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Abstract: We investigate the irreconcilability issue that arises when translating the search algorithm
from the Continuous Time Quantum Walk (CTQW) framework to the Adiabatic Quantum Computing
(AQC) framework. For the AQC formulation to evolve along the same path as the CTQW, it requires
a constant energy gap in the Hamiltonian throughout the AQC schedule. To resolve the constant gap
issue, we modify the CTQW-inspired AQC catalyst Hamiltonian from an XZ operator to a Z oracle
operator. Through simulation, we demonstrate that the total running time for the proposed approach
for AQC with the modified catalyst Hamiltonian remains optimal as CTQW. Inspired by this solution,
we further investigate adaptive scheduling for the catalyst Hamiltonian and its coefficient function in
the adiabatic path of Grover-inspired AQC to improve the adiabatic local search.

Keywords: quantum walk; adiabatic quantum computing; adiabatic path scheduling; catalyst
Hamiltonian

1. Introduction

Quantum technologies have advanced dramatically in the past decade, both theoreti-
cally and experimentally. From the view of theoretical computational complexity, Shor’s
factoring algorithm [1] and Grover’s search algorithm [2] are well-known for their improve-
ments over the best possible classical algorithms designed for the same purpose. From a
perspective of universal computational models, Quantum Walks (QWs) have become a
prominent model of quantum computation due to their direct relationship to the physics
of the quantum system [3,4]. It has been shown that the QW computational framework
is universal for quantum computation [5,6], and many algorithms now are presented
directly in the quantum walk formulation rather than through a circuit model or other ab-
stracted method [3,7]. Besides being search algorithms, CTQWs have been applied in fields
such as quantum transport [8–11], state transfer [12,13], link prediction in complex net-
works [14] and the creation of Bell pairs in a random network [15]. Some other well known
universal models include the quantum circuit model [16–18], topological quantum compu-
tation [19], adiabatic quantum computation (AQC) [20], resonant transition-based quantum
computation [21] and measurement-based quantum computation [22–25]. Investigating re-
lationships among the frameworks helps to identify violations when mapping frameworks
and potential solutions. By studying the mapping, one can extend the techniques from one
framework to another for some potential improvement in terms of speed [26].

In this work, we investigate the irreconcilability issue that arises when translating
the search algorithm from the Continuous Time Quantum Walk (CTQW) framework to
the Adiabatic Quantum Computing (AQC) framework as first pointed out by Wong and
Meyer [27]. This irreconcilability issue can be described as follows. One first notes that
the CTQW is the unique continuous time quantum walk formulation of Grover’s discrete
search algorithm. While the CTQW search evolves the initial unbiased (equal amplitude)
state to the unknown (marked) state on the order of time T ∼ O(

√
N) (where N is the size

of the search space), it does not follow the same evolution path (on the Bloch sphere) as
that of Grover’s algorithm. The uniqueness of the CTQW formulation stems from the fact
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that the unknown marked state only acquires a (time-dependent) phase from the oracle
operation. Most importantly the marked states do not undergo evolution, and thus the
CTQW effectively employs a dichotomous “Yes/No” oracle, for which the discrete Grover’s
algorithm has been proven to be optimal.

The AQC formulation of the search algorithm with a non-uniform adiabatic evolution
schedule [28] also finds the marked state in time T∼O(

√
N) while following the same

path as Grover’s algorithm. Thus, if one investigates what adiabatic Hamiltonian gives
rise to the same evolution path as the CTQW formulation, one finds [27] that the AQC
formulation introduces an extra “catalyst” Hamiltonian which introduces a structure
beyond the standard “Yes/No” oracle employed in the CTQW or discrete (Grover’s) search
algorithm. A scaled version of the AQC Hamiltonian leads to a constant energy gap that
implies that the marked state can be found in time T∼O(1). This discrepancy between the
formulations of the two versions of a continuous time search algorithm was termed the
“irreconcilability (difference) issue” between CTQW and AQC by Wong and Meyer [27].

In this work, we address the CTQW/AQC search algorithm irreconcilability issue by
modifying the constant energy gap Hamiltonian of the AQC formulation. Our contribution
is twofold. We first adapt the result from the mapping of CTQW to AQC by selecting
the regular oracle Z operator as the catalyst Hamiltonian and explore an alternative for
the coefficient function for the catalyst Hamiltonian in order to attempt to avoid the
irreconcilability issue. Through the simulation, the modified model provides optimal
results in terms of the time required for the search.

The second improvement is on the Grover-Search-inspired adiabatic local search, we
add an additional sluggish parameter δ which delineates the width of the adiabatic run
time schedule over which the catalyst Hamiltonian effectively acts (i.e., the “slowdown”
region in the vicinity of the system’s smallest energy gap ∆). The sluggish parameter tracks
the increase of running time t = t(s) with respect to schedule parameter 0 ≤ s ≤ 1 where
δ = |d2t/ds2|. The catalyst is employed when δ ≥ δ0 to facilitate the process; we have
found that the threshold value of δ0 = 64 provides good results. When simulated, this
modification reduces the running time of the original adiabatic local search by certain
constant factors.

The outline of this work is as follows. The background information regarding CTQW
and AQC is given in Section 2 where the translation of CTQW to AQC is described in
Section 3. The irreconcilability issue that occurs during the translation is explained in
Section 3.1 and our proposed solution is provided in Section 3.2. The mapping of Grover
search to AQC as an adiabatic local search is summarized in Section 4. We propose and
describe the catalyst Hamiltonian mechanism in Section 4.1.2 and determine the sluggish
interval where it is employed. We further explore three coefficient functions of the catalyst
Hamiltonian in Section 4.1.3. The simulation results for the proposed modifications are
discussed in Section 5. Finally, our conclusions are given in Section 6.

2. Background
2.1. Continuous Time Quantum Walk

Given a graph G = (V, E), where V is the set of vertices and E is the set of edges, the
CTQW on G is defined as follows. Let A be the adjacency matrix of G, the |V| × |V| matrix
is defined component-wise as

Aij =

{
1 if (i, j) ∈ E,
0 otherwise

(1)

where i, j ∈ V. A CTQW starts with a uniform superposition state |ψ0〉 in the space, spanned
by nodes in V, and evolves according to the Schrödinger equation with Hamiltonian A.
After time t, the output state is thus

|ψt〉 = e−iAt|ψ0〉. (2)
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The probability that the walker is in the state |τ〉 at time t is given by |〈τ|e−iAt|ψ0〉|2. To find
the marked node |ω〉 starting from an initial state |ψ0〉 via a CTQW, one has to maximize
the success probability

|〈ω|e−iAt|ψ0〉|2 (3)

while minimizing the time t. For instance, initially at time t = 0, the success probability is

|〈ω|e−iA0|ψ0〉|2 = O(
1
|V| ). (4)

The success probability is extremely small when the search space |V| = N is large and |ψ0〉
is a uniform superposition state.

When applied to spatial search, the purpose of a CTQW is to find a marker basis state
|ω〉 [29,30]. For this purpose, the CTQW starts with the initial state |ψ0〉 = ∑N

i=1
1√
N
|i〉, and

evolves according to the Hamiltonian [31]

H = −γA− |ω〉〈ω| (5)

where γ is the coupling factor between connected nodes. The value of γ has to be deter-
mined based on the graph structure such that the quadratic speedup of CTQW can be
preserved. Interested readers can refer to [29,31] for more details.

2.2. Adiabatic Quantum Computing

In the AQC model, H0 is the initial Hamiltonian, H f is the final Hamiltonian. The
evolution path for the time-dependent Hamiltonian is

H(s) = (1− s)H0 + sH f (6)

where 0 ≤ s ≤ 1 is a schedule function of time t. For convenience, we denote s as s(t)
and use them interchangeably. The variable s increases slowly enough that the initial
ground state evolves and remains as the instantaneous ground state of the system. More
specifically,

H(s(t))
∣∣λk,t

〉
= λk,t

∣∣λk,t
〉

(7)

where λk,t is the corresponding eigenvalue the eigenstate
∣∣λk,t

〉
at time t and k labels for

the kth excited eigenstate. The minimal eigenvalue gap is defined as

gmin = min
0≤t≤Ta

(λ1,t − λ0,t) (8)

where Ta is the total evolution time of the AQC. Let |ψ(Ta)〉 be the state of the system at
time Ta evolving under the Hamiltonian H(s(t)) from the ground state |λ0,0〉 at time t = 0.
The Adiabatic theorem [32,33] states that the final state |ψ(Ta)〉 is ε-close to the real ground
state |λ0,Ta〉 as

|〈λ0,Ta |ψ(Ta)〉|2 ≤ 1− ε2, (9)

provided that

|〈λ1,t| dH
dt |λ0,t〉|

g2
min

≤ ε. (10)

There are several variations of AQC to improve the performance. The variations are
based on modifying the initial Hamiltonian and the final Hamiltonian [34,35] or adding a
catalyst Hamiltonian He [34], which is turned on/off at the beginning/end of the adiabatic
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evolution. In this work, we are interested in the catalyst approach. A conventional catalyst
Hamiltonian-assisted AQC path is expressed as

H(s) = (1− s)H0 + s(1− s)He + sH f . (11)

3. Continuous Time Quantum Walk to Adiabatic Search Mapping

One can construct a time-dependent AQC Hamiltonian H(s) as shown in [27] where
the adiabatic search follows the CTQW search on a complete graph with N vertices. Let us
define the following variables. The coupling factor γ is set to 1/N and |ψ0〉 is the uniform
superposition of all states in the search space. State |r〉 is the uniform superposition of
non-solution states, state |ω〉 is the solution state. Treating the state evolving in the CTQW
system as the time-dependent ground state of H(s), one constructs H(s) in the {|ω〉, |r〉}
basis as [27]

H(s) = 4

√
s(1− s)

4ε2N
[(1− s)H0 +

√
s(1− s)He + sH f ] (12)

where s(t) = sin2( t√
N
) with

H0 =
∣∣∣ψ⊥0 〉〈ψ⊥0

∣∣∣− |ψ0〉〈ψ0|, H f = |γ〉〈γ| − |ω〉〈ω|,

He = 2i

√
N − 1

N
(|r〉〈ω| − |ω〉〈r|), (13)

or explicitily in the {|w〉, |r〉} basis as

H0 =

(
N−2

N −2
√

N−1
N

−2
√

N−1
N −N−2

N

)
, (14)

He =

 0 −2i
√

N−1
N

2i
√

N−1
N 0

, H f =

(
−1 0
0 1

)
.

3.1. The Irreconcilability Issue: Constant Gap Catalyst Hamiltonian and Small Norm

The main concerns that are raised from Equation (12) are twofold. The first issue is the

factor 4
√

s(1−s)
4ε2 N of H(s). The adiabatic theorem [36] states that the system achieves a fidelity

of 1− ε to the target state, provided that

|〈 dH
dt 〉0,1|
g2

min
≤ ε, where gmin = min

0≤t≤T
E1(t)− E0(t). (15)

Here, 〈 dH
dt 〉0,1 are the matrix elements of dH/dt between the two corresponding eigenstates.

E0(t) and E1(t) are the ground energy and the first excited energy of the system at time t.
Given the H(s) in Equation (12), one might conclude that a factor of O( 4

√
1/N) significantly

reduces the time required to achieve 1− ε precision. This might be misleading as the gmin
of H(s) also carries the same factor. The second issue is that the catalyst He provides power
greater than a typical Yes/No oracle as it maps non-solution states to a solution state and a
solution state to non-solution states. Provided that we initially start with a superposition

state with an amplitude of
√

N−1
N for a non-solution, it takes a time of O(1) for this catalyst

to drive the initial (unbiased, equal amplitude) state to the solution state. In the following,
we will relax this constraint by using a normal oracle. For the rest of the paper, let us simply
treat ε� 1 as a small negligible constant.



Entropy 2023, 25, 1287 5 of 13

3.2. Modified CTQW-Inspired Adiabatic Search

In Equation (12), the following parameters were computed during the mapping [27]:

• the scaling factor 4
√

s(1−s)
4ε2 N of Hamiltonian H0,

• He = 2i
√

N−1
N (|r〉〈ω| − |ω〉〈r|), catalyst Hamiltonian

• the coefficient function of He as
√

s(1− s).

In [37], the cost of the adiabatic algorithm was defined to be the dimensionless quantity
(using h̄ = 1)

cost = t f max
s
||H(s)||, (16)

where t f is the running time. To prevent the cost from being manipulated to be arbitrarily
small by changing the time units or distorting the scaling of the algorithm by multiply-
ing the Hamiltonians by some size-dependent factor as shown in the irreconcilability
concern [27], the norm of H(s) should be fixed to some constant, such as 1.

To address the irreconcilability issue, the scaling factor is dropped and the catalyst

Hamiltonian He is modified. Since He = 2
√

N−1
N iXZ in the {|ω〉, |r〉} basis provides more

power than a standard oracle, for our modification we remove the imaginary number i and
the X operator. The operator Z alone behaves as a conventional “Yes /No” oracle in the

{|ω〉, |r〉} basis. Let M = 2
√

N−1
N and choose the modified adiabatic path Hm(s) as

Hm(s) =(1− s)H0 + fz(s)MZ + sH f , (17)

where fz(s) is our chosen s-dependent coefficient for catalyst Z. In addition to fz(s) =√
s(1− s) that was used in [27], functions that reach their maximum when s = 1/2 are

good candidates for fz(s), such as fz(s) = sin(sπ)
2 . The use of the factor 1/2 on the sine

function is to offset the magnitude M to bound the norm of He as described in Equation (16).

4. Grover Search to Adiabatic Local Search Mapping

In this section we consider the mapping of Grover’s algorithm to an adiabatic search.
Given the initial driving Hamiltonian H0 and the final Hamiltonian H f as

H0 = I − |ψ0〉〈ψ0|, H f = I − |ω〉〈ω|, (18)

where

H0 =

(
N−1

N −
√

N−1
N

−
√

N−1
N

1
N

)
, H f =

(
0 0
0 1

)
, (19)

in the {|ω〉, |r〉} basis. The adiabatic path [27,28] in the {|ω〉, |r〉} basis is given by

H(s) = (1− s)H0 + sH f (20)

=

(
(1− s)N−1

N −(1− s)
√

N−1
N

−(1− s)
√

N−1
N 1− (1− s)N−1

N

)
. (21)

Instead of employing a linear evolution of s(t), Equation (20) adapts the evolution ds/dt to
the local adiabaticity condition [28] such that

|ds
dt
| = εg2(t) (22)



Entropy 2023, 25, 1287 6 of 13

where g(t) is the energy gap of the system at time t. The running time t is then a function
of schedule s such that

t(s) =
N

2ε
√

N − 1

{
arctan

(√
N − 1(2s− 1)

)
(23)

+ arctan
(√

N − 1
)}

. (24)

The relationship between the schedule s and the running time t is shown in Figure 2 in [28].
It is a tailored schedule that goes fast in the outer regions and slows down near the gap. It
is clear that the system evolves quickly when the gap is large (s away from 1/2) and slowly
when the gap is small (s ' 1/2) [28]. In this example, the sluggish period s ∈ [0.4, 0.6]. For
completeness, we provide the formal proof of the close form of the squared gap function
g2(t) (second order in s) with respect to the schedule s in Appendix A.

4.1. Adaptive Scheduling

For a fixed schedule of an adiabatic path, the schedule s moves fast when the eigen-
energy gap is large, and slowly when the gap is small. We desire to employ the catalyst
Hamiltonians He to amplify the eigen-energy gap during the “slow down” period such
that the total time to pass through the sluggish period is reduced (s ∈ [0.4, 0.6] in Figure 2
in [28].

4.1.1. Schedule-Dependent Gap Function

In this section, we consider employing gap-dependent scheduling functions. Let H f be
an arbitrary 2 by 2 Hermitian Hamiltonian. Let the time-dependent Hamiltonian H(s) be

H(s) = (1− s)Ho + fx(s)σx + fz(s)σz + sH f . (25)

Operators σx and σz are chosen as catalyst Hamiltonians. Let Ho =

[
a c
c b

]
, H f =

[
p r
r q

]
where a, b, c, p, q, r are some given constants. The matrix form of the time-dependent
Hamiltonian is given by

H(s) =
[
(1− s)a + sp + fz(s) (1− s)c + sr + fx(s)
(1− s)c + sr + fx(s) (1− s)b + sq− fz(s)

]
(26)

and the schedule-dependent gap can be analytically computed to yield

g2(s) = ((1− s)(a− b) + s(p− q) + 2 fz(s))2

+ 4((1− s)c + sr + fx(s))2, (27)

(see Appendix B for a derivation). By using Equation (22), the total running time Tstp
strt from

s = sstrt to s = sstp is thus

T
sstp
sstrt =

∫ sstp

sstrt

ds
εg2(s)

(28)

where 0 ≤ sstrt ≤ sstp ≤ 1. In brief, the time spent during a certain period of a schedule can
be obtained by use of a gap function. The gap function can be expressed via the entries of
H0, He, H f , schedule s and the coefficient functions of the catalyst Hamiltonians.

4.1.2. Determining the Sluggish Interval for the Catalyst Hamiltonian

By using the condition f ′(s) = dt/ds = 1
εg2(s) (see Appendix A), the region where the

gap quickly significantly decreases or increases is during the sluggish period of s. That
is the portion of the schedule s where a catalyst should be employed. The region where
|d f 2(s)/ds2)| ≥ δ0 is the sluggish period. The threshold value δ0 = 64 was chosen because



Entropy 2023, 25, 1287 7 of 13

if we choose a threshold proportional to N, as N increases exponentially, the quantity
d2t/ds2 might never reach the N-dependent threshold within the adiabatic evolution
schedule 0 ≤ s ≤ 1. By using this threshold, the starting point sslug

strt and the stopping point
sslug

stp used to mark the sluggish period can be identified. Using the example in [28], we can
re-plot and get t as a function of s as t = f (s) and f ′(s) = dt/ds in Figures 1 and 2 with
N = 64.

Figure 1. Time t as a function of schedule s for adiabatic local search with N = 64.

Figure 2. dt/ds for adiabatic local search with N = 64.

4.1.3. Catalyst Coefficient Functions

As discussed in Section 3.2, we are interested in the He = Z case in Equation (17) and
its coefficient function fz(s). Three coefficient functions of the catalyst Hamiltonian Z are
proposed as the following

f sine
z (s) = sin(((s− sslug

strt ) ∗ π)/(sslug
stp − sslug

strt )), (29)

f ss
z (s) = (s− sslug

strt )(s
slug
stp − s),

f grid
z (s) = a ∗ f sine

z (s) + b ∗ ( f sine
z (s))2

where 0 ≤ a, b ≤ 1 under the constraint that a2 + b2 = 1. In the grid search a increased
from 0 to 1 by 0.1 in each iteration. From the 10 pairs of (a, b), we find the values of a, b that
give the shortest sluggish time interval.

5. Experiment and Result

For our simulations we used (Wolfram) Mathematica (version 12.3 run on a Linux
Ubuntu 20.04 LTS laptop). The code is available upon request. The running time is based
on Equation (28). The size N (number of nodes) ranges from 25, 26, . . . to 225. We observe
the corresponding running time and sluggish time for each of the proposed models. The
result of the original adiabatic local search serves as the baseline for comparison, which
used N = 64 [28]. In this work, we generalize the setting for any arbitrary size N.

Given an arbitrary complete graph of size N with coupling factor 1/N, one can
compute the entries in the reduced Hamiltonian for H0 and H f in the {|ω〉, |r〉} basis.
The values of variables a, b, c, p, q and r as discussed in Section 4.1.1 can be obtained from
Equation (14) for the CTQW case and from Equation (19) for the adiabatic local search.
It is worth noticing that the ground state energy is −1 in the CTQW case, but is 0 in the
adiabatic local search case. Based on the adiabatic path Equation (25) and the gap function
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in Equation (27) with given schedule s, coefficient function fz(s) for σz, we perform the
simulation with the running time computed from Equation (28).

5.1. Modified CTQW-Inspired Adiabatic Search Simulation

This experiment aimed to demonstrate that the modified adiabatic paths addressing
the irreconcilable issues remain optimal. The three proposed modifications we explored
are as follows:

• Horg(s) takes Equation (12) and drops the scaling factor as explained in Section 3.2.
The adiabatic path is Horg(s) = (1− s)H0 +

√
s(1− s)He + sH f

• Hm1(s) replaces the computed catalyst Hamiltonian He with an ordinary Z oracle
operator and keeps the magnitude M. This was used to address the constant gap He
irreconcilability issue. We have
Hm1(s) = (1− s)H0 +

√
s(1− s)MZ + sH f

• Hm2(s) uses sin(sπ)
2 as the coefficient function for the catalyst Hamiltonian Z. The

adiabatic path is Hm2(s) = (1− s)H0 +
sin(sπ)

2 MZ + sH f

For the above three models, simulations were run on a Hamiltonian of size N ∈
[25, 26, . . . , 225]. In the following figures, the abscissa is log2 N while the ordinate is the
required total running time T. The time is computed based on Equation (28). As the di-
mension of the Hamiltonian increases, the difference in running times for the three models
considered are magnified.

The simulation results are shown in Figure 3. It is clear to see that Horg is a constant
time scheme as it does not scale as the size N increases. This indicates that the original
catalyst Hamiltonian He = MXZ in Horg(s) is indeed a constant gap Hamiltonian. This
also shows the irreconcilability issue as suggested in [27]. From the simulations we can
conclude that both Hm1(s), Hm2(s) perform optimally with respect to running time, namely
T∼O(

√
N), similar to that of the original adiabatic local search but with a minor constant

factor which can be ignored in the Big O notation. As the simulation suggests, both
modified CTQW-inspired approaches outperform the original adiabatic local search. When
the N ≤ 221, the Hm2(s) outperforms Hm1(s). When problem size N is larger then 221,
Hm1(s) is a better choice over Hm2(s).

Figure 3. Case when N ∈ [25, 225] and the running times of Horg(s) (orange), Hm1(s) (red) and Hm2(s)
(green) with the original adiabatic local search (blue) serving as the baseline.

5.2. Adaptive Adiabatic Local Search Simulation with Various Coefficient Functions

In the previous Section 5.1, the proposed modifications are optimal, in the sense
that T∼O(

√
N) up to a minor constant factor. For further improvement, the adaptive

scheduling scheme is applied. The adiabatic path to be explored is therefore

Hadapt(s) = (1− s)H0 + f (s)Z + sH f (30)

where f (s) ∈ [ f sine
z , f ss

z , f grid
z ], as seen in Equation (29). The catalyst Hamiltonian Z operator

is only employed during the sluggish period and hence f (s) = 0 when s /∈ [sslug
strt , sslug

stp ]. The



Entropy 2023, 25, 1287 9 of 13

H0 and H f are based on Equation (19). As the catalyst is only employed within the sluggish
period, to compare the performance of each proposed modification, one only needs to
compute the running time within this period.

In Figure 4, f ss
z provides the minimal reduced sluggish time while f sine

z and f grid
z

provide significant improvements. The difference in the runtimes becomes significant for
N ≥ 215.

Figure 4. Case when N ∈ [25, 225] and time spent in during the sluggish period for adiabatic
paths with ( f ss

z , f sine
z , f grid

z ) coefficient functions where the original adiabatic local search serves as
the baseline.

In Figure 5, both f sine
z and f grid

z have a more than 75% reduced sluggish time in
comparison to the original adiabatic local search when N reaches 225. f sine

z gradually
outperforms the original adiabatic local search after N = 210 and remains almost as good as
f grid
z until N = 223. When N = 225, the sluggish time of f sine

z is only twice that of f grid
z . In

general, the grid search is a costly procedure as we have to run 10 pairs of (a, b) for slightly
different H(s) for each value of N = 2n. If the time reduction of the sluggish period is not
greater than 90% of the original, it might be a better choice to use f sine

z . For the near term it
might be more beneficial to use the f sine

z model, instead of the grid search model f grid
z .

Figure 5. Case when N ∈ [25, 225] and time spent during the sluggish period for adiabatic paths with
( f sine

z , f grid
z ) coefficient functions where the original adiabatic local search serves as the baseline.

6. Conclusions

In this work, we investigated different Hamiltonians for resolving the irreconcilability
issue [27] when mapping the CTQW search algorithm to AQC. We modified the time-

dependent Hamiltonian by (1) removing the original scaling CTQW factor 4
√

s(1−s)
4ε2 N and

(2) replacing i X Z → Z in the original catalyst He Hamiltonian obtained from mapping
CTQW to AQC. These modifications were made in order to resolve the irreconcilability
issue. We further optimized the schedule s of the CTQW-inspired adiabatic path by an
adaptive scheduling procedure.

The modified CTQW-inspired adiabatic search simulation experiment demonstrates
that indeed the He without any modification leads to a constant time in the total running
time, regardless of the search space size N. This result echoes the irreconcilability issue
stated in [27]. On the other hand, the modified CTQW-inspired adiabatic path with catalyst
Hamiltonian coefficient sin(sπ)

2 behaves similarly to the behavior of the optimal adiabatic
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local search. Furthermore, the modifications are optimal and outperform the original
adiabatic local search.

Lastly, in the adaptive adiabatic local search simulation with various coefficient func-
tions experiment, we further investigated how to reduce the time wasted in the sluggish
period of an adiabatic local search path. As our numerical experiments show, the function
f sine
z (s) and f grid

z (s) provide significant improvement and both outperform the original
adiabatic local search. Even though the grid search f grid

z (s) approach could have further
reduced the length of the sluggish (“slow down”) interval, the benefit was offset by the
additional cost incurred from its implementation over that of the other two methods.
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Appendix A. Time Integration of Adiabatic Local Search

Given a spectral gap polynomial of the second order, that is

g2(s) = A(s2 + bs + c) (A1)

where s is the adiabatic schedule and (this is the same as g2(t) as for each t there is only
one corresponding s) ds

dt = εg2(s), by integration on t one obtains

T =
∫

dt =
∫ 1

0

ds
εg2(s)

=
1

εA

∫ 1

0

ds
(s2 + bs + c)

. (A2)

(I) Case b2 − 4c > 0: Let r± = −b±
√

b2−4c
2 .

∫ 1

0

ds
(s2 + bs + c)

=
1

r+ − r−

∫ 1

0
(

1
s− r+

− 1
s− r−

)ds (A3)

since
∫ 1

s−a ds = ln |s− a|. Thus, we have

T =
1

εA(r+ − r−)
ln
∣∣∣ s− r+
s− r−

∣∣∣1
0
, (A4)

t =
1

εA(r+ − r−)
(ln
∣∣∣ s− r+
s− r−

∣∣∣− ln
∣∣∣ r+
r−

∣∣∣). (A5)

https://github.com/omnibox/Quantum-Walk-Inspired-Dynamic-Adiabatic-Local-Search
https://github.com/omnibox/Quantum-Walk-Inspired-Dynamic-Adiabatic-Local-Search
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(II) Case b2 − 4c = 0: ∫ 1

0

ds
(s2 + bs + c)

=
∫ 1

0

1
(s + b/2)2 ds (A6)

since
∫
(s− a)−2ds = −(s− a)−1, hence

T =
−1
εA

1
(s + (b/2))

∣∣∣1
0

(A7)

t =
1

εA

( s
(b/2)(s + (b/2))

)
(A8)

(III) Case b2 − 4c < 0:∫ 1

0

ds
(s2 + bs + c)

=
∫ 1

0

1

(s + b/2)2 + 4c−b2

4

ds (A9)

=
∫ 1+(b/2)

b/2

1

x2 + (
√

4c−b2

4 )2
dx (A10)

since
∫ 1

a2+x2 dx = 1
a arctan x

a . With a =
√

4c−b2

4 , we obtain

T =
1

εA
(

1
a
)(arctan

x
a
)
∣∣∣1+(b/2)

b/2
(A11)

t =
1

εA
(

1
a
)(arctan

s + (b/2)
a

− arctan
(b/2)

a
) (A12)

Appendix B. Energy Gap

Given an arbitrary 2 by 2 non-negative-entry Hermitian matrix H as

H =

[
α γ
γ β

]
, (A13)

via computing the determinant and eigenvalues, the energy gap ∆E is

∆E = |λ+ − λ−| =
√
(α− β)2 + 4γ2. (A14)

Simply from the view of energy gap, as long as |γ| increases and the gap, |α− β|, between
the diagonal entries increases, the energy gap would increase. The increase of |γ| can be
adapted by σx while |α− β| can be increased by σz. They should be good candidates for
the catalyst perturbation in the AQC path. Similarly, if the Hamiltonian has an imaginary
part in the off-diagonal entries,

H =

[
α γ− di

γ + di β

]
(A15)

∆E = |λ+ − λ−| =
√
(α− β)2 + 4(γ2 + d2). (A16)



Entropy 2023, 25, 1287 12 of 13

The Hamiltonian H (with no imaginery entries) can be expressed in terms of Pauli matri-
ces as

H =
α + β

2
I+ ∆E

2
((

2γ

∆E
)σx + ((

α− β

2
)(

2
∆E

)σz)) (A17)

=
α + β

2
I+ ∆E

2
A (A18)

such that, by use of the power of Pauli matrices,

e−iHt = cos
(

∆Et
2

)
I− i sin

(
∆Et

2

)
A. (A19)
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