and (3), it can be found that

Vσ(tN)(s) ≤ exp{∑
d∈S̄

Nd ln µd + λdTd(t0, s) + ∑
d∈Ū

Nd ln µd + λdTd(t0, s}Vσ(t0)
(t0)

≤ exp{∑
d∈H

Nod ln µd} exp{∑
d∈H

(
ln µd
TAd

+ λd)Td(t0, s)}Vσ(t0)
(t0). (26)

If TAd satisfies (14), then
ln(µd)

TAd
+ λd < 0, d ∈ H,

Therefore, when s −→ ∞, Vσ(tN)(s) −→ 0—that is,

Vσ(tN)(s) ≤ exp{∑
d∈H

Nod ln µd} exp{∑
d∈H

(
ln µd
TAd

+ λd)(s− t0)}Vσ(t0)
(t0) (27)

Because Pd,q is positive definite, according to Lemma 1, there exist positive definite Md,q
such that

Vd(t) = xT(t)ET
d [(1− εq(t))Md,q + εq(t)Md,q+1]Edx(t). (28)

It can be found that

λ‖Eσ(tN)x(t) ‖2
2 ≤ Vσ(tN)(t)

≤ exp{∑
d∈H

Nod ln µd} exp{∑
d∈H

(
ln µd
TAd

+ λd)(t− t0)}Vσ(t0)
(t0)

≤ exp{∑
d∈H

Nod ln µd} exp{∑
d∈H

(
ln µd
TAd

+ λd)(t− t0)}λ̄‖Eσ(t0)
x(t0)‖2

2,

where λ = min
d∈H,q=0,1,··· ,G

{λ(Md,q)}, λ̄ = max
d∈H,q=0,1,··· ,G

{λ(Md,q)}; then,

‖Eσ(tN)x(t)‖2 ≤
√

λ̄

λ
exp{∑

d∈H
Nod ln µd} exp{

∑d∈H(
ln µd
TAd

+ λd)(t− t0)

2
}‖Eσ(t0)

x(t0)‖2. (29)

Thus, there exist a =
√

λ̄
λ exp{∑d∈H Nod ln µd} > 0 and b =

−∑d∈H(
ln µd
TAd

+λd)

2 > 0,
such that

‖Eσ(tN)x(t)‖2 ≤ a exp{−bt}‖Eσ(t0)
x(t0)‖2. (30)

Definition 3 shows that system (1) is exponentially stable.

Remark 3. Regarding to the TVPLF, it is attenuated when the stable modes activate. However, a
finite increase is allowed during the dwell time of the unstable mode. Furthermore, at the switching
time, when the stable mode switches to arbitrary mode, the Lyapunov function allows a certain
increase rate; when switching from unstable mode to arbitrary mode, the Lyapunov function requires
a certain attenuation rate. However, from the whole operation process of the system, the decrease in
the Lyapunov function can suppress the increase so as to guarantee the stability.

Remark 4. In the process of stability analysis, we adopt the mode-dependent ADT switching
strategy, utilizing a slow switching strategy for stable modes and a fast switching strategy for
unstable modes. In addition, the mode-dependent ADT switching rule permits individualized ADTs
for each mode rather than requiring uniform ADTs for all modes. This indicates that there are
more options for the switching rules. As such, it offers greater flexibility compared with the ADT
switching rule.
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Remark 5. As discussed in Remark 2, TVPLF is a linear interpolation function on every mode;
thus, it is particularly advantageous in overcoming the limitations of traditional multiple Lyapunov
function (MLF) methods, which may not have a feasible solution when dealing with switched systems
containing only unstable modes. As such, the TVPLF offers greater flexibility in application.

Remark 6. The parameters λd and µd affect the feasibility of the conditions from (10)–(13).
For the choice of λd, from (22), |λd| is an upper bound of the expected divergence rate of the
Lyapunov function corresponding to mode d. Thus, a larger selection of λd will lead to possibly
worse transient performance for mode d. In general, by Lemma 1, λd can choose more than twice
the largest real part of the generalized eigenvalue of mode (Ed, Ad). Note that λd < 0, d ∈ S̄
and λd > 0, d ∈ Ū. Roughly speaking, the larger the selection of λd, the easier it is to obtain a
feasible solution to the conditions from (10)–(13). However, for a fixed µd, the larger choice of λd
can result in the smaller upper bound of the MDADT of the unstable mode—that is, when d ∈ Ū,
the larger λd is chosen and fewer average dwell time switching rules are available. The parameter
µd describes the gap between the two Lyapunov functions before and after the switching instant.
No matter whether mode d is stable or unstable, a larger selection of µ could lead to a larger feasible
region for the conditions. Note that µd > 1, d ∈ S̄ and 1 > µd > 0, d ∈ Ū. However, this also
will generate possibly worse transient performance for mode d and fewer choices of average dwell
time switching rules for stable modes. So, there will be trade-offs of the choices of λ and µd.

5. Controller Design

Next, we consider the following singular switched system

Eσ(t) ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (31)

where Eσ(t), Aσ(t), x(t) are the same as defined in system (1), u(t) ∈ Rm is the controlled
input vector, and the matrix Bσ(t) = Bd is a real constant matrix with σ(t) = d.

Considering the proposed TVPLF, a novel time-varying controller design is introduced
in this section. Note that these novel controllers are sequential time-varying linear combi-
nations of series of linear state feedback, which are continuous for each mode. They are
different from the controllers designed through the traditional MLF and MDLF methods,
where the controllers designed by traditional MLF are time-invariant linear state feedback
in each mode, while the controllers designed by the MDLF are piecewise continuous for
each mode. This is a novel contribution of this paper.

Firstly, we define the continuous time-varying linear combination state feedback
u(t) = Lσ(t)(t)x(t). When t ∈ [ti, ti+1), suppose σ(t) = d, d ∈ H. Correspondingly, the
state feedback is defined as follows:

u(t) = Ld(t)x(t) =

{
Kd(t)x(t), t ∈ [ti + Jq, ti + Jq+1), q = 0, 1, · · · , G− 1

Kd,Gx(t), t ∈ [ti + JG, ti+1),
(32)

where Kd(t) = (1− εq(t))Kd,q + εq(t)Kd,q+1, εq(t) = (t− ti − Jq)/l, q = 0, 1, · · · , G − 1.
Kd,q, q = 0, 1, · · · , G are real constant feedback matrices to be determined.

Combining (31) with (32), we have the closed singular switched linear system

Eσ(t) ẋ(t) = (Aσ(t) + Bσ(t)Lσ(t))x(t) , Āσ(t)x(t), (33)

where Āσ(t) = Aσ(t) + Bσ(t)Lσ(t).
Then, by Theorem 1, a similar result is obtained for the closed loop system (33).

Theorem 2. Let system (31) satisfy Assumption 1, given the constants λd < 0, µd > 1, d ∈ S̄ and
λd > 0, 0 < µd < 1, d ∈ Ū. If there exist Kd,q ∈ Rm×n and positive definite Pd,q ∈ Rn×n, d ∈ H,
q = 0, 1, 2, · · · , G, the following conditions hold:
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ET
d Pd,q = Pd,qEd ≥ 0, (34)

(Ad + BdKd,q)
TPd,q + Pd,q(Ad + BdKd,q) + Θq

d − λdET
d Pd,q ≤ 0, (35)

(Ad + BdKd,q+1)
TPd,q+1 + Pd,q+1(Ad + BdKd,q+1) + Θq

d − λdET
d Pd,q+1 ≤ 0, (36)

(Ad + BdKd,G)
TPd,G + Pd,G(Ad + BdKd,G)− λdET

d Pd,G ≤ 0, (37)

ET
p Pp,0 − µdET

d Pd,G ≤ 0, (d, p) ∈ H × H, d 6= p, (38)

where Θq
d = ET

d
(Pd,q+1−Pd,q)

l . Then, system (31) is exponentially stabilized by the controllers (32)
under the arbitrary mode-dependent ADT switching rule and satisfies (14).

Note that the conditions of Theorem 2 are bilinear matrix inequalities. To utilize the
LMI technique, Theorem 2 can be transformed into the following version.

Theorem 3. Let system (31) satisfy Assumption 1, given the constants λd < 0, µd > 1, d ∈ S̄ and
λd > 0, 0 < µd < 1, d ∈ Ū. If there exist Qd,q ∈ Rm×n and positive definite Sd,q ∈ Rn×n, d ∈ H,
q = 0, 1, 2, · · · , G, the following conditions hold:

EdSd,q = Sd,qET
d ≥ 0, (39)

[
He(AdSd,q + BdQd,q)− (λd +

1
l )Sd,qET

d
1√

l
Sd,qET

d
1√

l
EdSd,q −Sd,q+1

]
≤ 0, (40)

[
He(AdSd,q+1 + BdQd,q+1) + ( 1

l − λd)Sd,q+1ET
d

1√
l
Sd,q+1ET

d
1√

l
EdSd,q+1 −Sd,q

]
≤ 0 (41)

He(AdSd,G + BdQd,G)− λdSd,GET
d ≤ 0 (42)

[
µdSd,GET

d Sd,GET
d

EdSd,G Sp,0

]
≥ 0, (d, p) ∈ H × H, d 6= p, (43)

where He(AdSd,q + BdQd,q) = AdSd,q + Sd,q AT
d + BdQd,q + QT

d,qBT
d . Then, system (31) is expo-

nentially stabilized by the controllers (32) under the arbitrary mode-dependent ADT switching rule
and satisfies (14) with

Pd,q = S−1
d,q , Kd,q = Qd,qS−1

d,q . (44)

Proof. (39) can be obtained by pre- and post-multiplying (34) by P−1
d,q .

(42) can be obtained by pre- and post-multiplying (37) by P−1
d,G.

(40) can be deduced from (35). Firstly, (35) can be rewritten as

(Ad + BdKd,q)
TPd,q + Pd,q(Ad + BdKd,q)− (

1
l
+ λd)ET

d Pd,q +
1
l

ET
d Pd,q+1 ≤ 0. (45)

By Schur’s complement Lemma, (45) is transformed into[
(Ad + BdKd,q)

TPd,q + Pd,q(Ad + BdKd,q)− (λd +
1
l )ET

d Pd,q
1√

l
ET

d Pd,q+1
1√

l
Pd,q+1Ed −Pd,q+1

]
≤ 0. (46)

Then, by pre- and post-multiplying (46) by [P−1
d,q , 0; 0, P−1

d,q+1], one has (40) utilizing (44).
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Similarly, by Schur’s complement Lemma, one can obtain (41) and (43). The proof
is omitted here.

Utilizing the LMI toolbox in Matlab, one can seek feasible controllers to exponentially
stabilize system (31).

6. Simulation

In the following, some simulation examples are provided to verify the proposed results
in Theorem 1.

Example 1. Consider singular switched linear system (1), where

E1 =

[
1 0
0 0

]
, E2 =

[
1 0
0 0

]
, A1 =

[
−3 −2
−1 −5

]
, A2 =

[
−6 −1
−5 −8

]
.

By testing, the finite eigenvalues of the modes (E1, A1) and (E2, A2) are −2.6 and −5.375, re-
spectively. Thus, the two modes of singular switched system (1) are both stable modes. The state
diagram of each mode of the system is shown in Figures 1 and 2. Set G = 1, λ1 = −0.8, µ1 = 1.02,
λ2 = −0.9, and µ2 = 1.02. According to (14), we obtain Ta1 = 0.0248 and Ta2 = 0.0220.
From Theorem 1, we can obtain

P10 =

[
26.7959 0

0 22.7066

]
, P11 =

[
30.2372 0

0 18.2290

]
,

P20 =

[
21.1907 0

0 11.0366

]
, P21 =

[
32.2894 0

0 8.7422

]
.

According to the switching rule (14), we choose TA1 = 0.03, TA2 = 0.03, and a compatible
initial state of system x0 = (−2, 0.4)T; we can obtain the system state and the trend diagram of
the Lyapunov function, which are shown in Figures 3 and 4. This shows that the switched singular
system is exponentially stabilized by the designed mode-dependent ADT switching rule.

th
e
 s

ta
te

 o
f 
m

o
d
e
1
 x

(t
)

x
1
(t)

x
2
(t)

Figure 1. The state diagram of mode 1 in Example 1.
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Figure 2. The state diagram of mode 2 in Example 1.
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Figure 3. The state diagram of the system in Example 1.
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Figure 4. The diagram of Lyapunov function in Example 1.
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Example 2. Consider the singular switched linear system (1), where

E1 = E2 =

1 0 0
0 1 0
0 0 0

, A1 =

−1 0 −1
1 −1 0
1 −1 −2

, A2 =

−0.8415 −1.4449 −0.3781
−0.1722 −0.4636 0.0122
−1.3446 0.1905 −1.5320

.

By testing, the finite eigenvalues of the modes (E1, A1) and (E2, A2) are −2,−0.5 and −1.0088,
0.0371, respectively. Thus, the mode (E1, A1) is stable and the other is unstable. Furthermore, the
state diagram of each mode of the system is shown in Figures 5 and 6. Set λ1 = −0.2, µ1 = 1.01,
λ2 = 0.2, and µ2 = 0.9. According to (14), we can obtain that the minimal ADT of the stable mode
is Ta1 = 0.0498 and the maximal ADT of the unstable mode is Ta2 = 0.5268. From Theorem 1, we
can choose the dwell time of (E1, A1) as TA1 = 0.26 and the dwell time of (E2, A2) as TA2 = 0.12.
Select a compatible initial state x(0) = (3.0000,−2.0000, 2.5000)T and let the initial switching
signal σ(0) = 1. According to Theorem 1, it can be found that

P10 =

3.2849 0.8121 0
0.8121 9.2818 0

0 0 3.3954

, P11 =

 4.1690 −0.8931 0
−0.8931 11.8764 0

0 0 3.7363

,

P20 =

 3.7619 −0.5599 0
−0.5599 11.3960 0

0 0 2.5671

, P21 =

3.8784 0.4606 0
0.4606 12.4058 0

0 0 0.9887

.

The diagrams of the switching rule of the system and the state response under the switching
rule are shown in Figures 7 and 8, respectively. It can be observed that the system is stabilized after
about 7 s under the mode-dependent ADT switching rule, which verifies its effectiveness. The trend
diagram depicting the TVPLF is presented in the right subfigure of Figure 9.
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Figure 5. The state response of mode 1 in Example 2.
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Figure 6. The state response of mode 2 in Example 2.
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Figure 7. The switching rule of the system in Example 2.
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Figure 8. The state diagram of the system in Example 2.
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Figure 9. The trend diagram of TVPLF in Example 2.

Example 3. Consider the singular switched linear system (1), where

E1 =

1 0 0
0 1 0
0 0 0

, A1 =

−0.8415 −1.4449 −0.3781
−0.1722 −0.4636 0.0122
−1.3446 0.1905 −1.5320

,

E2 =

1 0 0
0 1 0
0 0 0

, A2 =

−1.2435 0.8775 −0.9747
−0.7409 −1.5072 −0.8519
−1.5536 −0.6242 −1.0759

.

It is easy to test whether the finite eigenvalue of mode (E1, A1) and (E2, A2) are −1.0088, 0.0371
and 0.0155,−0.8645, respectively. So, these two modes are all unstable. According to the discussion
in the introduction, there is no feasible MLF for this switched singular system. However, by choosing
λ1 = 0.3, µ1 = 0.85, λ2 = 0.2, and µ2 = 0.9, according to (14), we can obtain that the maximal
ADTs of these two modes are Ta1 = 0.5417 and Ta2 = 0.5268, respectively. From Theorem 1, we can
choose the dwell time of (E1, A1) as TA1 = 0.4417 and the dwell time of (E2, A2) as TA2 = 0.4268.
Select a compatible initial state x(0) = (3.0000,−2.0000,−2.8817)T and let the initial switching
signal σ(0) = 1 and G = 1. According to Theorem 1, there exist feasible Pd,q, d = 1, 2, q = 0, 1
satisfying conditions from (9)–(13) as follows:

P10 =

 0.9180 −0.8463 0
−0.8463 2.7404 0

0 0 0.7071

, P11 =

 1.1653 −0.5058 0
−0.5058 2.8514 0

0 0 0.4884

,

P20 =

 0.9678 −0.4943 0
−0.4943 1.9892 0

0 0 0.5707

, P21 =

 1.0256 −0.9348 0
−0.9348 3.2343 0

0 0 0.5234

.

Thus, compared with the traditional MLF approach, the TVPLF method is less conservative.
Figures 10 and 11 show the state response and the TVPLF evolution.
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Figure 10. The state diagram of the system in Example 3.
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Figure 11. The trend diagram of TVPLF in Example 3.

7. Conclusions

This paper analyzes the exponential stability of a type of switched singular linear
system through a novel TVPLF method, and some computable sufficient conditions are
obtained for the exponential stability under mode-dependent ADT switchings. Based
on the stability analysis, a series of novel time-varying controllers are designed to sta-
bilize the switched singular systems. These controllers are continuous and can be ex-
pressed as a sequential linear combination of a series of linear state feedback on each mode.
This method can be extended to general switched systems for stability analysis, gain
performance analysis and control design, and so on.
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